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In recent years, the Indian Ocean Dipole (IOD) has received much
attention in light of its substantial impacts on both the climate
system and humanity. Due to its complexity, however, a reliable
prediction of the IOD is still a great challenge. In this study, climate
network analysis was employed to investigate whether there are
early warning signals prior to the start of IOD events. An enhanced
seesaw tendency in sea surface temperature (SST) among a large
number of grid points between the dipole regions in the tropical
Indian Ocean was revealed in boreal winter, which can be used
to forewarn the potential occurrence of the IOD in the coming
year. We combined this insight with the indicator of the December
equatorial zonal wind in the tropical Indian Ocean to propose
a network-based predictor that clearly outperforms the current
dynamic models. Of the 15 IOD events over the past 37 y (1984
to 2020), 11 events were correctly predicted from December of
the previous year, i.e., a hit rate of higher than 70%, and the
false alarm rate was around 35%. This network-based approach
suggests a perspective for better understanding and predicting
the IOD.

Indian Ocean Dipole | climate network | prediction

The Indian Ocean Dipole (IOD) is a zonal dipole mode of the
sea surface temperature (SST) that occurs interannually in

the tropical Indian Ocean (TIO) (1, 2). A positive (negative) IOD
features a below (above) normal SST off the Sumatran coast and
a warming (cooling) over the western equatorial Indian Ocean.
Ever since the severe floods in East Africa in 1997, which were
induced by an extreme positive IOD (pIOD) event (2), the IOD
has attracted much attention. Many studies showed that the IOD
can affect the climate not only in the Indian Ocean rim countries
but also in other more distant regions (3–5). In the past decades,
great efforts have been made to reveal the mechanisms of the
IOD, but the IOD prediction is still challenging, which further
limits the associated seasonal climate predictions.

One reason for the difficulties in predicting the IOD is that
the TIO is complex, with multiple processes interacting. Previous
studies reported that there are different triggers that may initiate
the occurrence of the IOD, such as the El Niño–Southern Oscil-
lation (ENSO) (6, 7), the Indonesian Throughflow (8), intrasea-
sonal disturbances (9), the subtropical IOD (10), springtime
Indonesian rainfall (11), and the interhemispheric pressure gra-
dient over the maritime continent (12). In addition, the develop-
ment of the IOD in boreal summer was found to be controlled by
different feedback processes in the Indian Ocean, including the
thermocline–SST, cloud–radiation–SST, and evaporation–SST–
wind feedbacks (1, 9, 13). As a typical atmosphere–ocean coupled
mode, the IOD is thus a complex phenomenon that is sensitive
to changes in multiple associated processes. The dilemma is that
it is not clear which of the above-mentioned triggers play the
main role in a given IOD event. For instance, ENSO events have

been well recognized as a major external force to trigger IOD
events via altering the Walker Circulation (4), but there are still
many cases (e.g., 1996, 2012, and 2019) where an IOD event
is not accompanied by an ENSO event, and the different IOD
classifications (3, 14, 15) make the ENSO–IOD interactions even
more complicated. The formation of the IOD was found to be
associated with both the forcing outside the Indian Ocean and
internal variability within the basin (16), but there is no certain
physical mechanism that combines all the associated forcings
and feedback processes. Moreover, as a phenomenon with quasi-
biennial frequency (1, 17), two (or three) pIOD events may occur
in consecutive years (18), and sometimes there may even be a
few consecutive years with no remarkable IOD events. These
complex characteristics increase the difficulty of the IOD predic-
tion (19–23). In general, skillful predictions of the IOD events
by climate models can only be made one season ahead (22, 23)
and occasionally two or three seasons for strong events (9, 18). A
rapid drop of the IOD predictive capability across the boreal win-
ter has been well recognized as the winter predictability barrier
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(24), suggesting a lack of precursor signals due to the low signal-
to-noise ratio. To better cope with the IOD-associated impacts,
continuous efforts are thus required to improve the predictive
capability for IOD events.

In this study, we investigated this issue. Previous studies re-
vealed different trigger and development mechanisms that con-
tribute to the formation of the IOD. However, it is unclear
whether there are any TIO states favorable for IOD onset, given
the fact that the previously proposed triggering mechanisms do
not work in all cases. It was recognized that a shallower thermo-
cline depth in the eastern Indian Ocean is a precondition that
favors the pIOD activity on decadal time scales (25, 26). Are
there any preconditions on interannual or even biennial scales
that may lead to an improved early warning of the IOD onset?
To address these questions, we employed a recently proposed
approach, the climate network analysis (27), to examine possible
relationships among the grid points in the dipole regions. The
climate network, as the name implies, is a network of the climate
system with grid points (or stations) considered as nodes and
the relations (i.e., correlations) between each pair of nodes as
links (27–29). By studying climate systems in terms of climate
networks, one may obtain more detailed information, including
the topological structure (30, 31) and the dynamic evolutions
(32, 33). A particular advantage of the climate network approach
is that by taking into account all the interior grid points in the
climate system, even weak signals (that could appear seemingly
negligible when considered alone) contribute substantially to the
overall system dynamics, eventually leading to significant effects
when exhibiting cooperative behavior (34). Based on this advan-
tage, the climate network analysis has been successfully applied

in the forecasting of Atlantic Meridional Overturning Circulation
(35, 36); the predicting of extreme precipitation events (37); and
in particular, an early forecast of the onset of the Indian Summer
Monsoon (38). By analyzing the cooperative behaviors among
the interior nodes in the tropical Pacific and north Pacific, early
warning signals have been detected for the onset of El Niño
events (39, 40) and the phase change of the Pacific Decadal
Oscillation (PDO) (34). In this study, we employed this approach
to investigate IOD events, especially the interactions of the SSTs
between the dipole regions, to see whether there are early signals
arising from the cooperative behaviors among the grid points,
or in other words, to detect possible TIO states that favor the
development of the IOD.

Results
Detecting the Early Warning Signal. In this work, daily and monthly
SST anomalies within the spatial domain from 40◦E to 110◦E
and 10◦N to 10◦S were analyzed (Fig. 1A). Based on the monthly
data from 1982 to 2020, the empirical orthogonal function (EOF)
analysis was first applied to determine the border of the dipole
regions (Fig. 1A or SI Appendix, Fig. S1), according to which 190
nodes were included in the western part of the dipole (the blue
grid points in Fig. 1A) and 156 nodes in the eastern part (the red
grid points in Fig. 1A) for further analysis. Based on the daily SST
anomaly (SSTA) data, connections between these two regions
were calculated using climate network approaches to identify the
links between each node in the western region and each node
in the eastern region. In this study, the link between each pair
of nodes is defined as the similarity of the SSTA, where the
link strength is quantified using a correlation-based technique
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Fig. 1. The constructed climate network in the TIO and its composite of node degree. (A) The regions are determined according to the definition of the
IOD based on EOF2 of SSTA. The eastern and western regions are represented by blue and red nodes, respectively. (B) The spatial distribution of composite
of node degree in the eastern region. (C) Same as B but in the western region. Regions A (black box from 50◦E to 70◦E and 10◦S to 10◦N) and B (black box
from 90◦E to 110◦E and 10◦S to the equator) are part of the eastern and western regions, respectively, used to calculate DMI.
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(Materials and Methods). The contribution of a given node (e.g.,
node i in the western region) in the network is thus estimated
by adding up the link strengths between this node and all the
nodes in the other region (e.g., the eastern region), with the total
link strength characterizing the node degree. In Fig. 1 B and C,
the node degree for each node in the studied regions is shown.
Clear negative patterns are found in the regions where the well-
known dipole mode index (DMI) is defined. The black boxes
(50◦E to 70◦E, 10◦S-10◦N, region A; 90◦E to 110◦E, 10◦S to the
equator, region B) denote the regions where the regional average
SSTAs are used to calculate the DMI (Materials and Methods).
Since on average, the negative node degree indicates the opposite
changing directions of the SSTAs in both regions, the results from
our climate network analysis reflect the basic feature of the zonal
dipole mode in the TIO.

To study the temporal evolution of the climate network and
its relation with the IOD events, we used the DMI index to
define the IOD events. If the mean DMI is above (below) 0.5 ◦C
(−0.5 ◦C) for three consecutive months, a pIOD (negative IOD
[nIOD]) event is detected (Fig. 2 and SI Appendix, Table S1).
The node degree is determined in a moving time window of 1
y (using all days of the year, i.e., 365 d), and the total degree
(TD) is obtained as the sum of all the node degrees in region
A (or B) (Materials and Methods). As suggested in refs. 39, 40,
the TD measures the interactions between the dipole regions.
Accordingly, a negative TD that is larger in its absolute value
indicates a stronger negative connection between both regions
(Fig. 2A). As expected, they are negative most of the time,
reflecting the characteristics of the dipole pattern. There is a
quasi-annual cycle in the TD time series indicated by the spectral
density analysis (SI Appendix, Fig. S2), and the peak usually ap-

pears in December (Fig. 2). By repeating the calculations of the
TD using randomly selected nodes around the world (Materials
and Methods), a threshold (red curve in Fig. 2A) is estimated
to determine whether the observed negative TD is above the
significance level of 95%. Taking each year as a unit, the years
exceeding the threshold are detected (green triangles in Fig. 2A),
indicating that there the anticonnections between the dipole
regions are statistically significant. Compared to the DMI index
(Fig. 2B), a fascinating finding is that the years with statistically
significant negative TD values are frequently followed by years
with IOD events. Of the total 15 IOD events from 1984 to 2020,
11 IOD events (6 pIODs and 5 nIODs) occurred in the next year
after a significant TD appeared, suggesting that the TD may serve
as a potential early warning signal for the onset (regardless of the
sign) of IOD events.

The question is, however, where does this early warning signal
originate from? Recall the definition of the TD. Its magnitude
depends on the link strength between each pair of nodes from
the dipole regions and the number of negative links. Fig. 2C
shows that the latter is the main reason for the enhancement
of the TD. In other words, the statistically significant negative
TD is mainly induced by the fact that more grid points between
the dipole regions are negatively linked (see SI Appendix, Fig. S3,
for the detailed locations with enhanced cooperativity). This
cooperative behavior among a large number of grid points can
amplify signals from noises, which is a typical advantage of the
climate network analysis in detecting precursors. A more detailed
study further revealed that the statistically significant negative
TD may have originated from the quasi-biennial variations of
the TIO. As shown in SI Appendix, Figs. S4 and S5, after filtering
out the quasi-biennial variability from the SSTA in TIO, by

Fig. 2. Early warning signal based on climate network and 10-m zonal wind indicator. (A) The TD TD(t) shows the fluctuation of early warning signals for
IOD (black dotted line). The gray bars show TD(y) derived from TD(t) in each year, and the red dotted line shows the threshold TDTH(y) for TD(y) with
significance at the confidence level of 0.05. The green triangles represent the years when TD(y) exceeds TDTH(y), indicating the early warning signals are
released 1 y in advance. (B) The green bars show the next years followed by early warning signals. The black curve is the 3-mo running mean DMI, and the
pIOD and nIOD events are represented by red and blue areas above and below 0.5 ◦C and −0.5 ◦C (dotted lines), respectively, for consecutive 3 mo. The
green bars with nothing, dots, and oblique lines represent correct alerts, false alerts, and an alert that needs to be confirmed in the future, respectively. (C)
The relationship between the TD (the black line, which is the same as in A) and the number of negative links connecting regions A and B (the blue line) is
highly negative correlated with a correlation coefficient of −0.98. (D) The diagram of 10-m zonal wind index (Materials and Methods) in December of years
when early warning signals are released and the IOD amplitude in the next year. The blue and red circles represent nIOD and pIOD events, respectively,
among the correct alerts, and the black ones represent the false alerts. The numbers in the circles stand for the year when early warning signals are released.
The vertical dotted lines indicate ±0.5 SD of December wind anomalies. The horizontal dashed lines represent 0.5 ◦C and −0.5 ◦C for DMI index.
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repeating the climate network analysis, the early warning signal
was no longer detectable. Previous studies have reported that
the IOD has variabilities of multiple time scales (41). While
the background state of the eastern Indian Ocean thermocline
depth may modulate the frequency of the IOD on decadal scales
(25, 26), the quasi-biennial variability in the TIO theoretically
can contribute to the early warning of the IOD. The dilemma,
however, is that one cannot simply use the quasi-biennial vari-
ability to predict the IOD due to its multiscale characteristics.
As shown in SI Appendix, Fig. S6, more than half of the IOD
events are incorrectly forecasted if using the IOD state of the
previous year as a judgement for the occurrence of the IOD in the
following year. Therefore, taking the advantages of the climate
network analysis, the significant negative TD arising from the
cooperative behaviors of a large number of gird points may serve
as an objective detection of the TIO state that favors seesaw-like
change. Although this TIO state does not necessarily induce an
IOD event, as the arising of IOD events also depends on how the
trigger and feedback processes work, the significant negative TD
may still be considered as a reasonable precondition of the IOD
in the following year.

Determining the Signs of the Forewarned IOD Event. Using the
climate network approach, we detected a signal that forewarns
the occurrence of IOD events by the end of the previous year.
However, the detected early warning signal can only inform us

whether an IOD event may occur in the following year, without
any information about the sign. Since the early warning sig-
nal is associated with the quasi-biennial variations of the TIO
(SI Appendix, Figs. S4 and S5), a straightforward way to deter-
mine the sign of the forewarned IOD event is to use the equa-
torial zonal wind over the Indian Ocean (SI Appendix, Fig. S7),
which has been well recognized to have a quasi-biennial cycle and
is closely coupled with the IOD (1).

In the remainder of this section, we analyze the 10-m zonal
wind field over the TIO. A crucial finding is that the composite
wind fields in December are characterized by the opposite spatial
patterns, typically preceding different (positive or negative) IOD
events occurring in the following year (SI Appendix, Fig. S8). This
result is confirmed with more details in Fig. 3, which shows a
clear temporal evolution of the air–sea coupled system in the
Indian Ocean. Unlike the SST–wind coupling, where the easterly
(westerly) equatorial zonal wind prevails in the boreal summer
and autumn and coevolves with positive (negative) IOD events,
in the previous December, the wind seems to be still statistically
related to the signs of the IOD events, but the direction is
opposite. From December to the next October, the continuous
evolution of the wind field and the corresponding changes of the
depth of the 20 ◦C isotherm can be clearly observed (Fig. 3).
In addition to the composite analysis, the temporal evolution
of individual events was also studied (e.g., the pIOD event in
1994 and the nIOD event in 1998; SI Appendix, Figs. S9 and S10),

Fig. 3. Composite analysis of 10-m wind and the depth of 20 ◦C isotherm for pIOD and nIOD. (A–F) The composite of 10-m wind (arrows) and the depth
of 20 ◦C isotherm (colors) for the nIOD of correct alerts from the previous December in which the forecast starts initially to the current October in which
IOD reaches its peak. (G–L) The same as A–F but for pIOD. The nodes with magenta arrows and green dots are significant at the confidence level of 0.05 for
10-m wind and the depth of 20 ◦C isotherm, respectively.
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which further highlighted the potential relations between the
December zonal wind direction and the signs of the IOD event
in the following year. Based on this phenomenon, we define the
new index UeD as the December mean zonal wind over the region
from 70◦E to 100◦E and 5◦S to 5◦N (SI Appendix, Fig. S8C). By
referring to the directions of UeD , we found that the correctly
forewarned IOD events by the climate network analysis (Fig. 2B)
are clearly divided into two groups. As shown in Fig. 2D, among
the 17 early warnings alerted by the TD, there are 11 alerts that
correctly predicted the occurrence of IOD events (red and blue
circles). After taking UeD into account, all the pIOD and nIOD
events are successfully separated. Therefore, UeD can serve as a
useful indicator to predict the signs of the predicted IOD events.

It is worth noting that the equatorial zonal wind in Decem-
ber received little attention in previous studies. This is because
December is at the time when the signal-to-noise ratio is low and
the prediction of the IOD is difficult. The indicative effect of UeD

may come from the quasi-biennial cycle of the system, where the
equatorial zonal wind direction in December is usually opposite
to that in the following boreal summer and autumn. This biennial
tendency could be related to the monsoon–ocean feedback (13),
the tropospheric biennial oscillation (42), and the quasi-biennial
component of ENSO (13) and its combination mode (6), but
more detailed studies are still needed to better understand this
phenomenon. Here the use of the equatorial zonal wind direction
is only a possible (but not perfect) way to judge the phase of the
forewarned IOD event. A more physically reasonable judgment
of the sign could be made by analyzing the subsequent trigger
and feedback processes, but this will lead to a shorter warning
time. In addition, we also would like to emphasize that the early
warning skills of this study mainly come from the climate network

analysis. Using only the quasi-biennial variability of the system
cannot give a trustworthy prediction of the IOD. As shown in
SI Appendix, Fig. S6, if the onset of the IOD as well as its phase
are predicted according to the IOD state from the previous year,
only 5 out of the 15 events are correctly forecasted, while the false
alarm rate is as high as 66.7%.

Evaluation of the Early Warning Skill. Based on the above results,
we suggest a network-based approach for the early warning of
IOD events. It consists of two main steps. First, check whether
the total number of degrees between the dipole regions A and
B is significantly enhanced within the considered year. If yes, an
IOD event is predicted in the next boreal summer and autumn.
Second, the direction of the equatorial zonal wind in December
(i.e., UeD ) could be further used to determine the sign of the
predicted IOD event. If a westerly (easterly) equatorial wind
prevails in December, a pIOD (nIOD) event is expected. Follow-
ing this strategy, one can predict the occurrence of IOD events
from the previous December. As shown in Fig. 4A, among the
15 IOD events during the study period from 1984 to 2020 (see
also SI Appendix, Table S1), 11 events are correctly predicted;
i.e., we obtained a hit rate of 73.3% (black open circle in Fig. 4B).
Particularly, the consecutive years without IOD events (i.e., 2000
to 2004) and the years with consecutive pIOD events (i.e., 2017
to 2019) are correctly predicted, indicating a promising early
warning skill. Besides the hit rate, the false alarm rate was also
estimated as the ratio of the false alarms to all the alarms issued
by the approach. Of the 17 alarms sounded by the network-
based approach, there are 6 false alarms, i.e., a rate of 35.3%.
For more details, we further checked the results for different
IOD events separately. For the pIOD, six (out of nine) events

Fig. 4. Results of the network-based approach and the dynamical models. (A) Result of the network-based approach on IOD events forecast. The forecasted
pIOD and nIOD events are represented by red and blue bars, respectively, and the real IOD events are represented by the red and blue areas based on its
definition. The black curve is the 3-mo running mean DMI, and the dotted lines stand for 0.5 ◦C and −0.5 ◦C. The meanings of red or blue bars with dots and
oblique lines are the same as in Fig. 2B. (B) The diagram of false alarm rate and hit rate (Materials and Methods) on the performance of the network-based
approach and dynamical models. The circles, squares, asterisks, and triangles stand for performance of the network-based approach, the BCC_CSM, the ECs5,
and the CFSv2, which forecast initially in the previous December, the previous December, the current May, and the current February, respectively. The black,
blue, and red colors of the four marks represent the performance of these four approaches on the total, nIOD, and pIOD events.
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are correctly predicted, i.e., a hit rate of 66.7% and a false
alarm rate of 33.3% (red open circle in Fig. 4B). For the nIOD,
the hit rate is even higher (83.3%), and the false alarm rate is
37.5% (blue open circle in Fig. 4B). Of the six nIOD events
that occurred from 1984 to 2020, the network-based approach
successfully predicted five events. By combining the hit rate
with the false alarm rate, we further calculate the Heidke skill
score (HSS) (Materials and Methods) (37) to better assess the
early warning skills. For the network-based approach, the HSS
is 0.4510 (SI Appendix, Table S2).

Next, we compare the performance of this approach with
the commonly used climate models. Three operational climate
prediction models were considered in this study, including the
Beijing Climate Center Climate System Model (BCC_CSM),
the European Centre for Medium-Range Weather Forecasts
(ECMWF) seasonal forecast system version 5 (ECs5), and the
National Centers for Environmental Prediction (NCEP) cou-
pled forecast system model version 2 (CFSv2). As shown in
SI Appendix, Fig. S11, the BCC_CSM provides long-term consec-
utive forecasts throughout each year, which allows for an evalua-
tion of the forecasting skill starting from the previous December,
the same as in our approach. The ECs5 and the CFSv2 forecast
six and nine consecutive months and are initialized every month.
To capture the IOD peak phase from September to November,
the evaluations of the ECs5 and the CFSv2 started from May
and February, respectively. The results of the three models are
shown in Fig. 4B as open squares, asterisks, and open triangles.
Compared to our network-based approach, the hit rates of the
dynamic models are much lower, and the false alarm rates are
higher. The BCC_CSM has the same forecast starting month
(i.e., December) as the network-based approach, but the hit rate
is only around 10% (black open square in Fig. 4B), which is much
lower than that of the network-based approach (73.3%). In fact,
there are only 2 y that are predicted to have IOD events in the
BCC_CSM. As shown in SI Appendix, Fig. S11 and Table S1, one
is a correct forecast of a pIOD in 2018, and the other one is an
incorrect forecast of an nIOD in 2015. By taking both the hit
rate and false alarm rate into account, the HSS value is equal
to 0 for the BCC_CSM (SI Appendix, Table S2). The low fore-
cast skills indicate the winter predictability barrier (19), which
seems to have limited effect on the network-based approach.
By delaying the forecast starting time, the performance of the
dynamic models is enhanced. As the open triangles show, when
it is initialized in February, the CFSv2 has a hit rate of 26.7%
(black triangle in Fig. 4B), and half of the nIOD events were
correctly forecasted (blue triangle). However, the false alarm rate
is still high (55.6%). Compared to the network-based approach
that starts the forecast 2 mo earlier, the overall forecasting skill
of the CFSv2 is still much lower with HSS = 0.0303. Forecasting
from May, the ECs5 has shown the best performance among
the three models (asterisks in Fig. 4B). The hit rate successfully
exceeds 50%, and the false alarm rate is 40%. The forecast skill
for the pIOD events (red asterisks) was found to be compa-
rable with the network-based approach. However, it is worth
noting that the overall skill is still lower with HSS = 0.2394, and
most importantly, the forecast starts at the time when the IOD
events are about to develop clearly, which is already 5 mo later
than the network-based approach. Accordingly, although there is
still room for improvement in the network-based approach (i.e.,
the false alarm rate is a bit high), compared with the current
models, it provides a clear superiority in predicting the IOD
events. To test the robustness, different IOD classifications (3,
14, 15) were used (SI Appendix, Table S3), and their correspond-
ing HSS values were obtained (SI Appendix, Table S4). Regard-
less of the time span (SI Appendix, Table S3), most IOD events
identified by different classifications are consistent with each
other. As a result, the predictive skill based on the HSS values
(SI Appendix, Table S4) was basically unchanged, indicating that

this network-based approach is the best, while ECs5 is better than
BCC_CSM and CFSv2.

Discussion
Over a long period of time, the prediction of the IOD dynamics
has been limited by the winter predictability barrier, and over-
coming this barrier remains a crucial challenge. In this work,
we approach this problem from a data-driven perspective: the
climate network analysis. The key advantage of this approach
is that it takes into account all the interior grid points in the
climate system, such that even weak signals that are otherwise
often neglected contribute to the overall network connectivity,
eventually leading to significant effects when exhibiting coop-
erative behavior. Based on this advantage, we reveal that a
significant strengthening of the negative connections in the IOD
dipole regions during the boreal winter is associated with the
occurrence of the IOD in the following year. In this way, 11 IOD
events (out of the 15 events during the years from 1984 to 2020)
were correctly forewarned. By referring to the equatorial zonal
wind directions in December, the signs of IOD events can be
further determined. Using this network-based approach, more
than 70% of the IOD events during the past 37 y were successfully
forewarned from the December of the previous year. This skill
strongly outperforms that of the current dynamic models, even
for the dynamic models that start the forecast a few months later.

An interesting facet of the results is that the early warning
signal seems to have multidecadal variability. It arises more fre-
quently in the 1990s and 2010s (Fig. 2A), which relates very well
with the fact that more IOD events occurred in these two separate
decades. In the past years, the decadal variability of the IOD has
been widely and deeply studied (41, 43, 44), and the background
state of the eastern Indian Ocean thermocline depth is suggested
as an important factor (25, 26). Affected by the decadal variations
from the Pacific via both oceanic teleconnections (i.e., through
the Indonesian Throughflow) and atmospheric teleconnections
(i.e., wind forcings), the eastern Indian Ocean thermocline ex-
hibits decadal variations that can further modulate the frequency
of the IOD on decadal scales (25, 26, 45–47). In this study, since
the early warning signal is considered a measure of the TIO
state that favors the seesaw-like change of the SSTA in the TIO,
its multidecadal variability thus indicates that the seesaw-like
change of the SSTA is easier to trigger when the eastern Indian
Ocean thermocline depth is shallower. Although the detection
of the early warning signal is associated with the quasi-biennial
variations of the TIO (SI Appendix, Figs. S4 and S5), the success-
ful capture of the decadal variability of the IOD reconfirmed the
superiority of this network-based approach, which is far beyond
the idea of simply using the quasi-biennial variability to predict
the IOD (SI Appendix, Fig. S6).

We emphasize that the early warning signal detected from
the climate network analysis is mainly attributed to the co-
operative behaviors of a large number of grid points in the
TIO, not the relatively weak spatially averaged link strengths
(SI Appendix, Fig. S3). This is in line with the well-known fact
that the signal-to-noise ratio is low in boreal winter when the
previous IOD disappears and a new one is about to be initiated.
Accordingly, it is difficult to identify specific processes from
boreal winter to link with the onset of the IOD, which is well rec-
ognized as the winter predictability barrier (24). Here we touched
this issue alternatively by monitoring the SST state of the TIO.
When an increasing number of the grid points between the dipole
regions are negatively linked, even if the average link strength is
weak, we may be able to forewarn a possible IOD onset in the
following year. Not only can this typical advantage of climate
network analysis be used for the early warning of the IOD, it
also has potential in the study of other climatic events, e.g.,
ENSO (39, 40) or PDO (34). Its outstanding ability in detecting
precursors especially when the signal-to-noise ratio is low thus
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may attract attentions from a broader audience. Of course, one
should note that whether the forewarned event will eventually
arise also depends on how the trigger and feedback processes
work (e.g., see SI Appendix, Fig. S12, where the composites of 10-
m wind and the depth of 20 ◦C isotherm for the incorrect alerts
are shown).

Combining with the equatorial zonal wind directions in De-
cember allows us to make a judgement on the IOD phase.
However, this is not a perfect way that relies much on the bi-
ennial tendency of the equatorial zonal wind. For example, from
the early warning signal an IOD event in 2021 was forewarned
(Fig. 2), and the phase is predicted as positive using data by
December 2020 (SI Appendix, Fig. S13). However, the biennial
tendency of the equatorial zonal wind was disrupted by two
consecutive La Niña events in 2020/2021 and 2021/2022, which
lead the IOD in 2021 toward negative phase. A similar case
is also found in 1999. Accordingly, a further combination of
the network-based approach with subsequent climatic processes
is needed, and an extension of the approach using additional
metrics [i.e., the correlation and phase-analysis-based metrics
(48) and causality analysis (49)], or a more generalized approach
based on combined network analyses covering both the Indian
Ocean and the Pacific Ocean, may be helpful to improve the
early warning skills of the approach. Besides, the network-based
approach can forewarn the occurrence of IOD events, but it is
incapable of predicting the event magnitude. A combination of
the climate network approach with an analysis of the system
complexity, as indicated by a recent study on the El Niño forecast
(50), might be helpful and worthy of further research. These
challenges go beyond the focus of this study but deserve special
attention in the future.

Materials and Methods
In this work, daily and monthly SSTA of National Oceanic and Atmospheric
Administration (NOAA) Optimum Interpolation SST V2 datasets (51, 52)
for the time period from 1982 to 2020 with the horizontal resolution of
2◦× 2◦ were analyzed. The research domain covers the TIO from 40◦E
to 110◦E and 10◦N to 10◦S. There are 346 grid points (nodes) in total.
Based on the monthly SSTA, EOF analysis was applied, and the first and
the second modes are shown in SI Appendix, Fig. S1. The EOF1 describes
the Indian Ocean basin-wide warming (IOBW) (53) (explaining 40.1% of
the total variation; SI Appendix, Fig. S1A), whose time series (PC1) is highly
correlated with the mean SSTA over the TIO (SI Appendix, Fig. S1B). The
EOF2 (explaining 15.8% of the total variation) displays a dipole mode
(SI Appendix, Fig. S1C) which is identified as the IOD. According to the
EOF2 spatial pattern, 190 nodes are classified into the western part of the
dipole (blue grids in Fig. 1A) and 156 nodes in the eastern part (red grids in
Fig. 1A). The time series of PC2 measures the temporal variations of the IOD,
but in this study we used the well-known DMI to describe the IOD event.
The DMI is defined as the difference of regional average SSTA between
region A (50◦E to 70◦E, 10◦S to 10◦N) and region B (90◦E to 110◦E, 10◦S to
the equator). From Japan Agency for Marine-Earth Science and Technology
(JAMSTEC), we obtained the monthly DMI records, which were calculated
based on the NOAA Optimum Interpolation SST V2 dataset (51). A positive
(negative) IOD event is defined if the 3 mo running mean DMI is ≥ 0.5 ◦C
(≤ −0.5◦C) for consecutive 3 mo. From 1984 to 2020, there are 15 IOD events
in total with 9 positive and 6 negative events (SI Appendix, Table S1). The
time series of PC2 and the DMI are highly correlated (in SI Appendix, Fig. S1D).
In addition, we also employed the monthly 10-m wind with 1◦× 1◦

horizontal resolution and subsurface temperatures with 1◦× 1◦ horizontal
resolution and 41 vertical levels (1 to 2,000 m). Both datasets share the
same time period with SSTA. The 10-m wind data were obtained from
ECMWF Reanalysis v5 (ERA5) (54), and the subsurface temperature data were
obtained from the Institute of Atmospheric Physics (IAP), Chinese Academy
of Sciences (CAS) (55). We used the subsurface temperatures to calculate the
depth of 20 ◦C isotherm. Annual cycles in all the above-mentioned records
have been removed before analysis.

In order to evaluate the performance of the approach proposed in this
work, we also analyzed the DMI forecasts from three dynamical models
(SI Appendix, Fig. S11): the BCC_CSM, the ECs5, and the CFSv2. For the
BCC_CSM, we adopted the hindcast and real-time forecast initialized in
every December from 1991 to 2018, which make climate predictions for

12 consecutive months (January to December). For the ECs5, the hindcasts
initialized in every May from 1993 to 2016 are analyzed, which give 6-mo
predictions (June to November) to capture the mature IOD in boreal fall.
As for the CFSv2, 36 forecasts are provided from 1984 to 2019, with nine
consecutive months (March to November) forecasted for each year after
being initialized in February.

Climate Network. The daily SSTA is used to construct the climate network.
To avoid potential influences of the IOBW pattern (i.e., the EOF1), we first
removed the TIO average SSTA to obtain Tk(t) for each grid point. In the
research domain (Fig. 1A), the grid points are considered as nodes in the
climate network. For each pair of nodes between the western and eastern
region (blue and red nodes in Fig. 1A), we computed for each 30th day t in
the considered time span from January 1984 to December 2020 the cross-
correlations with time lags θ between 0 and 200 d, as shown:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ct
i,j(θ) =

〈Ti(t−θ)Tj(t)〉−〈Ti(t−θ)〉〈Tj(t)〉√
〈(Ti(t−θ)−〈Ti(t−θ)〉)2〉〈(Tj(t)−〈Tj(t)〉)2〉

Ct
i,j(−θ) =

〈Ti(t)Tj(t−θ)〉−〈Ti(t)〉〈Tj(t−θ)〉√
〈(Ti(t)−〈Ti(t)〉)2〉〈(Tj(t−θ)−〈Tj(t−θ)〉)2〉

, [1]

where i and j represent the nodes in the western and eastern region,
respectively, and the brackets denote an average over the last 365 d (as a
time window) before t. For each time point t, the link strength (39, 40) is
thus defined using the maximum, the mean, and the SD of the 401 cross-
correlation coefficients, as the coefficient W,

Wi,j(t) =
Ct

i,j(θ
∗) − 〈Ct

i,j(θ)〉√
〈(Ct

i,j(θ) − 〈Ct
i,j(θ)〉)2〉

, [2]

where θ∗ is a specific value of θ at which Ct
i,j(θ

∗) is the maximum value
among the 401 correlation coefficients. It is worth noting that the link
strength can be either positive or negative, depending on the signs of the
maximum absolute cross-correlations. For a given node i in the western
region, by summing the links connected with all the nodes in the eastern
region, the node degree K (27) is determined as

Ki(t) =
∑

j∈EasternRegion

Wt
i,j. [3]

This equation also applies for the calculation of node degree in the
eastern region. The spatial distributions of the node degree in both western
and eastern regions are shown in Fig. 1 B and C, where the enhanced areas
are highly coincident with the regions A and B, indicating that the node
degree indeed reflects the dipole features of the IOD. By summing all the
node degrees in region A or B, the TD (30) is defined as

TD(t) =
∑

i∈A,j∈B

Wi,j(t), [4]

which measures how the two regions are linked with each other. In this
work, TD(t) is the metric we used for the early warning of IOD events.

Threshold. To determine whether the calculated TD(t) is physically active,
we defined a threshold for each time point t using spatial random test. For
each node j in region B, we calculated the link strengths between j and other
nodes that are randomly chosen around the globe. By randomly choosing
121 nodes (the same node number as in region A), one could obtain the
node degree for node j. After repeating this process 1,000 times for each
node in region B at each time point t, we get the threshold value for each
node degree at the 95% significant level, defined as KTH

j (t). Accordingly, the
threshold for the TD is defined as

TDTH
(t) =

∑
j∈B

KTH
j (t). [5]

Once the TD(t) calculated from the observational data exceeds the
threshold TDTH(t), an early warning signal will be released. It is worth noting
that in practice, we take each year as a unit and make the early warning
annually. This means that we only compare the maximum absolute TD(t)
value in each year (denoted as TD(y)) with the maximum TDTH(t) in the same
year (denoted as TDTH(y)). Normally, the TD(t) displays a downward spike
in most years (Fig. 2A). Accordingly, the TD(y) is usually the minimum of
the downward spike. However, it should be noted that TD(y) and TD(y + 1)
cannot share the same downward spike to avoid the reuse of a potential
early warning signal. This means if a TD(t), as a part of the downward spike
from the last year y, has a large absolute value at the beginning of the year
y + 1, we do not consider it anymore as a potential candidate of TD(y + 1).
One should also note that the threshold at a given time point is calculated
using data from the past 365 d. As a result, there are temporal variations in
the threshold.
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The Network-Based Approach. In order to forewarn the IOD events, the
approach proposed in this work consists of two steps: 1) One needs to check
whether the calculated TD TD(y) exceeds the threshold TDTH(y) or not. If
yes, an IOD event is expected in the coming year. 2) One needs to check the
mean equatorial zonal wind over the region from 70◦E to 100◦E and 5◦S
to 5◦N in December (defined as UeD). A westerly (easterly) UeD indicates a
positive (negative) IOD event in the next year. This network-based approach
relies on data mining and is able to make an early warning of the IOD
from the December of the previous year. For estimating the performance of
our approach on the IOD forecast, the hit rate for total (positive/negative)
events, which is defined as the percentage of the correctly alerted total
(positive/negative) IOD events in the total (positive/negative) IOD events,
and the false alarm rate for total (positive/negative) events, which is defined
as the ratio of the total (positive/negative) false alarm numbers to the total
(positive/negative) alarm numbers, are proposed here (Fig. 4B).

HSS. In order to better demonstrate the predictive skill for each prediction
approaches mentioned here, we employed the HSS (37) to assess their
predictive skill, which considers both the correct and incorrect alarms. It is
defined as

HSS =
2(ad − bc)

(a + c)(c + d) + (a + b)(b + d)
[6]

for a skill comparison versus randomness. a and b represent the number of
alarms that are correctly and incorrectly sounded, respectively. c denotes the
times of IOD events that are missed by the early warning signal TD, while d
counts the times when neither an alarm is sounded nor a IOD occurs. HSS
= 0 represents a uniformly random warning, while HSS = 1 represents a

perfect skill. The values (a, b, c, and d) for computing HSS can be found
in SI Appendix, Table S2.

Data Availability. The data supporting the findings of this study are
publicly available and can be downloaded from the links as follows:
NOAA daily and monthly SST (51, 52), https://psl.noaa.gov/data/gridded/
data.noaa.oisst.v2.highres.html and https://psl.noaa.gov/data/gridded/data.
noaa.oisst.v2.html; ERA5 monthly 10-m wind (54), https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era5; and IAP monthly subsurface
temperature at different depths (55), ftp://www.ocean.iap.ac.cn/cheng/
CZ16_v3_IAP_Temperature_gridded_1month_netcdf/. The monthly DMI
data were obtained from the JAMSTEC, and one may request
the data by contacting JAMSTEC at dmo@jamstec.go.jp. The codes
that support the findings of this study are available from GitHub,
https://github.com/luzhenghui/IOD_CN_code. MATLAB code (*.m) data have
been deposited in GitHub (https://github.com/luzhenghui/IOD_CN_code).
All other study data are included in the article and/or SI Appendix.
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