

PAPER • OPEN ACCESS

Predicting basin stability of power grids using
graph neural networks
To cite this article: Christian Nauck et al 2022 New J. Phys. 24 043041

View the article online for updates and enhancements.

You may also like
Graphene nanonet for biological sensing
applications
Taekyeong Kim, Jaesung Park, Hye Jun
Jin et al.

-

Graph networks for molecular design
Rocío Mercado, Tobias Rastemo, Edvard
Lindelöf et al.

-

Learning physical properties of anomalous
random walks using graph neural networks
Hippolyte Verdier, Maxime Duval, François
Laurent et al.

-

This content was downloaded from IP address 139.17.212.225 on 04/05/2022 at 09:20

https://doi.org/10.1088/1367-2630/ac54c9
/article/10.1088/0957-4484/24/37/375302
/article/10.1088/0957-4484/24/37/375302
/article/10.1088/2632-2153/abcf91
/article/10.1088/1751-8121/abfa45
/article/10.1088/1751-8121/abfa45

New J. Phys. 24 (2022) 043041 https://doi.org/10.1088/1367-2630/ac54c9

OPEN ACCESS

RECEIVED

16 December 2021

REVISED

3 February 2022

ACCEPTED FOR PUBLICATION

14 February 2022

PUBLISHED

29 April 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Predicting basin stability of power grids using graph
neural networks

Christian Nauck1 , Michael Lindner1, Konstantin Schürholt2, Haoming Zhang3,
Paul Schultz4, Jürgen Kurths1, Ingrid Isenhardt3 and Frank Hellmann1,∗

1 Department of Complexity Science, Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, Potsdam, Brandenburg
14473, Germany

2 Institute of Computer Science, University of St. Gallen, Rosenbergstrasse 30, St. Gallen 9000, Switzerland
3 Cybernetics Lab IMA & IfU, RWTH Aachen University, Dennewartstraße 27, Aachen 52068, Germany
4 50Hertz Transmission GmbH, Elia Group, Heidestraße 2, Berlin 10557, Germany
∗ Author to whom any correspondence should be addressed.

E-mail: hellmann@pik-potsdam.de

Keywords: complex systems, nonlinear dynamics, dynamic stability, basin stability, power grids, machine learning, graph neural
networks

Abstract
The prediction of dynamical stability of power grids becomes more important and challenging
with increasing shares of renewable energy sources due to their decentralized structure, reduced
inertia and volatility. We investigate the feasibility of applying graph neural networks (GNN) to
predict dynamic stability of synchronisation in complex power grids using the single-node basin
stability (SNBS) as a measure. To do so, we generate two synthetic datasets for grids with 20 and
100 nodes respectively and estimate SNBS using Monte-Carlo sampling. Those datasets are used to
train and evaluate the performance of eight different GNN-models. All models use the full graph
without simplifications as input and predict SNBS in a nodal-regression-setup. We show that
SNBS can be predicted in general and the performance significantly changes using different
GNN-models. Furthermore, we observe interesting transfer capabilities of our approach:
GNN-models trained on smaller grids can directly be applied on larger grids without the need of
retraining.

1. Introduction

The energy transition is one of the key aspects to meet the goals of the Paris agreement [1] and its latest
successor: conference of the parties 26 in Glasgow in 2021. Due to decentralization, reduced inertia as well
as volatility in production, integrating renewable energies remains challenging. To safely operate future
power grids, the impact of unavoidable fluctuations on the synchronous operating regime has to be limited.
Hence, dynamic effects have to be taken into account. Analyzing the dynamic stability of synchronisation in
power grids is a complex multi-dimensional problem and many known methods rely on heavy simulations.

The model underlying the recent work on the stability of synchronization and complex dynamics of
power grids, e.g. [2], is the Kuramoto model [3] with inertia. In complex system science it also serves as a
paradigmatic model for the study of complex phenomena on networks in general [4, 5]. Thus, the results
here are of interest beyond the specific scope of power grid modeling.

In the context of complex systems, linear stability assessments alone, e.g. based on Lyapunov exponents,
are not always applicable or sufficient. A standard in the power grid community are highly detailed
simulations of individual faults. For large systems, the study of all potential individual faults is too
expensive, because there are too many of them. To gain a better understanding of the type of faults that
might be critical, probabilistic approaches are used. They provide an appropriate understanding and
heuristics for prioritizing detailed model studies to systematically investigate the dynamic stability.

Single-node basin stability (SNBS) is such a probabilistic measure. Based on the notion of the ‘basin of
attraction’ of a stable state, SNBS captures highly non-linear effects and enables the analysis of large

© 2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac54c9
https://creativecommons.org/licenses/by/4.0/
mailto:hellmann@pik-potsdam.de

New J. Phys. 24 (2022) 043041 C Nauck et al

perturbations [6]. SNBS measures the probability of a grid to synchronize after applying
sample-based-perturbations at individual nodes. SNBS has been applied to a variety of problems e.g. in the
engineering community for the analysis of perturbed generators in networks [7, 8] and to study collective
phenomena in oscillator networks [9, 10]. There are also theoretical investigations of network properties
[11–17]. In the non-linear dynamics and complex systems community the concept of SNBS has further
been analyzed and extended [18–21] to cover the type of dynamical properties that occur in realistic
simulations of power girds, such as repeated perturbations, stochasticity and the influence of heterogeneity
[22]. Basin stability has broadly been used to study collective phenomena in oscillator networks.

Probabilistic methods like SNBS have the advantage of assessing the robustness of locations in a network
independent of specific individual faults. However, as they typically rely on Monte-Carlo sampling, they are
also computationally challenging. Network theoretic methods in turn already found success at predicting
dynamic properties such as SNBS [11, 12, 15], raising the potential to use network theoretic heuristics to
identify key structural imprints and prioritize detailed fault simulations. For example, Schultz et al [12]
predict certain nodes with low SNBS using logistic regression based on network properties as input.
However, the parametrization of the structure and dynamics in real power grids is highly heterogeneous,
and standard network measures are not able to accommodate a wide range of node types and properties
necessary for detailed, realistic dynamic models.

Further, several network measures are not well-defined for heterogeneous systems or might not translate
well from homogeneous systems. In contrast, modern machine learning (ML) is able to learn complex,
nonlinear patterns from any type of raw data [23]. Hence, this work investigates the prediction of SNBS
using the full graph as input.

Graph neural networks (GNNs) are a promising approach, because they are capable of predicting a
variety of network measures [24, 25] and can deal with full graphs as input. Hence, GNNs can analyze full
homogeneous and heterogeneous systems without further assumptions and simplifications. Therefore, we
test the prediction of SNBS using GNNs. Our paper is based on a master’s thesis [26] and except of this
thesis, the authors are not aware of any literature using the same methods and ideas, but we introduce
related work that founds on similar approaches.

Similar approaches. There are recent publications on using GNN in the context of power grids, but they
do not consider the prediction of statistical dynamical properties such as SNBS. Instead, many approaches
deal with the computation of power flows [27–32]. GNNs have also been used for control theory [33] and
physical neural solvers have been introduced to connect GNNs with differential equations [34].
Furthermore, cascading failures were investigated in [35].

Aside from GNNs, two other publications are noteworthy to mention. Che and Cheng [36] recently
published a paper in which they show the usage of active learning and relevance vector machines to reduce
the computational effort of computing SNBS by learning the boundary of stable dynamics. Furthermore,
Yang et al [37] predict the ability of power grids to synchronize after applying perturbations, but they
approach the concept of dynamic stability differently. Firstly, they predict the result of single perturbations
and not the statistics. Secondly, their approach is not based on providing the full graph, but they rely on
common knowledge about the relation of network science and dynamic stability, e.g. by using the degree
and betweenness [38] as input.

Our main contributions

(a) For the first time, SNBS is predicted based on the full graph instead of hand-crafted features. The focus
lies on evaluating different learning methodologies based on GNNs for the sake of future research. The
accuracy still needs to be improved for real world applications.

(b) In order to train ML-models, we generate new datasets. They are based on well-known models of
synthetic power grids and on Monte-Carlo simulations to analyze dynamic stability. The datasets are
rich enough to challenge ML-methods, whereas still being somewhat conceptual to connect to the
existing network literature. Compared to real-world power grids, synthetic power grids have a number
of advantages, for example they do not have any artifacts and one can obtain more easily large datasets,
which are beneficial for statistical analyses.

(c) We also investigate transductive transfer learning capabilities by training models on small power grids
and evaluating the same models on larger networks without fine-tuning.

This paper is structured as follows. Firstly, the generation of the datasets is explained. Afterward, the
background knowledge for the used ML-methods is introduced, before we present the methodology of
applying our ML-models to our generated datasets. Finally, the results are given and discussed, before we
close with a short outlook.

2

New J. Phys. 24 (2022) 043041 C Nauck et al

2. Generation of the datasets

To analyze the capability of predicting SNBS using ML, two synthetic datasets are generated. We generate
new synthetic datasets, because we are especially interested in a method that can deal with different
topologies. We start by motivating the selection of our datasets. Afterward we briefly discuss relevant
concepts from network science, before explaining the generation of synthetic power grids. We close by
providing details about the dynamical simulations.

2.1. Objectives for datasets
High-quality datasets facilitate the application of ML-methods. Therefore, we carefully consider the
following criteria for generating the datasets which mimic basic features of power grids. The datasets
shall be:

(a) Homogeneous enough in both structure and dynamics to connect to network theory,

(b) Complex enough to be challenging for ML-methods,

(c) Computationally feasible using highly accurate Monte-Carlo simulations.

Firstly, homogeneity is important, because previous studies, e.g. by Nitzbon et al [15] have shown, that
there are clear relations between dynamical stability and topological properties for somewhat homogeneous
grids. As these patterns are known to exist in such homogeneous graph datasets, they are ideal to test ML
systems, which can be expected to learn them.

Secondly, enough complexity is required to justify ML models. This complexity is inherently given in the
problem setup, as SNBS is a highly non-linear measure. Furthermore, we consider different network
topologies.

Thirdly, we need to find a compromise between computational effort and relevant properties of the
datasets, such as grid size, number of grids, low statistical errors which are determined by the number of
Monte-Carlo samples and low numerical errors, which depend on the dynamical solver settings. Low
statistical errors are crucial to distinguish small performance differences between ML-models later on.

Prior to generating the datasets, the influence of many parameters is investigated. We shortly motivate
and explain the most important parameters for the generation of the datasets. As previously mentioned,
Nitzbon et al [15] observed interesting relations in their dataset, so we often select properties based on their
investigations. Before looking at power grids in more detail, some background knowledge on graphs is
needed, because power grid modeling relies on graphs.

2.2. Network science: graphs
We briefly introduce theoretical background on graphs, which is also helpful to understand GNNs later on.
Graphs consist of nodes (vertices) and lines (edges) connecting two nodes. The size of a graph is given
by its number of nodes N. To encode the topology of a graph one can use the adjacency matrix A which is
defined by:

Aij =

{
1 if there is a line between nodes i and j,

0 otherwise.
(1)

By using the degree which is defined by the number of neighbors of a node, we can formulate the diagonal
degree matrix D. Using A and D, we can compute the graph Laplacian (L): L = D − A, which is a singular
matrix that is a discrete analogue of the Laplace operator.

2.3. Power grids
The topology of the power grids is based on the tool Synthetic Networks [39].5 This package uses a
parametric growth process to generate networks. The resulting networks have properties that are suitable to
observations of real-world power grid networks. We use the same parametrization as Nitzbon et al [15]:
n0 = 1, p = 1/5, q = 3/10, r = 1/3, s = 1/10, where n0 is the initial number of nodes, p, q are probabilities
related to constructing new lines, s the probability of splitting an existing line and r a parameter controlling
the generation of redundant paths. Furthermore, half of the nodes are producers, whereas the other half are
consumers. All nodes are modeled by the swing equation [41], also referred to as a second-order Kuramoto
model [3, 42]. The Kuramoto model was independently introduced in the context of power grids in [43]

5 This tool is available on Github [40].

3

New J. Phys. 24 (2022) 043041 C Nauck et al

Figure 1. Exemplary trajectories of applying single-node perturbations to a grid of 100 nodes. A stable state is reached on the left
and unstable state on the right after applying different single-node perturbations at different nodes. Different colors represent the
trajectories at different nodes.

and has a long history of study there. We use the following notation:

φ̈i = Pi − αφ̇i −
n∑
j

Kij sin(φi − φj), (2)

where φ, φ̇, φ̈ denotes the voltage angle and its time derivatives. We use the following parametrization:
Pi ∈ {−1, 1} the injected power, whereby the condition

∑
i Pi = 0 guarantees power balance; α = 0.1 the

damping coefficient, K is the coupling matrix based on the adjacency matrix which encodes the graph and
we use uniform coupling Kij = 9Aij. The values for the injected power and the damping coefficient are the
same as in [15], however we use a larger coupling (9.0 instead of 6.0) to increase the overall stability of
synchronisation in the power grids and to obtain a clear bi-modal shape of the SNBS-distribution for a
better balance for training ML-methods. We are interested in deviations from the nominal frequency
(e.g. 50 Hz in Europe), and thus will work in frequency deviations throughout the paper. The desired state
is thus φ̇i = 0 at all nodes.

2.4. Dataset properties
We study the resilience of power grids operating in their synchronous state to (large) perturbations at
individual nodes. The SNBS of a node is quantified as the probability that the systems returns to its
synchronized state after such a network-local perturbation. Since the perturbations are drawn
independently at random, SNBS is the outcome of a Bernoulli experiment [6].

To estimate SNBS for every node in a graph, M = 10 000 samples of perturbations per node are
constructed by sampling a phase and frequency deviation from a uniform distribution with
(φ, φ̇) ∈ [−π,π] × [−15, 15] and adding them to the synchronized state. Each such single-node
perturbation serves as an initial condition of a dynamic simulation of our power grid model, cf
equation (2). The simulation time is represented by t in seconds. At t = 500 the integration is terminated
and the outcome of the Bernoulli trial is derived from the final state. A simulation outcome is referred to as
stable if at all nodes φ̇i < 0.1. Otherwise it is referred to as unstable. Two exemplary trajectories are shown
in figure 1.

The classification threshold of 0.1 is chosen accounting for minor deviations due to numerical noise and
slow convergence rates within a finite time-horizon. The authors are not aware of any other attractors of the
Kuramoto system within that threshold. Hence, it may be assumed that every trajectory labeled as stable in
that way will indeed converge to the synchronous state for t →∞. On the other hand, trajectories who are
classified as unstable may converge to many different kinds of attractors [44, 45]. However, we occasionally
observed so-called long transient states at specific nodes, which do eventually converge to the synchronous
state but fail to do so before t = 500. While of theoretical interest, we do not expect their asymptotic
behavior to play any role in real world applications and thus we are satisfied with classifying them
as unstable.

A 95% confidence interval for the SNBS values may be estimated via the normal distribution
approximation of the Bernoulli experiment as [46]:

1.96

√
p(1 − p)

M
< 0.01, (3)

4

New J. Phys. 24 (2022) 043041 C Nauck et al

Figure 2. Histogram showing the distribution of SNBS for the datasets with 20 nodes (left) and 100 nodes (right). The
distributions are normalized so that bin heights sum to 1.

where the inequality is obtained by setting p = 0.5 and M = 10 000.
The distributions of SNBS for both datasets are given in figure 2. We refer to the dataset consisting of

grids of 20 nodes per grid as dataset20, and to the dataset consisting of grids with 100 nodes as dataset100.
For both cases, there is a bi-modal distribution of SNBS over the whole data set, which facilitates
ML-models to learn the distinction between those modes. The peak at 1.0 indicates a large amount of nodes
where no perturbation has an adverse effect on the synchronisation. The second peak can be interpreted in
a way that many nodes are somewhat resistant to perturbations and the grid stays synchronised in about
80% when applying perturbations at the particular nodes. In case of dataset20 the mean value of SNBS is
0.84 and for dataset100 nodes it is 0.87. In both datasets, the number of unstable outcomes is low, which is
a property we expect to hold for real power grids as well. Conducting the computation of the dynamic
stability using one CPU takes about 45 h per grid in case of 100 nodes per grid and about 3 h in case
of 20 nodes.

3. Graph neural networks

This section briefly introduces GNNs. We begin with a general framework for GNNs and subsequently
summarize the recent development of GNNs. GNN are a class of artificial neural networks (ANNs)
designed to learn relationships of graph-structured data. Just as ANNs they have internal weights, which can
be fitted in order to adapt their behavior to the given task. In the case of supervised learning these weights
are adjusted such that the error between the estimated output and the labeled output for given input data is
minimized. As inputs GNNs use the graph structure and potentially node features. Their output can either
be global graph attributes, attributes of sub-graphs, or local node properties. Different types of GNNs have
been introduced, some of which are detailed below. In [47], the authors introduce a design space for GNNs
as a common framework to facilitate understanding and comparison of the different methods. In their
design space, GNNs consist of pre-processing, message-passing and post-processing layers. GNN
architectures vary in layer number and connectivity, as well as the intra-layer design of the message-passing
layers. [47] view message-passing layers as combinations of (i) message computation and (ii) aggregation.
First, a message function computes a message for each node from it is current state. Secondly, the messages
are aggregated over the neighborhood to a new node state. Both message computation and aggregation can
be realized in different ways. Common ML-methods such as batch normalization [48] or dropout [49] can
be added to stabilize training. The application of non-linear activation functions enables GNNs to learn
non-linear relations in the graph data. In this work we focus on convolutional GNNs and in particular on
those employing spatial-based graph convolutions, because they can be applied to varying topologies, as we
have in our datasets.

Graph convolutions are based on the concept of the graph Fourier transform (FT), a generalization of
the classical FT, which enables the remarkable success of convolutional neural networks (CNNs) in image
recognition. Unlike the classical FT, which uses exponential shifts the graph FT corresponds to an expansion
of the function on the graph in terms of the eigenvectors of the graph Laplacian L. Such an expansion may
in turn be multiplied with a function of the graphs eigenvalues, a so-called spectral filter. While it is possible
to learn spectral filters from training data, they lack many of the nice properties of the convolution kernels
used in CNNs: they are not localized in node space, computing the eigenbasis is expensive and trained
models can not be evaluated on different graphs, since each graph has a unique spectrum.

5

New J. Phys. 24 (2022) 043041 C Nauck et al

An important insight of [50] was that graph spectral filters can be approximated by polynomials of the
graphs’ adjacency matrix A, thus achieving a localization of the filter in the (kth order) neighborhoods of
the nodes. Subsequently, in their seminal paper Kipf and Welling [51] realized that it suffices to consider
only the linear term of the polynomial expansion, corresponding to a simple multiplication of the node
features with the (renormalized) adjacency matrix. They arrived at a computationally efficient and powerful
layer architecture that relies only on local information and generalizes well to different graphs. Several GNN
models that we investigate in this paper were derived from their so-called graph convolutional layer (GCN):

H = σ(AXΘ), (4)

where H denotes the output of a layer, σ is the activation function, X are the input features, Θ is a matrix
containing the learnable weights and A is the renormalized adjacency matrix, given by A = D̃− 1

2 ÃD̃− 1
2 .

Further Ã = A + I, where I is the identity matrix, denotes an adjacency matrix with added self-loops and
the diagonal degree matrix D̃ is determined by: D̃ii =

∑
jÃij. In the design space of [47], XΘ manifest the

message computation, while A realizes the aggregation. By consecutively applying multiple GCN-layers, not
only direct neighbors are taken into account, but also neighbors at further distance.

Instead of stacking multiple GCN-layers, Wu et al [52] removed the activation functions, combined all
weight matrices into one and computed Ãi to obtain:

H = softmax(AiXΘ). (5)

This layer founds on their assumption that the nonlinearity between GCN layers is not crucial and may be
omitted in order to reduce computational effort. We refer to this layer as simple-graph-convolution (SG).

Du et al [53] used multiple exponents i of Ã within one layer according to the following scheme:

H =

Z∑
z=0

D− 1
2 AzD− 1

2 XΘz. (6)

This layer type is called topology adaptive graph convolution (TAG), which refers to its ability of
considering different topologies. However, this is the case for all methods that are introduced in this paper.
This architecture provides an extension to GCNs by incorporating information about higher order
neighborhoods within one layer.

Auto-regressive moving average (ARMA) neural network layers by Bianchi et al [54] are far-reaching
generalizations of GCN layers. They are derived from a rational expansion of the spectral filter instead of a
polynomial expansion. A complete ARMA-layer consists itself of multiple graph convolutional skip
(GCS) layers:

X(j+1) = σ(L̃X (j)W (j) + XV (j)), (7)

where j is an index and W and V are matrices of trainable parameters. There are two important distinctions
from the GCN layers: the aggregation in the first term uses normalized Laplacian L̃ = I − D− 1

2 AD− 1
2 ,

instead of Ã. Additionally, the connectivity of the message-passing layers is augmented with a skip
connection, implemented in the second term. It recursively re-inserts the initial node features X from the
first layer and thus enables stacking a large number of GCS layers, whereas preventing the loss of the initial
information due to Laplacian smoothing. In order to reduce the computational effort and to reduce
overfitting, the weights among different GCS layers are shared: W (j) = W and V (j) = V, except for the first
layer where W (1) �= W.

To increase their expressive power multiple ARMA layers may be combined in a parallel stack:

X =
1

K

K∑
k=1

X (J)
k , (8)

where X (J)
k is the output of the last GCS layer in the kth ARMA layer. We can also interpret J as the number

of possible hops and by increasing J larger regions are taken into account. ARMA filters with their recursive
and distributed formulation, are efficient to train and capable of learning complex information. All of the
layers described above are used in the models introduced in the next section.

4. Prediction of SNBS using GNNs

To predict SNBS of all nodes, we use a node-regression setup, by providing the adjacency matrix of the
graph and the injected power per node Pi as inputs. The process is shown in figure 3. In order to test the

6

New J. Phys. 24 (2022) 043041 C Nauck et al

Figure 3. Prediction of SNBS using GNN. The GNN takes the adjacency matrix A and the injected power P as input to obtain
the nodal SNBS as output. Hence, the prediction of SNBS does not consider individual faults or any other variables, but operates
only on topological properties of the power grid.

Table 1. Properties of datasets.

Name Number of grids Number of nodes per grid SNBS

dataset20 1000 20 0.8398
Train 800 20 0.8407
Test 200 20 0.8365

dataset100 1000 100 0.8737
Train 800 100 0.8730
Test 200 100 0.8768

Table 2. Properties of models. Number of parameters denotes the number of
learnable weights of the model.

Name Type of Number of Number of Maximum number
convolution layers parameters of hops

ArmaNet1 ARMA 1 38 4
ArmaNet2a ARMA 2 1050 8
GCNNet1 GCN 2 15 2
GCNNet2 GCN 3 107 3
GCNNet3a GCN 3 149 3
SGNet1 SG 1 4 2
SGNet2 SG 2 15 4
TAGNet1 TAG 2 39 6

aThere is a batch normalization between first and second layer.

performance of our models on unseen data, we split the datasets into training and testing sets. The shift
between them is marginal as can be seen in table 1.

4.1. Setup of our GNN-models
Based on the introduced GNN layers, eight GNN-models are analyzed to evaluate the performance of
different architectures. GNNs are capable of reading in the full graph without any simplifications. We also
tried to use CNNs which are well known from image analysis. In case of CNNs, the graph information is
provided by using a modified version of the adjacency matrix as input, but the setup had several limitations
in comparison to the GNNs. The application of CNNs is shown in appendix C. In table 2 the GNN-models
are briefly introduced. All models use one type of graph convolutional layer, but may use several numbers
of them and all have one linear and one sigmoid layer at the end. Additionally, dropout is used in several
cases, cf appendix B. We did not do a systematic investigation of hyperparameters such as number of layers
and their properties, but focused on identifying relevant factors to enable training.

4.2. Training setup
For all models the same parameters are used and the training consists of 500 epochs. To enable
reproducibility, the seeds are set before training and can be found in the published source code6. The
training is based on the library Pytorch [55] and for the graph handling and graph convolutional layers the
additional library PyTorch geometric [56] is used. For the training of the models, CPUs are used and
depending on the model training takes between 20 and 50 min on either Haswell or Broadwell architecture

6 Information regarding the full source code is given in appendix A.

7

New J. Phys. 24 (2022) 043041 C Nauck et al

Table 3. Results represented by R2 score in %a.

Model dataset20 dataset100 tr20ev100

ArmaNet1 18.8 15.4 3.60
ArmaNet2 39.5 45.4 23.7
GCNNet1 8.10 5.98 −3.22
GCNNet2 24.3 22.1 13.2
GCNNet3 9.02 6.71 −0.67
SGNet1 7.12 3.98 −9.15
SGNet2 13.5 13.0 1.67
TAGNet1 29.1 28.8 13.7

aFor dataset20 and dataset100, the models are both trained on their training and evaluated
on their test sections. To evaluate the transfer learning capabilities, we use the term tr20ev100
meaning that the model is trained on the dataset20, but evaluated on the dataset100.

without parallelization. The detailed training parameters, e.g. batch sizes and additional information on the
computational effort are given in appendix B. As loss function we use the mean squared error7.

5. Results

To evaluate the performance of different models, the R2 score, which may also be known as coefficient of
determination and a self-defined discretized accuracy is used. The score R2 is computed by:

R2 = 1 − mse(y, t)

mse(tmean, t)
, (9)

where mse denotes the mean squared error, y the output of the model, t the target value and tmean the mean
of all considered targets of the test dataset. The standard measure of performance is R2, which captures the
mean square error relative to a null model that predicts the mean of the test-dataset for all points. A
constant model that always predicts tmean, disregarding the input features, would get a score of R2 = 0.0.
The R2-score is used to measure the portion of explained variance in a dataset. To further simplify
interpretation, we rephrase the evaluation as a classification problem.

The outputs are categorized as true or false by using a threshold and we compute the accuracy as:

discretized accuracy =
correct predictions

number of samples
. (10)

We refer to this self-defined accuracy as discretized accuracy. Predictions are considered to be correct, if the
predicted output y is within a certain threshold to the target value t: y − t < threshold. We set this threshold
to 0.1, because this is small enough to differentiate between the modes in the distributions (see figure 2).
Furthermore, a total deviation of the prediction and true output of 0.1 should be efficient for most
applications. The discretized accuracy depends on the distribution of SNBS, so it can not be used for
comparison across different datasets, but has to be compared to the null model of the corresponding
dataset.

Since there is no previous work that can be easily compared to our methods, we introduce a simple
baseline model. This baseline model always predicts the average value of the testing set. By design, this
results in R2 = 0, and achieves a discretized accuracy of 67.1% on dataset20 and of 40.9% on dataset100.
The differences in discretized accuracy are rooted in the different distributions of the two
datasets (cf figure 2).

We use an averaged performance to reduce the impact of the initialization effects. Out of five different
initializations per training setup, only the best three are considered to compute an averaged performance.
The average R2-performance is given in table 3 and for the discretized accuracy in table 4. The best values
are in bold. The training progress of the best model is shown in figure 4. The fluctuations, especially visible
at the bottom right in figure 4 are typical for ML applications when using stochastic gradient descent (SGD)
and constant learning rates during training.

Furthermore, we investigate whether the features learned by GNNs generalize to grids of different sizes.
As datasets of large grids are costly to create, successful pre-training on smaller grids with subsequent
application on larger grids would be a valuable strategy. To evaluate the transfer learning capabilities, we
train GNN-models on the small dataset of grids with 20 nodes and evaluate without fine-tuning on the
dataset with large grids of 100 nodes. As performance of the transductive transfer learning, we report the R2

7 Corresponds to MSELoss in Pytorch.

8

New J. Phys. 24 (2022) 043041 C Nauck et al

Table 4. Results represented by discretized accuracy in %a.

Model dataset20 dataset100 tr20ev100

ArmaNet1 76.5 65.1 56.0
ArmaNet2 80.5 85.0 65.9
GCNNet1 69.5 66.6 47.8
GCNNet2 79.8 67.5 59.8
GCNNet3 71.6 63.7 49.5
SGNet1 67.9 67.8 46.0
SGNet2 70.5 65.9 48.7
TAGNet1 78.8 69.6 56.1

aFor dataset20 and dataset100, the models are both trained on their training and evaluated
on their test sections. To evaluate the transfer learning capabilities, we use the term tr20ev100
meaning that the model is trained on the dataset20, but evaluated on the dataset100.

Figure 4. Training results for ArmaNet2 and dataset20 at the top and dataset100 at the bottom. The R2-score is shown on the left
and the test discretized accuracy on the right. Different colors show different initializations and the horizontal line for the
discretized accuracy is based on a toy model that always predicts SNBS. The evaluation is purely based on the test dataset.

and accuracy on the large target dataset using the term tr20ev100 (trained on dataset20, evaluated on
dataset100).

The results show that the prediction of SNBS using GNNs is feasible and different models have a large
impact. We did not perform a detailed hyperparameter study of different GNN-models, so conclusions
about their performance are tentative for now. Next, we shortly summarize our observations. The results
indicate that increasing the complexity of the model can be beneficial, as the model ArmaNet2 with the
largest amount of parameters (1050) performs best. However, increasing the complexity is not always
helpful. GCNNet3 for example performs worse than GCN2, even though having more learnable parameters
(149 instead of 107). The meaning of the type of convolution is underlined by considering TAGNet1 and
ArmaNet1, because TAGNet1 outperforms ArmaNet1 with only slightly more parameters than ArmaNet1.
Figure 5 shows the relation of the complexity and performance based on dataset100. The complexity is
firstly represented by the number of learnable parameters on a logarithmic scale and secondly by the
maximum number of possible hops. By hops we mean the order of neighbors that are taken into account.
For example, one hop means that only direct neighbors are considered, whereas two means that nodes are
considered which are not directly connected, but via one direct neighbor.

Without conducting ablation studies, we can only guess reasons for the superiority of ArmaNet2. We
suspect two main reasons: firstly, the largest number of parameters could be decisive; secondly, the most

9

New J. Phys. 24 (2022) 043041 C Nauck et al

Figure 5. Relation of performance and the complexity of models represented by the number of learnable parameters on the left
and the number of maximum hops on the right. The plotted results are based on dataset100.

Figure 6. Histograms showing density of predicted outputs for different models and dataset100 and the best seed per model.

complex architecture including skip layers to consider neighbors of higher degrees could have a positive
impact. The four GCS-layers of ArmaNet2 can consider a relatively large region. TAGNet1 also performs
well and this model can evaluate neighbors of 6th-order, by having two layers and three hops per layer. The
benefit of ArmaNet2 can be emphasized by investigating tr20ev100, because ArmaNet2 outperforms all
other models on dataset100, even if it is purely trained on dataset20. Hence, the models ArmaNet2 results
in the most robust setup.

To further evaluate the performance of the investigated models, we analyze the distribution of the
output of selected models in figure 6. Therefor, we only consider the output based on the best seed per
model using R2 as a criterion. The output of all models is restricted to somewhat large values and neither
low nor very high values of SNBS can be predicted. The small amount of nodes with low SNBS in the
dataset might explain the absence of low output values. In case of large output values, it is remarkable and a
bit surprising that none of the models predicts the abundance of completely stable outcomes. This behavior
limits the applicability to real world problems. The limitation of all models also becomes clear when
comparing the results to the distributions introduced in figure 2. Since the shifts8 within the datasets are

8 A dataset shift means, that training and testing datasets are different.

10

New J. Phys. 24 (2022) 043041 C Nauck et al

Figure 7. Heat maps of comparing models using the best seed for each of them and considering the predicted output vs SNBS
and investigating dataset100. The diagonal represents a potential perfect model (R2 = 1).

small, we can compare the output distributions to the distributions of the entire datasets, even though
figure 6 only considers the test section.

The distributions of the output (figure 6) also indicate performance differences between the models. We
clearly see that GCN1, having a relatively low performance, has a very limited range of output values and all
values are around the mean of the dataset. ArmaNet1 already has a wider range, whereas ArmaNet2 has the
largest range. Besides the range, the shape of the distribution and modalities of the predictions are also
telling, e.g. we find an indication for a bimodal distribution in case of TAGNet1. All in all, the superiority of
ArmaNet2 and TAGNet1 becomes visible. However, even for those models the output is still limited to
values that are larger than 0.6 and there is only a small amount of predictions of high stability (SNBS ≈ 1).

To visually analyze the models, we plot the predicted output vs SNBS in heat maps in figure 7. Perfect
predictions would be on the diagonal only, similarly to R2 = 1. On the contrary to R2 shown in table 3, we
can find some reasons for the performance differences. We see that ArmaNet2 and TAGNet1 can distinguish
between nodes with SNBS ≈ 1 and nodes with lower SNBS. Other models, such as GCN1, have large
regions on the off-diagonal, resulting in a lower performance.

6. Conclusion and outlook

The key result of this paper is a novel approach of estimating SNBS via GNNs. We have demonstrated its
potentials and have paved the way for further investigations. We show the necessity to use well-adapted
architectures for this problem, since generic CNNs are not able to achieve comparable results even with
more parameters (cf appendix C).

The strongest limitation of the presented results are probably the assumptions for generating the
datasets which matches several properties of real power grids, but it also simplifies some aspects, e.g.
missing heterogeneity of nodes (power input) and lines (coupling constant). However, the accuracy can still
be increased before moving to more realistic setups, because the performance is still too low for real
applications. We provide several ideas for improvements in the next paragraphs.

Since we see substantially improved performance for models with larger number of parameters testing
more complex models seems very promising. More complex models might identify other relevant structures

11

New J. Phys. 24 (2022) 043041 C Nauck et al

of networks to predict SNBS more accurately, there is no suggestion that the performance is already
saturating. As a first step, one could conduct a hyperparameter study to improve the investigated models.

In further steps, one could introduce new models to increase the performance. Firstly, new layers could
be designed that specifically aim to predict SNBS and deal with power grids. Secondly, hybrid approaches
might be used that incorporate knowledge about known structures, e.g. network motifs that can hardly be
recognized by GNNs. Generally it is clear from our results that more complex architectures are promising
for this task, even if it remains unclear exactly what direction the complexity increase should point toward.

Another key for improvement are the datasets. The used datasets are relatively small, so increasing the
size of the datasets might be an important step for training more complex models. To solve the issue of the
limited range of outputs and the observation that the model outputs are around the mean of the datasets,
balancing or weighting of samples might help.

Remarkably, we successfully showed that GNNs can generalize across different sizes of power grids.
Another avenue for future research is to train models based on different sizes to start with. It is feasible that
the overall performance can be increased when actually training the models on multiple datasets. The
capability of training models on smaller grids and applying them on larger grids can become crucial for
real-world applications to reduce the computational effort of generating datasets and also of training
the models.

Acknowledgments

All authors gratefully acknowledge the European Regional Development Fund (ERDF), the German Federal
Ministry of Education and Research, and the Land Brandenburg for supporting this project by providing
resources on the high-performance computer system at the Potsdam Institute for Climate Impact Research.
The authors also thank the Chair of Information Management in Mechanical Engineering of RWTH
Aachen University for computational resources. Christian Nauck would like to thank the German Federal
Environmental Foundation (DBU) for funding his PhD scholarship and Professor Raisch from Technical
University Berlin for supervising his PhD Michael Lindner greatly acknowledges support by the Berlin
International Graduate School in Model and Simulation based Research (BIMoS) of TU Berlin. This work
was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—KU
837/39-1/RA 516/13-1. The publication was supported by the DFG funding program Open Access
Publication Funding.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
10.5281/zenodo.5148085.

Appendix A. Source code

The full source code including the dataset is available at https://zenodo.org/record/5148085. Furthermore,
the scripts are also given at Github https://github.com/PIK-ICoNe/paper-companion_predicting-snbs-
using-gnn. The code for the computation of SNBS is written in Julia [57] and the dynamic simulations rely
on the package DifferentialEquations.jl [58]. For simulating more realistic power grids in future work we
recommend the additional use of NetworkDynamics.jl [59] and PowerDynamics.jl [60]. Software packages
used for ML-applications are listed in table A1.

Table A1. Software packages for ML.

Package Version Package Version

Cuda 10.2 Torch-cluster 1.5.9
h5py 2.10.0 Torch-geometric 1.7.0
Numpy 1.19.2 Torch-scatter 2.0.6
Pandas 1.2.4 Torch-sparse 0.6.9
Python 3.8.5 Torch-spline-conv 1.2.1
Pytorch 1.7.1 Torchvision 0.8.2

12

doi:10.5281/zenodo.5148085
https://zenodo.org/record/5148085
https://github.com/PIK-ICoNe/paper-companion_predicting-snbs-using-gnn
https://github.com/PIK-ICoNe/paper-companion_predicting-snbs-using-gnn

New J. Phys. 24 (2022) 043041 C Nauck et al

Appendix B. Model and training details

In this section details about the used models are provided, whereby NIC denotes the number of input
channels, NOC the number of output channels, NOH the number of hops per layer (for TAGConv and
SGConv) and ReLU the rectified linear unit activation function. Recall that we only have one node feature
as input and hence our most common choice for NIC is 1.

(a) ArmaNet1:

1. Arma-convolution (NIC = 1, NOC = 1, num-stacks = 3, num-layers = 4, ReLU activation, weights
are not shared between layers),

2. Fully connected layer and sigmoid output layer.
(b) ArmaNet2:

1. Arma-convolution (NIC = 1, NOC = 16, num-stacks = 3, num-layers = 4, dropout = 0.25, ReLU
activation, weights are shared between layers),

2. Batch normalization, ReLU and dropout,

3. Arma-convolution (NIC = 16, NOC = 1, num-stacks = 3, num-layers = 4, dropout = 0.25, no
activation function, weights are shared between layers),

4. Fully connected layer and sigmoid output layer.
(c) GCNNet1:

1. GCN-convolution (NIC = 1, NOC = 4),

2. ReLU and dropout,

3. GCN-convolution (NIC = 4, NOC = 1),

4. Fully connected layer and sigmoid output layer.
(d) GCNNet2:

1. GCN-convolution (NIC = 1, NOC = 16),

2. ReLU and dropout,

3. GCN-convolution (NIC = 16, NOC = 4),

4. ReLU,

5. GCN-convolution (NIC = 4, NOC = 1),

6. Fully connected layer and sigmoid output layer.
(e) GCNNet3:

1. GCN-convolution (NIC = 1, NOC = 16),

2. Batch normalization, ReLU and dropout,

3. GCN-convolution (NIC = 16, NOC = 4),

4. Batch normalization, ReLU

5. GCN-convolution (NIC = 4, NOC = 1),

6. Fully connected layer and sigmoid output layer.
(f) SGNet1:

1. SG-convolution (NIC = 1, NOC = 1, NOH = 2),

2. ReLU, fully connected layer and sigmoid output layer.
(g) SGNet2:

1. SG-convolution (NIC = 1, NOC = 4, NOH = 2),

2. ReLU, dropout,

3. SG-convolution (NIC = 4, NOC = 1, NOH = 2),

4. Fully connected layer and sigmoid output layer.
(h) SGNet3:

1. SG-convolution (NIC = 1, NOC = 16, NOH = 2),

2. ReLU, dropout,

3. SG-convolution (NIC = 16, NOC = 4, NOH = 2),

4. ReLu,

5. SG-convolution (NIC = 4, NOC = 1, NOH = 2),

6. Fully connected layer and sigmoid output layer.
(i) TAGNet1:

1. TAG-Convolution (NIC = 1, NOC = 4, NOH = 3),

13

New J. Phys. 24 (2022) 043041 C Nauck et al

Table B1. Parameters for ML.

Parameter Property Parameter Property

Training batchsize 100 Test batchsize 200
Trainig set index 1–800 Test set index 801–1000
Train set shuffle True Test set shuffle False
Optimizer SGD Learning rate 0.3
Momentum 0.9 Weight decay 1 × 10−9

Criterion MSELoss Threshold for discretized accuracy 0.1

2. ReLU, dropout,

3. TAG-Convolution (NIC = 4, NOC = 1, NOH = 3),

4. Fully connected layer and sigmoid output layer.

The used training parameters can be found in table B1. The scripts include seeds for torch, cuda and
numpy.random, even though cuda may not be used.

Appendix C. Convolutional neural networks

We used CNNs taking the graph Laplacian and information about the node type (source/sink) as input. The
power is either added in an additional row to L, resulting in a one-input-channel setup (1C) or
concatenated as a second input channel (2C).

The results are given in table C1. The input formats (1C and 2C) do not have a large impact. All CNNs
achieve comparable performance and outperform low performing GNN-models, but they are not
competitive to the best GNN-models.

Table C1. Results when using CNNs.

Model

R2 score in % Discretized accuracy in %

dataset20 dataset100 dataset20 dataset100

1C 2C 1C 2C 1C 2C 1C 2C

ResNet18 16.1 14.1 20.5 20.2 78.4 78.2 69.3 69.3
ResNet34 17.4 16.6 21.2 20.6 79.0 78.6 69.2 69.2
ResNet50 16.6 15.2 20.7 20.7 78.2 78.1 69.3 69.3

References

[1] United Nations 2015 Paris agreement Paris: 21st Conf. Parties https://unfccc.int/sites/default/files/english_paris_agreement.pdf
[2] Anvari M, Hellmann F and Zhang X 2020 Introduction to focus issue: dynamics of modern power grids Chaos 30 063140
[3] Kuramoto Y 1975 Self-entrainment of a population of coupled non-linear oscillators Mathematical Problems in Theoretical Physics

vol 39 pp 420–2
[4] Acebrn J A, Bonilla L L, Prez Vicente C J, Ritort F and Spigler R 2005 The Kuramoto model: a simple paradigm for

synchronization phenomena Rev. Mod. Phys. 77 137–85
[5] Rodrigues F A, Peron T K D, Ji P and Kurths J 2016 The Kuramoto model in complex networks Phys. Rep. 610 1–98
[6] Menck P J, Heitzig J, Marwan N and Kurths J 2013 How basin stability complements the linear-stability paradigm Nat. Phys. 9

89–92
[7] Liu Z and Zhang Z 2017 Quantifying transient stability of generators by basin stability and Kuramoto-like models 2017 North

American Power Symposium (NAPS) pp 1–6
[8] Liu Z, He X, Ding Z and Zhang Z A basin stability based metric for ranking the transient stability of generators IEEE Trans. Ind.

Inf. 15 1450–1459
[9] Rakshit S, Bera B K, Majhi S, Hens C and Ghosh D 2017 Basin stability measure of different steady states in coupled oscillators

Sci. Rep. 7 45909
[10] Majhi S, Ghosh D and Kurths J 2019 Emergence of synchronization in multiplex networks of mobile Rössler oscillators Phys. Rev.

E 99 012308
[11] Menck P J, Heitzig J, Kurths J and Joachim Schellnhuber H 2014 How dead ends undermine power grid stability Nat. Commun. 5

3969
[12] Schultz P, Heitzig J and Kurths J 2014 Detours around basin stability in power networks New J. Phys. 16 125001
[13] Kim H, Lee S H and Holme P 2015 Community consistency determines the stability transition window of power-grid nodes New

J. Phys. 17 113005
[14] Kim H, Lee S H and Holme P 2016 Building blocks of the basin stability of power grids Phys. Rev. E 93 062318
[15] Nitzbon J, Schultz P, Heitzig J, Kurths J and Hellmann F 2017 Deciphering the imprint of topology on nonlinear dynamical

network stability New J. Phys. 19 033029

14

https://unfccc.int/sites/default/files/english_paris_agreement.pdf
https://doi.org/10.1063/5.0016372
https://doi.org/10.1063/5.0016372
https://doi.org/10.1103/revmodphys.77.137
https://doi.org/10.1103/revmodphys.77.137
https://doi.org/10.1103/revmodphys.77.137
https://doi.org/10.1103/revmodphys.77.137
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1038/nphys2516
https://doi.org/10.1038/nphys2516
https://doi.org/10.1038/nphys2516
https://doi.org/10.1038/nphys2516
https://doi.org/10.1109/tii.2018.2846700
https://doi.org/10.1109/tii.2018.2846700
https://doi.org/10.1109/tii.2018.2846700
https://doi.org/10.1109/tii.2018.2846700
https://doi.org/10.1038/srep45909
https://doi.org/10.1038/srep45909
https://doi.org/10.1103/physreve.99.012308
https://doi.org/10.1103/physreve.99.012308
https://doi.org/10.1038/ncomms4969
https://doi.org/10.1038/ncomms4969
https://doi.org/10.1088/1367-2630/16/12/125001
https://doi.org/10.1088/1367-2630/16/12/125001
https://doi.org/10.1088/1367-2630/17/11/113005
https://doi.org/10.1088/1367-2630/17/11/113005
https://doi.org/10.1103/physreve.93.062318
https://doi.org/10.1103/physreve.93.062318
https://doi.org/10.1088/1367-2630/aa6321
https://doi.org/10.1088/1367-2630/aa6321

New J. Phys. 24 (2022) 043041 C Nauck et al

[16] Kim H, Lee S H, Davidsen J and Son S-W 2018 Multistability and variations in basin of attraction in power-grid systems New J.
Phys. 20 113006

[17] Kim H, Lee M J, Lee S H and Son S-W 2019 On structural and dynamical factors determining the integrated basin instability of
power-grid nodes Chaos 29 103132

[18] Schultz P, Hellmann F, Webster K N and Kurths J 2018 Bounding the first exit from the basin: independence times and
finite-time basin stability Chaos 28 043102

[19] Ji P, Lu W and Kurths J 2018 Stochastic basin stability in complex networks Europhys. Lett. 122 40003
[20] Lindner M and Hellmann F 2019 Stochastic basins of attraction and generalized committor functions Phys. Rev. E 100 022124
[21] Hellmann F, Schultz P, Jaros P, Levchenko R, Kapitaniak T, Kurths J and Maistrenko Y 2020 Network-induced multistability

through lossy coupling and exotic solitary states Nat. Commun. 11 592
[22] Wolff M F, Lind P G and Maass P 2018 Power grid stability under perturbation of single nodes: effects of heterogeneity and

internal nodes Chaos 28 103120
[23] Goodfellow I, Bengio Y and Courville A 2016 Deep Learning (Cambridge, MA: MIT Press) http://deeplearningbook.org
[24] Avelar P, Lemos H, Prates M and Lamb L 2019 Multitask learning on graph neural networks: learning multiple graph centrality

measures with a unified network Artificial Neural Networks and Machine Learning ICANN 2019: Workshop and Special Sessions
(Lecture Notes in Computer Science) ed I V Tetko, V K̊urková, P Karpov and F Theis (Cham: Springer International Publishing)
pp 701–15

[25] Maurya S K, Liu X and Murata T 2019 Fast approximations of betweenness centrality with graph neural networks Proc. 28th ACM
Int. Conf. Information and Knowledge Management, CIKM ’19 (New York, NY, USA: Association for Computing Machinery)
pp 2149–52

[26] Nauck C, Isenhardt I, Zhang H, Hellmann F and Ennen P 2020 Prediction of power grid vulnerabilities using machine learning
Master’s Thesis, Masterarbeit Rheinisch-Westflische Technische Hochschule Aachen

[27] Donon B, Donnot B, Guyon I and Marot A 2019 Graph neural solver for power systems Proc. Int. Joint Conf. Neural Networks
2019 (Institute of Electrical and Electronics Engineers Inc.)

[28] Kim C, Kim K, Balaprakash P and Anitescu M 2019 Graph convolutional neural networks for optimal load shedding under line
contingency 2019 IEEE Power Energy Society General Meeting (PESGM) pp 1–5

[29] Bolz V, Rue J and Zell A 2019 Power flow approximation based on graph convolutional networks 2019 18th IEEE Int. Conf.
Machine Learning and Applications (ICMLA) pp 1679–86

[30] Retire N, Ha D T and Caputo J-G 2020 Spectral graph analysis of the geometry of power flows in transmission networks IEEE
Syst. J. 14 2736–47

[31] Wang D, Zheng K, Chen Q, Luo G and Zhang X 2020 Probabilistic power flow solution with graph convolutional network 2020
IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe) pp 650–4

[32] Owerko D, Gama F and Ribeiro A 2020 Optimal power flow using graph neural networks ICASSP 2020—2020 IEEE Int. Conf.
Acoustics, Speech and Signal Processing (ICASSP) pp 5930–4

[33] Gama F, Tolstaya E and Ribeiro A 2020 Graph neural networks for decentralized controllers (arXiv:2003.10280)
[34] Misyris G S, Venzke A and Chatzivasileiadis S 2020 Physics-informed neural networks for power systems 2020 IEEE Power Energy

Society General Meeting (PESGM) pp 1–5
[35] Liu Y, Zhang N, Wu D, Botterud A, Yao R and Kang C 2021 Searching for critical power system cascading failures with graph

convolutional network IEEE Trans. Control Netw. Syst. 8 1304–13
[36] Che Y and Cheng C 2021 Active learning and relevance vector machine in efficient estimate of basin stability for large-scale

dynamic networks Chaos 31 053129
[37] Yang S-G, Kim B J, Son S-W and Kim H 2021 Power-grid stability predictions using transferable machine learning

(arXiv:2105.07562 [physics])
[38] Freeman L C 1977 A set of measures of centrality based on betweenness Sociometry 40 35
[39] Schultz P, Heitzig J and Kurths J 2014 A random growth model for power grids and other spatially embedded infrastructure

networks Eur. Phys. J. Spec. Top. 223 2593–610
[40] Schultz P 2020 luap-pik/SyntheticNetworks https://github.com/luap-pik/SyntheticNetworks
[41] Filatrella G, Nielsen A H and Pedersen N F 2008 Analysis of a power grid using a Kuramoto-like model Eur. Phys. J. B 61 485–91
[42] Kuramoto Y 2005 Self-entrainment of a population of coupled non-linear oscillators Int. Symp. Mathematical Problems in

Theoretical Physics
[43] Bergen A R and Hill D J 1981 A structure preserving model for power system stability analysis IEEE Trans. Power Appar. Syst.

PAS-100 25–35
[44] Gelbrecht M, Kurths J and Hellmann F Monte Carlo basin bifurcation analysis New J. Phys. 22 033032
[45] Halekotte L, Vanselow A and Feudel U 2021 Transient chaos enforces uncertainty in the British power grid J. Phys. Complex. 2

035015
[46] Wallis S 2013 Binomial confidence intervals and contingency tests: mathematical fundamentals and the evaluation of alternative

methods J. Quant. Linguist. 20 178–208
[47] You J, Ying Z and Leskovec J 2020 Design space for graph neural networks Advances in Neural Information Processing Systems vol

33 (Curran Associates, Inc.) pp 17009–21
[48] Ioffe S and Szegedy C 2015 Batch normalization: accelerating deep network training by reducing internal covariate shift 32nd Int.

Conf. Machine Learning, ICML 2015
[49] Srivastava N, Hinton G, Krizhevsky A, Sutskever I and Salakhutdinov R 2014 Dropout: a simple way to prevent neural networks

from overfitting J. Mach. Learn. Res. 15 1929–58
[50] Hammond D K, Vandergheynst P and Gribonval R 2011 Wavelets on graphs via spectral graph theory Appl. Comput. Harmon.

Anal. 30 129–50
[51] Kipf T N and Welling M 2017 Semi-supervised classification with graph convolutional networks 5th International Conference on

Learning Representations (arXiv:1609.02907)
[52] Wu F, Zhang T, de Souza A H, Fifty C, Yu T and Weinberger K Q 2019 Simplifying graph convolutional networks

(arXiv:1902.07153)
[53] Du J, Zhang S, Wu G, Moura J M F and Kar S 2017 Topology adaptive graph convolutional networks (arXiv:1710.10370)
[54] Bianchi F M, Grattarola D, Livi L and Alippi C 2021 Graph neural networks with convolutional ARMA filters IEEE Trans. Pattern

Anal. Mach. Intell. 1

15

https://doi.org/10.1088/1367-2630/aae8eb
https://doi.org/10.1088/1367-2630/aae8eb
https://doi.org/10.1063/1.5115532
https://doi.org/10.1063/1.5115532
https://doi.org/10.1063/1.5013127
https://doi.org/10.1063/1.5013127
https://doi.org/10.1209/0295-5075/122/40003
https://doi.org/10.1209/0295-5075/122/40003
https://doi.org/10.1103/physreve.100.022124
https://doi.org/10.1103/physreve.100.022124
https://doi.org/10.1038/s41467-020-14417-7
https://doi.org/10.1038/s41467-020-14417-7
https://doi.org/10.1063/1.5040689
https://doi.org/10.1063/1.5040689
http://deeplearningbook.org
https://doi.org/10.1109/pesgm40551.2019.8973468
https://doi.org/10.1109/pesgm40551.2019.8973468
https://doi.org/10.1109/jsyst.2019.2928852
https://doi.org/10.1109/jsyst.2019.2928852
https://doi.org/10.1109/jsyst.2019.2928852
https://doi.org/10.1109/jsyst.2019.2928852
https://arxiv.org/abs/2003.10280
https://doi.org/10.1109/tcns.2021.3063333
https://doi.org/10.1109/tcns.2021.3063333
https://doi.org/10.1109/tcns.2021.3063333
https://doi.org/10.1109/tcns.2021.3063333
https://doi.org/10.1063/5.0044899
https://doi.org/10.1063/5.0044899
https://arxiv.org/abs/2105.07562
https://doi.org/10.2307/3033543
https://doi.org/10.2307/3033543
https://doi.org/10.1140/epjst/e2014-02279-6
https://doi.org/10.1140/epjst/e2014-02279-6
https://doi.org/10.1140/epjst/e2014-02279-6
https://doi.org/10.1140/epjst/e2014-02279-6
https://github.com/luap-pik/SyntheticNetworks
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1140/epjb/e2008-00098-8
https://doi.org/10.1109/tpas.1981.316883
https://doi.org/10.1109/tpas.1981.316883
https://doi.org/10.1109/tpas.1981.316883
https://doi.org/10.1109/tpas.1981.316883
https://doi.org/10.1088/1367-2630/ab7a05
https://doi.org/10.1088/1367-2630/ab7a05
https://doi.org/10.1088/2632-072x/ac080f
https://doi.org/10.1088/2632-072x/ac080f
https://doi.org/10.1080/09296174.2013.799918
https://doi.org/10.1080/09296174.2013.799918
https://doi.org/10.1080/09296174.2013.799918
https://doi.org/10.1080/09296174.2013.799918
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1016/j.acha.2010.04.005
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1902.07153
https://arxiv.org/abs/1710.10370
https://doi.org/10.1109/tpami.2021.3054830

New J. Phys. 24 (2022) 043041 C Nauck et al

[55] Paszke A et al 2019 PyTorch: an imperative style, high-performance deep learning library Advances in Neural Information
Processing Systems vol 32 ed H Wallach, H Larochelle, A Beygelzimer, F. d. Alch-Buc, E Fox and R Garnett (Curran Associates,
Inc.) pp 8024–35

[56] Fey M and Lenssen J E 2019 Fast graph representation learning with pytorch geometric (arXiv:1903.02428)
[57] Bezanson J, Edelman A, Karpinski S and Shah V B 2017 Julia: a fresh approach to numerical computing SIAM Rev. 59 65–98
[58] Rackauckas C and Nie Q 2017 DifferentialEquations.jl A performant and feature-rich ecosystem for solving differential equations

in julia J. Open Res. Softw. 5 15
[59] Lindner M, Lincoln L, Drauschke F, Koulen J M, Würfel H, Plietzsch A and Hellmann F 2021 NetworkDynamics.jl-Composing

and simulating complex networks in Julia Chaos 31 063133
[60] Plietzsch A, Kogler R, Auer S, Merino J, Gil-de Muro A, Lie J, Vogel C and Hellmann F 2021 PowerDynamics.jl—an

experimentally validated open-source package for the dynamical analysis of power grids (arXiv:2101.02103)

16

https://arxiv.org/abs/1903.02428
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.5334/jors.151
https://doi.org/10.5334/jors.151
https://doi.org/10.1063/5.0051387
https://doi.org/10.1063/5.0051387
https://arxiv.org/abs/2101.02103

	Predicting basin stability of power grids using graph neural networks
	1. Introduction
	2. Generation of the datasets
	2.1. Objectives for datasets
	2.2. Network science: graphs
	2.3. Power grids
	2.4. Dataset properties

	3. Graph neural networks
	4. Prediction of SNBS using GNNs
	4.1. Setup of our GNN-models
	4.2. Training setup

	5. Results
	6. Conclusion and outlook
	Acknowledgments
	Data availability statement
	Appendix A. Source code
	Appendix B. Model and training details
	Appendix C. Convolutional neural networks
	References

