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Abstract

Transforming global energy systems is critical for climate change mitigation and requires overcoming not only
techno-economic, but also socio-technical hurdles. The main tools to analyse challenges in these two domains
are integrated assessment models (IAMs) and transition theories or models, respectively. Despite a surging
interest in integrative research that leverages complementarities in order to include social constraints into
IAMs, both approaches are often confined to their own disciplinary background and practical integration
studies of existing models are scarce. Here I demonstrate the feasibility of model integration by a bi-
directional soft-link that merges the strengths of a neoclassical intertemporally optimising IAM with one
global region, and a technologically and regionally highly resolved, evolutionary simulation model of S-shaped
technology diffusion in the power sector. The new model iteratively converges to a stable equilibrium via
two time-dependent coupling variables: carbon prices and renewable energy shares. The results for a 2 ◦C
scenario show that due to gradual technology diffusion, energy transition challenges are exacerbated and
incur higher economic losses. I discuss the potential of coupling existing models as an option to combine
insights from different disciplinary perspectives to energy transitions.

Keywords: Integrated assessment modeling, Energy transition, Climate change mitigation, Model
coupling, Technology diffusion

1. Introduction

Curbing the confirmed and growing human influence on the climate system in order to abide by the 2015
Paris Agreement (UNFCCC, 2015) will require a profound transformation of the global energy system from
fossil fuels to low-carbon energy sources. In order to accelerate technological change and spur innovation,
policymakers therefore need to draw on ‘a wide portfolio of mitigation options and a significant upscaling of
investments in those options’ (IPCC, 2018, p. 15). This entails phasing out fossil technologies and scaling
up renewable technologies, potentially beyond growth rates observed so far (Cherp et al., 2021). Studies of
technology diffusion describe the dynamics of these processes on the macro level (Grübler et al., 1999).

Technological change and the diffusion of new technologies are analysed from different vantage points,
which may broadly be subsumed into techno-economic and socio-technical perspectives, ranging from tech-
nical feasibility to economic viability and social acceptance. In juxtaposition, these two categories help
to understand the observed disparities between ambition and action as the ‘disconnect between where we
are and where we need to be’ (UNEP, 2019, p. 1) continues to widen. The feasibility of mitigating cli-
mate change therefore hinges not only on negotiating techno-economic obstacles, but also on overcoming
socio-technical constraints of the energy transition.
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This division of the multi-faceted challenges of technological change into techno-economic and socio-
technical aspects of energy transitions resonates with a multitude of meta-theoretical frameworks (Cherp
et al., 2018; Grubb et al., 2015) and relates to two disciplinary approaches with distinct theories, contrasting
modelling assumptions, and hence complementary strengths. Unlocking these synergies to find solutions to
energy and climate challenges, increase realism in models and foster interdisciplinary learning has been
the focal point of a new research community (Trutnevyte et al., 2019; Hirt et al., 2020) that is quickly
gaining ground alongside calls to ‘embed the social sciences in climate policy’ (Victor, 2015), suggestions
that ‘integrated assessment model-based analysis should be complemented with insights from socio-technical
transition analysis and practice-based action research’ (Geels et al., 2016), and forthright statements that
‘climate policy models need to get real about people‘ (Peng et al., 2021).

Despite a general agreement about the complementary knowledge base of techno-economic and socio-
technical approaches to global energy transitions, the discussion on how to best leverage the available
synergies has all but converged. Different approaches of operationalising socio-technical transitions range
from the development of scenario narratives based on social science insights for usage in techno-economic
integrated assessment models (IAMs) (van Sluisveld et al., 2020) to the development of fully new modelling
frameworks such as overlapping socio-technical energy transition (STET) models (Li and Strachan, 2017)
and agent-based models (ABMs) (Lamperti et al., 2018; Hötte, 2020). These two possibilities either follow
in the footsteps of the ‘story and simulation’ approach, iteratively translating qualitative storylines into
quantitative scenarios (Alcamo, 2008), or attempt to merge insights from social sciences into completely
new models. Meanwhile, practical studies that leverage synergies of two already-existing models from the
techno-economic and socio-technical realm remain few and far between (Hirt et al., 2020).

In this paper, I contribute to this growing body of literature by shining a spotlight on an example of
practical model integration. Specifically, I present a bi-directional iterative soft-link that merges two models:

� MIND: a techno-economic optimisation IAM with one global region that maximises social welfare
under a given temperature target, using a neoclassical Ramsey-type growth core and a parsimonious
climate model

� FTT:Power: a socio-technical simulation model of the power sector based on logistic technology
diffusion with 24 technologies in 61 regions, including pronounced path-dependencies and a simplified
aggregate representation of actor heterogeneity

The MIND-FTT soft-link addresses the multi-dimensionality of technological change by a numerical scheme
that joins insights from two complementary modelling paradigms: neoclassical economics, which pro-
vides techno-economic intertemporal optimality, and evolutionary economics, which builds upon the socio-
technical notion of behavioural and systemic inertia (Marechal and Lazaric, 2010).

The remainder of this paper is structured as follows. In the upcoming Section 2, I review the literature,
juxtapose techno-economic and socio-technical approaches in policy models and identify key complementar-
ities. Drawing on this, in Section 3, I concisely describe and justify the choice of both models. In Section
4, I develop the soft-link procedure. Section 5 shows key results for a global 2 ◦C scenario. In Section 6,
I discuss insights, limitations and prospects against the backdrop of incorporating societal dynamics into
models for energy and climate policy. Section 7 concludes.

2. Perspectives on technological change

Technological change of energy system technologies are analysed from different vantage points with com-
plementary research foci and distinct research communities. In the past decade, various meta-theoretical
categorisation frameworks have emerged. Following Cherp et al. (2018), a three-fold classification distin-
guishes the techno-economic perspective, the socio-technical perspective, and the political perspective. This
trichotomy loosely resonates with and condenses other classifications such as Grubb et al.’s (2015) ‘three
domains’ of energy-climate transitions, Turnheim et al.’s (2015) and Geels et al.’s (2016) ‘three analytical
approaches’ for sustainability transitions, and Grübler’s (2012) ‘insights and cautionary tales’ on energy
transitions research.
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As variables within the politico-institutional domain are often understood as the solution space of IAMs
and because complex political processes defy easy quantification, they are usually not modelled endogenously,
but rather analysed with model intercomparison projects that explore second-best non-idealised scenarios
under fragmented action (e.g. Edenhofer et al., 2012). I follow this practice and limit myself to the techno-
economic and socio-technical perspective, which are now briefly summarised.

2.1. Techno-economic approaches

Techno-economic considerations focus on a process-oriented representation of markets, energy flows,
energy conversion processes, and capital stocks and thus feature predominantly in quantitative systems
modelling (Cherp et al., 2018). This includes energy system models and IAMs, which are best known for
providing the backbone of the policy recommendations of the IPCC (2007, 2014, 2018) reports. Many IAMs
have disciplinary roots in neoclassical economics, which due to its well-established axiomatic foundations
lends itself easily to the analysis of quantitative variables in forward-looking models.

The techno-economic perspective of technological change focusses on quantifiable industrial dynamics
such as depreciation of capital stocks, resource scarcity effects, and technological turnover rates. A promi-
nent debate in this context revolves around the threat of a carbon lock-in as a special case of path dependency
particularly prone to entrenchment due to the large associated capital costs and the longevity of infrastruc-
ture investments (Unruh, 2000; Bertram et al., 2015; Seto et al., 2016). This has recently aroused heightened
interest as committed emissions from existing energy infrastructure were found to jeopardise the 1.5 ◦C target
(Tong et al., 2019), which necessitates to strand fossil fuel assets (Pfeiffer et al., 2018), potentially putting
financial stability at risk due to severe economy-wide macroeconomic impacts (Mercure et al., 2018).

For their strong points of a rigorous, formalised and systematic analysis, techno-economic policy models
are routinely used to produce cost-optimal scenario results under exogenous emissions reduction constraints.
In this context, optimality refers to a single or compound metric (e.g. aggregated welfare, abatement costs),
which includes quantifiable trade-offs and interactions between different sectors (Geels et al., 2016). However,
while ensuing results are possible from a purely techno-economic viewpoint, they may not be plausible
from a wider societal stance once further frictions stemming from behavioural effects, gradual innovation
processes, and path-dependent technology diffusion are accounted for (Cherp et al., 2018; Mercure et al.,
2019; Trutnevyte et al., 2019). For example, a recent report argued that ‘limiting global surface warming
below about 1.7 ◦C by 2100 is currently not plausible‘ due to such constraints (Stammer et al., 2021).
Scenarios that explore non-idealised emission pathways are therefore often informed by narratives about
societal developments such as the shared socio-economic pathways (SSPs) (O’Neill et al., 2014), yet seldom
endogenised. Expanding the scope of primarily techno-economic models to incorporate additional socio-
technical constraints thus continues to be challenging.

2.2. Socio-technical approaches

Socio-technical analyses, on the other hand, are often concerned with less tangible, yet equally important,
processes. With respect to energy transitions, the focus lies on more nuanced and fine-grained aspects of
technological change, most notably the emergence and diffusion of new technologies (Cherp et al., 2018).
This encompasses a wide spectrum of studies, ranging from ‘technological innovation systems’ with roots in
evolutionary economics and a focus on temporal transformation dynamics (Markard et al., 2012; Mercure
et al., 2019) to ‘socio-technical transition analysis’ with closer disciplinary connections to the social sciences
(Turnheim et al., 2015; Geels et al., 2016), including the prominent multi-level perspective (Geels, 2002;
Geels and Schot, 2007).

The socio-technical perspective of technological change revolves around technology diffusion and tech-
nological lock-ins, which are however portrayed in the wider co-evolutionary understanding of society and
technology. Notable aspects that go beyond the techno-economic scope include agent heterogeneity (Li and
Strachan, 2019; Mercure et al., 2016), a broader notion of path dependence as structural resilience (Turn-
heim et al., 2015), and behavioural effects (Knobloch and Mercure, 2016). Both qualitative frameworks and
quantitative modelling may be used, of which the latter requires a substantial degree of simplification to cast
complex societal dynamics into model equations (Trutnevyte et al., 2019). The socio-technical perspective
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goes beyond the techno-economic notion of inertia of technological change by covering additional frictions
at both the behavioural and systemic level (Marechal and Lazaric, 2010; Li et al., 2015).

The main strength of socio-technical analyses therefore lies in its contextualised fine-grained perspective
of innovation and technology diffusion due to multiple actors that interact on different levels, leading to
an enhanced ‘attention to inertia of existing systems’ (Geels et al., 2016, p. 580). While this enables a
more holistic view of the path-dependent nature of technology transitions (Marechal and Lazaric, 2010),
it also bears the risk of overlooking the important techno-economic bedrock of energy transitions (Cherp
et al., 2018). Furthermore, socio-technical analyses often focus on descriptive qualitative case studies,
which complicates integration into forward-looking quantitative models that require generalisable context-
independent patterns. Despite these pitfalls, the two complementary approaches are not incommensurable
as recent research has outlined benefits and strategies for a mutually enriching, structured dialogue.

2.3. Benefits and strategies of linking both approaches

During the past years, a new strand of research has emerged that aims to leverage the synergies of the
techno-economic and socio-technical perspective by linking quantitative modelling with transition theories
(review in Hirt et al., 2020). This encompasses studies that embrace quantitative modelling in transitions
research with varying degrees of integration (e.g. van Sluisveld et al., 2020; Li and Strachan, 2017; Geels
et al., 2020; Hötte, 2020) as well as more conceptual roadmaps that highlight complementaries, outline
exchange possibilities, and thus point the way ahead for future research (Otto et al., 2020; Trutnevyte et al.,
2019; Geels et al., 2016; Victor, 2015; Hof et al., 2020; Li et al., 2015; Turnheim et al., 2015; De Cian et al.,
2020; Marechal and Lazaric, 2010).

Acknowledging complementary strenghts, the linking benefits largely correspond with the shortcomings
of techno-economic models. Following Trutnevyte et al. (2019), IAMs could benefit the most from inter-
disciplinary exchange in three interrelated areas. The first area is related to behavioural effects such as
changes of consumption patterns (Grubler et al., 2018), individual preferences (Engels et al., 2013), but
also wider questions related to society’s adaptive capacity and willingness to transform (Andrijevic et al.,
2020). The second major area concerns temporal transformation dynamics, for example regarding lock-ins
(Bertram et al., 2015; Seto et al., 2016), path dependencies (Turnheim et al., 2015), and the pace of trans-
formations due to inertia in the energy system (Grubb et al., 2021) as also reported in Keppo et al. (2021).
The third area includes heterogeneity on multiple scales such as contextual factors (Li and Strachan, 2017),
distributional impacts (Mercure et al., 2018), and incumbent industries (McDowall, 2014). Enabling ex-
change in these key areas leads to three distinct benefits with increasing levels of difficulty: interdisciplinary
learning, enhancing realism of models, and identifying practical solutions to energy and climate challenges
(Trutnevyte et al., 2019; Hirt et al., 2020).

Trutnevyte et al. (2019) identify three main strategies for linking models with insights from social sciences
with increasing degrees of integration: bridging, iterating, and merging. The bridging strategy relies on
models and storylines that proceed in parallel and only exchange information at pre-specified moments,
briefly building so-called bridges between shared concepts (Geels et al., 2016; Turnheim et al., 2015; van
Sluisveld et al., 2020; Geels et al., 2020). The iterating strategy is akin to the story and simulation approach
(Alcamo, 2008), which translates broad narratives about societal development into quantitative assumptions
such as the SSPs (O’Neill et al., 2014) that are used to constrain models whose output is subsequently used to
revise the storyline assumption in an iterative process (Trutnevyte et al., 2014; McDowall, 2014; Robertson
et al., 2017).

At the upper end of the integration spectrum, the merging strategy aims at an in-depth consolidation of
the two approaches in a mathematical formalism, which implicitly assumes that the key dynamical properties
of the underlying socio-technical systems can be cast into model equations (Hirt et al., 2020; Li and Strachan,
2017, 2019; Mercure et al., 2016; McCollum et al., 2017; Hötte, 2020). While the merging strategy comes
at the expense of simplifying complex contextual insights from the social sciences into generic quantifiable
patterns, it also bears the chance to realise all three linking benefits mentioned above. Not daring to venture
towards this last step of integration risks biasing policy recommendations in favour of mitigation pathways
that are merely easy to model, yet perhaps not easy to achieve (Trutnevyte et al., 2019).
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Trutnevyte et al. (2019) also propose three steps for future research on the merging strategy. The first
step involves mapping assumptions on societal transformations of existing models, going beyond general
model properties. This step directly connects to the benefit of interdisciplinary learning. The second step
suggests to conduct empirical research on generalisable patterns, which may enhance realism of models.
S-shaped technology diffusion curves are a prime example of such patterns. However, incorporating S-curves
into models is only one option to harness their insights as the theory has also been used to compare IAM
scenarios to historical growth rates for example (Cherp et al., 2021). The third and final step relates to
modifying or building new models, which contributes to the last benefit of finding practical solutions to
energy and climate challenges.

The merging strategy therefore encompasses different approaches to integrate social science insights into
quantitative models. It is important to note that merging models is only one among many options of merging
knowledge from different disciplines. Further possibilities to enrich models with empirical insights abound
(van Sluisveld et al., 2020; Geels et al., 2020; Hötte, 2020). However, in this work I focus on the option
of merging models as one possibility of merging insights. I use the term model coupling when referring
to methodological soft-coupling, which leaves the underlying models largely unaltered and therefore forms
a subset of model merging, which could also mean developing fully new models. The terms soft-link and
soft-coupling are used interchangeably throughout.

2.4. Contribution of this paper

In this paper, I provide an example of the merging strategy in a methodologically literal sense by
coupling two models. In contrast to previous research, which either combined quantitative models with
qualitative storylines (bridging or iterating) or developed entirely new models (merging), I here demonstrate
the feasibility of soft-linking two existing models from the techno-economic and socio-technical sphere as
another promising possibility. Specifically, I couple a welfare-maximising global IAM (the MIND model by
Edenhofer et al. (2005)) with a fine-grained simulation model of S-shaped technology diffusion in the power
sector (FTT:Power by Mercure (2012)).

This methodologically novel approach is worthwhile for three reasons. Firstly, it contributes to filling the
research gap between the lack of practical model integration studies on the one hand (Hirt et al., 2020) and
a plethora of theoretical propositions on how to achieve such model integration on the other hand (Holtz
et al., 2015; Victor, 2015; Geels et al., 2016; Trutnevyte et al., 2019; Peng et al., 2021). Secondly, it seizes
upon a suggestion of Trutnevyte et al. (2019), who cite S-curves as ‘potentially quantifiable patterns [...]
for modeling technology adoption’ in IAMs, similar to the successful and widespread adoption of experience
curves (Samadi, 2018). Thirdly, this approach touches upon the representation of temporal transformation
dynamics in IAMs, an element recently identified as critical (Keppo et al., 2021).

The upcoming sections correspond with the three-step approach for future research on the merging
strategy suggested in Trutnevyte et al. (2019). I firstly describe the two models and their opposing, yet
complementary, theoretical underpinnings, secondly outline the promising potential of S-shaped logistic
technology diffusion, and thirdly soft-link both to create the MIND-FTT model.

3. Methods

This section introduces both models and their complementarities.

3.1. MIND

The Model of Investment and Technological Development (MIND) by Edenhofer et al. (2005) is a global
one-region optimisation IAM, which maximises intertemporally aggregated social welfare by assigning in-
vestment streams that observe certain climatological constraints. With roots in neoclassical economics, it
rests on an idealised social planner perspective and consists of a Ramsey-type economic growth module, an
explicit energy module and a parsimonious climate model. MIND is the predecessor of the regionally and
technologically disaggregated REMIND model (Baumstark et al., 2021).
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Figure 1: Model structure of MIND in a CEA setting, observing a deterministic guardrail. Black boxes indicate standard
components of a Ramsey-type macroeconomic growth module, blue boxes the energy module, and red boxes the climate
module. The diamond box illustrates the point of decision. Solid arrows indicate flows, while dashed arrows refer to control
variables, i.e. investments. Exogenous variables are marked by grey boxes. BECCS is an optional technology not explored
herein as illustrated by dotted lines.

Figure 1 shows the general model structure of MIND in a standard cost-effectiveness analysis (CEA)
setting. The model solves for optimal investment streams given various economic and energy options,
allocating the residual output of each period to consumption, which in turn increases utility and thus
intertemporally aggregated welfare. The extracted amount of carbon from the fossil energy sector translates
into CO2 and coupled SO2 emissions with a positive and negative climate forcing, respectively. These
are processed within a parsimonious impulse-response climate model based on Petschel-Held et al. (1999)
and Kriegler and Bruckner (2004). The ensuing temperature anomaly is subsequently used as a guardrail
to constrain the optimisation, thereby initiating a shift of investment into renewable energies and energy
efficiency measures.

On the macroeconomic part, MIND maximises the intertemporally aggregated welfare function

W =

∫ t2

t1

e−ρ(t−t1)U(t)dt, (1)

with exponential discounting at rate ρ = 0.01 yr−1 and an isoelastic utility function

U(t) = L(t)
1

1− η

(
C(t)

L(t)

)1−η

, (2)

defined via per-capita consumption with L denoting the exogenously given labour force, assuming a sta-
bilising population of 9.5 billion by 2100 according to the CPI baseline (van Vuuren et al., 2003), and a
coefficient of constant relative risk aversion η = 2 in accordance with previous studies (Roshan et al., 2019;
Roth et al., 2020). The maximisation satisfies a macroeconomic budget constraint, in which the generic
output Y of a production function with constant elasticity of substitution between the three production
factors labour L, capital K, and energy E is either re-invested or consumed. Details are documented in
Appendix A.1.

The energy module of MIND, which will be linked with FTT:Power in the further course, resolves
four different investment options, renewable energy, fossil energy, resource extraction, and energy efficiency
improvements through research and development (R&D). Total energy is simply the sum of secondary fossil
energy, renewable energy, and traditional non-fossil (TNF) energy,

E = Efos + Eren + ETNF, (3)
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the last of which encompasses traditional biomass, nuclear and hydro power (Edenhofer et al., 2005) and
follows an exogenous scenario.1 In order to keep this prototypical work as simple as possible, negative
emission technologies are not included. MIND is calibrated to the observed temperature anomaly of 2015,
while economic and energy variables are calibrated in line with recent studies (Roshan et al., 2019; Li et al.,
2020) and updated to 2020 values for primary energy consumption (BP, 2021).

So far, MIND includes an exogenous constraint on relative emission changes of −13 %/yr in order to
account for unobserved socio-technical and political processes (Lorenz et al., 2012). Under a delayed climate
policy setting, this constraint is binding for decades and leads to an undesirable corner solution (Roth et al.,
2020). The MIND-FTT soft-link addresses this issue by improving the representation of inertia in technology
transitions.

In summary, MIND represents a prototype of a neoclassical, techno-economic IAM with a substantial
degree of regional and technological aggregation, thereby capturing key interactions between the climate,
the energy system, and the economy on a global scale. Due to its social planner perspective, it provides an
idealised first-best solution that maximises social welfare under an exogenous climate guardrail, yet without
incorporating any socio-technical frictions.

3.2. FTT:Power

The Future Technology Transformations (FTT) model family forms a group of technology transition
models built on sector-specific adaptations of the competitive Lotka-Volterra differential equations (Lotka,
1910; Volterra, 1926). Because the energy transition requires widespread electrification of end-use sectors
combined with power sector decarbonisation, I here focus on the power sector model FTT:Power as the most
prominent example (Mercure, 2012; Mercure et al., 2014). However, the conceptual framework is universally
applicable to a wide range of diffusion processes in other sectors such as transport (Lam et al., 2018), heating
(Knobloch et al., 2018), and industry (Vercoulen et al., 2019).

FTT:Power is a simulation model of technology diffusion in the power sector by Mercure (2012) and
an integral part of the macroeconometric E3ME model that is often used for policy analysis (Mercure
et al., 2018, 2021). It draws on a parametrisation of pairwise competition of technologies for market shares
by coupled differential equations, which gives rise to S-shaped adoption curves. The idea of modelling
technological change as a process of gradual substitution dates back to Marchetti and Nakicenovic (1979),
who first empirically described and projected these dynamics for the energy system, with further evidence
for the arising S-curves in Grübler et al. (1999), Hansen et al. (2017), and Madsen and Hansen (2019).

1In line with previous studies, MIND includes an exogenous scenario on these energy sources, which assumes a gradual
phase-out of traditional biomass and nuclear (WBGU, 1995).
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Figure 3: Illustration of investor heterogeneity in FTT:Power with two competing technologies i and j. In the upper part,
investors perceive LCOEs as distributed, with mean values Ci > Cj and standard deviations σi < σj . In the lower part,
the cumulative distribution function of the LCOE difference ∆C describes the overall investment decision, in which investors
tend to prefer j over i. For illustrative simplicity normal distributions instead of Gumbel distributions are shown. Illustration
adapted from Mercure (2012).

The micro-foundations for this evolutionary theory of innovation have been theoretically derived in
Mercure (2018). Starting from the premise of utility-maximising agents with heterogeneous preferences,
non-equilibrium path-dependent dynamics emerge as agents learn from each other with a certain time delay.
Accordingly, innovations are not adopted instantaneously, which stands in stark contrast to the implicit
assumption of representative agents in MIND. On the macro level the intricate and convoluted dynamics of
interacting agents collapse into a simple set of differential equations, which form the basis of FTT:Power.

Figure 2 shows the general structure of FTT:Power. In contrast to a substantial body of literature that
only uses the S-shaped framework ex-post, the model determines the inherent scaling parameters of the
diffusion process from ex-ante knowledge about underlying technology turnover rates, generation costs, and
further grid stability constraints (Mercure, 2015). The evolution of technology shares S for a technology i
within one time step is then governed by the central shares equation

∆Si =
∑
j

SiSj (AijFi(∆Cij)−AjiFj(∆Cji)) ∆t, (4)

where Aij denotes a non-symmetric substitution frequency matrix that takes life times and lead times
into account, ∆Cij denotes cost differences between technologies i and j in terms of the levelised cost of
electricity (LCOE), and Fi and Fj denote cumulative distribution functions to model investor heterogene-
ity as explained in the upcoming paragraph. The empirical motivation therefore is to describe S-shaped
technological diffusion as a process that is driven by technological properties (Aij), economic cost advan-
tages (∆Cij), and an aggregate representation of agent heterogeneity as a proxy for behavioural frictions
(F (∆Cij)). FTT:Power includes learning curves and economic resource potentials, which both affect ∆Cij
(Mercure and Salas, 2012, 2013). Note that because costs change nonlinearly over time, and grid stability
issues introduce additional constraints, FTT:Power does not yield a logistic growth curve estimate in the
form of a mathematical function with fixed parameters, but instead simulates the diffusion of technologies
step-by-step. The model resolves 24 power technologies in 61 regions.

FTT:Power represents investor heterogeneity in an aggregated way by using statistical cost distributions,
which are a direct manifestation of the diversity of agents (Mercure, 2015). For the power sector, this relates
to diverse investors, who are subject to specific company requirements, regional particularities or broader
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issues of societal acceptance, which are all either unknown or difficult to enumerate. According to discrete
choice theory, if the probability densities of costs for each technology fi(C) and fj(C) follow Gumbel
distributions, the overall investment share of investors, who favour j over i follows a logistic distribution.
This is illustrated in Figure 3. The limiting case of very low diversity (i.e. σ2

i → 0 and σ2
j → 0) coincides

with the standard representative agent of neoclassical economics, where a sudden flip of investment choices
is already triggered by a very small price difference ∆Cij .

The version of FTT:Power used in this work also improves the representation of integration challenges
of variable renewable energies (VREs) by using residual load duration curves from Ueckerdt et al. (2017).
The soft-link therefore also includes a state-of-the-art approach for modelling VRE intermittency (Pietzcker
et al., 2017). To account for likely flexibility improvements, I gradually ease the respective constraint over
time (for details see Appendix A.2).

While FTT:Power therefore covers several aspects that could benefit IAMs (see linking benefits in Section
2.3), by design it cannot be used to produce scenarios on its own, but only to assess the impact of given
scenarios. This relates to the understanding of E3ME and the FTT models as fully descriptive impact
assessment models in contrast to normative policy optimisation IAMs such as MIND. The following soft-
link attempts to reconcile these opposing views.

4. MIND-FTT: Soft-linking MIND with FTT:Power

The MIND-FTT soft-link is a methodologically novel approach that dovetails the strengths of techno-
economic optimisation and socio-technical simulation, two distinct and often opposed modelling paradigms.
Following the scheme, MIND computes economically efficient mitigation pathways that comply with a given
climate target from a social-planner top-down perspective, while FTT:Power assesses the plausibility of these
pathways with special attention to temporal transformation dynamics from a bottom-up perspective. The
non-trivial convergence of the joint model demonstrates the fruitful potential for such model integration.

Figure 4 shows the general structure of MIND-FTT, merging both model diagrams. The two key coupling
variables are global carbon prices and renewable energy shares as indicated by the orange ellipses and arrows.
The optimal global carbon price of MIND is applied to every region of FTT:Power, which simulates the
corresponding diffusion pathways in terms of market shares for all power technologies. Subsequently, these
are aggregated and used to constrain the optimisation of MIND in the following iteration, which affects the
carbon price. This iterative cycle continues until convergence to a joint equilibrium is reached.

MIND and FTT:Power differ substantially in their temporal, spatial, and technological resolution as
reported in Table 1. In order to couple both models, I therefore aggregate the 61 regions and 24 technologies
of FTT:Power into two single curves that represent fossil and renewable energy shares over time on a global
level. However, this aggregation implies no loss of generality as the equilibrium renewable energy share
pathway maps directly onto an equilibrium carbon price pathway. When fed into FTT:Power, this carbon
price provides the exact decomposition of the aggregated renewable energy share. In the upcoming two
sections, I explain the two coupling variables.

Table 1: Resolution of MIND and FTT:Power

MIND FTT:Power

World regions 1 61

Energy technologies 4a 24 (18 without CCS)b

Time period 1995–2200c 2017–2100d

Time step 5 yr 0.25 yr

a This includes R&D for energy efficiency, but excludes BECCS (see Figure 1).
b Six CCS technologies have been deactivated in MIND-FTT.
c MIND has been tuned to 2015 data.
d FTT:Power has been extended until 2100.
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Figure 4: Diagram of the MIND-FTT soft-link, combining Figure 1 (with added CO2 price) and Figure 2. Orange ellipses and
arrows denote the two coupling processes and variables, carbon prices and renewable technology shares. BECCS is an optional
technology not explored herein as illustrated by dotted lines.

4.1. MIND to FTT:Power: Uniform global carbon price

The link from MIND to FTT:Power is based on a uniform global carbon price that results from the
intertemporal optimisation in MIND. Imposing a global carbon price onto all 61 regions of FTT:Power has an
immediate effect on the technology-specific LCOEs and thus on the technology diffusion pathway, depending
on the emission intensities of technologies. This conceptualisation implies full international cooperation by
assumption. Future research could relax these assumptions by exogenously assuming fragmented action
across countries, for example by only imposing the carbon price on a subset of regions. To keep the soft-link
as simple as possible, I also refrain from defining other policy parameters offered by FTT:Power such as
feed-in-tariffs, subsidies, and exogenous phase-outs, for which MIND would need to be further augmented.
This pilot study therefore deliberately leaves aside frictions in the policy process as well as additional policies
that could complement carbon pricing.

The optimal carbon price readily follows from the Lagrangian multipliers of the welfare optimisation.
After calculating and verifying the optimal, globally uniform carbon price under a given climate target in
MIND, it is smoothed by applying a three-period moving average to avoid the craggy shape that otherwise
occurs due to the comparably coarse time resolution of MIND. The interpolated carbon price is subsequently
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Figure 6: Illustration of the implemented iterative soft-linking scheme.

imposed as a policy parameter for all 61 regions of FTT:Power.

4.2. FTT:Power to MIND: Renewable energy share

The reverse link from FTT:Power to MIND is based on the evolution of technology shares that emerge
from the simulation in FTT:Power under the carbon price of MIND. In order to bridge the different resolu-
tions, I calculate a global renewable electricity share Selec

ren by summing the electricity generation Gi,k over
technology i ∈ R over all countries k in relation to total generation Gtot. This leads to

Selec
ren =

∑
i∈R

61∑
k=1

Gi,k
Gtot

, (5)

where R denotes all renewable energy sources of FTT:Power, which for simplicity includes all technologies
that have a non-positive emission intensity.

FTT:Power only covers the power power sector, whereas the production function of MIND includes total
energy, which also includes energy consumption in other predominantly non-electric sectors. In order to infer
a relationship between the renewable electricity share Selec

ren from FTT:Power and the renewable energy share
Sener

ren for MIND, I use four stringent 450 ppm and 550 ppm, non-CCS REMIND scenarios from the IPCC
AR5 Scenario Database (IIASA, 2015) to determine an approximation of Sener

ren as a function of Selec
ren and

time. This approach is described in more detail in Appendix A.3. It retains the immediate connection from
FTT:Power to MIND for the overwhelming part of the modelled energy transition, while complementing it
with plausible rates of mitigation in sectors that are out of the scope of FTT:Power. Limitations of this
approach are discussed in Section 6.

In the final step of the MIND-FTT soft-link, MIND is forced onto the renewable energy share pathway
from FTT:Power. In order to allow for some numerical leeway in the optimisation, I constrain MIND to a
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Figure 7: Iterative convergence of MIND-FTT along the two coupling variables, (a) carbon price PCO2 , and (b) renewable
energy shares Sener

ren for 40 iterations, with (c) the temporal mean of the relative change between two iterations showing
oscillatory convergence. The legend only denotes the original values of MIND (in thick blue) and the converged equilibrium of
MIND-FTT (in thick black). In (a) and (b), orange lines indicate iterations with an even number and green lines iterations
with an odd number, which also shows the oscillations between iterations until equilibrium is reached. In iteration 20, the
convergence is accelerated by calculating the carbon price as a weighted mean of the past three iterations, which dampens the
oscillations and quickly leads to a stable equilibrium. Since Sener

ren is much less sensitive to changes in PCO2 than vice versa, in
(c) the values for Sener

ren have been multiplied by a factor 100.

symmetric corridor of renewable energy shares as indicated in Figure 5. This corresponds to requiring

Sener
ren (t)

!
=
Eren(t) + ETNF(t)

E(t)
+ ε(t) with |ε(t)| ≤ ∆Sener

ren ∀t ∈ [2020, 2100], (6)

with ∆Sener
ren as a free parameter, set to 2%. These two coupling mechanisms are then run in an itera-

tive scheme until the coupling variables converge towards the equilibrium steady state of MIND-FTT as
illustrated in Figure 6.

5. Results: 2 ◦C scenario

This section presents key results of MIND-FTT for an exemplary 2 ◦C scenario, which (i) confirm the
convergence of the bi-directional iterative soft-link, (ii) exemplify the effects of gradual technological change
on optimal mitigation pathways, and (iii) demonstrate the potential of model integration for future research.
In the upcoming sections, I firstly describe the convergence process, secondly display the underlying S-shaped
technology diffusion trajectories, and thirdly illustrate how the results of MIND-FTT compare with those
of MIND.

5.1. Iterative convergence

Figure 7 shows the convergence of both coupling variables, renewable energy shares Sener
ren and carbon

prices PCO2
for 40 iterations in comparison to the results of MIND. Both show a family of curves that

dynamically converge to an equilibrium pathway.
The iterative convergence of MIND-FTT is a non-trivial outcome and the main methodological achieve-

ment of this study. The joint model converges because the soft-link constitutes a negative feedback loop,
which stabilises the system to equilibrium. Leaving time dependencies aside, a simplified notation reads

PCO2 ↑
FTT−−−→ Sener

ren ↑
MIND−−−−→ PCO2 ↓, (7)

which may be explained as follows. As a starting point, suppose that PCO2
increases between two iterations,

which affects the LCOEs in FTT:Power, leading to a rising renewable electricity share Selec
ren and thus also

to a rising renewable energy share Sener
ren . Imposing this higher share on MIND implies that relative to
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Figure 8: Equilibrium technology shares from FTT:Power, (a) globally aggregated, and (b)-(c) for three exemplary countries
(out of the total 61) under the equilibrium MIND-FTT carbon price of Figure 7a. While fossil fuels are phased out quickly
across regions, the projected technology portfolios clearly differ. (B)IGCC stands for (biomass) integrated gasification combined
cycle (not visible), CCGT for combined cycle gas turbines (in pink), CSP for concentrated solar power (in orange), and CHP
for combined heat and power (not visible).

Efos, Eren increases, leading to reduced emissions. Under an exogenous climate target this attenuates the
emissions constraint in the welfare maximisation, which leads to a reduced carbon price PCO2

. This cascade
of effects forms a negative feedback loop as it tends to reduce the impact of perturbations and eventually
stabilises MIND-FTT to equilibrium. Unlike other soft-link mechanisms in IAMs that iterate until market
clearance has been reached via the well-known dynamics of supply and demand (e.g. REMIND-MAgPIE),
the key novelty is that the coupling does not bring two markets into equilibrium, but instead equilibrates
the carbon price and renewable technology diffusion pathways.

The equilibrium carbon price exhibits a peak-decline shape, firstly following an exponential increase
towards a maximum value of 800 $/tCO2 in 2070 and subsequently receding to values below 500 $/tCO2.
This carbon price is substantially higher than in MIND, which peaks below 150 $/tCO2. This is due to
the imposed equilibrium renewable energy share pathway as obtained from FTT:Power, which increases
substantially slower in mid-century than in MIND, pointing to increased policy pressure that is required to
increase the adoption of renewable technologies. In a 2 ◦C scenario, the global share of renewable energies
reaches 80% in 2075 and only increases slowly afterwards. The results highlight the large policy implications
of the pace of technological change on optimal climate mitigation pathways.

5.2. S-shaped technology diffusion

To understand the underlying dynamics of the S-shaped technology diffusion in FTT:Power, Figure
8 shows the evolution of power technology shares in global aggregation as well as for three exemplary
countries, all of which are obtained under the equilibrium globally uniform carbon price in Figure 7a. The
global technology diffusion in (a) shows that renewable power generation, especially solar photovoltaic (PV,
yellow), onshore and offshore wind (dark and light green), and concentrated solar power (CSP, orange),
quickly diffuse to a total 80% market share in 2050 , while coal is gradually phased out. As a non-renewable,
dispatchable technology, combined cycle gas turbines (CCGT, pink) steadily take up a relevant share of
the market, pointing to gas as a bridging fuel. Due to the endogenous representation of intermittency
challenges of VREs that is part of this new FTT:Power version, wind and solar PV only gradually penetrate
the market once they have arrived at large market shares. Aggregating (a) across technologies yields the
renewable electricity share and subsequently the renewable energy share as depicted in Figure 7b.

Due to different technology potentials, resource endowments, and initial technology shares, the diffusion
of technologies varies substantially between regions, even though fossil fuels apart from CCGT are rapidly
phased out everywhere. Germany, for example, exhibits a fairly balanced technology portfolio, with solar PV
and wind accounting for at least 60% of generation from 2050 onwards, while the remaining load is almost
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Figure 9: Energy in MIND and MIND-FTT, including a business as usual (BAU) scenario of MIND for reference. Traditional
non-fossil energy ETNF is not displayed since its contribution is negligible in the long run.

exclusively covered by CCGT. Under the equilibrium carbon price, both the USA and China transition
to power systems that are virtually entirely reliant on solar PV and CSP after 2050, underlining the vast
potential of solar power in these countries. In the USA, this implies a rapid transition away from nuclear, coal
and gas, where wind power only emerges as a temporary technology that is crowded out again by 2060. In
China, coal as the currently dominant electricity source is initially displaced by a mixture of solar PV, wind,
hydro and CCGT, while from 2050 onwards the market entry of CSP completely ousts these technologies.
Notably, despite subject to the same carbon price, the phase-out of coal takes significantly longer in China
than in Germany and the USA as the initial share at about 70% is much larger, which limits the pace of the
diffusion. China’s share evolution also vividly illustrates the ‘technology ladder’ concept (Mercure, 2012),
where technologies are replaced by each other in a sequential manner with several intermediate technologies.

5.3. Implications in comparison with MIND

This section condenses the most prominent differences between MIND-FTT and MIND. Figure 9 depicts
energy variables for a 2 ◦C scenario, with (a) showing that total energy is always lower in MIND-FTT than
in MIND, while both are below the values of a business as usual (BAU) scenario.2 In (b), the generation
of renewable energy is larger in MIND-FTT before 2035, and smaller thereafter, which is an immediate
consequence of the imposed renewable energy share in Figure 7b. Panel (c) best shows the effect of techno-
logical change inertia as the amount of fossil energy initially drops quicker in MIND-FTT than in MIND,
then decreases at a slower pace after 2035 with vanishing differences after 2060. However, in MIND-FTT
there is only a minor comeback of fossil energy, which stands in stark contrast to its pronounced renaissance
in MIND that results from a sudden increase of cheap fossil fuels in the second half of the century. In
MIND-FTT a quick ramp-up of fossil energy turns out to be inconsistent with gradual technology diffusion.

Turning to the climate system under a 2 ◦C scenario, Figure 10a shows that emissions in MIND-FTT
initially drop much quicker, while abatement rates are far below those of MIND after 2035. This outcome
results from the high initial carbon prices, which initiate the quick drop in emissions in the beginning, and
the more gradual technology diffusion, which makes emission reductions in the mid-term more difficult. In
contrast, MIND exhibits a strong emissions increase from 2060 to 2065 of almost 100%. As a consequence,
(b) shows that the CO2 concentration in MIND-FTT peaks later and at a lower value than in MIND, which
however only has a mild impact on the temperature anomaly in (c). Again, the focus of FTT:Power on
transformation dynamics in time adds an additional layer of friction that prohibits a swift resurgence of
emissions due to fossil energy as seen in MIND.

The point of decision in MIND, and thus also in MIND-FTT, is the allocation of output Y to different
investment streams and consumption. Figure 11a-b juxtaposes energy-related investments in both models.

2The BAU scenario does not incorporate any climate damages, leaving out the thorny issue of appropriate reference scenarios
for simplicity (Grant et al., 2020).
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Figure 10: Climate system in MIND and MIND-FTT, excluding the BAU scenario for better visibility.
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Figure 11: Energy-related investments for a 2 ◦C scenario in (a) MIND, (b) MIND-FTT, and associated (c) consumption losses
and (d) output losses. In (b) the craggy shape around 2100 is a minor artefact of the time-limited imposition of the renewable
energy share onto MIND.

While MIND exhibits renewable energy investments as high as 4% of total gross world product Y in 2030,
MIND-FTT arrives at a more balanced mix with renewable energy investments around 2% of output levels.
Investments into fossil energy and fossil resources are completely phased out by 2030 in MIND, returning
briefly in 2060, whereas in MIND-FTT they only decrease gradually until 2080. Thus, fossil fuel energy sup-
ply and associated investment streams are phased out substantially more slowly than in an idealised, purely
techno-economic scenario. To counteract the prolonged provision of fossil energy, energy R&D investments
are scaled up significantly in MIND-FTT.

The improved representation of technology diffusion in MIND-FTT incurs further costs, which are re-
flected in consumption and output losses in Figure 11c-d in comparison to a BAU scenario. This is a
direct consequence of the specification of MIND as an optimisation model, which implies that additional
constraints as imposed by the soft-link always lead to an economically inferior, yet perhaps socio-politically
more realistic, solution. Both consumption and output losses are almost always larger in MIND-FTT than in
MIND. The discrepancy with respect to output losses is even more pronounced, where MIND-FTT displays
values twice as large for the majority of time.

6. Discussion

The presented approach of merging a top-down, neoclassical, optimisation IAM with a bottom-up, evo-
lutionary, simulation power sector model demonstrates the potential of integrating existing models. This
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section discusses the methodological benefits, recapitulates key insights, and describes limitations.

6.1. Linking benefits revisited

On the methodological side, the main achievement is the observation that merging two models from
otherwise opposed schools of economic thought with contrasting assumptions is a conclusive, viable and
accessible option to harness the complementarities of techno-economic and socio-technical vantage points of
modelling energy transitions. As noted in Section 2, merging two existing models contributes to filling the gap
between a lack of practical integration studies on the one hand, and the multitude of theoretical roadmaps
regarding the integration of societal dynamics into climate policy models on the other hand. Referring
again to the benefits of linking techno-economic and socio-technical approaches (Trutnevyte et al., 2019),
the present study attempted to contribute to interdisciplinary learning by juxtaposing different assumptions
and modelling paradigms, and laid methodological foundations to enhance realism of models with respect
to additional frictions that arise from technology diffusion.

6.2. Three key insights

The results of this pilot study at the steady state of carbon prices (from MIND) and renewable energy
shares (from FTT:Power) demonstrate that, unsurprisingly, technology diffusion plays a key role for climate
change mitigation. Three key insights emerge of MIND-FTT for an exemplary 2 ◦C scenario.

Firstly, the diffusion of renewable energy technologies is considerably slower, leading to far higher carbon
prices with a peak value of 800 $/tCO2. This aggregated result emanates from the widely different technology
diffusion pathways across countries and is consistent with the upper end of the spectrum of scenarios in the
IPCC AR5 (IIASA, 2015). While carbon prices are higher and more enduring than before, they still exhibit
a peak-decline shape, which numerically illustrates that policy measures are most urgently required in the
short- and mid-term, but may be partially cut back towards the end of the century. This peak-decline
shape deviates from the standard exponential price path of the Hotelling (1931) rule, which applies for
an exhaustible resource like a finite carbon budget. However, similar peak-decline patterns also emerged
endogenously as the optimal pathway when carbon dioxide removal is included (Strefler et al., 2021).

Secondly, more gradual technology diffusion leads to less energy consumption at all times, which is ac-
companied by an increase of renewable energy in the short-term and a more sluggish decrease of fossil energy
in the mid- and long-term. This corresponds with the peak-decline shape of the carbon price pathway, which
declines again once the major part of the energy system has been transformed. Furthermore, gradual tech-
nology diffusion is in line with recent studies concerning the feasibility of scaling-up renewable technologies
(e.g. Cherp et al., 2021) and phasing-out fossil technologies (e.g. Vinichenko et al., 2021). Notably, while the
declining carbon price points to increasing competitiveness of renewable energies, fossil energy is not phased
out completely until 2100. While this is at odds with prominent net-zero emissions scenarios (IEA, 2021), it
is merely a consequence of the lack of carbon dioxide removal technologies in combination with optimisation
towards a temperature target instead of an emissions budget target in the present study. Future research
could investigate this further.

Thirdly, investment streams initiate the energy transition more gradually, leading to larger and delayed
economic costs. Investments into fossil energy are only completely phased out by 2080, whereas renewable
energy investments remain relatively constant over time. In contrast to Grubb et al. (2021), technological
change inertia reduces short-term investment into abatement technologies instead of spurring it. While this
seems paradoxical at first, it emerges directly from the combination of idealised policy optimisation in MIND
and simulated policy evaluation under gradual technology diffusion in FTT:Power. Both consumption losses
and output losses indicate that the additional burden of technological change inertia is primarily borne after
2030, which is in agreement with IPCC (2014). However, in contrast to IPCC (2014), consumption losses
start to fade away towards 2100. On a more general note, the outcome of equilibrium models, where climate
policy always incurs macroeconomic losses, has recently been criticised in Köberle et al. (2021) for neglecting
positive economic effects such as avoided impacts and co-benefits. While such considerations were clearly
out of scope for this work, they highlight important avenues for future research.

16



6.3. Limitations and outlook

There are several clear limitations and shortcomings of this pilot study.
It is critical to bear in mind that a globally uniform carbon price is a theoretical benchmark unlikely

to ever be implemented. As the focus of this study was to demonstrate the feasibility of coupling two
fundamentally different models and analyse the impact of S-shaped technology diffusion, I regard this as a
valid first-order approximation that could however be refined in future research.

On a methodological note, carbon prices were found to be relatively sensitive to changes in the renewable
energy share pathway, which in turn depends substantially on the projected integration challenges of VREs.
While the implemented methodology of RLDCs is currently the best reduced-form approach to account for
the problem of short-term intermittency in long-term models, a more in-depth analysis is encouraged.

Two important limitations arise due to the different model resolutions. Firstly, the different level of
technological detail requires the aggregation of all renewable technologies from FTT:Power into a single
representative renewable energy share that can be included in MIND. This drawback is a direct result
of MIND’s simple energy module and could therefore be improved by using a detailed IAM that resolves
more energy technologies. This would greatly enhance the realism of the results and also make them more
applicable to real-world policy challenges.

Secondly, different sectoral resolutions require assumptions to approximate renewable energy shares from
renewable electricity shares in order to estimate plausible decarbonisation rates beyond the power sector
(described in Appendix A.3). Even though I use scenario results of the structurally similar REMIND
model, this implies that technology diffusion in non-power sectors is not governed by the principles of the
FTT models. While this approximation is a reasonable interim solution, future research could extend this
study to a more comprehensive coupling, for example linking REMIND with multiple available FTT models,
not only for the power sector, but also for transport (Lam et al., 2018), heating (Knobloch et al., 2018), and
industry (Vercoulen et al., 2019). This would enable a more immediate mapping of energy technologies and
regions and provide a more realistic picture of technological change across sectors.

Furthermore, the depiction of socio-technical phenomena in a quantitative model like FTT:Power is of
course limited and does not incorporate the intricacies of societal development, which may follow a different
dynamic due to unforeseen or hard-to-quantify phenomena. This is an inherent drawback of any merging
strategy (see Section 2.3), which naturally cannot capture the full breadth of social science knowledge on
energy transitions and interlinked broader societal transitions, but only stylised elements thereof. Future
research could address these shortcomings by an improved understanding of technological learning pro-
cesses and socio-technical feedback loops, also taking into account insights from other branches of economics
(Mathias et al., 2020). It is noteworthy that the S-curve theory may also enrich IAMs not only by model
integration, but also as a tool to compare growth rates of renewable technologies in IAM scenarios with ob-
served trajectories of growth (Cherp et al., 2021). Notwithstanding this, soft-linking MIND with FTT:Power
offers a valuable starting point for future research in an attempt to endogenise additional frictions of energy
transitions.

7. Conclusion

This paper attempted to contribute to the endeavour of integrating socio-technical knowledge about
energy transitions into techno-economic climate-policy models. I presented a feasibility study of merging
insights from two different models by a methodologically novel approach that couples a global optimisation
IAM, the MIND model, with a highly resolved simulation model of technology diffusion in the power sector,
FTT:Power. The resulting MIND-FTT model demonstrates one possibility to combine the strengths of
two models by joining a neoclassical analysis of intertemporal optimality with an evolutionary analysis
of technology diffusion. The iterative bi-directional soft-link converges to a joint equilibrium via globally
uniform carbon prices and renewable energy shares as the two central coupling variables.

The exemplary results for a 2 ◦C scenario show that, unsurprisingly, the pace of technological change
plays a critical role for optimal climate change mitigation pathways since – despite significantly larger
carbon prices – fossil energy is phased out more slowly in the mid-term, rendering the energy transition

17



more costly in total. While first-best analyses provide a valuable benchmark for cost-efficient climate policy,
acknowledging additional socio-technical frictions of energy transitions remains a primary concern in order
to arrive at scenarios that are not only theoretically optimal, but also practically possible.

As a first attempt to seize the complementarities of techno-economic policy optimisation and socio-
technical policy evaluation, MIND-FTT demonstrates the feasibility of merging models to enable improve-
ments in terms of integrating societal transformation in IAMs, especially regarding temporal transformation
dynamics (Trutnevyte et al., 2019). Further research is necessary in order to test the approach with more
comprehensive IAMs and additional sectoral technology diffusion models. Beyond this, more interdisci-
plinary research on how to model key societal dynamics is urgently required – especially in order to identify
key leverage points that may accelerate technology diffusion rather than inhibit it.
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Appendix A. Modelling details

This appendix describes technical details of MIND, FTT:Power and the coupled MIND-FTT model.

Appendix A.1. Production function and budget equation in MIND

The macroeconomic production function of MIND reads

Y = ΦA

ξLA(A · L)−ρA︸ ︷︷ ︸
Labour

+ ξEA (B · E)−ρA︸ ︷︷ ︸
Energy

+ ξKA (KA)−ρA︸ ︷︷ ︸
Capital


−1/ρA

, (A.1)

which, from a mathematical viewpoint, is a norm function with ΦA as a scaling factor. The parameters
ξLA, ξEA , and ξKA define the distribution of relative factor shares of labour, energy and capital, respectively.
Labour productivity A and energy efficiency B are determined by R&D investments (Edenhofer et al., 2005).

The budget equation simply states that for each time step, produced output Y is either reinvested or
consumed,

Y = C + IA + Iren + Ires + Ifos︸ ︷︷ ︸
Energy investments

+ RDA +RDB︸ ︷︷ ︸
Efficiency investments

+CTNF, (A.2)

where I denotes investments into capital stock variables and RD investments into efficiency improve-
ments, while CTNF is the exogenously prescribed cost of traditional non-fossil energy sources (Edenhofer
et al., 2005). In contrast to FTT:Power, investment decisions in MIND are made by a social planner un-
der full foresight with full information, thereby maximising the intertemporally aggregated social welfare
function in Equation 1.
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Appendix A.2. Residual load duration curves in FTT:Power

The present work uses a new version of FTT:Power that includes an updated representation of short-
term VRE intermittency challenges based on the method and dataset of endogenous residual load duration
curves (RLDCs) by Ueckerdt et al. (2017). This approach builds on a Special Section on Variable Renewable
Electricity and Power Sector Dynamics in Integrated Assessment Models in Energy Economics 64, according
to which the RLDC methodology is the most suitable reduced-form approach along multiple assessment
categories such as investment dynamics, power system operation, temporal matching of VREs and demand,
storage, and grid (Pietzcker et al., 2017).

RLDCs demarcate the residual demand that needs to be covered by dispatchable technologies after VRE
generation has been deducted. They are obtained by sorting the chronological residual load curves in a
descending, histogram-like manner and therefore constitute a ‘purely physical concept only requiring demand
and VRE supply data’ (Ueckerdt et al., 2015, p. 1801). The shape of the RLDC changes endogenously,
taking the VRE shares of wind and solar PV as input. RLDCs are optimised along the trade-off between
storage and curtailment. Herein, I follow the approach of Ueckerdt et al. (2017) who provide a readily usable
approximation of the residual load by so-called load bands, which have a fixed capacity factor (CF), while
the actual load covered by each load band is determined endogenously depending on the VRE shares.

The implementation of RLDCs in FTT:Power follows the approach of load bands, utilising the dataset
of Ueckerdt et al. (2017) that provides the size of all five load bands approximated as a set of third-degree
polynomial functions. The load bands range from a base load band with a high CF to a peak load band
with a very small CF, which has implications on the diffusion dynamics as technologies can play on their
comparative advantages only in certain load bands. Due to the technology-specific cost components in the
LCOE, capital intensive technologies with low operational and fuel costs such as coal and nuclear power
plants are only profitable under large utilisation rates, i.e. in the base load band. Vice versa, less capital
intensive technologies with higher operational and fuel costs such as CCGT power plants are more profitable
if not operated year-round, i.e. in upper load bands. Within each time step, the implementation dynamically
constrains the maximum share of VRE technologies.

As an illustrative example, consider Figure A.12, which shows the evolution of technology shares in
Germany for each of the five implemented load bands in panels (a)-(e) and the relative share of those
load bands with respect to total load in panel (f). This constitutes an in-depth look into Figure 8b since
multiplying the load band technology shares with the respective relative share of these load bands leads to
the total evolution of technology shares. The technology portfolio in the base load band (CF 85%), which
is initially dominated by coal and nuclear power, quickly transforms to CCGT, solid biomass and biogas,
while from 2050 onwards geothermal power as a capital-intensive technology option starts to take over the
market. In the lower-mid load band (CF 50%), CCGT covers the majority of the market, while solid biomass
becomes increasingly competitive as carbon prices increase, leading to an accelerated technology diffusion
that again recedes simultaneously to the receding carbon price (Figure 7a). In the upper-mid load band
(CF 25%) and peak load band (CF 8%), CCGT is clearly the most profitable technology option, while in
the backup band (CF 0.1%) oil crowds out hydro power. Panel (f) shows that the VRE share, i.e. wind
and solar PV combined, with respect to total load quickly increases to around 60% around 2025, from when
on it only gradually increases due to the endogenous intermittency challenges as mediated by the RLDC
dataset. Accordingly, the residual load bands of panels (a)-(e) are relegated in volume, implying that the
just described technology diffusion dynamics only have a comparably small effect on total shares.

Appendix A.3. Inference of renewable energy shares in MIND-FTT

A critical shortcoming of the MIND-FTT soft-link is the necessary approximation of renewable energy
shares, required for MIND, from renewable electricity shares, obtained from FTT:Power. This issue arises
due to the different sectoral coverage of both models, which could be alleviated in future research by
incorporating other sectoral models of the FTT family. For this feasibility study, I draw on four non-CCS
450 ppm and 550 ppm scenarios of the REMIND model that have been included in the IPCC AR5 Scenario
Database (IIASA, 2015), namely AMPERE2-450-NoCCS-OPT, AMPERE2-550-NoCCS-OPT, EMF27-450-
NoCCS, EMF27-550-NoCCS, from the AMPERE (Kriegler et al., 2015) and EMF27 (Blanford et al., 2014)
model intercomparison projects.
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Figure A.12: Technology shares from FTT:Power for Germany in five residual load bands, (a)-(e), and corresponding load band
shares in (f). Multiplying the technology shares of each load band with the respective load bands share leads to Figure 8b.

Figure A.13 shows the renewable energy and renewable electricity shares computed from these four
scenarios. Panel (a) shows a scatter plot of Sener

ren and Selec
ren , which immediately suggests an exponential

function as a fit. However, this would fail to properly reproduce the temporal dependence of renewable
energy shares, shown in panel (b), which reveals that under stringent mitigation targets, renewable electricity
shares saturate relatively quickly at values close to 100%, whereas renewable energy shares take more time
to follow suit with a distinctively sigmoid shape. In order to cover not only the dominant effect of Selec

ren

on Sener
ren , but also the crucial time dependency of Sener

ren , especially at large renewable electricity shares, I
perform a three-dimensional fit of the two-term function

Sener
ren

(
Selec

ren , t
)

= a · eb·S
elec
ren︸ ︷︷ ︸

Exponential function

+
m

1 + e−k(t−t0)︸ ︷︷ ︸
Logistic function

·
(
Selec

ren

)p
, (A.3)

with six free parameters, a, b, m, k, t0 and p. Table A.2 prints the values of these coefficients. The
first term constitues the time-independent exponential fit, while the second term incorporates a logistic
function with maximum value m, the logistic growth rate k and the sigmoid midpoint at t0. In order to
account for the observation that the second term is most important at large values of Selec

ren , i.e. when
renewable electricity is close to saturation levels, I multiply the logistic function by a p-order polynomial of
the renewable electricity share,

(
Selec

ren

)p
. Panel (c) shows the resulting surface fit with an adjusted R2 of

0.984, which is larger than the purely time-independent exponential fit. MIND-FTT uses this surface fit to
determine Sener

ren from Selec
ren and time. Since the second term only turns out to be important for very large

Selec
ren values, this approximation retains the immediate connection between FTT:Power and MIND for the

overwhelming part of the transition period, complementing it with plausible mitigation progress in a regime
of nearly full power sector decarbonisation.
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Cullen, J., Frank, S., Fricko, O., Guo, F., Gidden, M., Havĺık, P., Huppmann, D., Kiesewetter, G., Rafaj, P., Schoepp, W.,
Valin, H., 2018. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without
negative emission technologies. Nature Energy 3, 515–527. doi:10.1038/s41560-018-0172-6.

Hansen, J., Narbel, P., Aksnes, D., 2017. Limits to growth in the renewable energy sector. Renewable and Sustainable Energy
Reviews 70, 769–774. doi:10.1016/J.RSER.2016.11.257.

Hirt, L.F., Schell, G., Sahakian, M., Trutnevyte, E., 2020. A review of linking models and socio-technical transitions theories
for energy and climate solutions. Environmental Innovation and Societal Transitions 35, 162–179. doi:10.1016/J.EIST.
2020.03.002.

Hof, A.F., van Vuuren, D.P., Berkhout, F., Geels, F.W., 2020. Understanding transition pathways by bridging modelling,
transition and practice-based studies: Editorial introduction to the special issue. Technological Forecasting and Social
Change 151, 119665. doi:10.1016/J.TECHFORE.2019.05.023.
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power sector variability and the integration of variable renewables in long-term energy-economy models using residual load
duration curves. Energy 90, 1799–1814. doi:10.1016/j.energy.2015.07.006.

Ueckerdt, F., Pietzcker, R., Scholz, Y., Stetter, D., Giannousakis, A., Luderer, G., 2017. Decarbonizing global power supply
under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model.
Energy Economics 64, 665–684. doi:10.1016/j.eneco.2016.05.012.

UNEP, 2019. Lessons from a decade of emissions gap assessments. Technical Report. United Nations Environment Programme.
Nairobi. URL: https://www.unenvironment.org/resources/emissions-gap-report-10-year-summary.

UNFCCC, 2015. Paris Agreement. URL: https://unfccc.int/process-and-meetings/the-paris-agreement/

the-paris-agreement.
Unruh, G.C., 2000. Understanding carbon lock-in. Energy Policy 28, 817–830. doi:10.1016/S0301-4215(00)00070-7.
Vercoulen, P., Lee, S., Suk, S., He, Y., Fujikawa, K., Mercure, J.F., Lee, S., Suk, S., He, Y., Fujikawa, K., Mercure, J.F., 2019.

Policies to decarbonize the steel industry in East Asia, in: Energy, Environmental and Economic Sustainability in East Asia.
Routledge, pp. 110–137. doi:10.4324/9781351013475-7.

Victor, D.G., 2015. Climate change: Embed the social sciences in climate policy. Nature 520, 27–29. doi:10.1038/520027a.
Vinichenko, V., Cherp, A., Jewell, J., 2021. Historical precedents and feasibility of rapid coal and gas decline required for the

1.5°c target. One Earth 4, 1477–1490. doi:10.1016/j.oneear.2021.09.012.
Volterra, V., 1926. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memoria della Reale Accademia

Nazionale dei Lincei 2, 31–113.
van Vuuren, D.P., den Elzen, M., Berk, M., Lucas, P., Eickhout, B., Eerens, H., Oostenrijk, R., 2003. Regional costs and

benefits of alternative post-Kyoto climate regimes: Comparison of variants of the Multi-stage and Per Capita Convergence
regimes. Technical Report.

WBGU, 1995. Szenarien zur Ableitung globaler CO2-Reduktionsziele und Umsetzungsstrategien. Technical Report. Wis-
senschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen. URL: https://www.wbgu.de/de/publikationen/
publikation/szenario-zur-ableitung-globaler-co2-reduktionsziele-und-umsetzungsstrategien.

Author biography

Adrian Odenweller is a PhD researcher at the Energy Systems Group of the Potsdam Institute for
Climate Impact Research (PIK). He has a background in Physics, Economics, and Climate Sciences with
previous research experience at the University of Hamburg, the Max Planck Institute for Meteorology, and
the University of Cambridge. His current research focusses on the representation of sector coupling via
hydrogen and direct electrification in integrated assessment models.

25

http://dx.doi.org/10.1016/J.GLOENVCHA.2015.08.010
http://dx.doi.org/10.1016/j.energy.2015.07.006
http://dx.doi.org/10.1016/j.eneco.2016.05.012
https://www.unenvironment.org/resources/emissions-gap-report-10-year-summary
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
http://dx.doi.org/10.1016/S0301-4215(00)00070-7
http://dx.doi.org/10.4324/9781351013475-7
http://dx.doi.org/10.1038/520027a
http://dx.doi.org/10.1016/j.oneear.2021.09.012
https://www.wbgu.de/de/publikationen/publikation/szenario-zur-ableitung-globaler-co2-reduktionsziele-und-umsetzungsstrategien
https://www.wbgu.de/de/publikationen/publikation/szenario-zur-ableitung-globaler-co2-reduktionsziele-und-umsetzungsstrategien

	Introduction 
	Perspectives on technological change 
	Techno-economic approaches
	Socio-technical approaches
	Benefits and strategies of linking both approaches 
	Contribution of this paper

	Methods 
	MIND
	FTT:Power

	MIND-FTT: Soft-linking MIND with FTT:Power 
	MIND to FTT:Power: Uniform global carbon price
	FTT:Power to MIND: Renewable energy share

	Results: 2 °C scenario 
	Iterative convergence
	S-shaped technology diffusion
	Implications in comparison with MIND

	Discussion 
	Linking benefits revisited
	Three key insights
	Limitations and outlook

	Conclusion 
	Modelling details
	Production function and budget equation in MIND
	Residual load duration curves in FTT:Power
	Inference of renewable energy shares in MIND-FTT


