Deutsch
 
Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Physically constrained generative adversarial networks for improving precipitation fields from Earth system models

Urheber*innen
/persons/resource/philipp.hess

Hess,  Philipp
Potsdam Institute for Climate Impact Research;

/persons/resource/markus.drueke

Drüke,  Markus
Potsdam Institute for Climate Impact Research;

/persons/resource/petri

Petri,  Stefan
Potsdam Institute for Climate Impact Research;

/persons/resource/Felix.Strnad

Strnad,  Felix
Potsdam Institute for Climate Impact Research;

/persons/resource/Niklas.Boers

Boers,  Niklas
Potsdam Institute for Climate Impact Research;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PIKpublic verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hess, P., Drüke, M., Petri, S., Strnad, F., Boers, N. (2022): Physically constrained generative adversarial networks for improving precipitation fields from Earth system models. - Nature Machine Intelligence, 4, 10, 828-839.
https://doi.org/10.1038/s42256-022-00540-1


Zitierlink: https://publications.pik-potsdam.de/pubman/item/item_27428
Zusammenfassung
Precipitation results from complex processes across many scales, making its accurate simulation in Earth system models (ESMs) challenging. Existing post-processing methods can improve ESM simulations locally but cannot correct errors in modelled spatial patterns. Here we propose a framework based on physically constrained generative adversarial networks to improve local distributions and spatial structure simultaneously. We apply our approach to the computationally efficient CM2Mc–LPJmL ESM. Our method outperforms existing ones in correcting local distributions and leads to strongly improved spatial patterns, especially regarding the intermittency of daily precipitation. Notably, a double-peaked Intertropical Convergence Zone, a common problem in ESMs, is removed. Enforcing a physical constraint to preserve global precipitation sums, the generative adversarial network can generalize to future climate scenarios unseen during training. Feature attribution shows that the generative adversarial network identifies regions where the ESM exhibits strong biases. Our method constitutes a general framework for correcting ESM variables and enables realistic simulations at a fraction of the computational cost.