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ABSTRACT

We study the dynamic control of birhythmicity under an impulsive feedback control scheme where the feedback is made ON for a certain
rather small period of time and for the rest of the time, it is kept OFF. We show that, depending on the height and width of the feedback pulse,
the system can be brought to any of the desired limit cycles of the original birhythmic oscillation. We derive a rigorous analytical condition of
controlling birhythmicity using the harmonic decomposition and energy balance methods. The efficacy of the control scheme is investigated
through numerical analysis in the parameter space. We demonstrate the robustness of the control scheme in a birhythmic electronic circuit
where the presence of noise and parameter fluctuations are inevitable. Finally, we demonstrate the applicability of the control scheme in
controlling birhythmicity in diverse engineering and biochemical systems and processes, such as an energy harvesting system, a glycolysis
process, and a p53-mdm2 network.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0089616

Birhythmicity is a potential variant of multistability exhibiting
the coexistence of two stable limit cycles with different ampli-
tudes and frequencies separated by an unstable limit cycle. The
birhythmicity is perilous for many physical systems, whereas it
is obvious and desirable in most biological systems. Hence, the
control of birhythmicity deserves much attention. The control of
multistability is a well studied topic, but surprisingly the con-
trol of birhythmicity is not. In this paper, we study and establish
the efficacy of our impulsive feedback control scheme on control-
ling birhythmicity. The main advantage of the proposed scheme
is that the control is required for a minimal period of time and
then it may be switched off. We theoretically explore the control
scheme and numerically establish the generality of the scheme.
We demonstrate that the scheme is robust enough to work in a
practical electronic circuit experiment in the presence of noise
and fluctuations.

I. INTRODUCTION

Birhythmicity is a phenomenon where two stable limit cycles
coexist separated by an unstable limit cycle in between them.1,2 It

is a potential variant of the ever prevailing multistability,3 which
arises in diverse fields of sciences including physics,4,5 chemistry,6

and biology.7–9 The term “birhythmicity” was first introduced
by Decroly and Goldbeter.10 Since then, birhythmicity has been
found in a energy harvesting system,4 a Q-switched CO2 laser,11

a Josephson junction,12 optoelectronics,13 chemistry,14–18 and biol-
ogy (enzymatic reactions and glycolytic oscillators6–8). Most of
the biochemical oscillators are birhythmic in nature19,20 (see the
recent review by Goldbeter and Yan20 and references therein).
In living systems, birhythmicity helps us to maintain biochem-
ical processes to the environmental variations.14 As examples
of biochemical processes, we may suggest the following: intra-
cellular Ca2+ oscillations,2 glycolytic oscillators and enzymatic
reactions,6–8,21 the basic protein module that controls the prolif-
eration of abnormal cells in mammals modeled by the birhyth-
mic oscillations in the p53-Mdm2 network,22,23 birhythmic oscil-
lations generated in Adenosine Diphosphate (ADP) activated
allosteric enzyme phosphofructokinage (PFK) due to the com-
plex regulatory properties of it and finally feedback from ADP
to Adenosine Triphosphase (ATP),6 the circadian oscillation in
period (PER) and timeless (TIM) proteins in Drosophila,24 receptor
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desensitization for the cyclic AMP signaling system of the slime
mold Dictyostelium discoideum,25 and oscillatory generation of
cyclic adenosine monophosphate (CAMP) during the aggregation
of the same.26 Birhythmicity may be undesirable in many man-
made systems4,12 while it is desirable in others. This fact justifies the
necessity and importance of controlling birhythmicity.

Although there exist several control schemes for bistable sys-
tems consisting of oscillatory and stable steady states,27,28 control
of birhythmicity is relatively a less explored topic (see the review
on multistability by Pisarchik and Feudel3). Only a few control
techniques are proposed and studied for birhythmicity. Ghosh et
al.29 employed a time-delayed feedback control of birhythmicity.
Sevilla-Escoboza et al.30 proposed that the application of harmonic
modulation along with a positive feedback can control multistability
and bring the system from coexisting chaotic and periodic attrac-
tors to a monostable one. Recently, Biswas et al.31–33 showed that
birhythmicity can be controlled by self-feedback or low-pass filter-
ing and the system may be brought to any desired oscillating state.
The switching between one limit cycle to another using an exter-
nal pulse was reported in birhythmic19 and trirhythmic7,34,35 systems
years ago. In those studies, the success of the control depends largely
on the phase matching between the external perturbation and the
limit cycles to be controlled.

In this paper, we study a more general and efficient control
scheme that employs an impulsive feedback for controlling birhyth-
micity. In this control scheme, the feedback is made ON only for
a certain period of time and then it is kept at an OFF state. Thus,
unlike the previous control techniques, here the control needs not
to be present all the time, and, therefore, the scheme remains non-
invasive in the long run. Control through impulsive coupling is an
important scheme and has been widely used to control the synchro-
nization of chaos.36–38 The intermittent control has been used for
synchronization in Ref. 39 and for the selection of chaotic multi-
stable attractors in Ref. 40. The impulsive control has been employed
in the chemotherapy treatment of tumors, where the drug is used
periodically with a proper amount and frequency.41 Recently, Ref. 42
considered the transient temporal feedback with a step function to
control coexisting chaotic attractors occupying different regions of
phase space.

We establish the efficacy of the impulsive control scheme by
carrying out an extensive theoretical analysis through the applica-
tion of the harmonic decomposition technique and energy balance
method. An extensive numerical analysis is performed to explore
the effect of the width and height of the impulse on the control
scenario. A prototypical birhythmic oscillator is constructed in an
electronic circuit and the proposed control scheme is applied in the
circuit to study the effectiveness of the scheme in the presence of
parameter mismatch, noise, fluctuations, etc. Finally, we apply the
control technique to control three real systems from diverse fields of
physics and biology: (i) the energy harvesting system,4 (ii) the gly-
colysis model (modified Goldbeter–Decroly model),6,7 and (iii) the
p53-Mdm2 network (OAK model).22 The scheme is able to control
the birhythmicity in all these systems. This proves the generality of
the impulsive control scheme.

The paper is organized as follows: Sec. II discusses the
birhythmic van der Pol oscillator. Section III describes the impulsive
self-feedback control scheme. Section IV gives the analytical results

FIG. 1. Two-parameter bifurcation diagram of (1) in the α − β space for µ

= 0.1. The solid curves represent the saddle-node bifurcation of limit cycle
(SNLC).

of the birhythmic van der Pol oscillator with the proposed coupling
scheme. The numerical investigations are summarized in Sec. V. The
experimental results are shown in Sec. VI. The efficacy of the present
scheme is investigated in Appendixes A–C for the energy harvest-
ing system, the glycolysis model, and the OAK model, respectively.
Section VII concludes the outcome of the whole study.

II. THE BIRHYTHMIC VAN DER POL OSCILLATOR

The birhythmic van der Pol (vdP) oscillator is given by the
following equation:31,43,44

ẍ − µf(x)ẋ + x = 0, (1)

where x ∈ R, f(x) = 1 − x2 + αx4 − βx6 is the nonlinear function,
and µ > 0, α > 0, β > 0 are parameters that determine the nonlin-
ear damping.

The harmonic decomposition method considering x(t)
= A cos ωt leads to the following amplitude equation:45

5β

64
A6 −

α

8
A4 +

1

4
A2 − 1 = 0, (2)

which does not depend on the parameter µ and represents
the generic form of the codimension-2 bifurcation. The birhyth-
micity emerges from the saddle-node bifurcation of limit cycle
(SNLC). Figure 1 demonstrates the boundary between the bi- and
monorhythmicity in the α − β parameter space (plotted using
XPPAUT46).
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FIG. 2. Impulse function h(t) [Eq. (4)]. The parameters controlling h(t) are the
height (c) and the width ((δ2 − δ1) = δ). “M1”: c = 0.5, δ = 4, “M2”: c = 0.2,
δ = 5, and “M3”: c = 0.8, δ = 1.

III. THE IMPULSIVE SELF-FEEDBACK CONTROL

SCHEME

The birhythmic vdP oscillator with the impulsive feedback
control is given by the following equation:

ẍ − µf(x)ẋ + x = G(x, ẋ, t; p). (3)

Here, G(x, ẋ, t; p) represents the control term given by G(x, ẋ, t; p)
= −dh(t)ẋ, where d is the self-feedback strength. For d > 0, there
is positive feedback and for d < 0 the feedback is negative; d = 0
represents the case of no feedback or uncontrolled system. h(t) is an
impulse function as follows:

h(t) = c
[

sign(t − δ1) − sign(t − δ2)
]

, (4)

where c is the height of the impulse and (δ2 − δ1) = δ (δ2 > δ1) is the
width of the impulse. The “sign” function is given in the following:

sign(t − ζ ) =

{

1 for t > ζ ,
−1 for t < ζ ,

(5)

where ζ ∈ R+. Figure 2 shows the form of the impulse for different
sets of c and δ. It may be noted that the self-feedback is ON for a
small time equal to the width of the impulse and after that, the self-
feedback becomes OFF.

IV. ANALYSIS

We apply the harmonic decomposition method to understand
the underlying dynamics of the controlled system (3). For this, we
assume the approximate solution of Eq. (3) as

x(t) = A cos ωt. (6)

Substituting Eq. (6) into Eq. (3), we get the following equation:

(

1 − ω2

)

A cos ωt

= µω

(

−1 +
1

4
A2 −

α

8
A4 +

5β

64
A6

)

A sin ωt

+ dωch(t)A sin ωt

+ µω

(

1

4
A2 −

3α

16
A4 +

9β

64
A6

)

A sin 3ωt

− µω

(

α

16
A4 −

5β

64
A6

)

A sin 5ωt

+ µω
βA6

64
A sin 7ωt. (7)

The higher harmonics may be considered as forcing terms, which
diminish with increasing harmonics. Thus, we can ignore them47

and the above equation reads

(

1 − ω2

)

A cos ωt

= µω

(

−1 +
1

4
A2 −

α

8
A4 +

5β

64
A6

)

A sin ωt

+ dωh(t)A sin ωt + H, (8)

where H denotes the higher harmonic terms.
Equation (8) refers to the following frequency and amplitude

equations, respectively,

1 − ω2 = 0 (9)

and

µ

(

1 −
1

4
A2 +

α

8
A4 −

5β

64
A6

)

− dch(t) = 0. (10)

It may be noted that Eq. (10) reduces to Eq. (2) when the impulse is
OFF (i.e, for any of the following: d = 0, h(t) = 0, or c = 0). Also,
the system is independent of µ for the uncontrolled case. The fre-
quency in the harmonic limit reduces to ω = 1. Three limit cycles
(two stable, one unstable) are the results of the three roots of the
amplitude equation. To get an idea of the amplitude of the limit
cycles, we analyze the stability of the system using the energy bal-
ance method.48 The solution of Eq. (3) for µ = 0 and d = 0 is given
by

x(t) = A cos(t + φ), (11)

where φ is the initial phase that may be considered as φ = 0 for con-
venience. The period of the circle in the phase plane is 2π . Thus, the
harmonic solution becomes

x(t) ' A cos(t). (12)

The change in energy 1E in one period 0 ≤ t ≤ T(= 2π) is
found by considering the term

(

µF(x) − dh(t)ẋ
)

as the external
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forcing term. Thus, the change in energy is given as

1E = E(T) − E(0)

=

∫ T

0

(

µF(x) − dh(t)ẋ
)

ẋdt. (13)

For a periodic solution (limit cycle), one gets 1E = 0. Thus, Eq. (13)
on substitution of Eq. (12) yields

f(A2) ≡ π

(

1 −
1

4
A2 +

α

8
A4 −

5β

64
A6

)

µ

+ cd

(

B1 + B2 −
1

2

(

B3 − B4

)

)

= 0, (14)

where B1 = 2(δ1, δ2)
(

δ1 − cos δ1 sin δ1

)

+ 2(δ1 − 2π , δ2)
(

2π − δ1

+ cos δ1 sin δ1

)

; B2 = 2(2π − δ1)2(δ1)2(δ2)
(

−δ2 + cos δ2 sin δ2

+ 2(δ2 − 2π)
(

−2π + δ2 − cos δ2 sin δ2

))

; B3 = 2(2π − δ1)

×
(

2(−δ1) − 1
)(

−2(δ1 − 2π)2(δ2 − 2π)
[

4π − 2δ2 + 2(δ2 − δ1)

× (2δ2 − 2δ1 + sin 2δ1 − sin 2δ2) + sin 2δ2

]

−2(2π − δ1)2(δ2−δ1)

× [2δ2 − 2δ1 + sin 2δ1− sin 2δ2+2(δ2 − 2π)
(

4π−2δ2 + sin 2δ2

)])

;

and B4 = 2(2π − δ2)
(

2(−δ2) − 1)
)(

−2(2π − δ2)2(δ1 − δ2)

×
[

2δ1−2δ2 − sin 2δ1 +2(δ1 − 2π)
(

4π − 2δ1 + sin 2δ1

)

+ sin 2δ2

]

− 2(δ1 − 2π)2(δ2 − 2π)
[

4π − 2δ1 + sin 2δ1 + 2(δ1 − δ2)
(

2δ1

− 2δ2 − sin 2δ1 + sin 2δ2

)])

. Here, 2(u) is the “Heaviside Theta”
function,

2(u, v) =

{

1 for {u, v} > 0,
0 for {u, v} < 0.

(15)

We can determine the number of limit cycles by solving
Eq. (14). The stability of the limit cycles is determined by the slope
of the curve f(A2) (with A2) obtained from Eq. (14) at the point of
zero crossing. Hence, the condition of a stable limit cycle reads

d1E(A)

dA

∣

∣

∣

∣

LC

< 0. (16)

To have an idea on the limit cycles and their stability, we plot
Eq. (14) vs A2 (Fig. 3). The roots of Eq. (3) are determined through
the zero-crossing points of the curve. The stable LCs correspond to
those, where the curve has a negative slope at the point of its zero
crossings (shown in black filled circles in Fig. 3) and the unstable LC
corresponds to the positive slope of the curve at the zero crossing
(shown by the hollow circle). For the present case, we consider the
following parameters: µ = 0.1, α = 0.114, β = 0.003, c = 0.3, and
δ > 0 (= 50). In the figure, the broken green line shows the case for
d = −0.1. It has only one solution, which represents a large ampli-
tude limit cycle and the LC is a stable one owing to the negative slope
at the zero-crossing point. The situation of birhythmic oscillation is
shown by the solid blue line for d = 0. Here, one can see the exis-
tence of two stable LCs (negative slope) separated by an unstable LC
(positive slope). For d = 0.05, the system has only one LC with a
small amplitude. The case is shown in the figure with the broken red
line.

V. NUMERICAL RESULTS

To explore the effect of impulsive coupling, we investigate sys-
tem (3) numerically. We take α = 0.114, β = 0.003 to keep the

FIG. 3. Plot of f(A2) − A2 for the parameter set µ = 0.1, α = 0.114,
β = 0.003, δ > 0 (=50), and c = 0.3 for different values of the control parame-
ter d. The broken green (lighter) line shows themonorhythmic oscillation with large
amplitude LC for d = −0.1. The broken red (light) line denotes the monorhythmic
oscillations with small LC for d = 0.05 and the solid line indicates the birhyth-
mic case for d = 0. Black filled circles represent the stable LC and hollow circle
represents the unstable LC.

uncontrolled system (d = 0) in the birhythmic zone. The time series
and phase plane plots are shown in Fig. 4. Figure 4(a) presents the
time series for d = 0, which depicts the presence of two LCs of dif-
ferent amplitudes and frequencies. The thick red line in the time
series shows the control signal h(t) associated with the system (here,
in the uncontrolled case, it is zero). We take the initial condition (IC)
IS ≡ (x(0), ẋ(0)) = (0.1, 0) to get the small amplitude LC and show
this with the red line in Fig. 4, and for the large amplitude LC, we
consider IL ≡ (x(0), ẋ(0)) = (7, 0), which is shown by the green line
in Fig. 4. Throughout the numerical investigations, we chose these
values of initial conditions. We take the initial conditions separately
to generate either small LC or large LC and then plot them in the
same graph. The control h(t) (solid red line) is nonzero for the dura-
tion of δ and then becomes zero. The nonzero portion is highlighted
by the gray zone in the time series. The phase plane plots for d = 0
are shown in Fig. 4(b). Here also, one can notice the presence of two
distinct limit cycles. Next, we consider d = 0.3 and the parameters
controlling the impulse are given as: height c = 0.5, δ1 = 200, and
δ2 = 250, i.e., the pulse width of the control is δ = 50. As the control
is ON the system oscillates with a small amplitude LC for both ICs.
Now, if the control is switched OFF, the system remains in this small
amplitude LC. Therefore, the control for a certain period of time is
enough to select a desired limit cycle. This scenario is demonstrated
through the time series in Fig. 4(c) and the corresponding phase
plane plot in Fig. 4(d). It is interesting to note that in the beginning
of the control pulse, at first both the LCs (large and small) decay into
a transient amplitude death state and then eventually settle in to the
intrinsic small amplitude LC.

Now, we fix d = −0.3; the other parameters remain the same as
before. Here, as the control is made ON, the system oscillates with a
large LC. The scenario is shown in Figs. 4(e) and 4(f). Here, it may
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FIG. 4. Time series and phase plane plots for birhythmic vdP oscillator (3)
along with the control pulse h(t). (a) and (b) Birhythmic oscillation for d = 0,
(c) and (d) monorhythmic oscillation with smaller amplitude LC for d = 0.3, and
(e) and (f) monorhythmic oscillation with larger amplitude LC for d = −0.3.
The initial conditions used are: IS ≡ (x(0), ẋ(0)) = (0.1, 0) (violet line) and IL

≡ (x(0), ẋ(0)) = (7, 0) (green line). The gray zone indicates the control
ON zone. The phase plane plots are drawn for t ≥ 490. Other parameters
are: µ = 0.1, α = 0.114, β = 0.003, c = 0.5, δ1 = 200, and δ2 = 250, i.e.,
δ = 50 ≈ 8T .

be noted that before settling into the large LC, both LCs (small and
large) jump to a LC whose amplitude is even larger than the large
amplitude LC.

Next, we explore the efficacy of the control scheme in the
parameter space. The present scheme has three control parameters,
namely, the control strength d, the “height” of the impulse c, and the
“width” of the impulse δ. At first, we investigate the effect of “height”
c and “width” δ on the system by fixing the control strength d. For
this, we fix d = 0.05 and investigate the threshold where a single LC
emerged. The two-parameter (c − δ) plot distinguishing these two
zones is shown in Fig. 5(a). From the figure, it becomes clear that for
moderate values of the “height” (c), the required “width” (δ) of the
impulse function is very small to quench the birhythmicity. Next, we
fix d = −0.05 to achieve a large amplitude LC: the plot in the c − δ

space is shown in Fig. 5(b). Here also, we can see that one can select
a desired LC beyond a boundary in the c − δ space. It is noteworthy

FIG. 5. Two-parameter diagram in c − δ space showing the threshold of quench-
ing of birhythmicity of the birhythmic vdP system. (a) For d = 0.05 and (b) for
d = −0.05. Other parameters are µ = 0.1, α = 0.114, and β = 0.003.

FIG. 6. Two-parameter diagram in c − d space showing the threshold of quench-
ing of birhythmicity for δ = 10. Other parameters are same as Fig. 5.

that the threshold of δ in this case is larger than in the previous case,
i.e., the d = 0.05 case [Fig. 5(a)]. Energetically, this may be attributed
to the fact that one requires more energy to bring the system to a
large amplitude LC.

Next, we investigate the system in the d − c parameter space
for a fixed pulse width δ (we take δ = 10). The scenario is shown
in Fig. 6. From the figure, we can infer that for d < 0, one requires
larger values of c to quench birhythmicity and to force the system
to oscillate with large amplitude LC. For d > 0, the values of c are
less to bring the system to oscillate with small amplitude LC. Finally,
we demonstrate the results in the d − δ space for a constant “height”
of the impulse (we take c = 0.5) in Fig. 7. In this case also, we see
that the requirement of the threshold value of δ is larger for the large
amplitude LC (i.e., d < 0) compared to the small amplitude LC (i.e.,
d > 0). At this point, it should be noted that after the feedback is
turned off, the two stable limit cycles would still be possible. How-
ever, once a desired LC is reached, it remains there even after the
control pulse is made OFF.

FIG. 7. Two-parameter diagram in d − δ space showing the threshold of quench-
ing of birhythmicity for c = 0.5. Other parameters are the same as Fig. 5.
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FIG. 8. The experimental circuit compatible to be controlled and acquired by Data Acquisition System (DAQ). For description and parameter values, see text.

Therefore, we can infer that, with the proper choice of control
strength d and impulse parameters (c and δ), we can control birhyth-
micity and make the system oscillate to any one of the desired LCs.
Further, all the results suggest that to bring the system to the large
amplitude LC from its birhythmic state, the value of the impulse
height and width (i.e., the pulse energy) has to be larger than that for
a small amplitude LC. The generality of the control scheme is further
explored in diverse man-made and biochemical processes. We con-
sider a birhythmic energy harvesting system,4 Decroly–Goldbeter
model of glycolysis,6,7 and p53:mdm2 network model22 and apply
the impulsive control scheme. In all cases, we found that a feedback
in the form of a short pulse is capable of controlling birhythmic-
ity (detailed results are given in Appendixes A–C). Therefore, we
can conclude that the impulsive control scheme is general enough
to control birhythmicity in physical and biological systems.

VI. EXPERIMENT

We design the birhythmic van der Pol oscillator in an electronic
circuit with the impulsive self-feedback control given in Eq. (3). The
detailed circuit is shown in Fig. 8. A portion of the self-feedback
(W) is fed back to the integrator through a gain element (A9) and
through a switching system [h(t)] in the circuit. The switch [h(t)]
is realized with relay and microcontroller arrangement. The switch
is in the ON state for a chosen time and then made OFF. Here, we
use multiplier chips M1–M4 (AD633JN) and TL074 JFET opamps
(A1–A9). The voltage equation of the circuit reads

RC
dV

dt
= W, (17a)

RC
dW

dt
=

Rµ

100R2

[

Va − V2

(

Va − V2

(

Vα −
Rβ

R1

V2

))]

W

− V −
Rd

R
h(t)W, (17b)

The above equation is made dimensionless by the following substi-

tutions: t = t
RC

, x = V
Vsat

, y = W
Vsat

,
Rµ

100R2
= µ,

Rd
R

= dc, Va = a V,

Vα = α′ V, and
Rβ

R1
= β ; with these, Eq. (17) is reduced to Eq. (3).

Real time data are acquired using Data Acquisition System (DAQ)
(Model: NI USB-6351) with LabView interface.49 The initial condi-
tions of the circuit are controlled using a two-channel relay and a
microcontroller (Arduino Uno).50 Owing to the virtual ground of
the opamps in the integrator (A5, A7), the capacitors (C) are ini-
tially charged to the desired voltage levels which are fed externally
from the DAQ. These initial charges of the capacitors act as the ini-
tial conditions in the circuit when the relays are off. The impulsive
self-feedback is realized by the relay-microelectronic arrangement.
The relay is ON for a certain period of time that acts as the impulse
(h(t)) in the system. This relay is also controlled by an Arduino Uno.

For the experiment, we use the following circuit elements:
Rµ = 423 �, Rβ = 1.14 k�, C = 0.1 µF, Vα = α′ = −1.185 V, Va

= a = −257.3 mV, R1 = 1 k�, and R2 = R = 10 k�. We fix the
initial conditions in the circuit as follows: for large amplitude
LC IL ≡ (V1, V2) = (4.1V, 0V) and for the small amplitude LC IS

≡ (V1, V2) = (0.1V, 0V). When there is no control, i.e., Rd = 0 or
the impulse is OFF [i.e., h(t) = 0]. In the experiment, only one set of
initial conditions is used at a time. We acquire the real time data in
the computer for the large and small amplitude LC separately owing
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FIG. 9. The experimental time series and phase plane plots obtained by Data
Acquisition System (DAQ). (a) and (b) Rd = 0�: birhythmic oscillations; (c) and
(d) Rd = 1.06 k� (positive d, connecting “S” to “A”): transition from large ampli-
tude LC to small amplitude LC (only the LC for IL is shown); and (e) and (f)
Rd = 1.06 k� (negative d, connecting “S” to “B”): transition from small amplitude
LC to large amplitude LC (only the LC for IS is shown). The phase plane plots
are drawn for t ≥ 2.8 s. The initial conditions are IL ≡ (V1, V2) = (4.1V , 0V)

for large amplitude LC and IS ≡ (V1, V2) = (0.1V , 0V) for small amplitude LC.
For other resistance and capacitance values, see text.

to the ICs IL and IS, respectively, and plot them in the same diagram
to show the presence of birhythmicity in the circuit. The time series
and phase plane plots are shown in Figs. 9(a) and 9(b). Both plots
show the occurrence of a large LC and a small LC in the circuit.
Now we apply the impulsive control. The value of d is controlled
by the potentiometer Rd. A positive value of d can be achieved by
connecting the switch “S” to the point “A” in the circuit (Fig. 8). A
negative d is obtained by connecting “S” to “B.” First, we consider
d > 0 and fix Rd = 1.06 k�. Now, we feed IC IL in the circuit from
DAQ. When the system starts oscillating in the large LC we apply
the impulsive self-feedback for a period of δ = 0.01s (i.e., δ ≈ 2 T).
The system jumps from large amplitude LC to the small amplitude
LC [see Figs. 9(c) and 9(d)]. The scenario is similar to that obtained
in numerical investigations in Figs. 4(c) and 4(d). Next, we want to
examine the situation for d < 0. We feed the system with the IC
IS (targeting the small LC). We use the previous value of d, i.e.,
Rd = 1.06 k�. When the impulsive feedback is given for δ = 0.01s,
the system eventually enters the large amplitude LC from the small
one. The scenario is shown in Figs. 9(e) and 9(f). This particular sit-
uation is in good qualitative agreement with that shown in Figs. 4(e)
and 4(f). Thus, the impulsive self-feedback can control birhythmic-
ity in real electronic circuit where noise, fluctuations, and parameter
mismatch are inevitable, and, thus, the scheme is robust.

VII. CONCLUSION

The paper reports the control of birhythmicity through an
impulsive feedback control mechanism. The main essence of this
particular control lies in the fact that the control is ON for a cer-
tain small period of time and then it becomes OFF, but the system is
being controlled within that period and oscillates with the desired

limit cycle. The prominent merit of the present scheme is that
for most of the time, it remains noninvasive and, thus, does not
affect the inherent dynamics of the system. We have analyzed the
system through harmonic decomposition and energy balance meth-
ods and obtained the required conditions for the control. Apart
from the birhythmic van der Pol oscillator, we verify the effective-
ness of the control scheme on an energy harvesting system, the
Decroly–Goldbeter model of glycolysis, and the p53:mdm2 network
model (Appendixes A–C). In all cases, it has been found that the
control scheme can bring the system to a desired limit cycle. Finally,
we have designed a prototypical birhythmic system, namely, the
birhythmic van der Pol oscillator, in a hardware level electronic cir-
cuit and applied the control to the system. In the electronic circuit,
which is a real system, despite the presence of parameter mismatch,
noise, fluctuations, etc., the scheme is robust and efficient enough
to control birhythmicity. Therefore, we believe that this study has
potential applications in the field of control of birhythmicity in sev-
eral biochemical and mechanical processes as well as in other fields
of natural sciences.
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APPENDIX A: BIRHYTHMIC ENERGY HARVESTING

SYSTEM UNDER IMPULSIVE SELF-FEEDBACK

CONTROL

We consider the birhythmic energy harvesting system,4 which
produces electrical energy from ambient wind energy. The arrange-
ment in the energy harvesting system possesses a cantilever attached
to piezoelectric patches, which works under the transverse wind
flow. The model has the following mathematical form:

ÿ + µF(ẏ) + �2
0y = η0v − dh(t)ẏ, (A1a)

v̇ + γ v = −η1ẏ, (A1b)

where F(ẏ) =
(

−ẏ + ẏ3/3 − αẏ5/5 + β ẏ7/7
)

is the nonlinear func-
tion and the impulsive control term is given by −dh(t)ẏ.
For the present case, we consider the following parameters:
µ = 0.1, α = 0.144, β = 0.005, �0 = 1, η0 = 0.1, η1 = 0.25, and
γ = 0.2. Also, the following initial conditions are used: IS
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FIG. 10. Time series and phase plane plots of birhythmic energy harvesting
system. (a) and (b) Birhythmic oscillation for d = 0, (c) and (d) monorhythmic
oscillation with smaller amplitude LC for d = 0.1; (e) and (f) monorhythmic oscil-
lation with larger amplitude LC for d = −0.1. The phase plane plots are drawn for
t ≥ 490. Other parameters are: µ = 0.1, α = 0.144, β = 0.005, �0 = 1,
η0 = 0.1, η1 = 0.25, γ = 0.2, c = 0.5, δ1 = 200, and δ2 = 220 (i.e.,
δ = 20 ≈ 4T).

≡
(

y(0), ẏ(0), v(0)
)

= (0.1, 0, 0.3) (targeting the small amplitude

LC) and IL ≡
(

y(0), ẏ(0), v(0)
)

= (7, 0, 0.3) (targeting the large
amplitude LC). With these parameters, we apply the impulsive con-
trol. We fix the “height” c = 0.5 and “width” δ = 20 (δ ≈ 4T). The
outcomes of this control are shown in Fig. 10. The uncontrolled
case, i.e., d = 0, is shown in Figs. 10(a) and 10(b). The time series
[Fig. 10(a)] and the phase plane plot [Fig. 10(b)] depict that the
system is birhythmic in nature. Next, we fix d = 0.1. In this case,
the system oscillates with small amplitude LC after the control
the applied [Figs. 10(c) and 10(d)]. The system is brought to the
large amplitude LC by taking d = −0.1. The scenario is shown in
Figs. 10(e) and 10(f).

APPENDIX B: THE GLYCOLYSIS MODEL: MODIFIED

DECROLY–GOLDBETER MODEL

The glycolysis model (modified Decroly–Goldbeter model),6,7

which is closely related to the glycolytic oscillation in yeast and mus-
cle and the periodic synthesis of cAMP during the aggregation of
the slime mold Dictyostelium discoideum.25 According to Kar and
Ray6 the modified Decroly–Goldbeter model, which is a product-
activated enzyme model, along with the impulsive control given
by

dα

dt
= µ − σφ(α, γ ) +

σiγ
n

Kn + γ n
, (B1a)

dγ

dt
= qσφ(α, γ ) − Ksγ −

qσiγ
n

K+γ n
− dh(t)γ , (B1b)

with

φ(α, γ ) =
α(1 + α)(1 + γ )2

L + (1 + α)2(1 + γ )2
, (B2)

FIG. 11. Time series and phase plane plots of the glycolysis model. (a) and
(b) Birhythmic oscillation for d = 0; (c) and (d) monorhythmic oscillation with
smaller amplitude LC for d = −0.001, (e) and (f) monorhythmic oscillation
with larger amplitude LC for d = 0.0012. The phase plane plots are drawn for
t ≥ 7600. Other parameters are: ν = 0.225, q = 0.1, Ks = 0.06, L = 3.6
× 106, σ = 10, σi = 1.3, n = 4, K = 10.0, c = 0.5, δ1 = 1000, and
δ2 = 3000 (i.e., δ = 2000 ≈ 7T).

where α is the normalized substrate concentration and γ is the
normalized product concentration. We apply the impulsive control
(−dh(t)γ ) in the second equation. For the present case, consider
the following parameter set: ν = 0.225, q = 0.1, Ks = 0.06, L = 3.6
× 106, σ = 10, σi = 1.3, n = 4, and K = 10.0. The following initial
conditions are used: IS ≡ (α(0), γ (0)) = (80, 5) (targeting the small
amplitude LC) and IL ≡ (α(0), γ (0)) = (100, 5) (targeting the large
amplitude LC).

In the impulsive control, we apply the following parameters:
“height” c = 0.5, δ1 = 1000 and δ2 = 3000, i.e., “width” δ = 2000
(here we use δ ≈ 7 T). Here, we wishfully choose an arbitrary pulse
width (∼7 T, where T is the time period of the LC to be controlled)
for better visibility. We investigate numerically the time series and
phase plane plots. The birhythmic case for no control, i.e., d = 0
is shown in Figs. 11(a) and 11(b). The solid red line shows the
control, which is drawn with an offset of 65 to align it at the cen-
ter with the time series. The monorhythmic oscillations with small
amplitude LC are shown in Figs. 11(c) and 11(d) for d = −0.001.
For d = 0.0012, the system shows the monorhythmicity with large
amplitude oscillations [Figs. 11(e) and 11(f)].

APPENDIX C: THE p53:mdm2 NETWORK: OAK MODEL

Ouattara, Abou-Jaoudé, and Kaufman’s differential model of
the p53-Mdm2 network (or the OAK model) is a birhythmic
model that gives the proliferation of abnormal cells by proteins
in mammals.22 It describes the interaction between p53, cytoplas-
mic Mdm2, and nuclear Mdm2. The mathematical model with the
impulsive self-feedback control reads

dP

dt
= kP

KP

Kn
P + Mn

n

− dPP, (C1a)
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FIG. 12. Time series and phase plane plots of the p53-Mdm2 model. (a) and
(b) Birhythmic oscillation for d = 0, (c) and (d) monorhythmic oscillation with
smaller amplitude LC for d = 0.1, and (e) and (f) monorhythmic oscillation with
larger amplitude LC for d = −0.35. The phase plane plots are drawn for t ≥ 490.
Other parameters are: kP = 5, KP = 0.2, dP = 2.5, kMc = 0.1, k′

Mc = 1.2, KMC

= 0.4, kin = 0.45, k′
in = 0.4, KMn = 0.1, dMc = 0.6, Vr = 10, dMn = 1.9,

n = 6, c = 0.5, δ1 = 200, and δ2 = 220 (i.e., δ = 20).

dMc

dt
= kMc + k′

Mc

Pn

Kn
Mc + Pn

−

(

kin − k′
in

Pn

Kn
Mn + Pn

)

Mc

− dMcMc − dh(t)Mc, (C1b)

dMn

dt
= Vr

(

kink′
in

Pn

Kn
Mn

+ Pn

)

, (C1c)

where P, Mc, and Mn represent, respectively, the concentration of
p53, cytoplasmic Mdm2, and nuclear Mdm2.

For numerical investigation, we apply the following parameter
set: kP = 5, KP = 0.2, dP = 2.5, kMc = 0.1, k′

Mc = 1.2,
KMC = 0.4, kin = 0.45, k′

in = 0.4, KMn = 0.1, dMc = 0.6,
Vr = 10, dMn = 1.9, and n = 6. The following initial conditions
are used: IS ≡ (P(0), Mc(0), Mn(0)) = (0.6, 0.3, 0.4) (targeting the
small amplitude LC) and IL ≡ (P(0), Mc(0), Mn(0)) = (3, 0.3, 0.2)
(targeting the large amplitude LC). The parameters for the impulse
are as follows: “height” c = 0.5 and “width” δ = 20. The results of
numerical investigations are shown in Fig. 12. The system shows
birhythmic oscillations without the control, i.e., d = 0 [Figs. 12(a)
and 12(b)]. The system exhibits monothythmicity with small ampli-
tude LC for d = 0.1 as shown in Figs. 12(c) and 12(d). For
d = −0.35, the system gives monorhythmicity with large amplitude
oscillations as shown in Figs. 12(e) and 12(f).

Therefore, we may conclude that our control scheme is general
enough to control birhythmicity in salient physical, biological, and
man-made systems.
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