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Abstract Synchronization in pulse-coupled oscillators has been broadly studied under different perspec-
tives. We present a game with simple rules to describe synchronization in such kinds of oscillators. This
game, intended to describe easily how fireflies synchronize, constitutes a discrete model different from those
based on maps, ordinary differential equations, or multi-agent systems. Our results on complete synchro-
nization depend strongly on the used rules that we compare statistically. We also calculate the basins of
attraction to quantify the importance of the initial conditions in reaching or not synchronization and the
time intervals required for that.

1 Introduction

Synchronization is one of the most common phenom-
ena occurring in oscillating systems in nature and in
man-made systems; it inheres to the adjustment of
self-sustained oscillators rhythms [1]. Since the begin-
ning of this century, there has been an explosion of
studies about synchronization in systems of very dif-
ferent nature such as physical [2–13], chemical [14–
17], neuronal [18–26], biological [27–33], and even eco-
nomic [34]. A paradigmatic example of synchronization
is that attained by males of several fireflies species, a
phenomenon widely described from qualitative obser-
vations [35–37], through experiments [38–43] or with
electronic proxies emulating fireflies [44–47], and by
physico-mathematical models [48–54] based on differ-
ential or difference equations, or on multi-agent interac-
tions. A review about fireflies’ synchronization is given
in Ref. [55] and the modeling aspects in Ref. [56], where
simple algorithms in the form of rules of a game are
introduced. This game, called the “flash game” (FG)
[57], is a simple one that drives the players (fireflies) to
synchronize. It has been extended for the situation of
four different rules and briefly analyzed in Refs. [55,56].

Here, we perform a complete analysis of the FG for
several situations and games with two, three and four
players, obtaining for each one of the situations and
initial conditions the basins of attraction which give
us the information about whether or not the fireflies

a e-mail: kurths@pik-potsdam.de (corresponding author)

synchronize and how much time does it take for reach-
ing complete synchronization (all the fireflies flashing
together).

The work is structured as follows: in Sect. 2, the con-
figurations and the rules of the game are explained.
Section 3 starts with a combination analysis about the
possible number of games; additionally, some time series
and basins of attraction are shown. The results concern-
ing synchronization time and the situations in which
synchronous behavior is attained are exhibited and sta-
tistically compared also in Sect. 3 to get an insight
about the rules and configuration that favor synchro-
nization. Finally, in Sect. 4, we point out the main con-
clusions and provide some perspectives of the work.

2 Method: the game and its rules

As stated in Sect. 1, there are several types of models
to explain how fireflies synchronize, going from multi-
agent systems to continuous or discrete dynamical sys-
tems. Here, we address the phenomenon mentioned
above with the idea of a simple game early introduced
by Stewart and Strogatz [57,58] for the purpose of
explaining fireflies flashing behavior. Actually, the game
(FG) consists of a very simple algorithm that in certain
cases drives the fireflies to synchronize, emitting their
flashes simultaneously.

The FG is a two-dimensional game board played on a
polygon of ns sides, each of them containing nb boxes,
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i.e., N = ns × nb boxes on the board. The number of
players, or fireflies, is np. The goal of the game is for
all fireflies to flash synchronously and simultaneously
in the shortest possible time, given a specific set of ini-
tial conditions. Despite the easiness of the FG, there
have been some recent proposals to exploit the original
FG idea to other more realistic situations by means of
different rules for the FG [55,56]. Those rules give the
system more flexibility to be adapted to several cases
according to the system, and in this way, permitting
to capture the main features of entrainment and syn-
chronous behavior in fireflies. We formulate the pro-
posed rules for the FG as:

1. The first box plays the role of the flashing box, i.e.,
when a player (firefly) arrives at this box, it flashes.

2. Each firefly starts the game in any box (initial con-
dition) except the flashing one.

3. Each firefly advances clockwise one position per time
step, except when other(s) firefly(ies) attain(s) the
flashing box, changing the dynamics according to
Rule 4.

4. When a firefly reaches the flashing box, it remains in
that position for one time-step. On the other hand,
the other fireflies go forward according to the number
of the side of the polygon (ns) on which they are
located: when a firefly is on a box of the first side,
it advances one position as in Rule 3, when it is
on a box of the second side, it moves forward two
positions, and thus when it is on a box of the nth
side, it runs ahead n positions.

5. Repeat from Rule 3 to update the position of the
players.

The rules mentioned above might allow or not the
occurrence of complete synchronization. The game’s
dynamics strongly depend on the initial conditions and
Rule 4 because it determines what happens to a firefly
when it approaches, arrives, or passes through the flash-
ing box. We consider the following four complementary
variants of Rule 4, named nr:

(a) When a firefly is in a box located on the last side
of the polygon, it might overtake the flashing box
without flashing in its cycle. This fact imposes a dif-
ficulty in attaining complete synchronization. This
variant represents the basic Rule 4, as it does not
impose any constraints.

(b) No firefly can overtake the flashing box, even if it
has received an impulse that would push it to pass
over the flashing box. Instead, it has to stop at
the flashing box, and the remaining fireflies update
their cycle positions accordingly (unless they are
already at the flashing box). This means that fire-
flies cannot complete a cycle without flashing.

(c) When a firefly reaches the flashing box, the others
advance as stated in Rule 4 due to the excitatory
coupling. It is possible that during this flashing,
one or more other fireflies also reach the flashing
box, resulting in more than one firefly on that box.

Due to inhibitory coupling, these fireflies continue
to flash and wait until no more fireflies reach that
position. When two or more fireflies are in the flash-
ing box, the other fireflies advance only one position
instead of the n positions specified in the Rule 4.

(d) Finally, considering a similar situation as in (c) but
with the modification that when the fireflies are
forced to stay in the flashing box, the other fireflies
advance according to the standard Rule 4 and not
only one position.

The rules mentioned above are the basis of the work
for an in-depth analysis of the FG. Note that for two
players, the variants (c) and (d) of Rule 4 lead to the
same results than variant (b).

To illustrate how the game works, we represent in
Fig. 1a some frames of the game evolution reflecting the
rules (a)–(d) when np = 4 with the initial conditions
(p01, p02, p03, p04) = (5, 9, 14, 18), and some other pos-
sibilities for the cardboard as the triangular and octag-
onal shapes shown in Fig. 1b, c.

3 Results and discussion

As it is expected, the number of possibilities (results)
for the game is quite large and depends strongly on np,
ns and nb. A simple combinatorial permits us to com-
pute all the possible games ng by means of the following
expression:

ng = nr

nphigh∑

i=nplow

nshigh∑

j=nslow

nbhigh∑

k=nblow

(j × k − 1)i, (1)

where nplow, nphigh, nslow, nshigh, nblow and nbhigh,
being respectively the lower and higher considered val-
ues for the number of players, sides and boxes per side.
In particular, the lower number of the quantities refers
to the minimum number of these quantities that makes
sense to the game. For instance, we need at least two
players, the number of sides to complete a circuit is a
minimum of three, and the number of boxes per side
must be at least two. Concerning the computation of
the number of games ng using Eq. 1, we first consider
the simplest case when the quantities are fixed: np = 2,
ns = 3, nb = 2, and also the number of rules nr = 4,
we have:

ng = nr × (ns × nb − 1)np = 4 × (3 × 2 − 1)2 = 100.

In this work, we choose the following values: nr = 4,
nplow = 2, nphigh = 4, nslow = 3 (triangle), nshigh = 9
(nonagon), nblow = 2 and nbhigh = 9. With these values,
Eq. (1) gives the total number of possible games ng =
891585408 a quantity that approaches 9×108. To have a
more detailed insight about these possibilities, we show
the breakdown of each of the situations depending on
the number of sides and boxes.
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(a)

(c)

(b)

Fig. 1 a Frames of the game evolution for four players (fireflies) and the rules (a)–(d) considering for all the four cases
the same initial conditions (p01, p02, p03, p04) = (5, 9, 14, 18). Some other possibilities for the cardboard: b triangle and c
octagon

Table 1 Number of possible games when the number of players is np = 2 and for the four variants (nr = 4) according to
the number of sides of the polygon ns and the number of boxes per side nb

nb = 2 nb = 3 nb = 4 nb = 5 nb = 6 nb = 7 nb = 8 nb = 9

ns = 3 100 256 484 784 1156 1600 2116 2704
ns = 4 196 484 900 1444 2116 2916 3844 4900
ns = 5 324 784 1444 2304 3364 4624 6084 7744
ns = 6 484 1156 2116 3364 4900 6724 8836 11236
ns = 7 676 1600 2916 4624 6724 9216 12100 15376
ns = 8 900 2116 3844 6084 8836 12100 15876 20164
ns = 9 1156 2704 4900 7744 11236 15376 20164 25600

To analyze the numerous possibilities of the game,
we first inspected all the time series determining the
synchronization time. Second, we obtained the basins
of attraction of each possible game, determining the
median synchronization time, first and third quartiles,
and the percentage of synchronized events. Finally,
based on the information from Tables 1, 2 and 3, we
performed statistical tests to compare the features of
the results according to the geometry and number of
boxes of the cardboard, the number of players, and the
used rule.

To have a glimpse of those steps, in Fig. 2, we chose
possible games when np = 2 and the cardboards have
the same number of boxes (nb = 36), but with dif-
ferent geometries in them; for the first cardboard, the
geometry is a rectangle (ns = 4) with nine boxes per
side (nb = 9), and for the second, the shape is a
nonagon (ns = 9) with four boxes per side (nb = 4).
As mentioned above, when the number of players is

two, only the rules (a) and (b) are relevant because
rules (c) and (d) reduce to rule (b) in this case. The
time series corresponding to rules (a) and (b) for the
rectangular cardboard are shown in Fig. 2a, b respec-
tively, and in the same order for nonagonal cardboard
in Fig. 2c, d. In all cases, the set of initial conditions
are: (p01, p02) = (2, 22). Nevertheless, for the rectangu-
lar cardboard and rule (a), it is essential to remark that
considering the formal definition of synchronization, the
phase difference among the fireflies remains constant
from around the 100th turn, which constitutes phase-
synchronization. Still, fireflies 1 and 2 do not flash in
every cycle, and consequently, they do not flash simul-
taneously. On the contrary, when the rule is (b), the
synchronization time is 423 time steps. In the case of a
nonagon, the synchronization time for rules (a) and (b)
are 400 and 262 turns (time steps), respectively. The
basins of attraction are represented in Fig. 2e, f follow-
ing the same order of the first row. A simple inspection
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Table 2 Number of possible games when the number of players is np = 3 and for the four variants (nr = 4) according to
the number of sides of the polygon ns and the number of boxes per side nb

nb = 2 nb = 3 nb = 4 nb = 5 nb = 6 nb = 7 nb = 8 nb = 9

ns = 3 500 2048 5324 10976 19652 32000 48668 70304
ns = 4 1372 5324 13500 27436 48668 78732 119164 171500
ns = 5 2916 10976 27436 55296 97556 157216 237276 340736
ns = 6 5324 19652 48668 97556 171500 275684 415292 595508
ns = 7 8788 32000 78732 157216 275684 442368 665500 953312
ns = 8 13500 48668 119164 237276 415292 665500 1000188 1431644
ns = 9 19652 70304 171500 340736 595508 953312 1431644 2048000

Table 3 Number of possible games when the number of players is np = 4 and for the four variants (nr = 4) according to
the number of sides of the polygon ns and the number of boxes per side nb

nb = 2 nb = 3 nb = 4 nb = 5 nb = 6 nb = 7 nb = 8 nb = 9

ns = 3 2500 16384 58564 153664 334084 640000 1119364 1827904
ns = 4 9604 58564 202500 521284 1119364 2125764 3694084 6002500
ns = 5 26244 153664 521284 1327104 2829124 5345344 9253764 14992384
ns = 6 58564 334084 1119364 2829124 6002500 11303044 19518724 31561924
ns = 7 114244 640000 2125764 5345344 11303044 21233664 36602500 59105344
ns = 8 202500 1119364 3694084 9253764 19518724 36602500 63011844 101646724
ns = 9 334084 1827904 6002500 14992384 31561924 59105344 101646724 163840000

of the basins of attraction shows that for the rectangu-
lar shape under the rule (a), the complete synchroniza-
tion is rare (Fig. 2e). On the contrary, when rule (a)
is considered for the nonagonal shape, complete syn-
chronization is always achieved (Fig. 2g). When the
rule is (b), the basins of attraction for the rectangu-
lar and nonagonal cardboard look similar (Fig. 2f, h).
Even though, for the rectangular case, two diagonals of
the basin of attraction show initial conditions that do
not lead to complete synchronization. In contrast, for
the nonagon, all the initial conditions lead to complete
synchronization. It is interesting to note that rule (c)
has the largest proportion of initial conditions leading
to complete synchronization, but the largest synchro-
nization times—see Fig. 3e. We remark that the com-
putation of the basins of attraction is related to the
elapsed time (turns) to achieve complete synchroniza-
tion with simultaneous collective flashing.

We obtain some other 2-D sections of the basins of
attraction for four fireflies. Indeed, we now consider two
boards of boxes, one in octagon (ns = 8) and another
in nonagon (ns = 9) form, with nine (nb = 9) and eight
(nb = 8) boxes per side respectively, and initial condi-
tions (p01, p02) = (37, 37). The basins of attraction for
each rule are shown in Fig. 3a–d when the board is an
octagon, and in Fig. 3f–i when the board is a nonagon.
Note that in each panel, there is an upper color bar
showing in its extremes the situation of “no sync”, and
the maximum synchronization time. The correspond-
ing box plots displaying the medians and the quartiles
related to synchronization time as well as the percent-
age of complete synchronization events for each rule

are shown in Fig. 3e, j for the case of the octagon and
nonagon, respectively.

A visual and qualitative insight of the results set out
that, as expected, rule (a) is the less favorable to attain
complete synchronization. On the other hand, for the
octagon, the results of rules (b) and (d) seem to be
very similar, but the rule (d) is slightly more favor-
able to complete synchronization. Similarly, the visual
inspection for the nonagon shows us that for rule (c), in
almost all cases, complete synchronization is achieved
(99.25%), but in contrast, the synchronization times are
considerably longer than for rules (b) and (d). We also
note that rule (a) for the nonagon does not permit com-
plete synchronization; the only situation considered as
synchronization is that all the initial conditions are the
same. We also perceive that rules (b) and (d) are pretty
similar in the case of the octagon. Finally, comparing
the basins of attraction of octagon and nonagon, we
found that they remarkably resemble for all the rules.

The statistical analysis for the octagon (ns = 8,
nb = 9 and np = 4) indicates that the median time
of synchronization is the longest for the rule (c) and
the shortest for the rule (d). As the times of synchro-
nization do not follow a normal distribution, a Kruskal–
Wallis test was performed to look for differences in the
distribution of the four rules (χ2 = 1290.5, df = 3,
p < 2.2 × 10−16). A Dunn’s test for multiple com-
parisons showed that all pairwise comparisons between
rules (a) to (d) are significantly different (p < 0.05),
except between rules (a) and (b) (p = 0.84). The per-
centages of initial conditions for rules (a) to (d) leading
to complete synchronization were respectively 3.19%,
96.03%, 99.96%, and 96.63%. Thus, we can conclude
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Fig. 2 First row: a, b time series for the evolution of two
fireflies following the rules (a) and (b) above mentioned
when the cardboard is a rectangle (ns = 4) with nb = 9; c,
d for the evolution of two fireflies following the rules (a) and
(b) when the cardboard is a nonagon (ns = 9) with nb = 4.
The initial conditions in all cases are (p01, p02) = (2, 22).
Fireflies 1 and 2 evolution are represented with black and

orange lines, respectively. Second row: e, f basins of attrac-
tion for two fireflies and considering the rules (a) and (b)
when the in a, b; g, h when the cardboard is that used in c,
d. White boxes represent situations in which simultaneous,
collective, and persistent flashing (in every cycle) are not
achieved, i.e., there is no complete synchronization

that when using rule (d), the number of initial condi-
tions leading to complete synchronization is very high
with the shortest times.

For the case of the nonagon (ns = 9, nb = 8 and
np = 4), the median time is the longest for rule (c) and
the shortest for rule (d) (defining ts as the synchroniza-
tion time for achieving complete synchronization, ts(c)
> ts(b) > ts(d)). Note that the median time for rule
(a) (ts(a)) is only computable when all initial conditions
are the same. As the Kruskal–Wallis test was significant
(χ2 = 1788.3, df = 3, p < 2.2 × 10−16), a Dunn’s test
of multiple comparisons was performed. All the pair-
wise comparisons were highly significant (p < 0.001)
except the comparisons with the rule (a), because the
basin of attraction with rule (a) does not show any ini-
tial condition leading to synchronization, unless all the
initial conditions are the same. The percentages of ini-
tial conditions for rules (a) to (d) leading to complete
synchronization were, respectively, 0.02% (when all the
initial conditions are the same), 95.20%, 99.25% and
94.72%.

After the analysis of the examples mentioned above,
we perform a complete analysis for all the possible
basins of attraction based on the median of synchro-
nization time and the percentage of complete synchro-
nized events as it is illustrated in Fig. 4. We explored all
the cases concerning the initial conditions for the sta-
tistical analysis, i.e., each game related to a set of ini-
tial conditions and, consequently, to a synchronization
time. In other words, with this we are able to recon-
struct the 3-D or 4-D basins of attraction. The results
exhibited in Fig. 4 indicate that, in general, rule (d)
leads to better synchronization, i.e., with the shortest
median of synchronization time and the highest per-
centage of synchronized events. Undoubtedly, rule (a)
is the less favorable to synchronization with a low per-
centage of total synchronized events.

A last remark to highlight consists of the tendency to
achieve almost 100% of synchronized events when the
number of sides of the cardboard increases and con-
sequently the number of total boxes. This last aspect
might be related to the assertion that the bigger the
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Fig. 3 Two-dimensional sections of the basins of attrac-
tion for rules (a)–(d) for four players (fireflies) with a set
of initial conditions (p01, p02) = (37, 37), (first row) when
playing with an octagon shape board (ns = 8), with nine
boxes per side (nb = 9); (second row) f–i when playing with

a nonagon shape board (ns = 9), with eight boxes per side
(nb = 8). e, j Box plots (median and quartiles) of the syn-
chronization times related to the basins a–d and f–i. The
percentage of the synchronous events is shown in the upper
part, above the whisker

board, the richer the dynamics the dynamics of the
game.

Finally, we carry out a comparison among groups of
games having the same total number of boxes. Con-
cretely, we analyzed 27, 32, and 72 boxes for the studied
cases of two, three and four players, and considering the
possible rules for each case, namely rules (a) and (b) for
two players, and rules (a), (b), (c) and (d) for three and
four players. The details of the comparison are shown in
Table 4 in the two last main columns showing the differ-
ences between groups considering the shortest median
synchronization time including the first and third quar-
tiles, and the highest percentage of synchronized events
(this remark is made due to the fact that each group
might contain several basins of attraction).

The results exhibited in these two main columns
are the p value which indicates whether the groups
belong or not to the same distribution, and the above-
mentioned results of synchronization time and the per-
centage of synchronized events for each group denoted
by b followed by np, ns, nb. Thus, for instance when
the total number of boxes is 27, the group b239 indi-

cates two players, three sides (triangle) and nine boxes
per side while b493 stands for four players, nine sides
(nonagon) and three boxes per side. The comparison
analysis has been performed considering all the two-
dimensional sections of the basin of attraction corre-
sponding to the features of the group, e.g., for two play-
ers each group consists of one 2-D basin of attraction;
for three players, the group b348 contains 31 2-D sec-
tions of the basin of attraction; and for four players, the
group b498 involves 5041 2-D sections of the basin of
attraction. The main results obtained for this compar-
ative analysis are summarized as follows:

– All the statistical tests are significant (p ≤ 0.01).
– For 27 boxes, we observe that the synchronization

time is shorter when the board is a nonagon, except
for the rule (a). In what respect the percentage
of synchronized events, the nonagon configuration
leads to greater values.

– For 32 boxes, as regards to the synchronization time,
there is a similar behavior than in the case of 27
boxes, i.e., the board with more sides (octagon)
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sides: 3 sides: 4 sides: 5 sides: 6 sides: 7 sides: 8 sides: 9

players: 2
players: 3

players: 4

4 5 5 5

7 6 6 6

7 9 9 9

19 13 13 13

15 22 22 22

34.5 29 29 29

32 38 38 38

60 49 49 49

4 5 5 4

10 7 9 6

7 18 17 10

38 25 27 22

30 41 41 29

70 53 55 48

83 69 69 61

116 90 92 79

4 10 5 4

13 13 22 6

8 25 37 11

45 35 53 24

48 51 80 41

92 65 104 53

118 86 128 78

153 109 165 94

7 6 6 6

7 10 10 10

27 14 14 14

15 27 27 27

13 43 43 43

105 52 52 52

39 75 75 75

30 101 101 101

11 6 6 5

7 19 19 10

49 27 28 21

28 51 53 42

14 74 81 61

159 91 99 82

79 141 143 116

58 166 175 147

14 12 9 5

7 21 33 9

61 37 52 24

31 61 79 49

15 92 113 72

171 109 154 96

120 168 205 140

97 199 252 176

16 7 7 7

12 13 13 13

11 25 25 25

51 30.5 30.5 30.5

76 45 45 45

27 63 63 63

21 88 88 88

160 99 99 99

20 10 10 6

20 24 24 14

11 39 41 28

76 56 59 42

135 87 87 69

49 123 124 105

22 153 159 136

243 182 188 161

23 14 22 6

28 30 40 20

11 48 77 31

101 68 103 56

191 105 142 80

57 150 197 121

25 184 247 160

299 229 317 195

7 8 8 8

39 14 14 14

19 30 30 30

16 45 45 45

30 58 58 58

177 85 85 85

102 122 122 122

42 164 164 164

7 15 10 7

66 27 27 14

33 52 54 37

16 75 77 59

105 109 106 87

249 146 150 133

189 199 204 172

100 260 263 238

7 17 25 7

87 33 52 13

46 60 81 38

16 89 134 68

187 129 179 100

333 174 241 150

237 232 307 200

218 298 386 275

27 10 10 10

61 18 18 18

78 37 37 37

28 56 56 56

22 73 73 73

110.5 90 90 90

152 126 126 126

204.5 163 163 163

31 18 14 9

87 32 35 25

128 64 67 47

48 91 95 74

22 130 131 106

208 164 168 140

256 211 217 189

354 275 284 246

33 20 28 8

121 42 60 27

177 73 103 60

67 112 154 84

22 152 220 126

283 199 289 166

346 255 368 218

493 327 456 281

13 11 11 11

13 21 21 21

104 37 37 37

117 63 63 63

39 90 90 90

29 119 119 119

74 150 150 150

60 204 204 204

25 19 21 9

13 39 37 27

184 62 63 49

218 102 108 88

66 151 153 125

29 197 201 177

213 265 267 228

322 336 336 303

42 21.5 33 8

13 50 68 29

227 75 119 58

331 122 171 97

94 178 259 148

29 233 340 197

371 309 434 268

487 394 537 348

10 13 13 13

78 26 26 26

204 46 46 46

205.5 72 72 72

129 109 109 109

51 141 141 141

37 175 175 175

298.5 212 212 212

10 25 23 12

169 45 44 36

252 83 82 59

330 127 129 101

353 170 176 142

87 228 235 199

37 290 295 247

595 365 369 323

10 29 36 10

214 56 78 37

300 99 135 72

415 149 206 113

500 199 277 166

124 269 387 223

37 340 500 285

815 434 619 373
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Fig. 4 Summary of the statistical analysis of the FG showing the median of the synchronization time according to the
number of sides ns, of boxes per side nb and for each number of players np. The color bar is related to the percentage of
totally synchronized events

exhibits shorter values than the rectangle, except
for the rule (a). On the contrary, the percentage of
synchronized events is greater for the rectangular
configuration, except for the rule (a).

– For 72 boxes, the synchronization time is always
shorter for the nonagonal structure while the per-
centage of synchronized events are greater for the
octagon board.

4 Conclusions and perspectives

With its four basic rules (algorithms), this simple
game allows us to explain the occurrence of complete
synchronization in some fireflies species. Moreover, it
has an intrinsic dynamical richness since these simple
rules might be translated to a more technical language
belonging to synchronization theory. Thus, it is possi-
ble to find a relation between the number of sides and

boxes per side with the type of coupling. According
to the considered rules, the game evolves as a system
of pulse-coupled oscillators, occurring an excitatory or
inhibitory coupling when one or more players attain the
flashing box. The flashing of one or more fireflies pushes
the others to reach the flashing box (excitation). On the
contrary, the flashing fireflies retain themselves in this
position for a certain number of turns (inhibition). We
performed intensive numerical work obtaining the time
series to determine synchronization. We also computed
the basins of attraction to identify the specific features
of all possible games. The differences between the rules
show that the primary rule (a) is not the most adequate
for attaining synchronization. Then, we complete our
statistical analysis establishing as a criterion for com-
paring the groups the considered rule. In general, we
find that the distributions related to each group are
different compared to the other groups. Nevertheless,
it is important to emphasize that rule (a) has pecu-
liar features which do not necessarily lead to complete
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Table 4 Statistical analyses of the cases with 27, 32, and 72 boxes in total

Total 
Number of 
boxes

Number 
of 
players

Rules

27 2 p-value b239 b293 p-value b239 b293
a < 0.0001 60 (23-95) 78 (50-100) < 0.0001 37 93.5
b < 0.0001 49 (20-88) 26 (14-51) < 0.0001 72.8 100

3 p-value b339 b393 p-value b339 b393
a < 0.0001 116 (76-158) 169 (110-211) < 0.0001 25.6 94.4
b < 0.0001 90 (59-119) 45 (31-72) < 0.0001 66.7 99.8
c < 0.0001 92 (60-123) 44 (26-73) < 0.0001 68.7 99.8
d < 0.0001 79 (42-109) 36 (15-62) < 0.0001 68.9 99.8

4 p-value b439 b493 p-value B439 b493
a < 0.0001 153 (111-195) 214 (177-253) < 0.0001 21.1 90.4
b < 0.0001 109 (75-141) 56 (37-83) < 0.0001 66.9 99.6
c < 0.0001 165 (113-245) 78 (49-118) < 0.0001 95.8 99.9
d < 0.0001 94 (63-123) 37 (14-64) < 0.0001 69.7 99.7

32 2 p-value b248 b284 p-value b248 b284
a < 0.0001 39 (18-64.5) 104 (59-156) < 0.0001 19.9 80
b < 0.0001 75 (28-191) 37 (17-73) < 0.0001 97.1 91.9

3 p-value b348 b384 p-value b348 b384
a < 0.0001 79 (57-107) 184 (130-230) < 0.0001 8.1 85.5
b < 0.0001 141 (74-243) 62 (39-100) < 0.0001 92.6 86.4
c < 0.0001 143 (74-264) 63 (38-102) < 0.0001 97.1 87.8
d < 0.0001 116 (52-238) 49 (21-89) < 0.0001 94.5 91.6

4 p-value b448 b484 p-value b448 b484
a < 0.0001 120 (84-150) 227 (177-289) < 0.0001 5.4 83.4
b < 0.0001 168 (96-265) 75 (48-108) < 0.0001 90.1 83.4
c < 0.0001 205 (129-282) 119 (71-169) < 0.0001 98.4 98.2
d < 0.0001 140 (72-265) 58 (26-103) < 0.0001 93.8 92.4

72 2 p-value b289 b298 p-value b289 b298
a < 0.0001 60 (31-100) 37 (19.5-54.5) 0.003 6.8 1.4
b < 0.0001 204 (78-414) 175 (77-342) 0.003 96.1 94.8

3 p-value b389 b398 p-value b389 b398
a < 0.0001 322 (175-553) 37 (19.5-54.5) < 0.0001 3 0.02
b < 0.0001 336 (190-547) 290 (168-469.5) < 0.0001 94.7 93.2
c < 0.0001 336 (188-560) 295 (170-478) < 0.0001 95.8 94.2
d < 0.0001 303 (153-515) 247 (126-435) < 0.0001 95.2 92.9

4 p-value b489 b498 p-value b489 b498
a < 0.0001 487 (318-628) 37 (19.5-54.5) < 0.0001 2.2 0.0003
b < 0.0001 394 (247-605) 340 (220-522) < 0.0001 94.2 92.9
c < 0.0001 537 (331-797) 500 (303-765) < 0.0001 99.3 98.8
d < 0.0001 348 (195-553) 285 (165-469) < 0.0001 94.9 92.8

Differences between groups: median 
synchronization time (quartiles 25 – 
75%)

Differences between 
groups: % synchronized 
events

Each case can be achieved by different configurations in terms of number of sides (ns) and number of boxes per side (nb).
For each rule, a test was performed to analyze the difference between the configuration in terms of (i) time needed to achieve
synchronization (Mann–Whitney test), and (ii) percentage of synchronized events (Exact Fisher test); p − value ≤ 0.05 is
considered as significant. Shortest median times to achieve synchronization and highest percentage of synchronized events
are represented in bold

synchronization. Our results also demonstrate that as
more sides have the polygons, the better the synchro-
nization is achieved, i.e., both in what concerns the
synchronization time and the percentage of synchro-
nization. Although the game and its possibilities have
been widely explored, several aspects could be studied
in future works. Thus, it is possible to formulate rules
that incorporate inhibitory coupling or rules combin-
ing excitatory and inhibitory coupling as it happens in
several fireflies species. Another aspect of being ana-
lyzed is the possibility of including “silence times” as
it occurs in some fireflies species. A final consideration

might include players following different rules associ-
ated with the diverse dynamics attributed to fireflies,
males and females.
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Burda, Eur. Phys. J. B 65(2), 271 (2008)

46. N. Rubido, C. Cabeza, A. Marti, G.M. Ramı́rez-Ávila,
Philos. Trans. R. Soc. A 367, 3267 (2009)

47. M. Santillán, Rev. Mex. Fis. 64(2), 107 (2018)
48. A. Winfree, J. Theor. Biol. 16, 15 (1967)
49. R. Mirollo, S. Strogatz, SIAM, J. Appl. Math. 50(6),

1645 (1990)
50. B. Ermentrout, J. Math. Biol. 29(6), 571 (1991)
51. Y. Kuramoto, Physica D 50(1), 15 (1991)
52. S. Bottani, Phys. Rev. E 54(3), 2334 (1996)
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