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Abstract
Extreme events can lead to crop yield declines, resulting in financial losses and threats to food
security, and the frequency and intensity of such events is projected to increase. As global gridded
crop models (GGCMs) are commonly used to assess climate change impacts on agricultural yields,
there is a need to understand whether these models are able to reproduce the observed yield
declines. We evaluated 13 GGCMs from the Inter-Sectoral Impact Model Intercomparison Project
and compared observed and simulated impact of past droughts and heatwaves on yields for four
crops (maize, rice, soy, wheat). We found that most models detect but underestimate the impact of
droughts and heatwaves on yield. Specifically, the drought signal was detected by 12 of 13 models
for maize and all models for wheat, while the heat signal was detected by eleven models for maize
and six models for wheat. To investigate whether the difference between simulated and observed
yield declines is due to a misrepresentation of simulated exposure to heat or water scarcity (i.e.
misrepresentation of growing season), we analysed the relationship between average discrepancies
between observed and simulated yield losses, and average simulated exposure to extreme weather
conditions across all crop models. We found a positive correlation between simulated exposure to
heat and model performance for heatwaves, but found no correlation for droughts. This suggests
that there is a systematic underestimation of yield responses to heat and drought and not only a
misrepresentation of exposure. Assuming that performance for the past indicates models’ capacity
to project future yield impacts, models likely underestimate future yield decline from climate
change. High-quality temporally and spatially resolved observational data on growing seasons will
be highly valuable to further improve crop models’ capacity to adequately respond to extreme
weather events.

1. Introduction

Crop yields are strongly impacted by weather condi-
tions (Frieler et al 2017,Müller et al 2017, FAO 2018).
Especially extreme weather events, such as droughts
and heatwaves, can have detrimental impacts on crop
yields (Lesk et al 2016). Yield variability in turn
affects food supply and prices (FAO 2018), and ulti-
mately livelihoods of farmers and those consumers
that spend a large proportion of their income on food.
As more than 20% of food is traded internationally
(D’Odorico et al 2014), local production shocks can

have global impacts especially for countries relying on
food imports, such as during the 2008/2010 spike in
food prices (Maetz et al 2011).

Over the last decades, the frequency and strength
of extreme weather events increased substantially,
and this trend will likely continue (Morales et al
2020, Perkins-Kirkpatrick and Lewis 2020). In addi-
tion, the likelihood of multiple regions being affected
at the same time is increasing, which could exacer-
bate negative impacts on agricultural production
(Gaupp et al 2020). To inform agricultural practices,
spatial planning, or the development of insurance
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policies for farmers, there is a need to better under-
stand yield responses to weather disturbances to
improve future projections under climate change.

Global gridded crop models (GGCMs) have been
developed to assess how climate change and agricul-
tural management might impact crop yields (Müller
et al 2017, Jägermeyr et al 2021). To enable model
intercomparison the Agricultural Model Intercom-
parison and Improvement Project (AgMIP) and the
Inter-Sectoral Impact Model Intercomparison Pro-
ject (ISIMIP) provide common modelling protocols
describing a harmonized simulation setup. It has been
tested how much of the annual variability of crop
yields can be explained by weather fluctuations with
strong differences in performance between countries,
crops and models (Frieler et al 2017, Müller et al
2017, 2019). Given high explanatory power in some
regions, an unresolved question is to what extent
lower model performance in other regions is due to
a misrepresentation of how crops respond to heat
stress and drought conditions, or due to a misrepres-
entation of management practices including planting
and harvest dates (Rötter et al 2011). Concerning the
response to extreme temperature, Schauberger et al
(2017) found that GGCMs reproduce yield decline
observed under temperatures above 30 ◦C. Regarding
management practices, Jägermeyr and Frieler (2018)
showed that observed yield declines under droughts
and heatwaves can be reproduced with a gridded
global crop model (LPJmL) after constraining the
growing seasons in the model by observations, i.e.
heat units required to reach maturity. An analysis of
GGCMperformance for the 2003 European heatwave
found that inadequate consideration of management
practices likely resulted in the poor performance of
models for some countries (Schewe et al 2019).

In this study, we expand the evaluation of GGCMs
to all AgMIP-ISIMIP2a models in terms of model
performance for simulating national yield anomalies,
and the impact of drought and heatwaves on yield
from 1971 to 2012. We also analysed to what extent
model performance is influenced by the growing sea-
son representation in the model.

2. Methods

2.1. ISIMIP cropmodels
We compared crop yield models that were run by 13
modelling groups as part of the AgMIP-ISIMIP2a
simulation round: CGMS-WOFOST, CLM-Crop,
EPIC-Boku, EPIC-IIASA, EPIC-TAMU, GEPIC,
LPJ-GUESS, LPJmL, ORCHIDEE-CROP, pAPSIM,
pDSSAT, PEGASUS, and PEPIC (Arneth et al 2017).
For a basic characterization of the models see Müller
et al (2019) and www.isimip.org/impactmodels. The
models are forced by four observational climate data-
sets in daily resolution, namely GSWP3, Princeton,
WATCH, and WFDEI. The original simulations do
not account for land-use patterns but are executed

as ‘pure crop runs’ on a 0.5◦ × 0.5◦ grid assuming
that the considered crop is grown in each terrestrial
grid cell with suitable weather and soil conditions,
based on the soil map from Harmonized World Soil
Database (www.isimip.org/protocol). Crop yield is
defined as harvested production per unit of harvested
area and is reported per annual growing season. Yields
were multiplied by land-use and irrigation patterns
in annual resolution to derive production per grid
cell. Land-use and irrigation data were taken from
‘Dynamic MIRCA’ based on HYDE (Klein Goldewijk
et al 2017) andMIRCA2000 (Portmann et al 2010) as
provided by ISIMIP2a. Mean national yields are cal-
culated by dividing total national production by the
total (rainfed + irrigated) harvested area. Two irrig-
ation setups are simulated: (a) purely rainfed con-
ditions and (b) full irrigation avoiding water stress
without accounting for potential limitations in water
availability.

The crop models simulated four crops (maize,
rice, soy, and wheat), and two nitrogen application
settings (‘default’ and ‘fullharm’). Default runs used
model specific best-guess representations of histor-
ical fertilizer inputs, if the model is capable, and
their default growing season representation, either as
model-estimated planting dates or individual input
dataset. Full harmonization (fullharm) runs used pre-
scribed annual fertilizer application rates, planting
and harvest dates (Müller et al 2017). To meet the
prescribed harvest dates on average, the models are
calibrated to meet the required heat units to reach
maturity in each grid cell. Not all modelling groups
ran all combinations of crops, scenarios and cli-
mate datasets. This analysis included 67 model runs
for maize, 59 for rice, 66 for soy and 70 for wheat
(table S2 available online at stacks.iop.org/ERL/17/
044026/mmedia).

2.2. Inter-annual variability in national yields
The historical evolution of crop yields is strongly
influenced by technical progress leading to increases
in yields that are not necessarily captured by crop
models. Therefore, national time series of simulated
and observed crop yields were de-trended by sub-
tracting a quadratic temporal trend. In order tomeas-
ure the degree to which models reproduce the vari-
ations in observed yields, we calculated the root
mean squared error (RMSE) and the explained vari-
ance (R2) between simulated and observed yield
anomaly based on the Pearson correlation coefficient.
Depending on the harvest date, there can be dif-
ficulties in attributing growing periods to calendar
years and Food and Agriculture Organization of the
UnitedNations (FAO) data reporting. Thus, we tested
whether shifting the observed time series by one year
forward or backward improves the correlation.When
shifting improved the R2 by at least 20% we used the
shifted yield time series (Jägermeyr and Frieler 2018).
We focused on the ten largest producer countries
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for each crop (results for the 20 largest producers in
supplementary).

2.3. Impact of extreme events on yield
To evaluate whether model simulations can repro-
duce a reduction in yields caused by extreme events,
we used a composite analysis (Lesk et al 2016). Com-
posites are derived by extracting a pre-defined time
window (here seven years) from a time series centred
on the key event to quantify the average signal across
all countries and events (Lesk et al 2016). Inform-
ation about the occurrence of droughts and heat-
waves within individual countries was taken from the
Emergency Events Database (EM-DAT, CRED 2020).
When events lasted several years, yields of consecut-
ive extreme years were averaged into a single event, so
that time-series always consisted of seven years. We
only considered the 20 largest producer countries of
the respective crop (tons production, FAO 2020) and
countries for which production of the respective crop
accounted for at least 5% of total crop area (Dynamic
MIRCA).

In a first approach, we derived the composites
from the detrended country-level time series of abso-
lute deviations from the long-term means also used
for the calculation of the correlations described in
section 2.2. In a second approach, we used relative
differences from the long term mean yields, i.e. the
country-level yield time-series divided by the quad-
ratic temporal trend. This returns a unitless compos-
ite of yield change relative to expected yield and res-
ulting values vary around one. Here, the yield decline
for a country with low yields has a similarly large
impact on the composite as larger yield declines for
a country with larger yields. That way, the composite
represents small yield declines in a country like Burk-
ina Faso with much lower yields, but that can non-
etheless have a significant impact locally, similarly to
large yield declines in a country like France. Results
shown and discussed in the main text of this study
refer to the second approach (results of first approach
in supplementary).

Model runs forced by different climate datasets
cover different time periods and as a result a dif-
ferent number of extreme events. We calculated the
RMSE to compare composites from model simula-
tions with composites from FAO data, meaning we
compared the seven years covered by the composite.
RMSE is unitless. In contrast, we calculated the per-
cent bias only for the year of the event across all events
to determine if mean yield is over- or underestimated
for the year of the event. We concluded that a model
detected the extreme event signalwhen themean yield
for the year of the event was below one, i.e. mean plus
standard error was below one.

2.4. Growing season
A disagreement between observed and simulated
yields can be due to an actualmisrepresentation of the

crop response to heat or drought, or due to a misrep-
resentation of the growing season. Thus, simulated
crop yieldsmay be higher than observed ones because
the ‘exposure to heat or drought’ within the model
may occur at a different phenological stage than in
the real world or a crop may not be exposed as the
simulated growing season ends before or starts after
the extreme weather conditions. In the model simu-
lations a dry period may be compensated by rainfall
at the end of the growing season because models may
be overly optimistic with regard to recovery processes
(Jägermeyr and Frieler 2018).

We evaluated whether the timing of growing sea-
son assumed within the model simulations influ-
enced model performance for extreme event yield
decline. For each model run, we extracted mean pre-
cipitation and the number of extreme degree days
(EDDs) for the simulated growing season for the
years of extreme events. EDDs were defined as days
for which the maximum temperature was above a
temperature threshold (maize: 30 ◦C, rice: 35 ◦C,
soy: 35 ◦C, wheat: 34 ◦C, according to Frieler et al
2017). We used daily precipitation and maximum
daily temperature data provided by ISIMIP2a (Lange
and Büchner 2017), using the same climate data
product used by the respective model run. Both para-
meters were extracted for grid cells within the coun-
try for which the extreme event was reported, and
then averaged across all grid cells weighted by the
crop area from the ‘Dynamic MIRCA’ dataset. We
expected that model runs that show a higher mean
precipitation within the simulated growing season,
underestimate drought effects as they miss the actual
drought or overcompensate its effects by capturing
higher precipitation outside of the actual growing
season or overestimating its beneficial effect. Simil-
arly, we expected that model runs that had a higher
mean EDDwithin the simulated growing season, bet-
ter capture the extreme weather conditions leading to
the observed impacts.

3. Results

3.1. Inter-annual variability in national yields
Across the top ten producer countries, explained vari-
ance of national yield anomalies was highest formaize
reaching 30% mean explained variance for some
models (e.g. GEPIC, pDSSAT, and PEPIC) and the
mean value across all models was 26% (figure 1 and
table S3). Multi-model mean explained variance is
lower for wheat but values of about 25%were reached
by some models (pDSSAT, EPIC-Boku, LPJmL, and
PEPIC; figure 1 and table S6). For soy and rice,
mean explained variance was lower, reaching more
than 20% for soy (pDSSAT, EPIC-Boku, and PEPIC;
figure 1 and table S5), and 18% for rice (LPJmL,
ORCHIDEE-CROP; figure 1 and table S4).

For each crop, individual models can explain
more than 50% of the yield anomaly for several
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Figure 1. Explained variance of country-level yield anomaly for top ten producer countries for (a) maize, (b) rice, (c) soy, and
(d) wheat. Explained variance (R2) refers to simulated yield from the respective model and observed yield from FAO data. For
each model, the run with the highest mean explained variance across the top ten producer countries is shown. Black line is the
median across the shown model runs for each country. Grey bars illustrate the average share in global production per country.
The legend in each panel shows mean explained variance across top ten producer countries and sample size (details tables S3–S6
and figures S2–S5).

main crop producer countries (figure 1). Specifically,
for the USA, France, Argentina, South Africa, and
Romania for maize; Japan for rice; USA, Argentina,
and India for soy; and Australia, Canada, and Turkey
for wheat. There was no single model that outper-
formed all others, and there was typically a large vari-
ation between individual models (figure 1 and tables
S3–S6) but also between different runs of an indi-
vidual model (figures S2–S5). In addition, no climate
forcing dataset was superior to others, nor were ‘full-
harm’ runs better than ‘default’ runs (figures S2–S5).

3.2. Impact of extreme events on yield
The observed mean relative yield decline calculated
from FAO data under droughts was 4.3% for maize,

1.3% for rice, 3.4% for soy and 6.7% for wheat. Rel-
ative yield decline induced by heatwaves was 8.2% for
maize, 2.2% for soy and 4.5% for wheat. For rice,
FAO data showed no signal for the year of the heat-
wave event (figure S1), which is in line with Lesk
et al (2016). In contrast, there was an event signal for
drought events (figures S1). We thus excluded heat-
wave events from our analysis for rice.

Across all crops and both event types, the major-
ity of models detected the event signal, except for
the impact of heatwaves on wheat and droughts on
rice. Models typically either reproduced observed
losses or underestimated yield decline, and under-
estimation was often strong. While yield is over- or
underestimated in non-extreme years, yield decline

4
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Figure 2.Mean impact of drought events on maize yields. Composites are based on seven year window of country-level relative
yield deviations from long-term means. Results are shown for the best run for each model (coloured line) compared to observed
impact (black line). Shaded area is the standard error. All model runs in figure S6. Legends detail mean event impact of model
simulation and FAO data, number of events included, root mean square error (RMSE, unitless), and percent bias (Pbias).

is rarely overestimated (except CGMS-WOFOST, and
several models for soy), suggesting that models sys-
tematically detect the event signal of extreme years.
The mean percent bias across all models was neg-
ative across all crops and event types, which con-
firms the underestimation of yield decline for extreme
years. Specifically, multi-model mean percent bias
was −1.74 for maize and drought, −3.19 for maize
and heat, −3.20 for wheat and drought, −2.66
for wheat and heat, −0.44 for rice and drought,
−0.62 for soy and drought, and −0.56 for soy and
heat.

For maize and drought, 12 of the 13 models
detected the event signal (figure 2). Especially the
simulations by PEPIC and CGMS-WOFOST were
close to the observed impact. PEPIC showed a high

agreement between observed and simulated yield
declines for both observational climate datasets
that were used to run the model, suggesting that
good performance is not random. In contrast, for
the second type of composite, all models detected
the event signal and simulated the drought impact
close to the observed estimate (figure S7). For maize
and heatwaves, eleven models detected the signal,
and five models were close to the observed impact
(EPIC-Boku, PEPIC, CGMS-WOFOST, GEPIC,
pAPSIM, figure 3). For wheat, all models detec-
ted the drought signal (especially, ORCHIDEE-
Crop and EPIC-Boku), but most underestimated
the yield impact, some strongly (figure 4). Only
CGMS-WOFOST slightly (−9.2% versus−7.9%)
overestimated the impact. Some models performed
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Figure 3.Mean impact of heatwave events on maize yield. Composites are based on 7-year window of country-level relative yield
deviations from long-term mean. Results are shown for the best run for each model (coloured line) compared to observed impact
(black line). Shaded area is the standard error. All model runs in figure S9. Legends detail mean event impact of model simulation
and FAO data, number of events included and root mean square error (RMSE, unitless), and percent bias (Pbias).

better for the absolute difference than for the relative
ones (e.g. LPJmL, ORCHIDEE-Crop and PDSSAT,
figure S25). For wheat and heatwaves, six models
detected the event signal (e.g. CLM-Crop, PEPIC,
figure 5). Performance was not better for the absolute
deviations than for the relative ones considered here
(figure S28).

For rice and drought, five models out of ten
detected the event signal (e.g. GEPIC, LPJmL, figure
S12). For soy and drought, ten of twelve models
detected the event signal, with most of these models
simulating the impact close to the observed impact
(e.g. GEPIC, pAPSIM, pDSSAT, LPJmL, figure S16).
Four models overestimated the yield impact. For the
second composite, some models performed better
(e.g. EPIC-IIASA, PEPIC, ORCHIDEE-Crop). For

soy and heatwaves, nine of the twelve models detec-
ted the event signal (e.g. EPIC-Boku, LPJ-GUESS,
GEPIC, PEPIC, figure S20). CGMS-WOFOST over-
estimated the impact.

Comparing model performance, PEPIC repro-
duced observed maize (drought and heatwave) and
wheat yield well (drought, but not heatwave). In con-
trast, there were models that performed well for one
but not the other. For example, LPJmL reproduced
yield decline close to observed decline for wheat and
drought, but not for heatwave; and EPIC-Boku repro-
duced yield decline well for maize and heatwave,
but not for wheat and heatwave. When comparing
runs of individual models, climate forcing datasets
had a stronger effect than harmonization settings,
meaning default versus fullharm runs (e.g. GEPIC
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Figure 4.Mean impact of drought events on wheat yield. Composites are based on 7-year window of country-level relative yield
deviations from long-term mean. Results are shown for the best run for each model (coloured line) compared to observed impact
(black line). Shaded area is the standard error. All model runs in figure S24. Legends detail mean event impact of model
simulation and FAO data, number of events included and root mean square error (RMSE, unitless), and percent bias (Pbias).

and pDSSAT in figure S6). As differences between
default and fullharm settings can differ betweenmod-
els and they could be very similar depending on the
model specifications, this finding does not allow for
further inferences.

When comparing model performance for
country-level yield anomaly with extreme event
impact on yield (figure 6), PEPIC and pDSSAT per-
formed well across all analyses for maize. GEPIC,
which had the highest R2 for country-level yield
anomaly for maize, had moderate RMSE values
for drought and heatwave impact on yield, but
the yield decline estimated for the year of the
event was close to the observed impact (figures 2
and 3).

3.3. Growing season
We found that model runs with a higher growing
season mean EDD, tended to better reproduce the
observed yield loss induced by heatwaves, especially
for maize and wheat (figure 7). However, there was a
large variation between runs of the same model and
between different models. For drought events, we did
not find a relationship between model performance
and precipitation during simulated growing seasons
(figure 8). When further investigating why there was
no relationship, we found a large variation in per-
formance between individual drought events. While
for certain drought events the relationship between
model performance and precipitation was as expec-
ted, for others there was a large difference between
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Figure 5.Mean impact of heatwave events on wheat yield. Composites are based on 7-year window of country-level relative yield
deviations from long-term mean. Results are shown for the best run for each model (coloured line) compared to observed impact
(black line). Shaded area is the standard error. All model runs in figure S27. Legends detail mean event impact of model
simulation and FAO data, number of events included and root mean square error (RMSE, unitless), and percent bias (Pbias).

modelled and observed yield impact, even though
there was low precipitation, or the other way around
(small difference in yield impact and high precipit-
ation) (figure S30). The latter was, for example, the
case when there was large spatial variation in precip-
itationwith flooding in some parts of the country and
drought in others (e.g. drought in Ecuador 1997).

4. Discussion

4.1. Inter-annual variability in national yields
Comparing simulations across 13models, somemod-
els explained more than 50% of the yield variabil-
ity for several of the major crop producer countries,
for example, for five of the ten top maize produ-
cers (figure 1). There was a large variation between

individual models and between different runs of
the same model on how well yield anomalies were
reproduced, which is in line with previous inter-
comparisons of GGCMs forced by different climate
datasets (Frieler et al 2017, Müller et al 2017). Mod-
els performed particularly well for countries such as
Romania and France for maize yield, Australia and
Canada for wheat, Japan for rice (Frieler et al 2017,
Jägermeyr and Frieler 2018, this study). In addition,
there are model runs included in this study that per-
formed better formaize yield in China (second largest
maize producer), soy yield in USA (largest soy pro-
ducer) and India, and rice yield in China (largest rice
producer), Thailand and Brazil.

Yield variability is driven not only by weather, but
also by management decisions and reporting errors,

8
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Figure 6. Comparing model performance for reproduction of variability across top 10 producer countries (mean explained
variance) with performance for (a) drought and (b) heatwave impact on maize. RMSE is the root mean square error and is
unitless.

that cannot be captured by the GGCMs. GGCMs
evaluated here explained variances of observed de-
trended yields of around 30% for maize and less than
20% for rice, with likely too low values for rice due
to underperformance of the models. Ray et al (2015)
found that around one third of global crop yield
variability is caused by climate variability on a sub-
national scale. In addition, they found that climate
variability had a stronger impact on countries with
high-input agriculture, which is reflected in GGCMs
that performed better for these countries than for
countries with low-input agriculture (figure 1).

4.2. Impact of extreme events on yield
Overall, GGCMs were able to simulate the impact
of droughts and heatwaves on crop yield. While the
majority of models detected the event signal, fewer
models estimated themagnitude of yield decline close
to the observed decline. Those models performed
similarly well as variations of the LPJmLmodel evalu-
ated in an earlier study (Jägermeyr and Frieler 2018).
However, there was not a single model (or set of
models) that outperformed all others across the dif-
ferent crops and event types. Similarly to earlier
findings pertaining to the European heatwave in 2003
(Schewe et al 2019), the majority of GGCMs that
detected the event signal underestimated the mag-
nitude of yield decline. One possible explanation is
that model simulations do not necessarily lead to
crop failures after severe weather but in many mod-
els, plants continue to grow when conditions become
suitable again. In addition, models do not account
for the influence of diseases and pests that have a
stronger impact on stressed plants. In contrast, for
soy, simulated yield impact was close to observed

impact for the majority of models, with several over-
estimating yield decline. Models that explain year-to-
year crop variability well also performed well for the
impacts of heatwave events, with no clear relation for
drought events (figure 6).

Compared to maize, model performance was
worse for simulating the impact of heatwaves on
wheat yield and the impact of drought on rice yields.
For wheat, it is known that yield is sensitive to tem-
perature stress (Zampieri et al 2017), and at the
same time model uncertainty increases with higher
temperatures (Asseng et al 2013). Another explana-
tion might be a mismatch of simulated growing sea-
sons, as we found that model runs for which the
simulated growing season overlapped less with heat-
waves performed worse (figure 7). For rice, yield is
less strongly impacted by drought, with an estim-
ated yield decline from observed FAO data at only
1.3%. This is likely due to rice being mostly grown
under irrigated conditions. In addition, models seem
to perform worse for rice in general, as shown
in the first analysis on national yield variability,
as median explained variance was below 20% for
all major rice producer countries, except for Japan
(figure 1).

By having two different composites, we were able
to indirectly compare model performance in low
versus high yield countries. For most crops and event
types, both composites were very similar. However,
for the impact of drought events on maize yield,
models performed better in the second type of com-
posite (figure S7 compared to figure 2), meaning
when the yield decline was not weighted by over-
all yield. This could suggest that models do not
adequately represent crop yield declines in countries
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with low yields, even though declines there can have
detrimental impacts on food security (FAO 2018).
Although global yield has grown during past decades,
the impact of yield loss caused by extreme events
continues to be of concern as high-yield countries
are more strongly affected by weather induced yield
shocks than countries with lower yields (Lesk et al
2016).

We also found that a model performing well for
droughts did not necessarily performwell for simulat-
ing the impact of heatwaves, and vice versa (e.g. pAP-
SIM for maize, and ORCHIDEE-CROP for wheat).
Even though droughts and heatwaves often co-occur,
the ecological impact on plants differs (Brodribb et al
2020), and models differ in how they represent the
processes of either or both. However, previous evalu-
ations showed that GGCMs are able to reproduce the
impact of high temperatures on yield (Schauberger
et al 2017).

There were large differences between different
runs of the same model in how well yield declines
are reproduced (figures S6–S29). We found that the
choice of climate forcing dataset and harmonization
settings can have a strong impact on simulated yield,
though no climate dataset nor harmonization setting
was superior to others.

4.3. Limitations
Though being the most comprehensive database on
national crop yield and production, data quality from
the FAO database differs across countries (World
Bank 2010). This introduces uncertainty in the ana-
lysis as low explained variance does not have to
imply thatmodel simulations are erroneous. A poten-
tial additional source of uncertainty are the extreme
events chosen for this analysis. Extreme events are
rare, which resulted in small sample sizes for heat-
waves. When analysing the impact composites for
the different time periods covered by model simula-
tions, the calculation of the corresponding FAO data
revealed that individual extreme events can have a
strong impact on the multi-year average (see differ-
ence in grey line across panels in figure 2). In addi-
tion, extreme events can affect only part of a country
and thus aggregation at the country level can intro-
duce further uncertainty.

The impact of extreme events on yield is not
only a response to the weather signal but also reflects
which means farmers have available to buffer adverse
conditions, for example, irrigation that can counter-
act the negative impact of high temperatures to a
certain extent (Schauberger et al 2017, Vogel et al
2019). Temporal variations in adaptations are not
accounted for in crop models, but could be integ-
rated if, for example, data would be available on tem-
poral changes of the proportion of irrigated land.
In addition, yield is influenced by socio-economic
factors that are not considered in GGCMs, such as

plant diseases, insect pests, limited access to agricul-
tural inputs such as fertilizers or pesticides, or limited
access to farms during violent conflicts or epidemics
(FAO 2018).

4.4. Conclusion
In general, GGCMs detect yield decline caused by
droughts and heatwaves, but underestimate the mag-
nitude of yield decline. This can imply that future
projections of crop yield under climate change also
underestimate the impact of extreme events. As
the area exposed to extreme events is projected to
increase (Lange et al 2020), the further advance-
ment of GGCMs would be an important step in
supporting evidence-based decision-making in light
of ensuring future food security. Important model
improvements include advancing the process repres-
entation and parameterization of the models, partic-
ularly with respect to heat stress and tissue damage
under extreme temperatures, but improving model
inputs is as important. Particularly a better global
crop calendar product based on local observational
data from various sources ideally with annual resol-
ution would allow for a better growing season rep-
resentation. However, crop yield anomalies are only
partly driven by weather, and crop models cannot
reproduce all the variation, as long as factors such
as pests, economic and social issues are not con-
sidered. Thus, inter-sectorial modelling, i.e. com-
bining crop models with models from other sec-
tors, could be an important step towards adequately
representing the impact of extreme events on crop
production.
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