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ABSTRACT

A detailed investigation of linear instabilities of double-eyewall hurricane-like vortices with double maxima (“walls”) of azimuthal velocity
and vorticity around the central minimum (“eye”) and of their nonlinear saturation is carried out in the framework of the moist-convective
rotating shallow water model. It is shown that developing barotropic instability leads to inward displacement and gradual disappearance of
the inner wall and to the formation of a nontrivial tripolar quasi-stationary structure, provided the second, outer, wall of the initial vortex is
high enough. The effects of moist convection lead to the enhancement of the outer wall. In comparison, under the influence of the same
instability, vortices with an inner wall stronger than the outer one evolve toward monopolar single-eyewall structures.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0096554

I. INTRODUCTION

From a hydrodynamical viewpoint, the horizontal structure of a
typical hurricane is characterized by a low vorticity zone at the center,
which is associated with the hurricane’s eye, surrounded by a high
vorticity ring, which is associated with the eyewall. However, there is a
bulk of observational evidence of double-eyewall hurricanes, and the
formation of a secondary eyewall during the evolution of the inner
core structure of hurricanes is not an uncommon event, particularly in
intense, highly symmetric systems.1,2 Satellite-based microwave
imagers confirm the existence of secondary eyewalls.3 For example,
roughly concentric rings have been observed in the satellite microwave
images of hurricane Frances on 30 September 2004, and hurricane
Katrina on 28 August 2005.4 Analogously to the primary eyewall, sec-
ondary wind maxima are often coupled with a convective ring.5 A pro-
cess of eyewall replacement, called eyewall replacement cycle (ERC) or
a concentric eyewall cycle, is described in the literature1,6,7 and consists
of contraction, or inward shift, of the primary eyewall during the
storm intensification and replacement of the primary eyewall by the
second one, once the secondary eyewall is enough grown. The replace-
ment leads to weakening and eventual disappearance of the inner wall,
while the secondary eyewall gets amplified to the strength of the
primary eyewall, during the ERC as seen in the wind maximum, and

vorticity and convection fields. The word “cycle” in this context refers
to repetitive scenarios of contraction and replacement of the inner eye-
wall. The contraction of the eyewall is ascribed to a ring of convection
inside the radius of maximum heating that causes an inward shift.8,9

By analyzing 31 years of flight-level data, Sitkowski et al.10 exhibited
24 ERC events in 14 hurricanes. Although the ERC is well docu-
mented, dynamical processes in double-wall vortices with a “moat”
between the walls are not sufficiently understood.

The rotating shallow water (RSW) model, with or without the
inclusion of diabatic effects, proved to be a simple and reliable tool for
understanding the basics of hurricanes’ dynamics, see the recent
papers11–15 and references for a bulk of earlier work therein. Recently,
this model was applied to double-eyewall tropical cyclone (TC) like
vortices16 in order to understand the interactions of the two walls
across the moat, which are produced by the instabilities of such config-
urations. Motivated by this work, we go further in the same direction
by performing a detailed linear stability analysis of the double-eyewall
TC-like vortices and by using a consistent inclusion of dynamical
effects of moisture, offered by the so-called moist-convective RSW
(mcRSW),17,18 for fully nonlinear high-resolution numerical simula-
tions of the nonlinear development of the instabilities. We, thus, iden-
tify the most unstable modes of the intense double-wall vortices, study

Phys. Fluids 34, 066602 (2022); doi: 10.1063/5.0096554 34, 066602-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0096554
https://doi.org/10.1063/5.0096554
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0096554
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0096554&domain=pdf&date_stamp=2022-06-07
https://orcid.org/0000-0003-1730-5145
https://orcid.org/0000-0001-7257-0844
mailto:zeitlin@lmd.ens.fr
https://doi.org/10.1063/5.0096554
https://scitation.org/journal/phf


their dependence on the relative height of the walls, and investigate
nonlinear saturation of the instability both in “dry” and moist-
convective settings, in order to understand the influence of moisture
upon this process. Our main finding is a robust tripolar vortex struc-
ture arising at the late stages of the evolution of double-wall TC-like
vortices with comparable heights of the walls.

II. THE MODEL AND THE VORTEX CONFIGURATION
A. A reminder on mcRSW model

We use the simplest one-layer version of the mcRSW model pro-
posed in Ref. 17, with an addition of a source of moisture representing
evaporation, as described in Refs. 11 and 19. No explicit dissipation of
any kind is included in the model. The equations of the model are

@tv þ v � rv þ f ẑ � v ¼ �grh;

@thþr � vhð Þ ¼ �cC;

@tQþr � ðQvÞ ¼ �C þ E:

8>><
>>:

(1)

Here, x and y are the zonal and meridional coordinates on the tangent
plane, r ¼ ð@x; @yÞ and v ¼ ðu; vÞ, respectively, u and v are the zonal
and meridional components of velocity, respectively, h is the geopo-
tential height (thickness), f is the Coriolis parameter, which is taken to
be constant f ¼ f0 as we are working in the f-plane approximation,
and ẑ is the unit vertical vector. Q � 0 is specific humidity integrated
over the air column, c is a parameter depending on the underlying
stratification, C is the condensation sink, and E is the surface evapora-
tion source of moisture. They are parameterized as follows, and in the
dry version of the model, they are simply set to zero,

C ¼ Q� Qs

s
hðQ� QsÞ; E ¼ a

jvj
jvmaxj

ðQs � QÞhðQs � QÞ:

(2)

Here, Qs is a saturation threshold, which we consider to be pressure-
dependent, as explained in Ref. 17, see below. In principle, the
evaporation threshold could be chosen to be different from Qs, as the
evaporation, physically, does not take place through the whole air
column. We take it to be the same in the crudest variant of the model,
in order to avoid the proliferation of free parameters. s is the relaxa-
tion time, which is of the order of several hours in the tropical atmo-
sphere. The parameterization of evaporation in (2) is based on the
standard bulk formula, cf. e.g., Ref. 20, which is of frequent use in hur-
ricane modeling,21 where we renormalized the transmission coefficient
by jvmaxj, the maximum value of velocity over the domain, i.e., the
maximum wind in the hurricane-like vortices we consider, in order to
get the non-dimensional parameter a regulating the intensity of evapo-
ration. This is a free parameter, the only one representing processes in
the unresolved boundary layer in the present formulation of the
model; its value in the simulations will be given below.hð� � �Þ denotes
the Heaviside (step-) function, which accounts for the switch character
of condensation and evaporation. As is natural in the context of TC
modeling, we consider the vortex motion mostly over the ocean, where
the bulk formula for evaporation (2) is well adapted.

B. TC-like vortex configuration

The equations of the model in polar coordinates read

dv
dt
þ f þ v

r

� �
ẑ � v þ grh ¼ 0;

@thþ
1
r
@rðrhuÞ þ @hðhvÞð Þ ¼ �cC;

@tQþ
1
r
@rðrQuÞ þ @hðQvÞð Þ ¼ �C þ E;

8>>>>>>><
>>>>>>>:

(3)

where v ¼ ðu r̂ðr; hÞ; v ĥÞ is the velocity in polar coordinates, and the
Lagrangian derivative is d

dt ¼ @
@t þ u@r þ v

r @h.
In the absence of evaporation, the axisymmetric azimuthal veloc-

ity v(r) and thickness h(r) in cyclo-geostrophic equilibrium

v2

r
þ fv ¼ g @r h; (4)

at zero radial velocity u¼ 0 and arbitrary constant or azimuthally sym-
metric QðrÞ � Qs give an exact solution of (3). In the presence of
evaporation, in order to provide an exact solution,Q should stay at the
evaporation threshold, i.e., Q ¼ Qs, with the choice of the threshold
made above.

In order to construct a double-wall TC-like vortex, we start with
the non-dimensional profile of azimuthal velocity V(r), which was
already used for single-wall TC in the previous work,15

�V ðrÞ ¼ ðr � r0Þae�cðr�r0Þ
b

; r > r0; a; b; c > 0: (5)

To control the strength of the vortex, we introduce a non-dimensional
amplitude � and renormalize �V ðrÞ as follows:

�V ðrÞ ! VðrÞ ¼ e
�V ðrÞ

maxj�V ðrÞj : (6)

This “abc” profile is placed at a distance r0 from the origin and is
matched at r0 with a linear velocity profile in the interval ½0; r0�, in a
way to reproduce the observed approximately constant-vorticity eye
and to have continuous velocity and vorticity. Here, r is the non-
dimensional radius from the center of the vortex. We use the following
scaling: horizontal distances are measured in units of the barotropic
deformation radius, Rd ¼

ffiffiffiffiffiffi
gH
p

=f , time in units of 1=f , and velocities
are measured in units of

ffiffiffiffiffiffi
gH
p

, where H is the total thickness of the
atmospheric column at rest. According to this scaling, the Rossby
number Ro is proportional to e=RMW, where RMW is the non-
dimensional radius of maximum wind. The Rossby number in the
velocity profile of Fig. 1 is Ro¼ 1.67.

The velocity profile of a double-eye configuration is obtained by
superposition of two (a, b, and c) profiles. In the case of comparable
heights of the two walls, which is the main configuration under the
present study (see Sec. IV for another configuration), the parameters
(a, b, and c) are taken to be equal to ð4:5; 0:18; and 48Þ for both the
inner and outer walls, and ðr0; eÞ for the inner and outer walls is
ð0:01; 0:06Þ and ð0:08; 0:09Þ, respectively. A particular feature of this
background velocity profile, which can be seen in the upper-left panel
of Fig. 1, together with the corresponding typical double-wall relative
vorticity profile, is its steeper ascent before the radius of maximum
wind, and a slower descent out of it, which is in agreement with
observed velocity profiles.22 The corresponding profile of thickness
deviation can be found by calculating the primitive of the left-hand
side of (4) and is shown in the upper-right panel of Fig. 1.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 066602 (2022); doi: 10.1063/5.0096554 34, 066602-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


III. DYNAMICS OF DOUBLE-EYEWALL TC-LIKE VORTEX
WITH COMPARABLE INTENSITY OF VORTICITY PEAKS
A. Results of the linear stability analysis

The linear stability analysis is performed along the lines of similar
studies of single-wall TC-like vortex profiles.11,15 For this, Eq. (3) is lin-
earized about the corresponding profiles of azimuthal velocity and
thickness, cf. the upper row of Fig. 1. Solutions of the linearized equa-
tions are sought in the form of Fourier-modes in time and polar angle

(azimuthal modes with integer wavenumber l), with the radial struc-
ture determined by solutions of the resulting eigenproblem for fre-
quencies at a given azimuthal wavenumber. Solutions are obtained
numerically after discretization on a Chebyshev grid shown in the
upper-right panel of Fig. 1, solving the resulting finite-dimensional
matrix eigenproblem.

The lower panel of Fig. 1 displays the phase portraits of the most
unstable modes. As follows from the mutual orientation of velocity
and isobars, the most unstable modes are close to the geostrophic

FIG. 1. Upper row: left panel—azimuthal velocity profile and vorticity of the background barotropic double eyewall cyclone. Right panel—Chebyshev grid points and thickness
of the vortex H(r). Middle row: radial structure of the velocity and thickness perturbations ðu; v; gÞðrÞ, respectively, corresponding to the unstable modes with l¼ 2 (left panel)
and l¼ 3 (right panel). Vertical lines indicate positions of the critical levels. Lower row: the pressure and velocity field of the most unstable mode l¼ 2, left panel, and the sec-
ond unstable mode l¼ 3, right panel.
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FIG. 2. Left panel: Variations of the growth rate of unstable modes with azimuthal wavenumber for two background configurations with f1 � f2, as in Fig. 1, and with f1 > f2
presented in Fig. 12 in Sec. IV, where f1;2 are the first and second maxima of relative vorticity, respectively. Right panel: Same as in the left panel, but with the radius of maxi-
mum wind shifted by 0:02Rd farther from the center.

FIG. 3. Evolution of the pressure anomaly, relative vorticity, and condensation of double-eyewall cyclone initialized, as shown in Fig. 1, with the most unstable mode, l¼ 2, in
moist-convective environment during the saturation of the barotropic instability, respectively, from top to bottom.
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balance, thus being Rossby waves, which are typical for barotropic
instability, having azimuthal wavenumbers l¼ 2 and l¼ 3, respec-
tively, and propagating along the inner and outer walls due to back-
ground vorticity gradients. The unstable mode with l¼ 3 is located in
the vicinity of the outer eyewall, while the unstable mode with l¼ 2 is
located at the inner eyewall.

Dependence of the growth rate of the unstable modes on the
azimuthal wavenumber for two positions of the radius of maxi-
mum wind of the background vortex is presented in Fig. 2. For
comparison, we simultaneously present these results for a back-
ground vortex with the inner wall significantly more intense than
the outer one.

As follows from Fig. 2, at least with the shape of the vortex we
use, the azimuthal structure of the most unstable mode is not sensible
to the relative intensity of the walls, but its growth rate is. On the con-
trary, both are sensible to the value and position of the RMW. As the
next step, we will use separately the most unstable modes l ¼ 2; l ¼ 3
for the initialization of fully nonlinear numerical simulations, by
superimposing them with the weak amplitude 0.015 onto the back-
ground vortex.

B. Nonlinear saturation of the instability

We now present results of direct numerical simulations initial-
ized with the perturbations corresponding, respectively, to the middle-
and lower-left and middle- and lower-right panels of Fig. 1
superimposed onto the background vortex configuration of the upper
row of Fig. 1. The details of the numerical scheme for mcRSW and its
implementation can be found in our previous above-cited works. We
should only emphasize that the well-balanced finite-volume quasi
non-dissipative method we are using allows for long-time high-resolu-
tion simulations representing the saturation of the instability with high
fidelity. In the present study, we apply the finite-volume numerical
code in the computational domain of the size Lx ¼ Ly ¼ 1:2 ½Rd� sub-
divided into 400� 400 grid cells. Neumann boundary conditions are
used in order to evacuate the emitted inertial gravity waves. The
numerical time step is 10�3 ½ f �10 �. All simulations are performed in
both dry and moist-convective environments. The main focus of this
study is on the double-eyewall configuration with comparable vorticity
at each wall as shown in Fig. 1; nevertheless, a summary of results for a
configuration with the outer eyewall with weaker vorticity is presented
in Sec. IV. Following Bouchut et al.,17 we choose Qs as a function

FIG. 4. Same as in Fig. 3, but for initialization with the unstable mode l¼ 3.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 066602 (2022); doi: 10.1063/5.0096554 34, 066602-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


depending on pressure anomaly. The saturation threshold is taken in
the form Qs ¼ Q0 þ a0ðh� HÞ, with a0 ¼ 0:04, and the initial value
of humidity Q0 ¼ 0:9. H¼ 1, a and c ða ¼ 0:5; c ¼ 0:9Þ are con-
stants regulating the intensity of surface evaporation and latent heat

release, respectively. The condensation relaxation time s is taken to be
0:04 ½f �10 �.

Figure 3 shows the evolution of pressure and relative vorticity of
the double-eyewall vortex with equal intensity of the walls with

FIG. 5. Late stage of the evolution of pressure anomaly (left column) and relative vorticity (right column) of the double-eyewall cyclone of Fig. 1 in an adiabatic (dry) environ-
ment during the saturation of the barotropic instability initialized with a pure unstable mode l¼ 2 (upper row) and l¼ 3 (lower row) at time T ¼ 175 ½f�10 �.

FIG. 6. Scatter plot of the Bernoulli function (with subtracted mean value) vs potential vorticity (PV) in adiabatic (left panel) and moist-convective (right panel) environments
(time ¼ 140½f�10 �). Initial conditions as in Fig. 1 with l¼ 2.
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FIG. 7. Contributions to angular momentum of eddy, mean, and total fluxes integrated over three different time spans Dt ¼ ½0; 50�; ½51; 100�; ½101; 145�, and ½f�10 �, from left
to right, during the evolution of double-eyewall vortex with almost equal vorticities of the walls with the superimposed unstable mode l¼ 2, in dry (solid) and moist-convective
(dashed) environments. Vertical dots indicate the radial position of the radii of maximum winds of the inner and outer eyewalls at initial time.

FIG. 8. Same as in Fig. 7, but for initialization with the superimposed unstable mode l¼ 3.

FIG. 9. Logarithms of the normalized amplitudes of the Fourier modes of azimuthal velocity as functions of time during the evolution of the barotropic instability in moist-
convective environment in simulations initialized with the most unstable mode l¼ 2 (left panel) and the second unstable mode l¼ 3 (right panel). Initial conditions as in Fig. 1.
The red straight line represents the growth rate r as a function of time, following from linear stability analysis.
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superimposed unstable mode l¼ 2 in moist-convective environment.
As follows from the figure, the outer eyewall considerably influences
the evolution of the instability, which is initially located in the vicinity
of the inner eyewall. The figure clearly shows the formation of a

specific structure at the end stages of evolution, which consists of a
single-eyewall central cyclonic vortex surrounded by two rings of anti-
cyclonic vorticity and two external cyclonic lobes beyond. This end
state further preserves its structure for a long time and thus is not

FIG. 10. Time evolution of radial distributions of azimuthally averaged azimuthal velocity (left panel) and PV (right panel) in moist-convective environment for the simulations
initialized with the most unstable mode, l¼ 2 (upper row) and l¼ 3 (lower row).

FIG. 11. Comparison of the evolution of the peak values of azimuthally averaged velocity in the adiabatic and moist-convective environments for initial conditions corresponding
to Fig. 1 with l¼ 2 (left panel) and l¼ 3 (right panel).
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axisymmetric, unlike the end-states of evolution of instabilities of
single-eyewall vortices in the same model,11 and is rotating like a vor-
tex tripole. Simulations with other initializations, e.g., a pure unstable
mode with l¼ 3 (Fig. 4), or a combination of modes l¼ 2 and l¼ 3
(not shown) produce the same scenario at the late stages. Such a struc-
ture is robust and emerges already in the adiabatic, dry, environment.
We show in Fig. 5 the formation of this structure in the simulations
initialized with unstable modes l¼ 2 and l¼ 3 in the dry environment.
The fact that the evolution does lead to the formation of a coherent
structure is confirmed by the scatterplot of the Bernoulli function vs
potential vorticity presented in Fig. 6. Such scatter plots are standard
in diagnosing coherent structures of any nature in rotating shallow
water models, cf. Refs. 23–25 and references therein. The structure in
question is coherent if the points of the plot form a curve, as compared
to a dispersed cloud in the opposite case. We should stress that the
observed endstate, although being tripolar in essence, has a much
more complicated form than tripolar vortex solutions known for 2D
Euler26 and rotating shallow water23 equations, and observed in labo-
ratory experiments,27 due to essentially non-monotonous and sign-
changing distribution of vorticity in the central vortex.

Following Hendricks et al.28 and Lahaye and Zeitlin,11 we also
investigated tangential momentum and absolute angular momentum
budgets during the evolution of the aforementioned double-eyewall

configuration. The equation for absolute angular momentum in the
absence of dissipation is

@ �M
@t
¼ �û @

�M
@r
� rhq	u	 ; (7)

where ðÞ indicates the azimuthal average, û ¼ ðhu=�hÞ is the mass-
weighted average of the radial velocity, �M ¼ r�v þ ð1=2Þfr2 is the
azimuthal-mean absolute angular momentum per unit mass, u	

¼ u� û is the deviation of azimuthal velocity from the mass-
weighted average, and q	 ¼ q� ðhq=�hÞ is the deviation of potential
vorticity from its mass-weighted azimuthal average. The first and
second terms on the right-hand side of Eq. (7) correspond to the pro-
cesses involving the mean and eddy fields, respectively, which will be
referred to below as the “mean flux” and the “eddy flux,” respectively.
Figure 7 displays the contributions to the total angular momentum
change due to the eddy and mean fluxes during the three main phases
of its evolution: initial stages, transition to the coherent tripolar state,
and later stages, in both dry and moist-convective environments.
Integration is based on the trapezoidal rule over time spans using the
0.5 ½f �10 � output data. At the initial stages (left panel of the figure), the
eddy flux between two radii of maximum winds is strong and leads to
filling in the moat and inward displacement of the outer eyewall,
which is clearly seen in the evolution of the mean azimuthal velocity

FIG. 12. Upper row: left panel—azimuthal velocity profile and vorticity of the background barotropic double-eyewall cyclone with different heights of the walls. Right panel—
Chebyshev grid points and thickness of the vortex H(r). Lower row: radial structure ðu; v; gÞðrÞ of the most unstable mode for the l¼ 2 on the left panel, and the corresponding
pressure and velocity field on the right panel. Vertical lines indicate positions of the critical levels.
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(directly related to the tangential momentum), as shown in Fig. 10. As
in the case of single-eyewall vortex, the contribution of the mean in
the dry case is almost inexistent, cf. Lahaye and Zeitlin,11 while it is
much more pronounced in the moist-convective case. At the stage of
formation of the tripolar structure (middle panel), we observe a strong
eddy flux in the outer regions of the vortex, which is responsible for
the appearance of the cyclonic lobes. It is weaker in the moist-
convective environment, compared to the dry one, and its impact is
further diminished by the mean flux oriented in the opposite direction,
while the latter is still negligible in the dry case. The mean flux in the
moist-convective case is due to vorticity generation by moist convec-
tion, as explained by Lambaerts et al.18 Nevertheless, the tripolar struc-
ture still forms in the moist-convective case, although its coherence is
influenced by the weaker overall flux, as follows from its more diffused
scatterplot in the right panel of Fig. 6. The picture is similar at the late
stages (right panel), although the eddy flux in the moist-convective
case becomes stronger than in the dry one, which helps to maintain
the tripolar structure. Similar behavior is observed during the satura-
tion of the unstable mode l¼ 3 (Fig. 8).

The details of formation of the end state are seen in Fig. 9, where
we present the evolution of the individual azimuthal components of
the azimuthal velocity. As follows from the figure, the l¼ 3 modes, ini-
tially following the exponential growth predicted by the linear stability
analysis, saturate rather quickly, while the main contribution comes
from the l¼ 2 mode with an admixture of the l¼ 4 mode.
Modifications of the double-eyewall structure of the initial vortex due
to evolving instability, as seen in the averaged azimuthal velocity,
which is directly related to tangential momentum, and in potential
vorticity, are tracked in Fig. 10. As follows from the right column of
the figure, with both initializations, the inner eyewall, as seen in the
azimuthal velocity field, is being smoothed down and gradually disap-
pears (filling in the moat), while the outer wall wobbles around its ini-
tial position without much changes in the peak velocity. At the same
time, the distribution of potential vorticity is being substantially
smeared. We should stress that the peak azimuthal velocity in the
moist-convective configuration is much stronger than in the dry one
at the late stages of the evolution, as follows from Fig. 11, which illus-
trates the importance of the moist convection in the process.

FIG. 13. Evolution of pressure anomaly (upper row), relative vorticity (middle row), and condensation (lower row) of double-eyewall cyclone in the moist-convective environ-
ment with initialization corresponding to Fig. 12.
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IV. INSTABILITY OF DOUBLE-EYEWALL VORTEX WITH
WEAKER OUTER WALL AND ITS NONLINEAR
SATURATION

In this section, we briefly summarize the results of a similar investi-
gation of the double-eyewall TC-like vortex with an outer wall of lesser
intensity. They are presented in subsequent figures, which parallel the
corresponding figures in Sec. III. For the sake of brevity, we present only
the results of simulations initialized with the most unstable mode l¼ 2,
as shown in Fig. 12. The overall result is that although the most unstable
modes are similar, the evolution of the instability does not lead to a tri-
polar structure, but to a single-eyewall TC-like vortex, with the single
wall produced by merging of initial inner and outer walls (Fig. 13).
Notice a much lesser outward eddy fluxes in the angular momentum
budget (Fig. 14) at the late stages, which is consistent with the absence
of external vorticity lobes in this simulation.

V. CONCLUSIONS

We have shown that already the simplest shallow-water
model with moist convection allows to capture some important

features of the ERC. Our results indicate that disappearance of the
inner eyewall is a purely dynamical effect of the developing baro-
tropic instability. We have also shown that the enhancement of the
secondary wall is due to the effects of moist convection. An unex-
pected result is the formation of coherent essentially tripolar struc-
tures as end states of double-eyewall TC-like vortices, which is
observed in nonlinear saturation of the barotropic instability in the
case of eyewalls of comparable intensity. This process is not much
influenced by the diabatic processes. The resulting end states have
a much more complicated structure than tripolar vortices studied
previously in the framework of 2D Euler and rotating shallow
water systems and in laboratory experiments. The central vortex of
these states, although being practically axisymmetric, has a com-
plex form with alternating annuli of anticylconic and cyclonic vor-
ticity. Such structures are interesting by themselves from a purely
hydrodynamical viewpoint and merit further investigation. We are
not aware of observational evidence of such structures, but their
robust emergence in our simulations invites for a closer look into
the data.

FIG. 14. Angular momentum budget integrated over three different time spans Dt ¼ ½0; 50�; ½51; 100�; ½101; 145�, and ½f�10 �, from left to right, respectively, of eddy, mean,
and sum fluxes of double-eyewall vortex with higher vorticity at the inner wall, as in Fig. 12, during nonlinear evolution of the most unstable mode, l¼ 2, in dry (solid) and
moist-convective (dashed) environments. Vertical dots indicate the radial position of the radii of maximum winds of the inner and outer eyewalls at initial time.

FIG. 15. Logarithms of the normalized amplitudes of the Fourier modes of azimuthal velocity as functions of time during the evolution of the barotropic instability in adiabatic
(left) and moist-convective (right) environments. r represents the linear growth rate. Initial conditions as in Fig. 12.
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Our simulations also show a high sensibility of the evolution sce-
nario to fine details of the double-wall vortex structure, especially to
the relative height of the walls, which hints at difficulties in forecasting
the evolution of double-eye hurricanes.
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