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ABSTRACT

Renewable energy sources in modern power systems pose a serious challenge to the power system stability in the presence of stochastic
fluctuations. Many efforts have been made to assess power system stability from the viewpoint of the bifurcation theory. However, these stud-
ies have not covered the dynamic evolution of renewable energy integrated, non-autonomous power systems. Here, we numerically explore
the transition phenomena exhibited by a non-autonomous stochastic bi-stable power system oscillator model. We use additive white Gaus-
sian noise to model the stochasticity in power systems. We observe that the delay in the transition observed for the variation of mechanical
power as a function of time shows significant variations in the presence of noise. We identify that if the angular velocity approaches the
noise floor before crossing the unstable manifold, the rate at which the parameter evolves has no control over the transition characteristics.
In such cases, the response of the system is purely controlled by the noise, and the system undergoes noise-induced transitions to limit-cycle
oscillations. Furthermore, we employ an emergency control strategy to maintain the stable non-oscillatory state once the system has crossed
the quasi-static bifurcation point. We demonstrate an effective control strategy that opens a possibility of maintaining the stability of electric
utility that operates near the physical limits.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0093450

The recent paradigm shift in integrating intermittent renewable
energy (RE) and plug-in electric vehicles has increased uncertain-
ties in power systems. These uncertainties alter the operational
schedule and stability margin of the system. Therefore, there is
significant research interest in power system dynamics in the
presence of uncertain fluctuations. Studies on the impact of fluc-
tuations hitherto are based on the approximation of the system
as autonomous. In this work, we investigate the effect of noise on
the power system transition characteristics for different operat-
ing environments, preserving the non-autonomous behavior of
the system. We also propose a control strategy for the power
system model considered. Considering power system operation
close to the physical limits and the chances of cascading failures
affecting major sectors of the society, a control strategy which
allows one to regain the stability is highly pertinent.

I. INTRODUCTION

Power networks are undergoing a fundamental transition
to tap abundant and cost-free renewable energy sources (RESs)
as promising alternatives to conventional, limited supply energy
sources. The integration of renewable energy, which is intermit-
tent in nature, brings in significant uncertainty and fluctuations
in the power generation.1 The increased uncertainties and fluctu-
ations alter the operational schedule2 and stability margin3 of the
power system. Therefore, we need to investigate the power system
dynamics under uncertainties and fluctuations.4–8 Power systems
with uncertainties are modeled as stochastic systems by model-
ing the uncertainties as noise. Hence, power systems dynamics are
described by stochastic nonlinear differential equations.1 Stochastic
nonlinear systems are found to exhibit novel dynamical features9,10

and transitions11 that are absent in the deterministic counterparts.
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The diverse manifestation of noise demands a thorough investi-
gation and characterization of the dynamics of stochastic power
systems to ensure reliable operation.

The uncertainty levels in modern power systems, including
wind and solar sources, are so high as to trigger a critical transi-
tion (CT), leading to collapse.12 The transient stability assessment
of a stochastic power system is challenging due to the cumulative
effects of the random transient disturbances and uncertainties.13 The
customary practice in power systems to analyze the transient sta-
bility under stochastic disturbances is to adopt canonical models
that retain the essential features for the analysis.14 The commonly
used canonical model is a single infinite machine bus (SMIB), in
which a single generator is connected to an infinite bus.15–17 The
widely accepted methodologies to address the transient stability
of a stochastic power system are probabilistic approaches18 and
time-domain simulations.19

Odun-Ayo and Crow20 presented a quantitative measure of
the probability of stability suitable for transient disturbances using
stochastic Lyapunov methods. Furthermore, Wang and Crow16 ana-
lyzed transient stability of stochastic SMIB by investigating quali-
tative changes occurring in the corresponding probability density
function (Pdf). The authors determined the evolution of Pdf over
time with Fokker Planck equations. A successive study by Ju et al.1

computed the stability probability by evaluating the energy function,
which is further analytically solved using stochastic averaging.

Shahidehpour and Qiu performed one of the pioneering works
of transient stability of a stochastic power system using the Langevin
equation of motion.4 The authors formulated a stability measure for
the SMIB power system model based on the mean exit time from the
time-domain simulations. After that, Marco and Bergen15 adopted
a structure-preserved, single generator-single load power system
model and developed a stability measure based on the mean exit
time from the domain of attraction of SEP for voltage collapse. These
studies on the canonical model help one to assess transient stability
based on the mean first exit time from the domain of attraction of
the stable equilibrium point (SEP) as a function of the magnitude of
perturbations.4,15

Furthermore, Dhople et al.21 analyzed the transient stability
of a stochastic power system through a linear stability analysis.
They illustrated the formulation of a stochastic hybrid system from
the linearized system to compute the moments of the state vari-
able to assess the transient stability. Most of the transient stability
studies performed on stochastic power systems examined the exit
time/moments of the state variable from the domain of attraction of
SEP. However, these studies do not give information about the avail-
able operation margin in the parameter space. In order to evaluate
the available operating margin in the parametric space, Wang and
Crow22 performed a transient stability analysis of a stochastic power
system from the perspective of the bifurcation theory. The study on
a three machine nine bus stochastic power system model illustrated
a singularity induced bifurcation near the point of voltage instability
in the parameter space in the presence of random fluctuations.

In summary, the literature covered until now analyzed the
transient stability of stochastic power systems using canonical mod-
els. A significant amount of literature reported the impacts of the
intensity of stochastic fluctuations on the stability of power systems
from the viewpoint of bifurcation theory. However, these studies

examined the quasi-static variation of the bifurcation parameter in
an autonomous power system model. The studies on other dynam-
ical systems confirm that stability regimes in autonomous and non-
autonomous systems are different.23,24 Therefore, it is essential to
consider the time evolution of the system parameters for the stability
analysis to get a correct picture of the stability regimes of stochas-
tic power systems. Hence, we focus on the numerical time-domain
simulations of non-autonomous stochastic power systems in this
work.

Suchithra et al. reported the first study on the delay in the
point of transition to the alternate state in a bi-stable power sys-
tem model for the variation of system parameter as a function of
time.25 Furthermore, the authors reported an early transition to the
undesirable alternate state when the mechanical power is varied as
a function of time in a deterministic power system model.26 In this
study,26 they proved that the stable branch ceases to exist beyond
the quasi-static bifurcation point, which leads to completely differ-
ent behavior in comparison with the case when the stable branch
becomes unstable.27 They also demonstrated a relationship between
the initial conditions and the rate of evolution of the bifurcation
parameter that triggers a transition to the undesirable state. In this
paper, we numerically examine the effect of various noise intensities
in a non-autonomous bi-stable power system oscillator model. We
determine the relationship between the speed at which the system
parameters vary and the fluctuation intensity at the generation side.
Furthermore, we propose a rate-driven control to reverse the system
to the stable non-oscillatory state even after crossing the bifurcation
point. The results obtained via this approach help us to maintain the
stability when significant levels of stochastic fluctuations are present.

The organization of the paper is as follows. Section II describes
the stochastic power system model employed for our investiga-
tion. Section III presents the stochastic system response under the
variation of mechanical power as a function of time, followed by
the rate-driven control strategy, which enables smooth reversal of
the transition from the emergent state. Finally, the conclusions are
presented in Sec. IV.

II. STOCHASTIC POWER SYSTEM MODEL

We consider the canonical SMIB power system model, widely
adopted to study transient electromechanical dynamics, for our
investigation. The governing dynamics of the system are explained
with a three degree of freedom (DOF) swing equation that incor-
porates the effects of flux decay. Flux decay plays a significant role
in angular instability.28,29 The synchronous machine transforms the
mechanical power input, Pm, to the electrical power output, Pe. The
governing dynamics are described as follows:

Mδ̈ + Dδ̇ = Pm − Pe, (1)

Pe =
EV sin(δ)

x′

d6
, (2)

Td0Ė = Ef −
E(x′

d6 + (xd − x′

d)) + V sin δ

x′

d6
. (3)

Here, M and D represent the inertia and the damping constant; δ is
the displacement of the rotor angle with respect to the synchronous
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frame; E is the induced electromotive force (emf), which is given
by Eq. (3), and V is the voltage at the infinite bus; Ef denotes the
excitation voltage to the field winding; x′

d6 denote the lumped reac-
tance of the synchronous machine and transmission line. xd and x′

d,
respectively, represent the direct axis reactance in steady and tran-
sient states. The direct axis open-circuit time constant is denoted
by Td0. The time derivative of δ is denoted as ω, which denotes the
difference in the angular velocity from the synchronous reference
frame. We use the normalized equations as in Kundur14 and make
the following substitutions for convenience:

b =
EV

XM
, γ =

D

M
, X′

= xd − x′

d, B =
1

x′

d6
.

The difference between the two reactances, X′ denotes the effective
reactance of the system. Furthermore, we fix the standard values to
the parameters in the governing equation as given below:28,29

M = 0.3, D = 0.2, Td0 = 2, X′
= 1, Ef = 1, B = 1.

We have shown the inception of limit cycle oscillations and a
sub-critical Hopf bifurcation in the same power system model.26

The model also captures many dynamical features such as period-
doubling oscillations and chaos28 in various parameter regimes.

We focus on the perturbations due to stochastic variations of
generation. The intermittent feed-in from wind and solar genera-
tions are modeled as α-stable Lèvy type noise30,31 in the literature.30,31

However, we apply additive white Gaussian noise (AWGN) as a first
approximation. The conventional practice in power systems is to
choose white Gaussian noise to model stochasticity in power sys-
tems occurring at the generation side, where the power system is
represented as SMIB.16,17 In our study, we analyze the effect of the
dynamic evolution of system parameters in the presence of AWGN
of varying intensities. AWGN is generated by a Wiener process, as in
the literature.16,32 The properties of the Wiener process are available
in the literature.19 The SMIB with AWGN is given below:

dδ = ω dt, (4)

dω =

(

Pm −
EV

X
sin δ − Dω

)

dt + β dW(t), (5)

Td0dE = Ef − E(1 + X) + V cos δ + β dW(t), (6)

where βW(t) are the stochastic continuous disturbances, W(t) rep-
resents the Wiener process, and β is the noise intensity. Wang et al.16

investigated the effects of AWGN on the stability regimes of SMIB
by tracing the evolution of Pdf of the dynamic trajectories. How-
ever, the effect of AWGN when the system parameters change as a
function of time is not explored. Ours is the first numerical study
that focuses on the influence of noise on the transition characteris-
tics for the variation of system parameters as a function of time. We
employ stochastic Runge–Kutta method with a step size of 0.01 for
the numerical integration.33

III. RESULTS

A. Transitions in the power system model for the

mechanical power variations as a function of time in

the presence of fluctuations

In this section, we evaluate the response of the system for vari-
ation of system parameters as a function of time in the stochastic
bi-stable power system oscillator. Even though the stability of a
bi-stable power system oscillator is well investigated, these studies
focus on the static bifurcation analysis of the bi-stable oscillator.28,34

Perpetual changes in load and generation associated with RES make
modern power systems non-autonomous.35 In our earlier work, we
have established that the system continues to hover around the sta-
ble equilibrium point for a slow variation of the system parameter.
Hence, the onset of oscillations is delayed with respect to the quasi-
static bifurcation diagram.25 To be specific, the destabilization of the
slowly varying trajectory does not occur immediately upon cross-
ing the bifurcation point, determined by a quasi-static bifurcation
analysis.23

Here, we inspect the influence of stochasticity in the bi-stable
power system model, where the system parameter varies as a func-
tion of time. The mechanical power varies as a function of time, as
in the previous study,25 as follows:

Pm(t) = Pm0 + µt, (7)

where Pm0 is the initial value of the mechanical power and µ is
the rate at which mechanical power is varied. We allow a lin-
ear evolution of mechanical power as discussed in the literature.36

We have paid sufficient attention to eliminate the possibility of
severe transient disturbances by limiting the maximum rate at which
the bifurcation parameter evolves, which is beyond the scope of
this work. In our experiments, we have non-dimensionalized noise
before performing the experiment as in the literature.37

We capture the time series of the state variable ω for the inves-
tigation, which contains sufficient information about the state of the
power system.38,39 In order to investigate the response of the system
to variations in initial conditions, we consider two sets of initial con-
ditions, one at a finite distance from the fixed point and the second
close to the fixed point. We fix the initial value of ω at ω0 = 1.5 for
the first set of experiments. Here, we vary Pm from 0.3 to 0.9 in the
presence of a non-dimensionalized noise intensity of 3% in the sys-
tem. A non-dimensionalized noise intensity of 3% means that the
ratio of the RMS value of the angular velocity at the applied noise
level is 3% to the RMS value of limit cycle oscillations in the absence
of noise. For clarity, we denote the non-dimensional noise inten-
sity as σ . As time evolves, the system parameter Pm is varied at
predefined fixed rates as in Eq. (7). We considered three different
rates for our investigation as in the literature.40 The three differ-
ent rates considered for the study are µ3 = 0.0001, µ2 = 0.0002,
and µ1 = 0.0003. The trajectories are plotted against the quasi-static
bifurcation diagram to distinguish the effects of rate and noise. In
order to plot the quasi-static bifurcation diagram, we increase the
non-dimensional mechanical power, Pm, in a quasi-static manner,
keeping the initial conditions constant. We record the root mean
square (RMS) value of the angular velocity for each Pm. An oscil-
latory response and sudden increase in the magnitude of ω are
obtained when the mechanical power crosses the first critical value,
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PmCT1. Furthermore, we change the initial conditions of the system
and decrement Pm to get the second critical value (PmCT2), wherein
we observe the reverse transition from the oscillatory state to the sta-
ble fixed point. Figure 1(a) presents the transitions for the variation
of mechanical power as a function of time, ω(t) of the canoni-
cal power system model for different rates of evolution of system
parameters corresponding to ω0 = 1.5.

We notice an effect of the early crossing of the unstable man-
ifold for higher rates of variation of mechanical power, irrespective
of the initial Pm0 value. Specifically, the point at which the system
crosses the unstable manifold while nearing the Hopf point is depen-
dent upon the rate at which Pm evolves. As a result, for systems with

higher µ, the system crosses the unstable manifold and gets attracted
to the stable limit cycle at a lower value of Pm.

Next, we repeat the experiment for the same rate of evolution
of the system parameters as earlier, except for a different initial con-
dition, when ω0 = 0.1. We observe that the dynamic trajectories,
ω(t) crossover the unstable manifold without maintaining a spe-
cific trend in the rates in Fig. 1(b), quite different from Fig. 1(a).
Then, to analyze the reason behind the different order of crossing
the unstable manifold, we closely inspect the dynamic trajectories
near the bifurcation point. We identify that the order in which
the system crosses the unstable manifold is greatly determined by
external stochastic excitation for the second set of initial conditions.

FIG. 1. Dependence of transition characteristics on the initial conditions. The figure depicts the trajectory of angular velocity for two different initial conditions with respect
to the quasi-static bifurcation diagram. (a) Away from the fixed point: the initial condition is specified as follows: ω0 = 1.5, Pm0 = 0.3. The mechanical power is allowed to
vary at three different rates, as in the order µ3 < µ2 < µ1 at a noise intensity of σ = 3%. (b) Near the fixed point: the initial condition is specified as follows: ω0 = 0.1,
Pm0 = 0.3. The mechanical power is allowed to vary at the same rate as in the earlier case with the same noise exposure. However, the order in which the transition occurs
is not maintained, which is shown in the figure. The forward and backward paths of the quasi-static bifurcation diagram are indicated by blue and red colored markers,
respectively.
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Unlike the earlier case wherein the order of crossover is dependent
upon respective µ, crossover depends upon the individual noise
realization for the operating condition close to the fixed point.

Additionally, we captured multiple realizations of the response
while maintaining the noise intensity, the rate of variation, and
the initial conditions constant to check the variability in stochas-
tic realization. As described earlier, we performed 50 simulations
each for cases 1 and 2. We have plotted five realizations of the
transitions corresponding to two different operating conditions,
to ensure the clarity and to illustrate the spread in the point of
transition, Case 1: µ = 0.0001, ω0 = 1.5, Pmo = 0.3, Pmf = 0.9 and
Case 2: µ = 0.0001, ω0 = 0.1, Pmo = 0.3, Pmf = 0.9 when subjected
to the same non-dimensional noise intensity of 3%. Figures 2(a)
and 2(b) demonstrate the multiple realizations of the transitions per-
taining to case 1 and 2, respectively. Our results are in qualitative

agreement with the results observed by Unni et al. in thermoacoustic
systems.41

The individual realizations of the trajectories exhibit substan-
tial variability in the point of transition to limit cycle oscillations in
the presence of noise in Fig. 2. We have computed the mean value of
the transition point in both cases and computed the deviation in the
transition point from the mean. This confirms the variability in the
point of transition for each realization. We observe the variability in
the transition point for multiple realizations in Fig. 2 with respect to
Fig. 1. However, the pronounced effect of variability can be observed
in the plot, corresponding to the second case [Fig. 2(b)], wherein the
operating condition is close to the fixed point.

We infer that noise plays a crucial role in deciding the tran-
sition characteristic when the trajectory is near the fixed point. It
is identified that pre-bifurcation noise amplification is pronounced

FIG. 2. Variable transition characteristics with respect to initial conditions and fluctuations. (a) Away from the fixed point, ω0 = 1.5. (b) Near the fixed point , ω0 = 0.1.
Figures (a) and (b) depict the dynamic trajectories for the variation of mechanical power between Pm0 and Pmf , respectively, at a prefixed rate and noise intensity. Here, the
dynamic trajectories are marked as T1–T5 with respect to the quasi-static bifurcation diagram for the mechanical power variation from Pm0 = 0.3 to Pmf = 0.9. The forward
and backward paths of the quasi-static bifurcation diagram are indicated by blue and red colored markers, respectively. The pink colored hexagonal marks demarcates stable
equilibrium point from the stable limit cycle.
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for slow transitions through the bifurcation point in systems with
internal noise.40 In our study, we show that when the magnitudes of
the operating state variables are comparable with the magnitudes of
noise intensities, the system becomes stochastic. This is dissimilar to
the expected behavior for the slow variation of system parameters
through the bifurcation point.

Thus, we unveil that in the case of a stochastic bi-stable power
system oscillator, there is an interplay between the noise and the rate,
which determines the system response.

To identify the effects of noise intensity on the transition char-
acteristics, we have repeated the experiments associated with Fig. 1
for various noise intensities for a given rate of variation of mechan-
ical power (Fig. 3). We have considered 25 realizations of each
noise intensity and computed the average trajectory to analyze the
response in the presence of noise. We inferred that the dependence
on initial conditions is preserved by inspecting the average trajec-
tory of 25 realizations. We have observed complete suppression of
the bi-stable region for noise intensity, σ = 8%. Hence, in our study,

FIG. 3. Influence of noise intensity on the transition characteristics. The figure depicts the angular velocity for two different initial conditions when exposed to varying noise
intensities with respect to the quasi-static bifurcation diagram. (a) Away from the fixed point. The initial conditions are the same as in Fig. 1 (Pm0 = 0.3,ω0 = 1.5). The
mechanical power is allowed to vary from 0.3 to 0.8 at a rate of µ = 0.0001. The noise intensities considered in this experiment range from 1% to 6%. (b) Near the fixed
point: the initial conditions are ω0 = 0.1, Pm0 = 0.3 The average trajectory remains the same irrespective of the noise intensities considered.
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to investigate the effect of noise intensity on the transitions, we
consider noise intensities less than 8% to avoid the possibility of
noise-induced transitions (NIT), which is beyond the scope of this
work. There is a qualitative similarity between our results on the
shift in the point of transition in the presence of fluctuations and
the change in the bifurcation point observed in the Henon map42

and loss-driven CO2 laser.43 We observe that the suppression of
the bi-stable region for higher noise intensity (8%) is in qualitative
agreement with the observation of the destabilization of the attrac-
tors by additive noise for the slow sinusoidal parameter variation in
the logistic map44 and annihilation of one of the coexisting attractors
in a bistable system.45

We find that stochastic power systems show significant ran-
domness at the point of transition, resulting in a loss of 80% of the
stability margin determined by the quasi-static bifurcation diagram
in the studies that we conducted. This leads to an emergency state,
which necessitates a dedicated control strategy.46–49 Therefore, it is
extremely important to develop an effective control strategy for sys-
tems operating near to their physical limits, which is the subject of
Sec. III B.

B. Rate-driven control of power system operating

near the physical limits

The transition characteristics of stochastic power systems pre-
sented in Sec. III A. revealed that transitions are triggered by both
noise and the operating environments. Power systems usually oper-
ate near the stability limits for the best usage of the existing transmis-
sion assets.50 Therefore, stochastic power systems operating near the
stability limits are more susceptible to the type of transitions that we

observed in Sec. III A. We propose a control strategy for a stochastic
power system operating close to the physical limits.

We consider a power system model that operates beyond the
quasi-static bifurcation point to resemble a physical system oper-
ating close to the limits. In our previous experiments, we noticed
that the power system exhibits a delay in transition when the con-
trol parameter varies as a function of time.25 Here, we notice a small
window from the point of transition to the point at which the trajec-
tory grazes the limit cycle oscillations. The point of transition and
the point at which the trajectory grazes the limit cycle oscillations
are, respectively, shown as Ptran and Pmerg in Fig. 4. Therefore, region
of interest to develop a control scheme is from the bifurcation point,
PmCT1, to the merging point, Pmerg, denoted as 1Pm in Fig. 4. The
time taken while traversing from Ptran to Pmerg is dependent upon
the rate at which the parameter is varied.

We vary the mechanical power from an initial value Pm0 to a
final value Pmf at a rate of µ = 0.0001, the lowest rate considered
for the experiment. Furthermore, we decremented the mechani-
cal power at the same rate of the increment to check whether the
decrement was sufficient to bring the system back to the basin of
attraction of the fixed point. Initially, we choose a Pmf value close
to PmCT1 in our numerical experiment. We incremented Pmf gradu-
ally in steps of 0.01 to identify the highest Pm for which the reverse
transition to the stable fixed point is possible for µ = 0.0001. We
observed that for Pmf beyond 0.68, the angular velocity crosses the
unstable limit cycle and enters the basin of attraction of the limit
cycle, even though Pm is decremented at a rate of 0.0001. Figures 5(a)
and 5(b) depict two representative cases from the numerical experi-
ments conducted. In Fig. 5(a), the trajectory of ω crosses the unsta-
ble limit cycle, while we decrement the mechanical power for a Pmf

value of 0.7. The crossover to the stable limit cycle is shown in green

FIG. 4. Margin for control of the system for variations of mechanical power as a function of time. The figure shows the transition to the oscillatory state for the mechanical
power variation as a function of time and the merging point with respect to the quasi-static bifurcation diagram for σ = 3%. The transition and merging point is, respectively,
denoted as Ptran and Pmerg . The quasi-static bifurcation diagram is shown in blue and red colored markers for the forward and reverse paths, respectively. The window from
the quasi-static bifurcation point PmCT1 to merging point Pmerg is marked as 1Pm. The control parameter variation is performed at a rate of µ = 0.0001.
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FIG. 5. The rate-driven control strategy. We vary the mechanical power at µ = 0.0001 from Pm0 = 0.1 to Pmf and decrement from Pmf at the same rate for σ = 3%. The
response of the system for the increment and decrement of Pm is shown by blue and red colored trajectories against the bifurcation diagram. In Fig. 5(a), Pmf = 0.7, where
we can observe the transition to the stable oscillatory state, despite the decrement in Pm. Figure 5(b) Pmf = 0.68, where the system regains the stable non-oscillatory state
via the control strategy.

FIG. 6. Calibration curve is a plot, which shows the rate of the decrement of mechanical power (µ) required to perform a smooth reverse transition of the power system
from the emergency regime to the stable regime for σ = 1%, σ = 3%, and σ = 5%, respectively. Figure 6(a) shows the calibration curve that illustrates the minimum rate
required to revert the system back to stable non-oscillatory state for different Pmf values, when D = 0.2. Figure 6(b) shows the comparison of the minimum rate required for
the decrement of mechanical power for two damping values. The figure depicts the reduction in the value of µmin for an increase in damping performed at a noise intensity
of 3%.
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colored trajectory in Fig. 5(a). In the latter case, ω returns to the
basin of attraction of fixed point [Fig. 5(b)] when Pmf is decremented
to 0.68.

Next, we performed the numerical experiment to determine
the maximum Pm, which allows the reversal of transition by incre-
menting µ values while decreasing the mechanical power for three
different noise intensities. We focus on the region between the
quasi-static bifurcation point (PmCT1) to the merging point (Pmerg)
to determine the µmin of the model that operates around the stabil-
ity margin. We show the results in the calibration curve in Fig. 6(a),
which illustrates the minimum rate of the decrement of the mechan-
ical power, µmin, to perform a smooth reversal from the emergency
state to the regime of safe return, for three different noise intensities,
1%, 3%, and 5%, respectively. We can ensure stability by operating
at mechanical power decrements between µmin and the maximum
limit imposed by the physical constraints.

Furthermore, we captured multiple realizations of the response
for a predetermined µmin and a given noise intensity (σ ) to check
the variability in the stochastic realization. We performed the exper-
iment for all the noise intensities considered in the calibration curve.
By analyzing the results, we observed that there exists variability
in µmin among multiple realizations of the same noise intensity. In
an attempt to extend the Pmf value, we incremented the damping
level of the system. We identified that it is possible to ensure a safe
return to the non-oscillatory state with a lower rate of decrement
of mechanical power by increasing the damping level of the system
[Fig. 6(b)]. In Fig. 6, the recommended region for operation per-
taining to Pmf is above the blue and red trajectories for D1 and D2,
respectively. From the numerical experiments, we observe that if we
perform the forward transition at µ = 0.0001, there exists an upper
limit for Pmf, beyond which the reverse transition to the stable fixed
point will not be possible.

The proposed rate-driven control strategy for emergency con-
trol based on universal bifurcation regularity implies a practical
application in different fields where a reverse transition from an
unstable to a stable state is needed. The proposed rate-driven con-
trol strategy helps maintain the stability of engineering systems such
as power systems,26 thermoacoustic systems,41 and in agroecologi-
cal transitions51,52 when the systems are operating near the physical
limits.

IV. CONCLUSIONS

This paper focuses on the role of the initial conditions and
the stochastic fluctuations in the onset of oscillations in a bi-stable
power system model that undergoes rate-dependent variation of
the control parameter, which has not been investigated in power
systems.

Our first finding is that when the magnitudes of the noise inten-
sity and the state variable are comparable, the system undergoes
noise-induced transitions while crossing the unstable limit cycle.
In these noise-induced transitions, the effect of rate on the transi-
tion characteristics is diminished and the system response is purely
determined by the noise level present in the system. This is dissimi-
lar to the expected behavior in systems that undergo a slow passage
through the bifurcation.

Second, we estimate the variability in the operating margin
for a given noise intensity and the rate of variation of the control
parameter for different initial conditions.

Our most striking result is a safe-return control strategy from
the emergency state to the stable regime. We established a boundary
between the emergency state and regime of safe return in the plane
of mechanical power limit and the rate of decrement of mechanical
power.

The proposed emergency control strategy helps retain stability
by deciding the rate of the decrement of the control parameter for
operation beyond the bifurcation point by modifying the generation
of redispatch. Furthermore, we find that the relation between the
damping constant and the rate plays a significant role in deciding
the energy sources to be retained while operating near the stability
limits. We propose to analyze the effect of the effectiveness of the
control strategy in a real-time power grid where inherent noise will
be there as future work.
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