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ABSTRACT

The identification of regions of similar climatological behavior can be utilized for the discovery of spatial relationships over long-range scales,
including teleconnections. Additionally, it provides insights for the improvement of corresponding interaction processes in general circu-
lation models. In this regard, the global picture of the interdependence patterns of extreme-rainfall events (EREs) still needs to be further
explored. To this end, we propose a top-down complex-network-based clustering workflow, with the combination of consensus clustering
and mutual correspondences. Consensus clustering provides a reliable community structure under each dataset, while mutual correspon-
dences build a matching relationship between different community structures obtained from different datasets. This approach ensures the
robustness of the identified structures when multiple datasets are available. By applying it simultaneously to two satellite-derived precipitation
datasets, we identify consistent synchronized structures of EREs around the globe, during boreal summer. Two of them show independent
spatiotemporal characteristics, uncovering the primary compositions of different monsoon systems. They explicitly manifest the primary
intraseasonal variability in the context of the global monsoon, in particular, the “monsoon jump” over both East Asia and West Africa and the
mid-summer drought over Central America and southern Mexico. Through a case study related to the Asian summer monsoon, we verify that
the intraseasonal changes of upper-level atmospheric conditions are preserved by significant connections within the global synchronization
structure. Our work advances network-based clustering methodology for (i) decoding the spatiotemporal configuration of interdependence
patterns of natural variability and for (ii) the intercomparison of these patterns, especially regarding their spatial distributions over different
datasets.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0077106

Precipitation variability of monsoons affects over two-thirds
of the world’s population, and regional monsoons have their
own characteristics due to specific land–ocean and topographic
conditions.1 In spite of being distributed in different continen-
tal regions, they are essentially driven and synchronized by the
annual cycle of solar radiation. The connections between them are
via the global divergent circulation characterized by global-scale
persistent overturning of the atmosphere varying with time.2,3 An
integration of these monsoons forms the concept of the global
monsoon in terms of similar dynamics and behaviors. The syn-
chronization in the context of the global monsoon is not lim-
ited to the tropical regions, but also extends to the subtropics,
with the East Asian monsoon being a typical example. There-
fore, identifying the synchronization structure on a global scale

helps to understand the interaction with mid-latitude regions. A
clustering workflow with higher robustness, by combining con-
sensus clustering and mutual correspondences, is proposed for
this purpose.

I. INTRODUCTION

Regions of similar climatological properties are somewhat
coherent in time and space. Therefore, regional weather systems,
formed within these areas, can exhibit synchronization behavior.
Synchronization is also observed in the climate system, which
spans thousands of kilometers. This may be an indication of a
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teleconnection.4,5 Advances in the identification of these synchro-
nized regions help one to better understand the self-organized
structure of the climate system and to further improve prediction
skills.6,7

A complex-network-based clustering approach has proved to
be useful in this respect due to the climatological interpretation of
the identified communities.8 It takes as input complex networks
reconstructed from climate data. Generally speaking, the recon-
struction process treats grid points as nodes and establishes con-
nections between nodes with a high correlation according to the
corresponding timeseries. Clustering such networks has been used
for the discovery of spatial relationships in climate variables,8–10 for
the extraction of climate indices in a data-driven fashion,6,7,11 and for
the intercomparison of performance of general circulation models
(GCMs).12 However, cluster analysis remains a challenging prob-
lem in this domain because of the availability of multiple datasets
on each single climate variable. For example, each dataset of pre-
cipitation produces a network, which further yields a community
structure. How to extract representative and consistent communities
when multiple community structures are obtained from different
datasets on the same variable is a key question.

Regarding global-scale analysis,8–10,13 previous studies based on
network clustering put little focus on precipitation data, let alone
EREs. This is essentially due to the bias of precipitation estima-
tion in reanalysis products.8,14 However, it has recently been pointed
out in the Sixth Assessment of the Intergovernmental Panel on
Climate Change (IPCC) that precipitation extremes will be very
likely to become more frequent in most locations.15 Indeed, the
investigation of synchronization behavior of extreme rainfall is of
societal relevance due to the occurrences of natural hazards, such as
floods or landslides.14,16 A particular complex-network-based study
on EREs17 starts from the utilization of event synchronization [ES, a
method originally introduced to study electroencephalogram (EEG)
signals]18 as a nonlinear similarity measure for the reconstruction
of the functional climate networks. Using observational data, some
studies emphasize how the network-based clustering decodes the
spatial relationship on a regional scale.16,19–21 A recent investigation
reveals the global structure of synchronization of EREs based on
high-resolution satellite data.22 However, it relies on a given region
of interest, and therefore, it provides a partial view. The focus of
this study is, therefore, to reveal a comprehensive view of this global
structure.

We address the above-mentioned issues through a system-
atic network-based clustering workflow. Our aim is to unravel
the synchronization of EREs around the globe, especially in
terms of intraseasonal variability over different monsoon systems.
Specifically, the representation of climate data in the form of
networks is implemented based on ES.14,18,22 The reconstructed
functional climate networks are then viewed as input for a down-
stream cluster analysis. Through this proposed clustering workflow,
we identify two primary monsoon-related structures of distinct
spatiotemporal characteristics during boreal summer. Our work
is the first combined application of consensus clustering23 and
mutual correspondences24 for climate extreme analysis. This com-
bination provides the identification of reliable interdependence
patterns not only within each dataset, but also over different
ones.

II. METHODOLOGY

We develop here a generic workflow for the identification of the
global synchronization structure of EREs, as presented in Fig. 1. The
network reconstruction of functional climate networks, i.e., Steps
(1) and (2), is based on Ref. 22. For the downstream analysis, our
emphasis is on the proposed combined clustering workflow, in par-
ticular, Steps (3.1) and (3.2). At the same time, we also include the
correction for the multiple-comparison bias in Step (3.3) by using
the technique introduced in Ref. 22.

A. The reconstruction of functional climate networks

1. Definition of EREs based on thresholding

For rainfall data, we adopt the p = 90th percentile of wet
days (daily sum rainfall above 1 mm), by the definition of extreme
weather events from IPCC,25 as the threshold to indicate EREs. Sup-
pose that a pair of grid points i and j are randomly chosen from
the entire set of grid cells. For the two timeseries at i and j, days
with rainfall values higher than the given threshold are kept to indi-
cate the occurrences of EREs. For consecutive days with EREs, only
the first day is preserved to represent an independent occurrence of
events.22 We denote the set of grid points with at least three events
as V. The sets that incorporate the final event series, after data pre-
processing at i and j, are then defined as e

p
i := {ti,α} and e

p
j := {tj,β}

with α = 1, . . . , ni, β = 1, . . . , nj, respectively. For i, ti,α denotes the
time when the αth event occurs and ni is the total number of events.
Similarly, tj,β and nj are the corresponding variables for j.

FIG. 1. Schematic overview of the complex-network-based clustering workflow.
Steps (1), (2), and (3.3) of the framework have been provided in Ref. 22. The new
steps (3.1) and (3.2) are proposed in this paper.
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2. ES and the corresponding significance test

To quantify and determine the interactions between i and j, ES
considers all possible pairs of events ti,α and tj,β and measures the
closeness of each pair by imposing the condition that the absolute

value of temporal delay t
α,β
i,j := |ti,α − tj,β | must be smaller than a

dynamical delay τ
α,β
i,j := 1

2
min{tα,α−1

i,i , tα,α+1
i,i , t

β ,β−1
j,j , t

β ,β+1
j,j }. Together

with a maximum delay τmax = 10 days, which is used to exclude
the occurrences of unreasonably long delays, the ESi,j is, therefore,

defined between e
p
i and e

p
j as22

ESi,j :=
∣

∣

∣

{

(α, β) : t
α,β
i,j < τ

α,β
i,j ∧ t

α,β
i,j ≤ τmax

}
∣

∣

∣
, (1)

where | · | denotes the cardinality of a given set, i.e., the number of
synchronized event pairs.

The placement of network links between each pair of grid
points is determined statistically. Taking i and j as an example,
by randomly distributing the same number of events 2000 times
within the June–July–August (JJA) season and computing the cor-
responding ES values for the 2000 pairs of surrogate event series, a
null-model distribution is obtained.22 We take the 99.5th percentile
of the distribution as the threshold. A significant connection with
P < 0.005 is determined if ESi,j is above the threshold. Since the sig-
nificance thresholds are only associated with the number of events,
we manage this process independently for all possible pairs of event
numbers.

In many scenarios, links of a network can be attached with fea-
tures, such as weight and direction. For the reconstructed functional
climate networks, each significant link has an ES value as a weight
to indicate the link strength. This is an important factor in Step (3.1)
(see Sec. II B) to determine the affinities of different nodes. Regard-
ing the link direction, it can also be incorporated into the calculation
of ES and the corresponding test of significance. For example, the
synchronization from i to j is defined as

ESi→j :=
∣

∣

∣

{

(α, β) : t
α,β
i→j < τ

α,β
i,j ∧ t

α,β
i→j ≤ τmax

}
∣

∣

∣
, (2)

where t
α,β
i→j := tj,β − ti,α and t

α,β
i→j > 0 indicates the occurrence of an

event at i with a subsequent one at j. The significance test for the
directed case follows the same procedure as the one for the undi-
rected one. We take the undirected weighted network as the default
setting over the following main text. The directed approach is only
used when identifying days of high synchronization for atmospheric
condition analysis in Sec. II B.

B. The network-based clustering workflow

1. Consensus clustering

The significant link bundles given by Step (3.3)22 have lim-
ited capability to capture regions following similar climatological
behavior around the globe. This is essentially due to the limited link
distribution based on a selected region (see Fig. 6 in Appendix A
as an example). Therefore, we adopt here complex-network-based
clustering, namely, community detection, to fill this gap, by taking
into account the link distribution of a whole reconstructed func-
tional network. However, most community detection methods are
not deterministic, indicating that partitions delivered by them have

certain fluctuations, e.g., due to randomness. One way to manage
this problem is to use consensus clustering.23 Using the consensus
of a combination of partitions provides a stable result out of a set
of candidates. In the context of climate science, to the best of our
knowledge, the use of consensus clustering represents a novelty;
using a stable partition derived this way yields an algorithmically
reliable and climatologically interpretable community structure for
a given dataset.

Given the reconstructed functional climate network G with |V|

nodes and a community detection method A, below is the detailed
procedure of consensus clustering:

(A1) Apply A on G for 1000 times, yielding 1000 partitions.
(A2) Rank the 1000 partitions based on modularity26 and select the

first np partitions of the highest modularity.
(A3) Compute the consensus matrix D: Dij is the number of par-

titions where nodes i and j belong to the same community,
divided by np.

(A4) All entries of D below a chosen threshold θ are set to zero.
(A5) Apply A on D for np times, yielding np partitions.
(A6) If the partitions in (A5) are all equal, that is, D is block-

diagonal, then stop; otherwise, go back to (A3).

Note that A serves as a basic method for the entire procedure, and
we use modularity to estimate the quality/strength of a partition due
to the lack of climate-related benchmarks. Modularity compares the
fraction of intra-community links with its expected number in a null
model, which is a network with the same degree sequence but links
placed at random.26 Intuitively speaking, networks with high mod-
ularity have dense intra-community connections but are sparsely
connected between different communities.

In (A1), we use the parallel Louvain method (PLM)27 as the
basic method as algorithm A. We choose PLM because (a) it is flexi-
ble enough to control the granularity/size of communities with only
one parameter γ , (b) its speed allows one to handle large-scale net-
works, and (c) it is based on the well-known Louvain method.28 The
Louvain method is a greedy local search algorithm with a bottom-up
multilevel approach. Specifically, the local search phase moves each
node to the neighbor community where this move yields the largest
increase in modularity (if any). After this process has converged,
each community is contracted to a super-node. The super-nodes are
linked together by weighted edges (and self-loops) whose weights
are set according to the inter-community (intra-community) edge
weights in the larger graph. The smaller network derived this way is
treated as new input for the next iteration of local search and coars-
ening (until no further community changes are observed). Among
others, the main change of PLM compared to plain Louvain is to use
parallelism. PLM is part of the network analysis toolkit NetworKit,29

which allows the integration of PLM into more complex work-
flows. We verify in our work (not shown) that the default setting
γ = 1 yields an appropriate community resolution with the high-
est modularity.27,30 The 1000 partitions are particularly generated in
search of a broad range of possible solutions since the inherent non-
determinism due to thread parallelism can easily change solutions,
especially for those algorithms relying on stochastic search strategies
(see Fig. 7 in Appendix A as an example).23 In (A2), we choose np ∈

{25, 50, 100} candidates of the highest modularity as input for reach-
ing a consensus. In (A4), the optimal θ is situation-dependent.31
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Because this threshold parameter also implies the probability of two
nodes being settled into the same community, we vary it in our work
and let θ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. In (A6), considering multiple par-
titions to be obtained under different values of np and θ , the final
decision is made based on the modularity score again.

2. Mutual correspondences

Comparing different communities based on single similarity
values does neither provide information on how they differ nor
any spatial information on the robustness of the identified inter-
dependence patterns of EREs. That is why we employ mutual
correspondences,24 which provide insights on how different par-
titions agree with each other on a meta-community level (i.e., a
group of communities). Suppose that there are two stable partitions

C = {c1, . . . , c|C|} and C
′
= {c

′

1, . . . , c
′

|C
′
|
} obtained, for example,

from two datasets. Given Ø 6= S ( C and Ø 6= S
′
( C

′
, a corre-

spondence (S, S
′
) is mutual when the following conditions are met:

(a) | ∪
|S|
i=1 Si ∩ s

′
| > 1

2
|s

′
| for any s

′
∈ S

′
, (b) | ∪

|S|
i=1 Si ∩ s

′
| ≤ 1

2
|s

′
| for

any s
′
∈ C

′
\ S

′
, (c) | ∪

|S
′
|

i=1 S
′

i ∩ s| > 1
2
|s| for any s ∈ S, and (d) | ∪

|S
′
|

i=1

S
′

i ∩ s| ≤ 1
2
|s| for any s ∈ C \ S. The four conditions above guarantee

that any community s from S preserves more than 50% similarity to

the counterpart s
′
in S

′
and vice versa. We explain below the detailed

procedure in finding such a mutual correspondence:

(B1) Initialize S with St and Ø 6= St ( C. Only for the first iteration,
St is chosen based on domain knowledge, such as well-known
teleconnection patterns and is preserved by Sinit = St for the
final check in (B5); otherwise, S equals St, which is found in
(B3).

(B2) Each element c
′
∈ C

′
satisfying | ∪

|S|
i=1 Si ∩ c

′
| > 1

2
|c

′
|, where

S = St as in (B1), is placed into S
′

t, with the correspondence

direction of St → S
′

t .

(B3) Each element c ∈ C satisfying | ∪
|S

′
|

i=1 S
′

i ∩ c| > 1
2
|c|, where S

′

equals S
′

t found in (B2), is placed into St, with the reversed

correspondence direction of S
′

t → St.

(B4) If (St ∪ S
′

t)St→S
′
t

given in (B2) equals (S
′

t ∪ St)S
′
t→St

given in

(B3), then stop; otherwise, go back to (B1) for the next iter-
ation.

(B5) If the updated St and S
′

t still satisfy Ø 6= St ( C, Ø 6= S
′

t ( C
′

and Sinit ⊆ St when the iteration process stops in (B4), then a
mutual correspondence (S = St, S

′
= S

′

t) is established.

It is also possible to start by initializing S
′

in (B1). The resulting

correspondence relationship is (S
′
= S

′

t , S = St), which is equal to

(S = St, S
′
= S

′

t) obtained by initializing S in (B1).
Together with consensus clustering, mutual correspondences

lead to a robust top-down clustering workflow. Both combined allow
a reliable identification of a synchronization structure in the context
of global monsoon. A mutual correspondence can be one-to-many
or many-to-one to indicate the split or combination of rainfall pat-
terns over different datasets. For a many-to-many correspondence,
it is reasonable to only consider neighborhood communities due to
spatial coherence. Finally, we estimate the meta-community level

similarity based on the relative correspondence rate, defined as

RCR(S, S
′
) =

|S∩S
′
|

|S∪S
′
|
.

a. Identification of synchronized days for meta-communities.
After identifying meta-communities of good mutual correspon-
dence, we further determine synchronized days for them. Assume
that (ti,α , tj,β) is one pair of synchronized events when ESi,j is sig-
nificant. It is, therefore, plausible to take min{ti,α , tj,β} as the day to
indicate the occurrence of synchronization. By repeating this pro-
cess for all synchronized pairs between i and j and for all other
significant links within a meta-community, we obtain the distribu-
tion of these days over the JJA season. Such a distribution indicates
the temporal characteristic of a given meta-community.

3. Significance test for link bundles

During the (re)construction process of functional climate net-
works, each link is determined statistically by multiple comparisons
in Step (2).22 A large number of comparisons can lead to some
links being preserved by chance. Therefore, we need to correct
this problem afterward and to complement the proposed cluster-
ing workflow. The basic idea is to identify some regions of higher
link density formed by physical mechanisms. Specifically, given a
region and all links coming from this region, a spherical Gaussian
kernel density estimate (KDE) provides the link density estimation
for each grid point regarding the distribution of the original regional
link configuration. By randomly distributing those links 1000 times
to grid points with at least three events, a corresponding null-model
distribution based on the same KDE is obtained for each grid point.
The thresholds are then taken in the same way as in Step (2). We
also use the 99.9th percentile to determine statistically significant
link bundles (P < 0.001).

The combination of Steps (3.1), (3.2), and (3.3) gives the
regional significant synchronization structure of EREs. Specifically,
the regional interdependence by Steps (3.1) and (3.2) takes the
form of meta-communities. For a specified region “A” within a

meta-community S (S
′
), we determine all other regions that are

significantly synchronized with “A” based on Step (3.3). Some of

these regions fall into S (S
′
), forming the final significantly synchro-

nized regional structure associated with “A.” Such a structure could
indicate rainfall teleconnections, which can further be verified by
atmospheric conditions.

C. Atmospheric condition analysis

This part is the verification for the identified synchronization
structure. Therefore, it is not indicated in the workflow (see Fig. 1).
Specifically, to investigate composite anomalies, we first identify
days of high synchronization. Suppose that we need to find out the
specific days when two regions “A” and “B” are highly synchronized.
We first determine significant links between them, with direction
from “A” (“B”) to “B” (“A”), under a significance level of P < 0.005.
Then, for each time step, we identify the number of associated EREs
occurring in “B” (“A”) within τmax = 10 days, when there are events
in “A” (“B”), based on these links. All these event numbers form a
timeseries from “A” (“B”) to “B” (“A”), with the same time steps as
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datasets. They are then both filtered by a Butterworth low-pass fil-
ter with a cutoff frequency of 10 days. We take those time steps as
days of high synchronization, where there are local maxima above
the 90th percentile of JJA season in the filtered timeseries. With
these days, we calculate the composite anomalies regarding the JJA
climatology.

III. RESULTS

A. Data

For the reconstruction of functional climate networks regard-
ing EREs, we choose observational data due to the bias of pre-
cipitation estimation in reanalysis products.8 Two satellite-derived
datasets, i.e., TRMM 3B42 V732 and GPM IMERG33 from NASA, are
analyzed here. We utilize the daily rainfall sums within the JJA sea-
son from 2000 to 2019 with the spatial resolution of 1◦ × 1◦. For a
comparative analysis to TRMM, the GPM data are cropped with a
boundary from 50◦S to 50◦N, named as B-GPM.

For the understanding of climatological behavior behind the
obtained rainfall patterns, we choose horizontal and vertical wind
fields from ECMWF (ERA5)34 to obtain the corresponding atmo-
spheric conditions. The spatial (i.e., 1◦ × 1◦) and temporal (i.e., daily
estimations ranging from 2000 to 2019) resolutions are consistent
with TRMM.

B. Regional interdependence of EREs

The global monsoon represents the integration of all regional
monsoons. Different regional monsoons are synchronized since

they are fundamentally driven by the annual variation in solar
radiation.3

In the context of the global monsoon, the following two
points need to be further explored: (i) The synchronization struc-
ture with higher latitudes and (ii) the spatiotemporal characteris-
tics of intraseasonal variability. We apply the proposed clustering
workflow (see Fig. 1) to the global precipitation datasets and give
appropriate interpretations of the results.

Two main monsoon-related meta-communities are identified
during the JJA season, as shown in Figs. 2 and 3. An overview of the
entire community structure is presented in Fig. 8 in Appendix B. The
meta-communities describe a global view of synchronized EREs,
with a synchronization structure extending to mid-latitude regions
[to point (i)] and distinct intraseasonal changes on the frequency
of synchronization [to point (ii)]. Temporal distributions indicate
two recognizable periods of synchronization: from early June to
mid-July [see Figs. 2(b) and 2(d)] and from mid-July to late-August
[see Figs. 3(b) and 3(d)]. The former peaks in early June with a
sharply decreasing trend thereafter, while the latter shows a gradual
increase with a peak in mid-August. Since the temporal distributions
are obtained based on the timing of all synchronous EREs within
the identified meta-communities, it can be concluded that those
teleconnection patterns carried by significant connections within
meta-communities are also experiencing a similar temporal variabil-
ity. We verify this with the Asian summer monsoon (ASM)-related
case study in Sec. III C. Regarding the corresponding spatial distri-
butions, they decode the compositions of regional EREs, including
different monsoon systems. They are robust under different choices
of maximum delays (see Figs. 15–18 in Appendix E) and signif-
icance levels (see Figs. 21–24 in Appendix F). Based on regional

FIG. 2. Communities of mutual correspondence with a similarity of RCR(TRMM = {2, 6, 9, 10, 13}, B − GPM = {1, 5}) = 0.54. (a) Communities 2, 6, 9, 10, and 13 from
Fig. 8(a) in Appendix B. (c) Communities 1 and 5 from Fig. 8(b) in Appendix B. (b) and (d) Frequency of synchronized days over JJA, within meta-communities in (a) and
(c), respectively (see Sec. II B 2 “Identification of synchronized days for meta-communities”). Grid points with less than three events are excluded when extracting EREs and
visualized as hatched areas here.
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FIG. 3. Same as Fig. 2, but for a different mutual correspondence with a similarity of RCR(TRMM = {1, 8}, B − GPM = {2}) = 0.63 from Fig. 8 in Appendix B.

monsoons over Asia, West Africa, and Southwest United States in
boreal summer, we now provide detailed evidence corroborating the
spatiotemporal characteristics of intraseasonal variability found in
Figs. 2 and 3.

Our results are in line with the known teleconnection pattern
inside of ASM. The Meiyu/Baiu rainband,35 as in Figs. 2(a) and 2(c),
is automatically identified by using the proposed clustering work-
flow. The coexistence of this noticeable region, the Bay of Bengal,
and the western coast of India in the same meta-community sup-
ports the synchronized initiation (i.e., the “south” teleconnection)
of the Indian rainy season and Meiyu/Baiu.35,36 Figures 3(a) and 3(c)
preserve the “north” teleconnection between India and North China,
which is built-up after a rapid northward jump of the rain belt.37 For
adjacent oceanic areas, the connection between Indonesian rainfall
with Indian and Pacific Oceans38 is partly revealed by the coexistence
of these regions in Fig. 2. In Fig. 3, the northwestward propagation
of cyclones in a high phase of the Pacific-Japan pattern establishes
the connection of EREs between the western North Pacific tropics
and the northern South China Sea; during a low phase, cyclones fol-
low a recurved propagation route to a higher latitude, close to the
east of Japan.39 These cyclones form the synchronization structure
relating to the global monsoon, especially over oceanic areas.

Figures 2 and 3 capture the abrupt intraseasonal change in
West Africa, i.e., from the oceanic regime [5◦ North of equator,
see Figs. 2(a) and 2(c)] to the continental regime [10◦ North of
equator, see Figs. 3(a) and 3(c)].40 Between Indian and African mon-
soons, there exists a connection provided by westward-propagating
Rossby waves from the Pacific warm pool in boreal summer.41

They help modulate the easterly wave activity and moisture trans-
port in West Africa.42 Meta-communities in Figs. 2(a) and 2(c),
covering the Gulf of Guinea with extension to tropical South Amer-
ica, Caribbean Sea, and the eastern tropical Pacific, manifest the

underlying connection via easterly wave disturbances over the equa-
torial Atlantic basin.43,44 These disturbances contribute to a large
proportion of rainfall in these tropical regions. In Figs. 3(a) and 3(c),
meta-communities over West Africa experience a northward shift,
which is also known as “monsoon jump.”45,46 Along with this, east-
erly waves emanating from West Africa are enhanced in August over
the tropical North Atlantic.47 They are the primary precursors of
tropical cyclones, which propagate toward the Caribbean Sea and
North America.22,48–50 It has also been proposed that the easterly
waves from West Africa have a weak correlation with tropical cyclo-
genesis in the eastern North Pacific.51 Such a correlation provides a
possible explanation for the synchronized EREs between them [see
Figs. 3(a) and 3(c)].

For surrounding regions related to the Southwest United States
monsoon, our results catch the mid-summer drought from July to
August, especially over Central America, southern Mexico, and part
of the Caribbean Sea [see Figs. 3(a) and 3(c)].52,53 In June, the inten-
sified Caribbean and Great Plains low-level jets together contribute
to the moisture supply to rainfall in parts of North America.54 This
leads to the synchronized EREs along the way from the Caribbean
Sea to the central United States [see Figs. 2(a) and 2(c)].

Apart from the above-mentioned synchronization related to
monsoon, it is also observed that the meta-communities in Figs. 2
and 3 span the mid-latitude belt. The connections between them
are mainly via upper-level teleconnection patterns, such as the “Silk
Road teleconnection”55 and the “circumglobal teleconnection”56,57

in the Northern Hemisphere. For example, the summer rainfall
variation of North America stems from East Asian subtropical mon-
soon heating by the Asia–North America teleconnection,58 as meta-
communities covering both Meiyu/Baiu region and parts of North
America in Fig. 2; the positive phase of circumglobal wave train
is associated with significantly enhanced precipitation over western
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Europe and northwestern India,56,59 as in Fig. 3. A detailed case study
on this is provided in Sec. III C.

C. Regional significant interdependence of EREs: A

case study related to ASM

To further verify the intraseasonal change given by the iden-
tified meta-communities, as in Figs. 2 and 3, we here present an
ASM-related case study on the upper-level atmospheric circulation.
Two pairs of relationships are chosen based on significant connec-
tions within meta-communities (see Figs. 9 and 10 in Appendix C).
A particular reason for the first pair in Figs. 9(e) and 9(f) is that, in
the early summer of 2018, rainfall extremes occurred in South-East
Europe and South-West Japan nearly simultaneously.57 Instead of
southwestern Japan, we select a large area covering parts of south-
ern China and the Yangtze River Valley since they are all within the
Meiyu/Baiu rainband. Meanwhile, it has also been suggested that a
strong Indian summer monsoon is often accompanied by significant
above normal rainfall over part of western and central Europe.22,60

We select the second pair based on this as indicated in Figs. 10(e)
and 10(f). The composite anomalies, obtained according to the two
pairs of relationships, are given in Figs. 4 and 5.

In Figs. 4(b) and 4(d), more synchronizations appear in June
followed by a decreasing trend, while Figs. 5(b) and 5(d) present a
reversed tendency. There is a recognizable replacement of an east-
ward upper-level zonal wind movement, as in Figs. 4(a) and 4(c),
with a westward direction, as in Figs. 5(a) and 5(c) over Japan, for
example. This is consistent with the end of the Meiyu, indicating

the disappearance of the high-altitude westerly jet streams and the
appearance of the easterlies over the same region.35 Additionally,
the upper-level meridional wind movement, as shown in Figs. 11
and 12 in Appendix D, confirms the function of Rossby waves in
creating synchronized EREs for remote mid-latitude regions.22,55,56

The identified memberships of two pairs of significant connections
to different meta-communities are in agreement with the temporal
order and upper-level atmospheric conditions between them. This
case study also suggests that the global synchronization structures in
Figs. 2 and 3 resemble the distribution of rainfall anomalies (above
normal) since only the occurrences of EREs are considered.

IV. DISCUSSION OF ROBUSTNESS

The here proposed clustering workflow enables us to identify
regions following similar dynamical properties in an automatic and
reliable way. In Sec. III, we obtain two primary global synchroniza-
tion structures characterizing the intraseasonal changes by using
both TRMM and B-GPM data. Therefore, this section is to show
whether these two structures are robust concerning the choice of
the parameters. The parameters are divided into two groups based
on their usages: (i) the network reconstruction step needs an event
threshold (p = 90th by IPCC), the significance level, and the max-
imum delay (τmax) and (ii) the clustering workflow needs γ , np,
and θ .

The parameters in group (i) determine the structure of the con-
structed networks, which serve as input for the clustering analysis.

FIG. 4. Atmospheric conditions for the teleconnection pattern between South-East Europe and South China, marked with yellow boxes. (a) and (c) Composite anomalies of
250 hPa zonal wind component u, with respect to the JJA climatology, based on days when the two regions are highly synchronized (see Sec. II C). For (a) and (c), the days
are obtained based on TRMM and B-GPM, respectively. (b) and (d) Frequency of these days over JJA.
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FIG. 5. Same as Fig. 4, but between western and central Europe and northern India.

We have no prior knowledge of the underlying network struc-
ture. Therefore, different choices for the maximum delay (τmax) and
the significance level should be first considered. The parameters
in group (ii), although the underlying community structure is also
unknown, we can still use modularity as the measure to quantify
the quality of the community structure. That is, one chooses the
community structure with the highest modularity.26 Therefore, all
parameters in group (ii) are chosen according to the highest modu-
larity solution; thus, we only discuss τmax and the significance level
in the remainder of this section. It should also be noted that the
robustness analysis in this section is different from the significance
test, which is already considered in the reconstruction step of the
functional climate networks in Sec. II A.

A. Robustness over τmax

Different choices of maximum delays with τmax ∈ {3, 30} days
are considered, as in Figs. 13 and 14 in Appendix E. When τmax

decreases (increases) to 3 (30) days, the obtained monsoon-related
spatial distribution shrinks (extends) to relatively local (wide) areas
(see Figs. 15–18 in Appendix E). Indeed, a shorter delay indicates
that only those closely synchronized event pairs in time are counted.
These pairs are more likely to be found in neighborhood regions.
The assumption of a short delay might be too strong to capture a
long-distance relationship established by the physical atmospheric
process. However, it is also probable that such a relationship appears
as the result of a chain of mechanisms with indirect transitivity. This
can be revealed from the comparisons between Figs. 15 and 17, or
Figs. 16 and 18 since the spatial pattern under the delay of 3 days

is preserved under that of 30 days. That is, the identified intrasea-
sonal synchronization structures are stable inside the interval
τmax ∈ [3, 30].

B. Robustness over a significance level

The significance level determines the topological structure
of the reconstructed functional climate network. A particularly
low threshold may eliminate some important synchronization
relationships,22 while a higher value amplifies the multiple-
comparison bias. We, therefore, consider the conservative choices
of P < 0.006 and P < 0.004 (see Figs. 19 and 20 in Appendix F).
The monsoon-related spatial distributions, shown in Figs. 21–24 in
Appendix F, remain consistent with Figs. 2 and 3. By means of the
comparison between Figs. 8 and 19, or Figs. 20 and 19, lowering the
significance threshold yields a slight increase in modularity. Such a
signal implies the community structure as an intrinsic attribute of
the underlying self-organized climate system.

In spite of the robustness of the identified two synchroniza-
tion structures, it is still worth noting that several regions remain
dissimilar to a certain degree. For example, the meta-community
in Fig. 2(c) covers a larger area of the North Atlantic than that
in Fig. 2(a). We attribute this to the uncertainties from rain-
fall data since fluctuations caused by the network-based clustering
approach are corrected in our proposed workflow. Ideally, when two
precipitation datasets are exactly the same, the reconstructed net-
work structures are identical and the resulting spatial distributions
can be perfectly matched. However, satellite observations contain
non-negligible random errors and biases during the generation of
datasets due to factors, such as inadequate sampling and deficiencies
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in algorithms.61 These uncertainties are further retained, leading
to discrepancies in the identified synchronization structures. How-
ever, the discrepancy information can also be important to measure
the extent to which different datasets reproduce the same climate
phenomenon.

V. CONCLUSION

In summary, our work starts from the identification of regions
of similar climatological behavior and focuses on revealing the
global view of the interdependence patterns for EREs in the con-
text of the global monsoon. For this, we provide a network-based
clustering workflow that combines consensus clustering and mutual
correspondences. By means of this clustering workflow, we identify
two main monsoon-related synchronization structures. They have
independent temporal and spatial characteristics. The first structure,
primarily from early June to mid-July, shows early summer features
over different monsoon systems, including the synchronized initi-
ation of the Indian rainy season and Meiyu/Baiu over ASM, the
oceanic regime over West Africa, and early-rainy season over the
Caribbean Sea toward the central United States. The second struc-
ture, from mid-July to late-August, manifests the states after the
“monsoon jump,” including the establishment of the “north” tele-
connection inside the ASM between Indian summer monsoon and
the rainfall in North China and the continental regime over West
Africa. Meanwhile, the mid-summer drought is dominating Central
America and southern Mexico. Also, we show that the significant
connections inside the identified meta-communities capture the
synchronized behavior via the “Silk Road teleconnection”55 and the
“circumglobal teleconnection”56,57 for the mid-latitude belt.

The successful identification of intraseasonal spatiotempo-
ral variability essentially stems from the combination of ES and
complex-network theory to represent the underlying climate sys-
tem as networks. As an extension of this research, there are sev-
eral potentially relevant directions. First, how interaction processes
between different monsoons form at different levels is crucial for the
physical understanding of the identified global monsoon structure.
Second, this clustering workflow can be applied to other seasonal

analyses, such as the boreal winter, which brings marked monsoonal
characteristics to the Southern Hemisphere. Third, the application
on higher spatial resolution scenarios (e.g, 0.5◦ × 0.5◦) is a com-
putational problem worthy of further consideration. Fourth, the
combined application of event synchronization and community
detection to other types of data, in particular, in neuroscience, such
as EEG signals and magnetic resonance imaging (MRI), is another
promising direction.
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APPENDIX A: THE MOTIVATION FOR THE

NETWORK-BASED WORKFLOW

Illustration of the limitation of the significant test for link
bundles under TRMM (Fig. 6). Illustration of fluctuations of clus-
tering approaches, such as PLM, under (a) TRMM and (b) B-GPM,
respectively (Fig. 7).

FIG. 6. Illustration of the limitation of the significant test for link bundles under TRMM. Three yellow boxes are positioned over Europe, northern India, and northern China,
respectively. (a) When the box in northern India is selected as the central region, associated significant link bundles connect to the entire boxes in both Europe and northern
China. (b) When the central region is changed to the box in Europe, only a few link bundles connect to the boxes in northern India and northern China. This indicates that the
significant link bundles are limited by the link distribution of a given region and, therefore, can only reveal a partial view of regions that follow similar climatological behavior.
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FIG. 7. Illustration of fluctuations of clustering approaches, such as PLM, under (a) TRMM and (b) B-GPM, respectively. Taking TRMM as an example, the first 10 partitions
of the highest modularity are selected from 1000 randomly generated partitions. Any pair between them should show a similarity of 1, based on the normalized mutual
information score, if the clustering process was deterministic. However, (a) and (b) show the average deviations of 0.15 and 0.14, respectively, indicating a certain degree of
differences between solutions.

FIG. 8. Community structures for TRMM and B-GPM, respectively. (b) and (d) Modularity as a function of np and τ for the selection of community structure for TRMM and
B-GPM. (a) and (c) share a similarity of 0.58 based on the normalized mutual information score. They are chosen according to (b) with np = 25 and θ = 0.6 and (d) with
np = 25 and θ = 0.5, respectively, to indicate the maximum modularity after consensus clustering. Both are sorted by the size of each community, namely, the number of
grid points inside a community. Each index is attached with the average number of EREs in the corresponding community. Communities smaller than 0.01*|V| are excluded
from the visualization. Grid points with less than three events are also excluded when extracting EREs and visualized as hatched areas.
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FIG. 9. Teleconnection pattern given for South-East Europe for TRMM [(a), (c), and (e)] and B-GPM [(b), (d), and (f)]. (a) and (b) Significant link bundles as given
in Ref. 22 but for South-East Europe (see Sec. II B 3). (c) and (d) Meta-communities extracted from Fig. 8 and the same as Fig. 2 (see Sec. II B 1 and II B 2).
(e) and (f) Regional significant interdependence based on the intersections of (a) and (c) and (b) and (d), respectively. Yellow boxes positioned in (e) and (f) repre-
sent the presence of significant connections between South-East Europe (39◦N–47◦N, 15◦E–29◦E) and South China (24◦N–30◦N, 105◦E–118◦E) to be considered in
Sec. III C.

APPENDIX B: COMMUNITY STRUCTURE UNDER THE

DELAY OF 10 DAYS

Community structures for TRMM and B-GPM, respectively
(Fig. 8).

APPENDIX C: THE PROCESS TO DETERMINE

REGIONAL SIGNIFICANT INTERDEPENDENCE FOR

THE ASM-RELATED CASE STUDY

Teleconnection pattern given for South-East Europe for
TRMM [(a), (c), and (e)] and B-GPM [(b), (d), and (f)] (Fig. 9).

Teleconnection pattern given for northern India for TRMM [(a), (c),
and (e)] and B-GPM [(b), (d), and (f)] (Fig. 10).

APPENDIX D: THE MERIDIONAL COMPONENT FOR

THE ASM-RELATED CASE STUDY

Atmospheric conditions for the teleconnection pattern between
South-East Europe and South China, marked with yellow boxes
(Fig. 11). Same as Fig. 11, but between western and central Europe
and northern India (Fig. 12).
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FIG. 10. Teleconnection pattern given for northern India for TRMM [(a), (c), and (e)] and B-GPM [(b), (d), and (f)]. (a) and (b) Significant link bundles as given in Ref. 22
(see Sec. II B 3). (c) and (d) Meta-communities extracted from Fig. 8 and the same as Fig. 3 (see Secs. II B 1 and II B 2). (e) and (f) Regional significant interdependence
based on the intersections of (a) and (c) and (b) and (d), respectively. Yellow boxes positioned in (e) and (f) represent the presence of significant connections between northern
India (25◦N–32◦N, 71◦E–88◦E) and part of western and central Europe (44◦N–50◦N, 0◦E–15◦E), to be considered in Sec. III C.

APPENDIX E: THE ROBUSTNESS TEST ON DIFFERENT

DELAYS

Same as Fig. 8, but for a different τmax = 3 days (Fig. 13). Same
as Fig. 8, but for a different τmax = 30 days (Fig. 14). Same as Fig. 2,
but for a different τmax = 3 days (Fig. 15). Same as Fig. 3, but for a
different τmax = 3 days (Fig. 16). Same as Fig. 2, but for a different
τmax = 30 days (Fig. 17). Same as Fig. 3, but for a different τmax = 30
days (Fig. 18).

APPENDIX F: THE ROBUSTNESS TEST ON DIFFERENT

SIGNIFICANCE LEVELS

Same as Fig. 8, but for a different significance level P < 0.006
(Fig. 19). Same as Fig. 8, but for a different significance
level P < 0.004 (Fig. 20). Same as Fig. 2, but for a differ-
ent significance level P < 0.006 (Fig. 21). Same as Fig. 3, but
for a different significance level P < 0.006 (Fig. 22). Same as
Fig. 2, but for a different significance level P < 0.004 (Fig. 23).
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FIG. 11. Atmospheric conditions for the teleconnection pattern between South-East Europe and South China, marked with yellow boxes. (a) and (c) Composite anomalies
of 250 hPa meridional wind component v, with respect to the JJA climatology, based on days when the two regions are highly synchronized (see Sec. II C). For (a) and (c),
the days are obtained based on TRMM and B-GPM, respectively. (b) and (d) Frequency of these days over JJA.

FIG. 12. Same as Fig. 11, but between western and central Europe and northern India.
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FIG. 13. Same as Fig. 8, but for a different τmax = 3 days. In (a) and (c), community structures for TRMM and B-GPM are chosen according to (b) with np = 25 and θ = 0.5
and (d) with np = 50 and θ = 0.6, respectively, to indicate the highest modularity value. They share a similarity of 0.66 based on the normalized mutual information score.

FIG. 14. Same as Fig. 8, but for a different τmax = 30 days. Community structures for (a) TRMM and (c) B-GPM are chosen according to (b) with np = 25 and θ = 0.5 and
(d) with np = 25 and θ = 0.5, respectively, sharing a similarity of 0.60.
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FIG. 15. Same as Fig. 2, but for a different τmax = 3 days. Communities of mutual correspondence with a similarity ofRCR(TRMM = {2, 6, 9}, B − GPM = {2, 6}) = 0.72.
(a) Communities 2, 6, and 9 from Fig. 13(a). (c) Communities 2 and 6 from Fig. 13(b). (b) and (d) Frequency of synchronized days within meta-communities in (a) and (c),
respectively (see Sec. II B 2 “Identification of synchronized days for meta-communities”). Grid points with less than three events are excluded when extracting EREs and
visualized as hatched areas here.

FIG. 16. Same as Fig. 3, but for a different τmax = 3 days. Communities of mutual correspondence with a similarity of RCR(TRMM = {1}, B − GPM = {1}) = 0.65 from
Fig. 13.
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FIG. 17. Same as Fig. 2, but for a different τmax = 30 days. Communities of mutual correspondence with a similarity of RCR(TRMM = {1, 3, 4, 5, 10, 11},
B − GPM = {1, 3, 5, 7, 10}) = 0.72. (a) Communities 1, 3, 4, 5, 10, and 11 from Fig. 14(a). (c) Communities 1, 3, 5, 7, and 10 from Fig. 14(b). (b) and (d) Frequency
of synchronized days within meta-communities in (a) and (c), respectively (see Sec. II B 2 “Identification of synchronized days for meta-communities”). Grid points with less
than three events are excluded when extracting EREs and visualized as hatched areas here.

FIG. 18. Same as Fig. 3, but for a different τmax = 30 days. Communities of mutual correspondence with a similarity of RCR(TRMM={2, 6}, B-GPM={2, 9}) = 0.67 from
Fig. 14.
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FIG. 19. Same as Fig. 8, but for a different significance level P < 0.006. In (a) and (c), community structures for TRMM and B-GPM are chosen according to (b) with
np = 25 and θ = 0.6 and (d) with np = 25 and θ = 0.5, respectively, to indicate the largest modularity value. They share a similarity of 0.57 based on the normalized mutual
information score.

FIG. 20. Same as Fig. 8, but for a different significance level P < 0.004. Community structures for (a) TRMM and (c) B-GPM are chosen according to (b) with np = 25 and
θ = 0.6 and (d) with np = 25 and θ = 0.6, respectively, sharing a similarity of 0.59.
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FIG. 21. Same as Fig. 2, but for a different significance level P < 0.006. Communities of mutual correspondence with a similarity of RCR(TRMM = {2, 6, 9, 10, 13},
B − GPM = {1, 5}) = 0.53. (a) Communities 2, 6, 9, 10, and 13 from Fig. 19(a). (c) Communities 1 and 5 from Fig. 19(b). (b) and (d) Frequency of synchronized days
within meta-communities in (a) and (c), respectively (see Sec. II B 2 “Identification of synchronized days for meta-communities”). Grid points with less than three events are
excluded when extracting EREs and visualized as hatched areas here.

FIG. 22. Same as Fig. 3, but for a different significance level P < 0.006. Communities of mutual correspondence with a similarity of RCR(TRMM = {1},
B − GPM = {2}) = 0.61 from Fig. 19.
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FIG. 23. Same as Fig. 2, but for a different significance level P < 0.004. Communities of mutual correspondence with a similarity of RCR(TRMM = {2, 7, 9, 11, 13},
B − GPM = {1, 5}) = 0.57. (a) Communities 2, 7, 9, 11, and 13 from Fig. 20(a). (c) Communities 1 and 5 from Fig. 20(b). (b) and (d) Frequency of synchronized days
within meta-communities in (a) and (c), respectively (see Sec. II B 2 “Identification of synchronized days for meta-communities”). Grid points with less than three events are
excluded when extracting EREs and visualized as hatched areas here.

FIG. 24. Same as Fig. 3, but for a different significance level P < 0.004. Communities of mutual correspondence with a similarity of RCR(TRMM = {1, 10},
B − GPM = {2}) = 0.64 from Fig. 20.
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Same as Fig. 3, but for a different significance level P < 0.004
(Fig. 24).
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