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Abstract Identifying causal relationships is a chal-
lenging yet crucial problem in many fields of science
like epidemiology, climatology, ecology, genomics,
economics and neuroscience, to mention only a few.
Recent studies have demonstrated that ordinal parti-
tion transition networks (OPTNs) allow inferring the
coupling direction between two dynamical systems. In
this work, we generalize this concept to the study of
the interactions among multiple dynamical systems and
we propose a new method to detect causality in mul-
tivariate observational data. By applying this method
to numerical simulations of coupled linear stochas-
tic processes as well as two examples of interacting
nonlinear dynamical systems (coupled Lorenz systems
and a network of neural mass models), we demonstrate
that our approach can reliably identify the direction of
interactions and the associated coupling delays. Finally,
we study real-world observational microelectrode array
electrophysiology data from rodent brain slices to iden-
tify the causal coupling structures underlying epilepti-
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form activity. Our results, both from simulations and
real-world data, suggest that OPTNs can provide a com-
plementary and robust approach to infer causal effect
networks from multivariate observational data.
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1 Introduction

The detection of causal interactions is a fundamen-
tal problem in both natural and social sciences [1,2].
Reliable statistical inference of causality can aid in
making predictions, which may eventually allow to
design proper intervention strategies [3]. For example,
in neurological disorders such as epilepsy, predicting
a seizure from electroencephalography (EEG) record-
ings and preventing its occurrence is a long-standing
problem that has not yet been completely solved. In
this context, reliable seizure prediction algorithms and
consequent appropriate interventions to prevent seizure
occurrence could be life-saving for the patient.

In the past few decades, several approaches have
been developed to both identify and quantify the inter-
dependence between observational time series. The
Granger causality test can be used to infer causality
between two time series [4], and its extension, partial
directed coherence, allows to infer causality from mul-
tivariate data [5]. The Granger causality test is based on
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linear regression. Under this framework, a causal rela-
tion of one system (or variable) X affecting another
system Y (i.e., X — Y) is statistically inferred if the
variance of the prediction error of the behavior of Y
can be reduced by including past information about
observations of X in the regression model for Y. Since
the classical Granger causality analysis is model-based
and (in a strict sense) only valid for linear systems,
more general bivariate approaches based on informa-
tion theory have been proposed for identifying causal-
ity in applications to nonlinear dynamical systems [6].
These methods include, among others, transfer entropy
[7], time-delayed mutual information [8], and the mul-
tivariate extension of transfer entropy [6]. In particular,
transfer entropy can be considered as a generalization
of Granger causality for nonlinear systems [9], while it
has been shown to be equivalent to Granger causality
for linear Gaussian models [10].

With the rising availability of powerful computer
infrastructures and large observational data sets, the
study of statistical interdependencies based on multi-
variate time series has found widespread applications,
for instance, in the area of neuroscience. In the con-
text of multi-channel EEG recordings, such interde-
pendencies can be related to the concept of functional
connectivity, which commonly refers to the statistical
associations between pairs of signals that are measured
in terms of simple linear correlations or variants thereof
and, thus, cannot distinguish between direct and indi-
rect connectivity [11]. Several statistical association
measures have been employed to estimate functional
connectivity from EEG data, including Pearson corre-
lation, mutual information, synchronization likelihood,
and phase locking value, all of which are symmetric
measures and do not provide information regarding the
direction of the associated information flow [8, 12—-15].

While studying complex systems such as neuronal
networks, it is often important to identify not only
the symmetric statistical associations, but also the
causal relationships (i.e. driver-response relationships)
between the involved sub-systems [2]. For example,
effective connectivity [16] between individual neurons
(or ensembles of neurons) is characterized by direct
(causal) relationships. Hence, statistical inference of
causality based on time series is a more informative
approach to better understand the interplay between
neuronal connectivity and dynamics, and is the key
to study the structure-function relationship of neu-
ronal networks [17]. To estimate effective connectiv-
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ity, recent works using Granger causality-based meth-
ods such as directed coherence and transfer entropy
have been proposed [18]. Although these concepts
provide asymmetric measures, they cannot distinguish
between causal (direct) and non-causal (indirect) inter-
dependence among two subsystems. By contrast, par-
tial directed coherence [5] (which has been often
used in EEG studies) can distinguish between direct
and indirect causal links but assumes a simple lin-
ear multivariate autoregressive model for describing
the data. More recently, Bayesian filtering approaches
have been suggested to estimate connectivity. However,
such approaches also make strong assumptions about
the underlying dynamical model [19-21]. Another
approach known as dynamic causal modeling [22] has
also been widely used to estimate causality among
brain regions using EEG, magnetoencephalography or
functional magnetic resonance imaging measurements.
However, dynamic causal modeling is also a model-
based approach and makes strong assumptions on the
process by which the data are generated. In addition,
it requires the pre-specification of several competing
hypotheses, which may not always be available. For a
detailed review on various methods for estimating neu-
ral connectivity and their applications in neuroscience,
we further refer to [23,24] and the references therein.

In the last years, a great deal of interest has
emerged in characterizing dynamical systems using
complex network-based time series analysis methods
[25]. Those methods include, among others, recur-
rence networks [26-28], visibility graphs, [29] and
transition networks [30], all of which feature dif-
ferent definitions of nodes and links in the result-
ing network representations of the time series under
study. For instance, in the case of recurrence net-
works, the edges are defined based on the proxim-
ity of observed states in phase space, whereas for
visibility graphs [26], mutually visible elements in
a univariate time series are linked to form a net-
work [29]. Finally, in the case of transition networks
[30], certain discrete states or patterns are defined as
nodes, and if one of these dynamical structures is fol-
lowed by the other with nonzero probability along
the observed (or reconstructed) trajectory, a directed
edge is established between the corresponding nodes
[31]. However, the majority of previous applications
of the aforementioned methods have focused on uni-
variate time series, while a generalization to multi-
variate time series would be a necessary step to allow
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detecting signatures of causality. This aspect has not yet
been systematically explored in full detail in the recent
literature.

In this work, we consider a particular class of tran-
sition networks known as ordinal partition transition
networks (OPTNs) [32] to infer causality from mul-
tivariate time series. OPTNs are based on the ordi-
nal patterns embedded in a time series, the system-
atic analysis of which has originally been proposed
in [33]. Such ordinal patterns reflect the respective
rank order among a predefined sequence of univari-
ate observation values. Identifying the series of subse-
quent ordinal patterns in a univariate time series results
in a particular symbolic representation of the observed
system’s trajectory. It has been shown that under spe-
cific conditions, this ordinal partition exhibits the gen-
erating property, which makes it attractive for appli-
cations since it implies topological conjugacy between
phase space and the ordinal symbolic dynamics [30].
For an unconstrained stochastic process, all possi-
ble ordinal patterns occur with equal probability. By
contrast, for a time series produced by deterministic
dynamics, certain ordinal patterns commonly do not
appear, which are known as forbidden patterns [34]
and provide a window of opportunity to test for pos-
sible determinism in a time series [35-37]. Further-
more, given the symbolic representation of the phase
space trajectory (which controls the respective fre-
quency of the different ordinal patterns), it is possi-
ble to compute a variety of dynamical characteristics,
such as permutation entropy or a plethora of statis-
tical complexity measures that can be defined based
on the latter concept. Taken together, ordinal pattern-
based analysis offers several advantages as compared
to other more traditional nonlinear time series anal-
ysis techniques. The resulting methods are concep-
tually simple, computationally fast, and can capture
information about the short-range temporal structure
of the underlying time series [38]. In addition, they
have been shown to be robust against additive noise.
Finally, the calculation of ordinal patterns does not
require any a priori knowledge of the data range, which
is practical and advantageous in time series analysis
[38].

An OPTN is based on the ordinal symbolic encod-
ing of a time series and consists of [31] (1) nodes,
which represent the individual ordinal patterns and (2)
probability-weighted edges, which represent the tran-
sition frequencies between two successive ordinal pat-

terns. Previous applications of statistical complexity
measures derived from OPTNs include the classifica-
tion of cardiac dynamics based on electrocardiogra-
phy data [30,39] and the analysis of EEG data from
healthy and epileptic humans [40]. Although recent
attempts have addressed bi- and multivariate exten-
sions of OPTNs [34], often with the aim of charac-
terizing different types of synchronization transitions,
they have not yet provided thorough information about
causal relationships among multivariate time series.
Most recently, Ruan et al. [31] have proposed a strat-
egy for the estimation of several complexity measures
based upon bipartite OPTNs, which allows for statis-
tical inference of the coupling direction among paired
time series. However, their approach is limited by its
bivariate nature. Hence, when applied to a multivari-
ate data set, it cannot distinguish between direct and
indirect causal connections among the individual time
series.

To overcome the aforementioned limitations of pre-
vious OPTN-based methods, in this work we pro-
pose an extension of OPTN-based time series analy-
sis, which leverages the construction of multiple bipar-
tite OPTNs (M-OPTN) to account for multivariate
(i.e., comprising more than two components) time
series. Specifically, we outline and thoroughly test
an approach for distinguishing direct from indirect
causal connections based on the conditional Shannon
entropies of the bipartite constituents of the M-OPTN
[31]. In order to demonstrate the effectiveness of our
approach, we apply the proposed method to coupled
linear stochastic processes, nonlinear dynamical sys-
tems (exemplified by three interacting Lorenz systems),
and a network of coupled neural mass models. The
latter type of system has been shown previously to
mimic the dynamics exhibited by neurophysiological
time series [41] and thus serves as a validation tool to
test the applicability of our method to neuronal time
series. Finally, as a real-world example, we study in
vitro microelectrode array (MEA) recordings from an
in vitro model of acute ictogenesis, i.e., rodent brain
slices in which epileptiform discharges are induced
by pharmacological treatment. The network interac-
tions and the associated delays of epileptiform dis-
charges propagation that occur in this in vitro model
have been extensively characterized [45,46] and serve
as a reliable reference to validate the causal network
relationships and delays estimated by the proposed
method.
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2 Methodology

2.1 Ordinal partition transition networks
Given a univariate time series X = {x,}tT: 1» Tollow-
ing Takens’ embedding theorem, we can qualitatively
reconstruct the underlying phase space trajectory by
using M successively lagged replications of X, each
separated by a lag d, yielding the vector

o X (M—1yd ], (D

fort = 1toT — (M — 1)d, where M and d are
the embedding dimension and delay, respectively. Each
embedding vector z, is mapped to a sequence of inte-
gers (so, 51, - - -, Spr—1) that describes the rank order of
its components (with 0 indicating the smallest value)
andis aunique permutation of the set {0, 1, ..., M —1},
thereby satisfying

Z; = [x,,x,_,_d, ..

Xt+sod = Xt+s1d =< Xt+sod <...= Xt+sy_1d (2)
and
spop < sy if x| =Xy 3)

Note that there exist M! different possible ordinal pat-
terns when a time series is embedded in M dimensions,
and we denote these patterns by 71, 72, ..., .

As an example, consider a 5-dimensional embed-
ding of a time series yielding an embedding vector

(X, Xe4ds Xe42d> X143ds X144} = {3,9,10, 1,6}, (4)

Here, X434 < Xy < Xy444 < Xi+d4 < Xt4+24, and thus
this partition would be mapped to the ordinal pattern or
symbol 7 = {3, 0, 4, 1, 2}. The exact numerical value
of the resulting integer index k € {1, ..., M!} depends
on the specific sorting of the permutations, the default
of which may differ among different algorithms and
programming languages.

For a univariate time series, we can then construct an
(unweighted or weighted) OPTN with M ! nodes by first
repeating this encoding procedure for each embedding
vector. A weighted OPTN is obtained by setting the
weight of the edge between two nodes (permutations)
to be equal to the empirical frequency of “transitions”
(i.e., successive occurrences) between the correspond-
ing possible ordinal patterns. An unweighted OPTN
simply contains a directed edge of unit weight between
the corresponding nodes if this frequency is nonzero.

Ruan et al. recently extended the idea of OPTNs
to bivariate time series, that may be interacting either
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linearly or non-linearly [31]. In their framework, given
the time series {x1 ; }thl and {x2 ;} zT:1 ,derived from two
dynamical systems X and X», we can derive the asso-
ciated sequences of ordinal patterns underlying each
time series as described above, containing the ordinal
patterns 77; ' and n;z for X and X», respectively. One
can now compute the (instantaneous or time-lagged)
conditional co-occurrence frequencies p(r;*|7;""")
by simply counting the number of cases in which n}cz
occurs with a time-lag of t following an occurrence
of nl.x '. Note that we deviate here from the notation in
[31] in order to allow a straightforward generalization
of the concept of co-occurrence probabilities by includ-
ing multiple variables X; that may possibly cause vari-
ations of the given X, at different delays t; (see Sec-
tion 2.2 below).Thus, T = 0 corresponds to looking at
simultaneous co-occurrence while t > 0 would imply
looking at lagged co-occurrence. Given these condi-
tional co-occurrence frequencies, Ruan ef al. proposed
the estimation of the conditional entropy (CE) [31],
given as

M! M!
He(Xa| X)) ==Yy p(r"", 7%

i=1 j=1

log, p(r 2|77, 5)

which gives the interaction X; — X» at a delay of t.
The interaction in the other direction atlag 7, X, — X
can be defined in an analogous way as follows,

M! M!
He(X11X2) = =)y p(r>", 7

i=1 j=1

log, p(r;! |77*"), (6)

If X; and X, are independent and their different
ordinal patterns uniformly distributed, then p(n;‘z’r,
T = ﬁ and p(m;" ") = # and thus
H:(X1]|X2) = log, M!, which is the upper bound for
the CE value, denoted as H,,4,. On the other hand, if
X1 and X are fully dependent, then p(r7;" |n;.‘”) =1
and ideally H;(X1|X2) = 0. Thus, as the strength of
causal interaction from X5 to X at a given time lag ©

increases, H; (X |X7) decreases.

X2,T

2.2 Causal inference strategy based on entropy
measures from OPTNs

When dealing with multivariate data, i.e. data from
three or more interacting systems, it is necessary to dis-
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tinguish direct links from indirect ones. For example,
consider a transitive chain X; — X» — X3 (Fig. 1
(a)). Applying the bivariate OPTN derived entropy
measure as described in [31] would lead to the detec-
tion of a non-existing connection from X; — X3, as
shown in Fig. 2 (a). Similarly, consider a fork pattern,
where X1 — X5 and X1 — X3 (Fig. 1 (b)). Here, X
is a common driver to both X, and X3 and this will
lead to a spurious connection between the X, and X3
as shown in Fig. 2 (b). Note that in Fig. 2, an interaction
m — n atnegative delay is to be interpreted asn — m.

In order to distinguish such direct from indirect
links, a sophisticated way of conditioning has to be
employed, thereby generalizing the previous strictly
bivariate approach. In the following, we will detail
a possible methodology to use OPTN—based entropy
measures to infer causality from multivariate time
series as outlined in Fig. 3. Note that this methodol-
ogy rests upon certain general assumptions common to
causal inference methods, most notably, the complete-
ness of the set of variables analyzed (i.e. the absence
of any possible hidden drivers).

STEP I: Pre-processing of observational data

Depending on the particular research problem, observa-
tional time series first have to be pre-processed, which
includes standard procedures like band-pass filtering,
resampling and removal of any noise or artifacts if
present. If necessary, the data can be further divided
into a number of overlapping windows to obtain a time-
dependent estimate of the coupling measure.

STEP II: Construction of M-OPTNs

Given a time series, its phase space is reconstructed
following Takens’ embedding theorem. The compo-
nents of the resulting embedding vectors are then rank
ordered to obtain the symbolic representation of the
time series. For an N-channel multivariate time series,
N such OPTNSs are constructed, are referred to as M-
OPTNSs.

STEP III: CE from M-OPTN

After constructing the M-OPTN, we compute the
bivariate information theoretic measure of CE as given
in Eq. (5) for each pair of variables and define the matrix

Algorithm 1 Construct M-OPTN from multivariate

time series

1: procedure COMPUTEM- OPTN

2: Input: Multivariate time series X1, X2, ..., Xy, embed-
ding dimension M, and lag d.

3 Output: M-OPTN IT

4: forn=1to N do

5

6

fort=1t07T — (M —1)d + 1 do

: Map z,, ; to symbol (sp, ..., spy—1) using Equations
(2)to (3).
7 Assign ordinal patterns I1[t, n] = 7TkX " based on the
respective permutation for each ¢ and n.
8: end for
9:  end for

10: end procedure

He(Xy)  Hi(X1]X2) -+ H: (X1|Xw)
. Hy(X2|X1)  He(X2) -+ He(X2|XN)
He (Xn|X1D) Hi(Xn[X2) -+ Ho(XN)

(N

where each off-diagonal term H; (X, |X,,) represents
a possible causal link from the m — th time series to
the n — th time series, i.e., X;, — X, at delay r.
Note that in what follows, we will not make use of
the diagonal elements of H; (representing the classical
Shannon entropies — i.e. in our specific case the permu-
tation entropies — of the individual processes), so that
they could be safely ignored or just put to zero.

LetH = {H;, H,, ..., H;, } denote the CE matri-
ces obtained from the M-OPTN for a range of J delays
T = {71,..., t7}. Each of the matrices H; obtained
above is next thresholded using a hard threshold to
obtain a new matrix ﬁ, with elements

ﬁr(xnlxm) :hnmr
_ Hmax» lf H'[ (Xn|Xm) 2 )"Hmax
H:(X,|X;,), otherwise

®)

where Hpax = log, M! and A is usually set between
0.99 and 1. Due to the finite sample size, two indepen-
dent processes will not have a CE value exactly equal
to Hmax. To account for this numerical issue, we allow
for some tolerance by setting the parameter A. After
this step, only dominant neighbors (both causal and
non-causal) are retained for each node. The resulting
matrix H, represents a weighted, directed network of N

@ Springer
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Fig.1 Example of spurious
connections (shown as
dotted red arrows) that
would be inferred from a
directed chain a and a fork
pattern b if direct links are
not distinguished from
indirect links

Fig. 2 Causal network

(A)

(A) Directed chain

inferred inferred with the 2.5 - b ' b Y e
bivariate approach using 8 —3.>1
OPTN-based CE for the g 2r —3-> 2]
directed chain a and fork b B 1
with a spurious connection g Sr )
1_)2atf=2f0rthe 1 | | 1 | | 1 | 1 | 1 | | I | | 1 | 1
directed chain and 2 — 3 at 10 9 8 -7 6 -5 -4 -3 2 -1 0 1 2 3 4 5 6 7 8 9 10
7 = 3 for the fork pattern Delays
(B) Fork
T T T T T T T T 1 I
—2->1
= L H
o 24 —3->1
8221 —3->2||
3
=]
g 2f :
a
1_8 = | L 1 1 L 1 1 L 1 | L 1 1 1
-0 9 -8 -7 6 -5 4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Delays

Pre-processing of Construct Compute

Removal of
non-causal

Obtain minimal
set of neighbours

Find set
of parents

Fig. 3 Proposed methodology

nodes, where the strength of the link between the node
at delay t is inversely proportional to the CE value
H.(X,|X;,) and no link exists between two nodes if
Hy (Xy|Xm) = A Hmax-

STEP 1V: Find set of parents and children
The set of matrices H = {I:Itl , I:ITZ, R I:I, .} repre-

sents a weighted multi-layer network G = {V, E},
where V = {X1, ..., Xy} denotes a set of nodes (i.e.
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Algorithm 2 Compute pairwise CE using M-OPTN

1: procedure COMPUTECE
2:  Input: M-OPTN I, threshold A and range of delays T =
{1, ..., 1y}

3:  Output: CE matrix H

4: fori=1toJ do

5: forn =1to N do

6: form = 1to N do

7. Compute Hy, (X,|X,,) using Equation (5)

8: end for

9: end for

10:  end for

11:  SetH =[H,H,,,...,Hy].

12:  Threshold H using A and H,,,, as shown in Equation (8).

13: end procedure

the different component processes) common to the dif-
ferent layers (which represent the different delays 7;),
while £ = {Eq,..., E;} is a set of edges that will
commonly differ among the layers. For every node X,
in the multi-layer network defined by H, we identify
a set of k,, parents Px, = {pi1,..., px} at delays
{tp1s---s Tpy, ) and Iy children Cx,, = {c1,..., ¢}
at delays {z.,, ..., Ty, }, respectively, which can span
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across all possible layers. The set of parents for a node
X, 1s given by

Px,, = {hmntlhmjc < Hmax, n #m, © € T} )

where h,,;; describes the element in row m and column
j of the single-layer adjacency matrix H,, cf. Equa-
tion (8). In a completely analogous way, we define the
set of children of X,, node as

CX,, = {hmnclhine < Hpax, m #n, 1€ T} (10)

where h;,, represents the element in row i and column
n of I:Ir. By defining those two sets for all nodes (vari-
ables) X, (X,), we collapse the information contained
in the multi-layer adjacency matrix H to the essential
strong bivariate (time-lagged) linkages among the set
of considered variables.

Algorithm 3 Find set of parents and children from pair-

wise CE matrix

1: procedure FINDPC

2:  Input: Set of matrices H, H,,.

3:  Output: Py, at delays {7, ..., 7y} and Cy, at delays
{te,s ..., 7} for each node X,,.

4 forn =1to N do

5 Compute Py, and Cx, using Equation (9) and (10).

6: end for

7: end procedure

STEP V: Identifying the minimal set of neighbors for
conditioning

Given at set of parents for node X,,, Px,, = {p1,....
pi} at delays {zp,, ..., 75}, to test for a causal con-
nection from node X, to node X,,, we seek to define a
minimal conditioning set P?rin“ C Px,,, given as

PRin = Py NCx, = {p}..... P}} (11)

where C, x,, 1s the set of children of node X,,, which does
notinclude X, 1.e. é\x,l = Cx, \Xm. The set CAX" will be
an empty setif Cy, = {X,,}, i.e. the only child of node
X, is node X,,, and in this case we set Pﬁ?;“ = {Xn}.
Also, it is possible that P;‘:ﬂ“ will be an empty set due
to no common elements between Py, and C) X,,- In this
case, we set ’P)’}‘;n = Px, N Px,. If P}r?rin“ is still an
empty set, then we set Pg(n;“ = {X,}. Note that in each
of these cases, along with the conditioning set )‘?’:I“,
we also obtain the corresponding delays, {r{, ..., 7/},

with |P§‘;n| = r. In order to facilitate reliable com-
putation of CE (see STEP VI) to exclude non-causal
neighbors, in all our applications we restrict ourselves
here to r = 3 if r > 4, by choosing the three most
dominant neighbors, based on their respective CE val-
ues.

Algorithm 4 Find minimal set of neighbors for condi-
tioning
1: procedure FINDMINCONDITIONINGSET

2:  Input: Py, at delays {z),, -+, 7, } and Cx, at delays
{te;, -+, T¢, ) for each node X, and r.

3 Output: P}’?;"

4 for m = 1to M do

5: forn =1to N do

6: Set Cx, = Cx, \ Xm

7 if Cx, = ¢ then

8: Cx, = (Xm)

9: Py = {Xm}

10: break

11: end if

12: Set 733}”’;1” according to Equation (11).

13: if P = ) then

14: PR =Py, NPy,

15: end if

16: if Pg("’;” = () then

17: Py = {Xm}

18: end if

19: end for

20:  end for

21: if [PR”"| > r then

22: Set [PY"| =r

23:  endif

24: end procedure

STEP VI: Removal of non-causal neighbors by proper
conditioning

To check if X, is a truly causal parent to X,,,, we com-
pute

ex, = HXu|PY™) — H(Xn|PX™, X,). (12)

If X, is an indirect causal connection to X,,, then
€x, = 0, since conditioning on X,, should not reduce
H(X,, |P§(“’in“) any further. However, since we are deal-
ing with finite data, ex, ~ 0. In practice, we set another
pre-defined threshold § and if €x, < 4, then X, is
considered as an indirect causal link to X,,. The CE
H(X,, IP)r?’T), with |P}}‘;“| = r,is given as
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M! M!

HX PR = = 30 3 parl ™/ )
i=1 j=1
logp(n;’”mip"rl, ... ,nip”r’).
(13)
The CE H (Xm|77)‘?;“, X,) is defined in an analogous
way.

Algorithm 5 Remove non-causal neighbors based on

CE differences

1: procedure REMOVENCN

2:  Input: Matrix H, §.

3 Output: Matrix H.

4 for m = 1to M do

5 forn =1to N do

6: Compute €y, using Equations (12) and (13).
7

8

if ex, < & then
: Set H(X ;| Xn) = Hpax
9: end if

10: end for
11:  end for

12: end procedure

3 Numerical examples

In the following, we present results from the applica-
tion of the proposed methodology to simulations of lin-
early interacting stochastic processes as well as inter-
acting nonlinear dynamical systems including Lorenz
systems and a network of neural mass models. In the
case of interacting stochastic processes and interact-
ing Lorenz system, we varied é from 0 to 0.5. We also
added observational noise to the simulated data,

y() =x() +e() (14
where e(t) ~ BN(0, 1), where B is the noise level
(NL), whichis set at 0.1, 0.2 and 0.4 times the standard
deviation of original noise free time series.

In the case of the network of neural mass models, we
varied é from 0 to 0.25 and added noise at the level of 0.5
and I times the standard deviation of original noise-free
time series, which corresponds to realistic signal-to-
noise ratios commonly found in EEG data (Amplitude
signal-to-noise ratios of 2 and 1, respectively).

For evaluating the results of our methodology for
the different simulations, we define the number of true
positives (#TP) as the number of correctly identified
links, and the number of false negatives (#FN) as the
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number of missed links. The number of false positives
(#FP) is defined as the number of incorrectly identified
links, and the number of true negatives (#TN) corre-
sponds to the number of correctly identified non-links.
We then define the true positive rate (TPR) and false
positive rate (FPR) as

4TP
TPR = b r#EN
#FP (s)
FPR = ——
#FP + #TN

In addition, we use the Fi-score to quantify the accu-
racy of the method, which is given as

#TP
Fi = . (16)
#TP + 0.5(#FP + #FN)

3.1 Interacting stochastic processes

We first simulated the following multivariate autore-
gressive system such that it contains a directed chain
as well as a fork, both of which can lead to spurious
causal links:
Xy = 34x1,1(1 — xlz,,lexlz-‘*‘) + c21x2,0-4
+e31x3,0-2 + carxa -2 + 0.4uy

X2 = 3.4x2,1(1 —
+0.4u; ;

x2t 1€ 2r 1)

2
X34 = 3.4x3,1(1 — x5, e%-1)
+c13x1,—1 + 0.4u3,
2
X4y = 3.4x4,-1(1 — x5 ,_ e"h1)

+C54X5,1-3 + caX6,1—1 + 0.4ug

x5, = 34xs, (1 —x2, e%5r1)
+0.4us

X6, = 3.4x6,:—1(1 — xm 1€ o D)+ c76X7,1-3
+0.4ue

2
X7, = 34x7,1(1 —x3 ,_ 1) + 0.4uq,
2
xg = 3.4xg,-1(1 — xgz‘rflexg-‘*l) + ¢78x7,1—1 + 0.4ug ;
2
X9 = 3.4x9,,-1(1 — xgz‘rflexg-‘*l) + ¢79x7,1—1 + 0.4u9

A7)

with c13 = 0.25, ¢p1 = 2.5, ¢31 = 1.8, ¢41 = 1.5,
C54 = 1.5, Co4 = 1.2, c76 = 1.5, c79 = 1.8, Cc78 = 0.8
and u, ; being zero mean Gaussian noise. The causal
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structure of the system described above is shown in
Fig. 4.

We vary the threshold é from O to 0.5, and for each
value of §, we generate 50 realizations for the system
described in Eq. (17). We varied the range of delays
from 1 to 10 and the embedding dimension and delay
were set to 3 and 100, respectively. We performed the
simulations for generating data sets of a size of T =
1000, 5000, 10000 and 20000 samples.

Figure 5 shows the results from an exemplary sim-
ulation, where § = 0.15, N = 10000 samples and
NL = 0. As we can see from the figure, the causal
interactions among the stochastic processes are cor-
rectly identified along with their respective delays. In
Fig. 5 the interaction m — n at a negative delay is
again to be interpreted as n — m. The causal interac-
tion between two processes at a particular delay results
in a drop in the CE value away from the H,,,, value,
which in our case is given by log M ~ 2.58.

Figures 6 and 7 show the T PR and F PR values,
respectively, for the interacting stochastic system, as §,
T and N L are varied. We can see that at 7 = 1000,
high T P R as well as F' P R values are obtained, with no
significant changes in their values as N L or § is varied.
In case of the T PR values (see Fig. 6), we find that
for T > 5000, the § value at which T P R starts to drop
below 1 slightly decreases as N L increases, but in all
cases, TPR = 1for§ < 0.2. For§ > 0.3,the TPR

Fig. 4 Multivariate autoregressive system described in Eq. (17)

N
)

N
»
T

4 —2->1
N\ —3->1
/ —3-> 1}
/ —4->1
y 5->4

—6 -> 4|/

7->6
—8->7
—9->7||

N
N
—

N
T

M-OPTN based CE (H)
=
©

Iy
)
T
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-10-9 -8 -7 -6 -5-4-3-2-1012 3 456 7 8 910
Delays

Fig.5 Causality detection based on M-OPTNs for an exemplary
simulation of the multivariate autoregressive system for 6 = 0.15
and 7 = 10000 samples

values tend to remain at &~ 0.25, except for NL = 0.40,
where it continues to decrease for § > 0.4. When the
T > 5000, we can see that the F' P R values drop below
0.1 and for 6 > 0.2, FPR = 0 for T = 5000, and for
8§ > 005 FPR = 0 for T = 10000 or T = 20000,
irrespective of the value of N L (see Fig. 7).

Figure 8 shows the accuracy of the causal inference
algorithm in terms of the Fj-score for the interacting
stochastic system. We observe that for 7 = 1000, F| =
0, irrespective of the choice of § or the level of the noise.
For T = 5000, we find that F| tends to increase as 6
is increased and reaches =~ 0.9 only when § > 0.2.
F tends to decrease for § > 0.25 for NL < 0.40. At
NL = 0.40, for T = 5000, F; reaches a maximum
value of 0.8 for 0.2 < § < 0.25, after which it tends to
decrease. For 7 = 10000 or 20000, we again observe
that F) tends to increase when § is increased and it
reaches & 1 for the range 0.1 < § < 0.2. The range
of § tends to get narrower only at NL = 0.40, when
F1 ~ 1for0.1 < § < 0.15. F) starts to decrease as
§>02for NL <04andé > 0.15for NL =0.4.

3.2 Interacting Lorenz systems

The next example of three interacting identical Lorenz
systems with the structure X| — X, — X3 is defined
by the following set of ordinary differential equations,

d
x;t(t) = 1031 (1) = x1(1))
% = 28x1(1) = y1(t) — 21021 (1)
d
Zdl—t(t) =x1(0)y1(t) — 8/3z1(1)
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Fig. 6 T PR computed for
50 independent realizations
of the multivariate
autoregressive system as §,
T, and N L are varied

Fig.7 F PR computed for
50 independent realizations
of the multivariate
autoregressive system as §,
T, and N L are varied

Fig. 8 F computed for 50
independent realizations of
the multivariate
autoregressive system as §,
T, and NL are varied
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dx;t(t) = 1002(1) = x2(0)) + c(x1(1) — x2(1))
dy;t(t) = 28x5(t) — 2 (t) — x2(t)z2 (1)
dZ2(t) _ xz(t)yz(l) _ 8/3Z2(l‘)
dt
d
X;t(t) = 10(y3(?) — x3(1)) + c(x2(?) — x3(2))
dy;[(t) = 28x3(1) — y3(t) — x3(t)z3(1)
dZ;t(f) =x3(0)y3(r) — 8/3z3(1) (1%

We have set the coupling strength to ¢ = 0.6 and used a
Runge-Kutta integrator with a step size of dt = 0.001
to numerically solve the above set of ordinary differen-
tial equations. We then used the time series {xj (t)}tT=1
with k = 1,2, 3 as the observations from the inter-
acting Lorenz systems, to which we added noise at
NL =0.1,0.2,0.4. We set A = 0.995 and performed
50 simulations for every combination of the threshold
8, time series length 7' and noise level N L including
the noise-free condition (i.e., NL = 0).

Figures 9 and 10 show the T PR and F PR values
obtained for the interacting Lorenz systems as § and
T is varied for different values of NL. Here NL = 0
represents the noise-free condition. We can see that for
T = 1000, the proposed causal inference algorithm
giveshighT PR (= 1)aswell as F' P R (= 0.60), which
starts to drop for § > 0.15 and § > 0.1, respectively,
for NL = 0. As NL is increased, the § at which T PR
and F PR start to drop, also increases. However, we
observe that for all values of NL, for T = 1000, the
accuracy of the algorithm as given by the F; score (see
Fig. 11) is the highest at § ~ 0.2 for NL = 0 and for
other values of N L, F| remains mostly at 0.5.

For T = 5000, the T PR remains at 1 for NL = 0,
0.10 and 0.20 and starts to drop for § > 0.1 (see Fig.
9). Only in the case of NL = 0, the F PR drops to
~ 0.20 at § =~ 0.08 (see Fig. 9). For NL = 0.10
and 0.20, FPR remains at 0.6 and only starts to drop
when § > 0.1. For NL = 0.40, we observe low FPR
(< 0.4)as well as T PR (< 0.5) values for all values
of §. Figure 11 shows that for 7 = 5000, at NL = 0.0
and § ~ 0.15, the Fi-score is & (.78 and starts to drop
to 0 and § is increased. The Fj-score remains mostly
at about 0.5 and drops to O for other values N L as § is
increased.

From Fig. 9, for T = 10000 and 20000, we observe
that 7 P R remains at 1 and the § value at which it starts
to drop and eventually reaches zero decreases as N L
increases. However, we find 7 PR > 0.8 even with the
additionofnoiseat NL = 0.1 and 0.2, for§ < 0.05, for
which we also observe that the F' P R starts to drop (see
Fig. 10). This is also reflected in the accuracy as given
by the Fi-score shown in Fig. 11, where F1 =~ 0.88 for
NL =0andd§ =0.1,and F; ~ 0.88for NL = 0.1 and
6 ~ 0.05. As NL is increased to 0.20, F;-score drops
to 0.6. At NL = 0.40, we observe that the accuracy
is O for all values of &, except for very small values
(< 0.03), for which F| ~ 0.4.

3.3 Network of neural mass models

The simulations described in Sects. 3.1 and 3.2 have
been restricted to linear stochastic systems and paradig-
matic nonlinear dynamical systems, both of which may
not fully characterize the typical nonlinear character-
istics in neural time series. In order to also demon-
strate the ability of the proposed method to capture
interactions in nonlinear dynamical systems such as
neuronal networks, we finally consider a network of
neural mass models [41]. To this end, we created a
network of eight neural mass models (the ordinary dif-
ferential equations describing each neural mass model
are provided in the Appendix, and the parameters are
set as given in [41]), with the % of directed interactions
(KC) between the eight regions varying as 5%, 10% and
25% of the overall possible connections (N2 including
N self-connections), at a delay of 40 milliseconds. We
vary the threshold A from 0.99 to 1.0 and the thresh-
old § from 0 to 0.2. To also investigate the effect of
noise on the performance of the method — in addition
to the noise free observations from neural mass models,
Gaussian noise ata N L of 0.5 and 1.0 was added to the
output of the neural mass models. For each of the com-
binations of these parameters (C, A, §, and N L), we
generated 25 simulations. The embedding parameters
were the same as in Sect. 3.1 (M =3 andd = 1). We
computed CE based on M-OPTNs for delays ranging
from 10 milliseconds to 100 milliseconds. Since the
interaction in the simulated network happens at around
40 milliseconds, any interaction in the estimated net-
works at a delay other than 40 milliseconds is counted
as a false positive.
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Fig. 9 TPR of the proposed
causal inference algorithm
for the interacting Lorenz
systems as §, 7, and N L are
varied

Fig. 10 FPR of the
proposed causal inference
algorithm for the interacting
Lorenz systems as §, 7', and
N L are varied

Fig. 11 Fj-score of the
proposed causal inference
algorithm for the interacting
Lorenzs system as §, T', and
NL are varied
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Figure 12 shows the T P R values for the network of
neural mass models for varying NL, A, § and . We
can see that for all values of  and NL = 0 and 0.5, the
value of § at which T PR remains at 1 decreases and
T PR values are largely unaffected by the choice of A.
At NL = 1.0, we observe that as A is increased, the
range of 6 for which T PR = 1 increases and at higher
connection densities (K = 0.25), we observe that high
T PR values are only observed for a narrow range of
A > 0.995 and § values.

Figure 13 shows the associated F'PR values. We
observe that for § < 0.03, F'P R remains very high and
close to 1 irrespective of the choice of §, A or L when
the NL = 0 or 0.5. When NL = 1.0, high values of
FPR are observed for A > 0.998. When § > 0.05
and NL = 0 or 0.5, the FPR values drop to zero
irrespective of the choice of A and for all . When NL
is increased to 1.0, we observe in general lower values
of F PR as )\ isdecreased. Howeverford > 0.05, FPR
drops to zero irrespective of the choice of A or K.

The accuracy of the proposed approach for the net-
work of neural mass models is finally shown in terms
of the Fij-score in Fig. 14. As it is evident from the fig-
ure, as NL and K increases, the choice of A and § for
which we obtain high values for F; gets narrower. For
example, at NL = 0 and £ = 0.1, for 0.1 < § < 0.2,
we can see that F; = 1 irrespective of the choice of A.

(A) NL=0.00, K =0.05

(B) NL =0.00 , K =0.10

But for the same /C, we observe that in order to get good
accuracy, i.e., high Fi-score, we need to choose lower
values of A and § as N L is increased. When K = 0.25,
and NL <= 0.5, we observe that F; ~ 0.7 for certain
choices of A and § but when NL = 1.0, F| < 0.5.

4 Causality detection in MEA electrophysiology
data

To validate our approach against real-world exper-
imental data, we have applied the developed algo-
rithm to electrophysiological recordings of epilepti-
form patterns generated by 4-aminopyridine (4AP)-
treated rodent hippocampus-cortex (CTX) slices. In
order to visualize the network activity, we transform
the CE values obtained from two MEA signalsi and j,

H(ilj) as
S, j)=258—-H(,}j) (19)

and normalize them such that the strongest pairwise
interaction takes avalue of 1,1i.e., S = S(i, j)/ max(S).

4.1 Brain slice preparation and maintenance

Combined hippocampus-cortex (CTX) brain slices
(n = 4), 400 pm thick, were prepared from four male

(C) NL =0.00, £ =0.25

1 1 1
~< 0.995 0.995 0.995
0.99 0.99 0.99
0 0.1 0.2 0 0.1 0.2 0 0.1 0.2
(D) NL=0.50, K =0.05 (E) NL =0.50 , K =0.10 (F) NL =050 , K =0.25
1 1 1
< 0.995 0.995 0.995
0.99 0.99 0.99
0 0.1 0.2 0 0.1 0.2 0 0.1 0.2
(G) NL=1.00, K =0.05 (H) NL =1.00, £ =0.10 (I NL=1.00, K =0.25 1
1 1
~< 0.995 0.995 0.995 0.5
0.99 0.99 0.99 0
0 0.1 0.2 0 0.1 0.2
) )

Fig. 12 TPR computed for 50 independent realizations of networks of neural mass models for every combination of I, A, §, and NL
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Fig. 13 FPR computed for 50 independent realizations of networks of neural mass models for every combination of /C, A, §, and NL

CD1 mice (4-8 weeks old), as previously described stantly equilibrated at pH~ 7.35 with 95% O, / 5%

[42]. Briefly, animals were euthanized under deep CO, gas mixture (carbogen) and had an osmolality
isoflurane anesthesia, their brain was quickly removed of 300-305 mOsm/kg. Chemicals were acquired from
and placed into ice-cold (= 2°C) sucrose-based artifi- Sigma-Aldrich. All procedures have been approved by

cial cerebrospinal fluid (sucrose-ACSF) composed of the Institutional Animal Welfare Body and by the Ital-
(mM): Sucrose 208, KCl,, KH; PO4 1.25, MgCl, 5, ian Ministry of Health (authorization 176AA.NTN9Y),
MgS0O,, CaCly 0.5, D-glucose 10, NaHCO3 26, L- in accordance with the National Legislation (D.Lgs.
Ascorbic Acid 1, Pyruvic Acid 3. The brain was let to 26/2014) and the European Directive 2010/63/EU. All
chill for 2 min before slicing in ice-cold sucrose-ACSF efforts were made to minimize the number of animals
using a vibratome (Leica VT1000S, Leica, Germany). used and their suffering.

Brain slices were immediately transferred to a sub-
merged holding chamber containing room-temperature
holding ACSF composed of (mM): NaCl 115, KCl,
KHj; POy, 1.25, MgSO, 1.3, CaCl, 2, D-glucose 25,
NaHCOj3; 26, L-Ascorbic Acid 1. After at least 60
minutes recovery, individual slices were transferred
to a submerged incubating chamber containing warm
(= 32°C) holding ACSF for 20-30 minutes and sub-
sequently incubated in warm ACSF containing the K+
channel blocker 4-aminopyridine (4AP, 250 uM), in
which MgSO, concentration was lowered to 1 mM
(4AP-ACSF, [42]). Brain slice treatment with 4AP is
known to enhance both excitatory and inhibitory neu-
rotransmission and induces the acute generation of
epileptiform discharges [43]. All brain slices were incu-
bated in 4AP-ACSF for at least 1 hour before begin-
ning any recording session. All solutions were con-

4.1.1 MEA recording and signal pre-processing

Individual brain slices were placed on a 6 x 10 planar
MEA (TiN electrodes, diameter 30 ;m, inter-electrode
distance 500 pm, impedance < 100 k$2), held in
place by a custom-made anchor, and continuously per-
fused at &~ 1 ml/min with 4AP-ACSF at (~ 32°C),
equilibrated with carbogen gas mixture. To allow for
laminar flow and a high exchange rate of the 4AP-
ACSF, a custom-made low-volume (& 500u1) record-
ing chamber (Crisel Instruments, Italy) replaced the
default MEA ring [42].

Extracellular field potentials were acquired at 5
kHz (pre-sampling low-pass filter at 2 kHz) using the
MEA2100-mini-HS60 system through the Multichan-
nel Experimenter software (all from Multichannel Sys-
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Fig. 14 Fj-score computed for 50 independent realizations of networks of neural mass models for every combination of /C, X, §, and

NL

tems — MCS, Reutlingen, Germany) and stored on the
hard drive for off-line analysis.

For the implementation of the M-OPTN, signals
were pre-processed by low-pass filtering (1 kHz) and
resampling at 3 kHz. The signals were then further
divided into overlapping (50%), 4 s windows, to obtain
time-varying measures of causality.

4.1.2 Epileptiform activity generated by 4AP-treated
hippocampus-CTX slices

The brain slice preparation used in this work includes
the fundamental circuits involved in the generation of
limbic seizures seen in temporal lobe epilepsy and
enables analyzing the network interactions leading to
seizure-like discharge generation. As shown in Fig. 15,
the key regions of interest (ROIs) in this brain slice
preparation are the dentate gyrus (DG), the hippocam-
pal subfields Cornu Ammonis 3 and 1 (CA3 and CAl,
respectively), the subiculum (SUB) and the parahip-
pocampal cortex (CTX-1 and CTX-2). These regions
communicate through the so-called hippocampal loop
[44] (see Fig. 15 (A)). When challenged with convul-
sant drugs, such as 4AP, hippocampus-CTX slices gen-
erate a typical epileptiform pattern made of three types
of activity [45]: (1) slow interictal events, recurring at
5-20 s interval, generated by and spreading to any ROI

with no specific site of origin, (2) fast interictal events,
recurring at 0.5-2 s interval, generated specifically by
the CA3, propagating to the CA1 via the Schaffer Col-
laterals and subsequently reaching the CTX through the
SUB (output gate), (3) ictal (seizure-like) discharges,
recurring at 3—5 min interval, originating primarily in
the CTX and spreading to the hippocampus proper via
the DG (input filter). It has been previously demon-
strated that when the hippocampal loop circuitry is
intact (connected brain slice), the fast CA3-driven inter-
ictal activity controls ictal discharge generation by the
CTX, for which ictal discharges disappear within 1—
2 hours of 4AP application, while only the interictal
patterns remain. At variance, the disruption of the hip-
pocampal loop upon Schaffer Collaterals damage, as
seen in hippocampal sclerosis typical of temporal lobe
epilepsy (disconnected brain slice) releases the CTX
from the CA3 control permitting ictal activity genera-
tion and propagation [46].

Here, we have analyzed MEA recordings of epilepti-
form activity generated by disconnected hippocampus-
CTX brain slices, in which the Schaffer Collaterals
were mechanically severed.

The circuit diagram of a disconnected hippocampus-
CTX slice is depicted in Fig. 15 (a) and 15 (b) shows
a disconnected hippocampus-CTX slice placed on a
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Fig. 15 a Schematic rendition of a disconnected hippocampus-
CTX slice and its corresponding circuit. The solid line indicates
the preserved pathway, whereas the dashed line indicates the
disrupted pathway. Arrows indicate the signal propagation along
the loop. b Hippocampus-CTX slice laying on a 6 x 10 planar
MEA. MEA electrodes are placed in DG (blue), SUB (green),

6 x 10 planar MEA, while Fig. 15 (c) shows the typ-
ical epileptiform pattern induced by 4AP in this brain
slice preparation, consisting of brief interictal events
and prolonged ictal discharges.

For the purpose of this study, we have selected
the signals from six electrodes in each brain slice, to
include each of the four hippocampal regions and two
CTX locations, one proximal and one distal to the hip-
pocampus with regards to the signal propagation path-
way (see Fig. 15 (b)). For each MEA recording, we have
selected a portion of the signal to include ictal activ-
ity preceded and followed by 30 — 100 s of interictal
activity.

The CE based on M-OPTN was computed for each
window and the resulting CE value was assigned to the
mid-point of each window, to obtain a time-varying
measure.

4.2 Results

The results from the application of our method are
shown in Fig. 16, where the plots on the main diagonal
show the MEA signals acquired from the six selected
ROIs. The off-diagonal plots represent the time-varying
interaction between two ROIs across varying time
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CA1l (yellow), CA3 (cyan) and CTX (orange). ¢ MEA record-
ing of the epileptiform pattern generated by the brain slice in
B. The pattern consists of short interictal events (dots) and pro-
longed ictal discharges (solid line). Note that the small-amplitude
events in CAl, SUB and CTX are far fields originating in CA3

delays (20 ms to 120 ms). From Fig. 16, it can be seen
that significant network activity starts around the time
of the ictal onset, with the strongest connections fol-
lowing the propagation paths CTX — DG, CTX —
CAl, CTX — SUB, SUB — CTX and DG — CA3.
The strongest interactions are observed at 38 and 70
ms.

The results from the entire data sets are qualitatively
similar (see Figs. 17, 18 and 19 in Sect. 7 for the results
obtained from the other three brain slices). The prop-
agation from SUB — DG was also observed in three
out of four slices. The interaction SUB — CTX was
observed in all slices although the strength of inter-
action from SUB — CTX was found to be generally
weaker compared to the interaction CTX — SUB. In
general, the results show that outward connections from
CTX and DG are generally the strongest during the ictal
event and that these interactions appear to be strongest
at a delay of ~ 38 ms.

5 Discussion

In this work, we have proposed a new method to detect
causality from multivariate observational data by com-
puting information theoretic measures such as CE upon
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the resulting M-OPTNs. For reliable computation of
CE and removal of non-causal neighbors, we have
also proposed a pragmatic methodology to define a
minimal set for conditioning variables. Our numeri-
cal experiments show that our approach can be used
to reliably infer both the directionality and the delay
of the interactions between the signals even at consid-
erably high N L. Causal network inference from real-
world data of MEA recordings demonstrates that the
application of the proposed method can infer network
interactions during ictal activity and their associated
delays.

5.1 Minimal set of neighbors for conditioning

In order to test if a node (signal) m has a causal influ-
ence on node (signal) n, the standard and most com-
mon approach is to use the Peter and Clarke algorithm
[47], which tests the conditional independence between
two nodes given all other variables. Non-existence of
a causal relationship between m and n is established
once the algorithm finds that m and n are condition-
ally independent given other variables. When inferring
causality on multivariate time series, the conditioning
set could have many variables resulting in unreliable
estimates of information theoretic measures, particu-
larly when the sample size is small. We alleviate this
problem by defining a selection of variables to con-
dition on, based on the common information shared
between them. Furthermore, we restrict the number
of variables to condition on, r < 3, according to the
finite data size (T =~ 10000 samples), since condi-
tioning on a higher number of variables resulted in
unreliable estimates of CE. In addition to the Peter and
Clarke algorithm, there are other iterative, constraint-
based approaches that have been proposed for condi-
tioning, including the modified Peter and Clarke algo-
rithm [47] and fast causal inference algorithm [48] as
well as score-based algorithms such as greedy equiva-
lence search [49] for defining conditioning sets. How-
ever, most of these algorithms suffer from undesirable
computational complexity and are not straightforward
to implement. A systematic comparison of various con-
ditioning approaches is beyond the scope of this work,
where the motivation is to propose and demonstrate
M-OPTNs as an extension of OPTNss to reliably infer
causality among time series.

5.2 Effect of various parameters

The numerical results obtained from simulations of
coupled stochastic processes and interacting Lorenz
systems, have shown that the proposed approach can
successfully capture coupling directions and the associ-
ated delays. When applied to more realistic simulations
using a network of neural mass models, our approach
could reliably recover the underlying causal coupling
structure. However, as discussed in detail in the follow-
ing sections, the performance of the proposed method
depends on the choice of several parameters, which can
overall be categorized into (1) number of time samples
and (2) threshold for identifying significant connec-
tions.

5.2.1 Effect of varying the number of time samples

It is well known that the amount of data required for
reliable reconstruction of the attractor depends on the
embedding dimension M. Since the probability distri-
butions required for the computation of CE are esti-
mated from the ordinal patterns obtained after embed-
ding, inadequate data length might result in unreliable
estimates of CE. In our simulations we have set M = 3
and found that the results are reliable if 7 > 103. For a
given M, there are (M!)? possible pairs of ordinal pat-
terns for which we have to estimate the co-occurrence
frequencies. Having 7 < 10M samples, results in many
spurious interactions being classified as causal links,
which is reflected as an increase in the F' P R and conse-
quently low F-score as shown in our simulations. For
the stochastic model system, interacting Lorenz sys-
tems and the network of neural mass models, we used
M = 3. Embedding in a higher dimension, for exam-
ple M = 5 would require 7 > 100000 samples for
reliable embedding and computation of entropy values.
The typical sampling frequency of real-world data such
as MEA recordings is of the order of 5000-10000 Hz,
and to estimate dynamic changes in a causal effect net-
work based on 100000 samples would mean using a
window size of 10 to 20 seconds, which may be far
too long compared to dynamical changes that occur in
neural networks. Also, the use of 100000 or more sam-
ples, increases the computation time drastically. Thus,
for electrophysiological recordings from neural data, a
window size of 2 to 4 seconds seems more realistic,
which amounts to having 10000 to 20000 samples per
window, depending on the sampling frequency. This

@ Springer



574

N. P. Subramaniyam et al.

in turn means that M should not be greater than 3 or
at most 4. In contrast, we observed that varying the
embedding delay d did not affect the results qualita-
tively (not shown here) and we used d = 100 for all
our simulations and experimental data.

5.2.2 Effect of varying threshold parameters to define
significant connections

The parameter A determines the connections (direct
and indirect) to be classified as significant. Lower val-
ues of A prune away most of the connections, whereas
higher values retain most of the connections. Based on
our simulations of network of neural mass models, we
observed that when the network connectivity is less
than 25% and only a moderate amount of observation
noise (N L = 0.50) is present, the choice of A > 0.99
seems to be the optimal setting that resultsin high 7 P R
and low F P R and, consequently, high Fj-score , pro-
vided that 6 is chosen in the range 0.08 < § < 0.12.
However when the N L increases (N L > 0.5), a setting
of A > 0.995 and 0.08 < § < 0.1 leads to an optimal
performance of our algorithm.

The aforesaid implies that the choice of §, which
determines the threshold to distinguish a causal neigh-
bor from a non-causal neighbor, depends on the amount
of noise present in the data. In the presence of low or
moderate observational noise, a truly causal neighbor
would resultin a high § as conditioning on this neighbor
should reduce the entropy significantly. In contrast, a
non-causal neighbor would result in a very small §. Our
results show that the setting § < 0.1 in such a scenario
is a reasonable choice along with A ~ 0.995. If the
data is very noisy (NL > 1), then the necessary & for
identifying a truly causal neighbor would be very small,
thereby making it hard to distinguish from a non-causal
neighbour, for which § should also be small. Thus set-
ting § too high will prune away all the true connections
along with the spurious ones, while setting § too low
might retain some spurious connections.

Another factor that impacts the choice of A and § in
addition to N L is the number of connections in the net-
work. When the network is densely (in case of our sim-
ulations, more than 25%) connected, finding an optimal
8 and X that gives high T PR and low F PR, and con-
sequently a high Fij-score is more challenging as the
estimated network has many spurious connections at
multiple delays in addition to the interactions at the
correct delays. Any choice of § to prune away these
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spurious connections will also yield the removal of true
connections as the N L increases.

In summary, our results indicate that setting A =~
0.995 and varying § between 0.05 and 0.1 should result
in reliable network inference, assuming the underlying
networks are sparse (see Figs. 12 — 14).

5.3 Causal network inference from MEA data

As a real-world example, we have applied the pro-
posed method to MEA electrophysiology recordings
obtained from an in vitro model of acute limbic
seizures. Specifically, we have used 4AP-treated rodent
hippocampus-CTX slices as a simplified model of
the primary neural circuits involved in temporal lobe
epilepsy. This model has been extensively character-
ized [46] and provides a solid ground-truth to validate
our approach.

In a previous study [46], the reported mean time
delay for the ictal discharge propagation in the direc-
tions CTX — DG, CTX — CA3 and CTX — CAl
was 37.5 &+ 9.6 ms, 71.7 £ 27.5 and 31 £+ 6.3 ms.
In keeping with this, our method has detected con-
nectivity in the direction of CTX — DG, CTX —
CA3 and CTX — CAl at delays of 30 — 38 ms
during the ictal discharge. Note that the short delay
in the CTX — CAl direction is due to the signal
propagation along the direct temporoammonic path-
way [46], which is known to short-circuit the hip-
pocampal loop. Moreover, the connection between
SUB and CTX is consistent with the previously
reported role of SUB-CTX interactions through the
temporoammonic pathway in reinforcing ictal synchro-
nization in animal models of temporal lobe epilepsy
[50].

We also found connections in the direction DG
— CTX, CA3 — CTX, CA3 — SUB and DG —
SUB. However, as these connections are disrupted by
the Schaffer Collaterals cut, they represent false pos-
itives due to far-field contamination [51] of the sig-
nals recorded from CA1l, SUB and CTX, wherein
far fields originating in CA3 can be seen in Fig. 15.
In keeping with this, we found that the strength of
the false positive connection is generally lower than
the expected true connections. The observation of
such false positive interactions could also stem from
the common driver issue (see Fig. 1 (b)) wherein
one of the CTX ROI is driving both DG and CTX
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(in the other ROI) causing a spurious DG — CTX
connection.

Overall, these results support the reliability and use-
fulness of our approach for analyzing interactions and
their delays in real-world observations, such as electro-
physiological time series.

5.4 Future work and perspectives

Although the proposed algorithm can reliably perform
causal inference, there are certain issues that warrant
our attention. First, we have not compared our method
to other existing techniques that are commonly used
to infer causality from electrophysiological record-
ings. In fact, the main motivation behind this work
was to introduce and provide a proof-of-concept that
complex network based time series analysis methods
such as OPTNs can be generalized and improved to
detect causality from multivariate observations. A sys-
tematic comparison of our approach with other com-
monly used techniques to infer causality is beyond the
scope of this paper and will remain a subject of future
studies.

Second, we applied our method to in vitro MEA
electrophysiology data, which is not as widely used
to map connections among brain regions as in vivo
recordings. In the case of EEG data we typically
do not have the ground-truth to validate our method
against. In the case of the MEA data used in this
study, previous studies have described the anatom-
ical and functional circuits associated within this
brain slice preparation, which served as the refer-
ence for our results. Furthermore, estimating causal-
ity directly from EEG recordings is not trivial due
to the issue of volume conduction. In the case of
EEG recordings, to mitigate the volume conduction
effects, connectivity is estimated from source time-
series obtained after solving the EEG inverse prob-
lem [52]. Thus, the proposed causal inference method
has to be applied on the inverse solution, rather than
directly to the EEG data, for reliable causal infer-
ence. It is not yet clear how such a transformation
would alter the structural properties of the time series,
and which impact it could have on the estimation of
the ordinal patterns remains as a subject of future
studies.

Third, we did not perform any surrogate data testing
but rather relied on the theoretical maximum H,,,q, =

log, M! and used AH,,,, as threshold for identify-
ing significant bivariate connections, where 0.99 <
A < 1, as due to the finite sample-size, two inde-
pendent processes will not have a CE value exactly
equal to H,,,. We found this approach to be much
faster than generating bivariate surrogates that gave
essentially similar results (not shown). In STEP VI
of the proposed algorithm, we use the threshold &
to distinguish between causal and non-causal neigh-
bors. This step can be considerably improved by per-
forming significance testing for the conditional inde-
pendence test as proposed in [1], which preserves,
for example, the association between X and Y in the
coupling scheme X <« Z — Y, that would other-
wise be destroyed in a strictly bivariate permutation
scheme.

6 Conclusions

In this paper, we have developed a new method based
on OPTNs to infer causality from multivariate obser-
vational data. The proposed method allows to infer
causality at different delays and can be adapted to pro-
vide a time-varying measure of causality. We have also
proposed an iterative scheme to find a minimal set
of neighbors for conditioning to yield a reliable esti-
mation of the co-occurrence entropy as the employed
coupling indicator. We have demonstrated the valid-
ity of our approach using different types of simulated
signals as well as real-world electrophysiological time
series.

In conclusion, the proposed approach provides a
complementary tool for detecting causality from mul-
tivariate time series data and can be particularly use-
ful in the area of neuroscience, where the estimation
of (time-varying) causal networks from electrophysi-
ology recordings has remained a fundamental problem
so far.
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7 Appendix
In the neural mass model studied in Sect. 3.3, the neu-

ronal activity in one region is represented by the fol-
lowing set of ordinary differential equations:

Pyramidal neurons

dy, (@)
c'ft = x,(1), (20)
x,:i_([t) :Gehezp(t)_Zhexp(t)_hzyp([) 21
) = —20 (22)
P 1+e "

Vp(1) = Cpeye(t) — Cpsys(t) — Cprys(r) (23)

Excitatory interneurons

dy (1) i

5 =r), 24)

xet) up®), .
a Gohe(ze(t) + _Cpe ) — 2hex.(1) hgye(t)
(25)

2eq

Ze(t) = m —eo (26)
Ve (1) = Cepyp (1) (27)

@ Springer

Slow inhibitory interneurons

dys(r) _
a O (28)
)Cyd([t) = G.s‘hszs ([) — ZhXXX (t) — h%yY (t) (29)
2
) = 1 (30)
vs(t) = Csp}’p(t) G1)

Fast inhibitory interneurons

dyr(t)
ét =x7 (), (32)
XJ;EI) = Grhyzp(t) = 2hyxp(t) —hyyr(@). (33)
dyr(t
y({_t( F =), (34)
)% = Gehet s (1) = 2hexi(t) = hyi(@D),  (39)
2
Zf(l) = W;grvf — e (36)

vy(t) = Crpypt) = Crsys(t) = Crryi(r) (37

A network of neural mass models can be constructed
by connecting several such regions using a weight
matrix W that describes the strength of connections.
For example, if i and j represent two regions of neu-
ronal population, then we can define

ul (1) = nby (1) + Wy 2}t — d), (38)

where u , (t) and z, () correspond to the input and pulse
density of the pyramidal neurons, respectively. Anal-
ogous definitions apply to the fast inhibitory interneu-
rons. The term n,(¢) represents Gaussian noise with
mean m = 0 and variance 0> = 5 and d represents the
connection delay. For further description on the model,
the reader is kindly referred to [41].
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