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Abstract
As the climate warms, many areas of the world are experiencing more frequent and extreme
weather events. Hurricanes carry some of the costliest short-term socioeconomic repercussions via
economic losses and people displaced. There is, however, little quantitative evidence regarding
medium- to long-term effects, nor factors moderating recovery. Here we show that areas affected
by hurricanes of category 4 or 5 in the southern US between 2014 and 2020 generally do not
demonstrate full recovery in the longer term. Utilizing Visible Infrared Imaging Radiometer Suite
nighttime light (NTL) data as a proxy for economic activity and population density, we build a
timeline of recovery via NTL radiance levels. We exploit the difference in the eligibility for aid from
the Federal Emergency Management Agency (FEMA) to apply a quasi-experimental method to
identify changes in NTL radiance attributable to hurricanes. We find that after three years, affected
areas demonstrate a reduction in NTL radiance levels of between 2% and 14% compared to the
pre-disaster period. Combining these results with machine learning techniques, we are able to
investigate those factors that contribute to recovery. We find counties demonstrating smaller
reductions in NTL radiance levels in the months following the hurricane are buoyed by the amount
of FEMA aid received, but that this aid does not foster a longer-term return to normal radiance
levels. Investigating areas receiving FEMA aid at the household and individual level, we find age
and employment are more important than other demographic factors in determining hurricane
recovery over time. These findings suggest that aid may be more important in motivating
short-term recovery for public entities than for individuals but is not sufficient to guarantee
complete recovery in the longer term.

1. Introduction

Weather extremes can affect ecological and socioeco-
nomic systems profoundly [1–4]. Hurricanes are
among the costliest natural disasters in the United
States. Between 2005 and 2020, the total estim-
ated damages from tropical cyclones amounted to
$595 billion; 43% of that total occurred since 2015
[5]. With continued climate change, such events are
becoming more intense and frequent in many parts
of the world. It is therefore increasingly important to
understand the consequences of these events, and our

ability to recover from them, as well as possible link-
ages to adaptation behaviors such as migration.

Studies on the economic consequences of hur-
ricanes have already suggested the temporal complex-
ity of recovery patterns [6] especially in the context of
climate change-adaptive behaviors [7]. There is evid-
ence that out-migration from hurricane-prone areas
may already constrain recovery in areas affected by
large hurricanes [8]. Most studies have investigated
the effects of one or two hurricanes in isolation and
over short time lines, often spanning only months,
and conclusions of empirical studies on longer-term
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effects are ambiguous. Some find that disaster affected
areas in both rich and poor countries do not return to
pre-disaster income levels even 20 years post-disaster
[9] whereas others find no long-lasting significant
effects using nighttime light intensity [10–13] or even
a rebound in brightness after a disaster [14].

The determinants of post-disaster recovery also
remain poorly understood, despite their potential to
inform disaster aid policy, motivate recovery, and
enable better quantification of the costs of climate
change. Studies have pinpointed emergency aid as
a mitigator to out-migration from disaster-affected
areas [15] and its slow dispersal as an impediment to
recovery [16]. For developed countries, post-disaster
migration has been shown to be complex, with the
variance in migration across affected areas often
explained by the presence of disadvantaged popula-
tions, lower overall ex-ante levels of development, or
rural or urban status [17, 18]. Federal Emergency
Management Agency (FEMA) aid may also act as a
moderator of post-disaster migration for low-income
households [19]. Others find that factors of social vul-
nerability are less important in motivating migration
than the severity of the disaster [9, 20].

We aim to fill both these gaps by investigating
the evolution of hurricane response dynamics over
time and identifying the comparative importance of
socioeconomic, demographic, and aid-related factors
that could drive adaptation responses. To this end,
we build a combined data set matching indicators on
the reception of FEMA post-disaster aid to monthly
geolocated visible infrared imaging radiometer suite
day/night band nighttime light (VIIRS NTL) data,
urbanization data from the National Center for
Health Statistics, and county-level demographic and
socioeconomic data from the US Census Bureau and
Bureau of Economic Analysis for all category 4 and 5
hurricanes which made landfall in the United States
between 2014 and 2020 (see data & methods section
of the supplementary materials for detail).

VIIRS NTL data may offer crucial insights into
storm recovery dynamics across time and socioeco-
nomic conditions, given their highly granular tem-
poral and geographic resolution and significant cor-
relations to both gross domestic product [21–23] and
population density [24–27] as well as their ability to
effectively capture patterns of urbanization around
the world [28, 29]. These data have previously been
used to study time trends of light recovery correlated
with one or two hurricanes, or over short time scales
[25, 30–34].

Here, we study the effects of many hurricanes
at once on a monthly basis, and for the oldest
storms, over longer time spans than previously stud-
ied.We further build on correlative, time-series based
work by employing a quasi-experimental method,
a difference-in-differences (DiD) model, to estimate
the plausibly causal effects of hurricanes on changes

in night light intensity. We then apply tree-based
machine learning models in conjunction with the
Shapley Additive explanations algorithm (SHAP) to
identify those variables most important in explain-
ing differences in hurricane responses across differ-
ent counties. SHAP is already widely used in combin-
ation with tree methodologies to explain endogenous
trends in climate-related human behavior [35, 36]. It
has been found to produce local feature importance
estimations that are both generalizable to the global
model, andwell in line with human intuition [37, 38].

2. Method overview

2.1. Data
We build our main dataset by matching monthly
VIIRS NTL radiance data [39] and data on Individual
and Publicly available FEMA post-hurricane disaster
assistance at the county level [40] for seven hurricanes
[41]. The FEMA disaster assistance data identifies
those counties in which individuals and households
(referred to as Individual Aid hereafter), public entit-
ies and nonprofits, or both groups (referred to as
Combined Aid hereafter), were eligible for disaster-
related relief aid fromFEMA.We use this information
to identify counties affected by each hurricane (the
‘treatment’ group for that hurricane) and unaffected
counties in the same state (the ‘control’). We define
two treatment groups, evaluated separately, based on
the type of FEMA aid for which they were eligible:
Individual or Combined aid.Maps of the areas receiv-
ing each type of aid as well as unaffected areas can be
found in supplementary figures 1–7.

For further controls, supplementary data on rural
and urban areas [42], as well as geographic county
boundaries [43], and dollar amounts of total aid
provided by FEMA, are added to these data [40]. Last,
we include socioeconomic [44] and demographic
data [45] on the county level. For details on each data-
set, please see supplementarymaterials: Data&Meth-
ods, along with a conceptual overview of themethod-
ology employed in supplementary figure 8.

2.2. Empirical strategy
In order to gain insight into the potential causal
effects of hurricanes on NTL intensity changes,
we employ a DiD methodology. This method first
assesses the difference in the level of nightlight radi-
ance between the pre-hurricane period and the post-
hurricane period for both the group of counties
affected and the group of counties unaffected by the
hurricane, separately (first difference). It then sub-
tracts the average change in NTL levels in the treat-
ment group from that of the control group (second
difference). If the change in radiance after the storm
was only assessed for counties affected by the hur-
ricane, the estimation may be biased due to the effect
of trends and events other than the hurricane on the
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level of NTL. The second difference removes these
biases. Given that the same time period is being com-
pared in both the treatment and control groups, the
data does not need to be preprocessed to remove sea-
sonality, as seasonal trends affect both the treatment
and control. Similarly, if the difference in NTL radi-
ance between treated and untreated counties was only
assessed for the post-hurricane period, there could be
biases due to already existing differences between the
two groups of counties. The first difference removes
those biases. Taken together, the two differences yield
a suitable counterfactual, thus enabling the estima-
tion of a plausibly causal effect of a hurricane on the
level of radiance in the affected counties.

For each hurricane, we run two DiD models for
each storm, one for each treatment variable based
on the type of FEMA aid received. For all storms,
the entire timeline available is used, meaning earlier
storms have fewer months of ‘pre-storm’ data entries
(with the minimum being 32 months for the earliest
storm) and later storms have fewer post-storm data
entries (with a minimum of 16 months). As we assess
recovery over time, we shorten the timeline of data
month by month, relative to when the storm hit.

The difference-in-differences specification
follows:

Yct = β0 +β1(post × treatment)ct +β2postt

+β3treatmentc +αXc + εct;

where Yct is the log of the NTL radiance level in
county c at time t (with t being a month in a
year). postt is a binary variable, taking the value
of 1 if t falls in the period after the hurricane
(post-period) and 0 if it falls in the period before
the storm. The binary treatmentc indicates whether
county c is in the treatment group (=1) or in the con-
trol group (=0). Accordingly, the interaction term,
(post× treatment)ct takes the value 1 only if the out-
come was observed in the treatment group and in
the post period, and is zero in all other cases. The
difference-in-difference effect, β1, is our coefficient of
interest, denoting by howmuch the difference in NTL
radiance between the treatment and control group
changed after the hurricane. It can hence be inter-
preted as the percent change in NTL radiance in the
affected counties after the hurricane over the whole
post-disaster period up to time t. Xc is a vector of
economic and demographic controls on the county
level c, and εct is the idiosyncratic error term on the
month and county level. Running the DiD model for
different post-disaster time horizons provides us with
a recovery time series indicating the plausibly causal
effect of a storm on NTL radiance for different time
periods.

Our identification strategy rests on the validity
of the ‘common trends’ assumption: in the absence
of the hurricane, the treatment and control areas
would have followed the same trend in nighttime

Table 1. Interpretation of the results of the ‘leave-one-out’ DiD
method. The leftmost column of table 1 indicates the sign of the
estimation resultant from the DiD model. The middle column
indicates the sign of difference between that estimation (here,
‘average change’) and the estimation resultant from the DiD
model when that county is omitted. The rightmost column
provides our interpretation of these signs for the county omitted.

Average change in
radiance

(Average change)—
(change when
county omitted)

Interpretation
for county
being left out

− − More radiance
reduction than
average

− + Less radiance
reduction than
average
(‘better off ’)

+ − Less radiance
increase than
average

+ + More radiance
increase than
average

light radiance [46]. To assess this assertion, we com-
pare NTL radiance trends in both groups prior to the
hurricane. We find the treatment and control follow
a common trend, suggesting that the divergence in
light we see post-hurricane is indeed due to the hur-
ricane. Graphical representations for each hurricane
are found in supplementary figures 9–15.

2.3. Identifying county-level effects using a
leave-one-out method
The DiD methodology requires an aggregate com-
parison between the treatment and control groups,
and the pre- and post-storm periods. The use of
this counterfactual between treatment and control
ensures that trends affecting both groups are differ-
enced out, strengthening the inference of causality. As
a consequence, changes in NTL radiance can only be
assessed as an average across all counties and not at
the individual county level. In order to gain insights
into a hurricane’s effects at the county level and pos-
sible differences between counties, we combine the
DiD method with a ‘leave-one-out’ approach. Spe-
cifically, we iteratively re-estimate the DiD model,
excluding one county at a time, for the full time
period after the storm available for each storm. After
subtracting these estimations from the DiD estima-
tion with all counties included, we are left with the
difference due to each county’s exemption from the
model (measured in percentage points). For clarity,
we have included the possible outcomes from com-
paring two estimations and their interpretations in
table 1.We are principally interested in those counties
that demonstrated a smaller reduction in lights than
the overall reduction in lights for that storm, which
we term ‘better off ’.
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2.4. Specifying motivators of differential overall
response to hurricanes via SHAP
Focusing on those hurricanes where we find an over-
all reduction in NTL due to the storm, we aim to
identify those factors most important in explain-
ing differences in hurricane recovery across counties,
i.e. whether a county experienced more or less neg-
ative change in light after a hurricane (examining
the whole time period). To this end, we train a tree-
based machine learning classifier to predict the like-
lihood of each county having demonstrated a smaller
reduction in light than the overall reduction in light
for that storm (being ‘better off ’), based on a vari-
ety of socioeconomic, demographic, and FEMA-aid
based factors at four time stages: three months, six
months, and one year after the storm, as well as for
the full available timeline. We train three tree-based
machine learning classification models first to pre-
dict the likelihood of a county being better off than
the average county hit by the same hurricane: Ran-
dom Forest, Extreme Gradient Boosting (XGBoost),
and Light Gradient Boosting Machine. The model is
trained on 70% of the data and tested on the remain-
ing 30%. For each time period and treatment vari-
able, we employ the best performing algorithm based
on predictive accuracy. Supplementary table 1 gives
a description of all variables, supplementary table 2
provides prediction accuracy for each algorithm, and
the Data & Methods section of the supplementary
material describes the classifiers in more detail. We
back out the importance of each variable in predicting
the outcome via the SHAP feature importance ana-
lysis methodology. Using the trained model, SHAP
assigns a value of importance to each feature in the
model, associated with a particular prediction value
in the test set. For each of these predicted values,
the contribution of each feature to that prediction is
calculated, based on the magnitude of that feature’s
contribution alone and in combination with other
features. We average these local feature importance
values to derive a globally generalizable importance
score for each feature.

3. Results

3.1. Lack of full recovery three years after storms
Using the DiD specification, we compute a storm’s
average effect on NTL for each hurricane. Separ-
ate models are constructed for the two treatment
variables, and include NTL values for all time steps
(months) available after the storm.

All storms forwhich there is three years ormore of
data after the storm demonstrate negative changes in
light due to the storm (table 2). As a general trend,
hurricanes that occurred earlier (and for which a
longer timeline is therefore available) exhibit stronger
reductions in NTL at lower p-values, the latter of
which is likely due to the increase in data points
in the post-hurricane period. For hurricanes with

statistically significant negative effects in areas receiv-
ing combined aid, we also see a decrease in NTL
intensity associated with being in areas receiving
individual-level aid alone.

These results suggest a lack of full recovery over
two dimensions: over time, and geographically, in
counties affected by the storm. We break down our
analysis by time, re-estimating the DiD model while
limiting the period after the storm month by month
during the subsequent two years. Hence, we are able
to compare the short-term changes in light month by
month between storms, regardless of when the storm
occurred.

For the oldest storms, Hermine, Matthew, Har-
vey, and Irma in the individual-aid case, the over-
all effect remains negative over time, for both types
of treatment variables (figure 1). This is even more
remarkable as the initial effect after a few months
was an increase in light for Hermine and Matthew
in the case of combined aid, and for Matthew also
in the case of individual aid. For Michael, we find
a strong decrease in radiance levels in the months
after the storms hit with radiance levels then return-
ing to pre-storm levels after about a year. For themost
recent storms the overall effect is positive, though the
time frame is likely too short to draw robust con-
clusions as also reflected by the respective p-values
for Combined Aid (table 2). In both cases, the post-
period of the hurricane is defined as all months fol-
lowing the storm. We find a similar lack of recovery
when the post-period is defined as just the respective
month, excluding the months between the storm and
the month being evaluated, as shown in supplement-
ary figure 16.

3.2. Hurricane response differs across affected
counties
The previous two analyses suggest that at longer time
frames, areas affected by hurricanes generally do not
return to their previous levels of radiance. These res-
ults are in the geographic aggregate, however, and we
may thereforemiss any potential disparate geographic
effects. Employing a ‘leave-one-out’ approach where
the DiD model is re-estimated for all but one county,
we are able to isolate the contribution of that county
to the overall effect. That is, we can assess whether
the exclusion of that county increases or decreases
the overall change inNTL and, consequently, whether
that country did comparatively better or worse than
the average county affected by the hurricane (consult
Methods for details).

Figure 2 portrays the direction and magnitude of
the difference between the overall light change for
a storm, and the light change when each county is
omitted from the model. In the legend, we interpret
the direction of these values as presented previously
in table 1. In the cases of Hermine, Matthew, Har-
vey, and Dorian, which demonstrate overall negative
changes in radiance due to the storm (portrayed on
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Table 2. Average effect of individual hurricanes on nighttime light intensity in those areas eligible for combined storm-related FEMA
aid, and individual-level only FEMA aid. Coefficients on the two variables of interest (the provision of combined, and individual-level
only aid) are presented. These coefficients indicate the average percent change in nighttime light intensity in areas receiving the
respective types of aid and are calculated separately for each hurricane. Their corresponding p-values are presented in the following
columns. For these models, the entire available time series is considered. The number of months after the hurricane is presented in the
‘Months Post’ column.

Hurricane Combined Aid Individual Aid
p-Value,
Combined p-Value, Individ. Months Post

Hermine −2.926 −4.034 0.612 0.596 52
Matthew −12.127 −14.747 0.000 0.000 51
Harvey −1.846 −1.575 0.001 0.013 41
Irma — −11.868 — 0.000 40
Florence 0.901 3.616 0.501 0.025 28
Michael 3.428 7.018 0.232 0.018 27
Dorian −9.829 — 0.001 — 16

Figure 1. Change in nighttime light radiance over time by storm, evaluated over the whole period up to the end of a given month
with FEMA aid expenditure, by month. Panel (a) shows the overall percent change (or mean difference between the pre-period
and the post-period between treatment and control counties, as defined by a given time cutoff) in NTL up to and including a
given month in those counties eligible for combined aid over time. Panel (b) shows the same overall percent change in lights for
those counties eligible for individual-level aid from FEMA for that storm. In both cases, FEMA’s aid expenditure (expressed in
log) determines the thickness of the line and is expressed in millions (USD) in the legend.

the red/blue spectrum), we see a diversity of county-
level responses to the storm when we omit each
county from the empirical model. There is a sim-
ilar diversity in response to the storm on the county
level for those storms demonstrating an increase in
NTL after the storm (purple/green spectrum). In both
cases, within the treatment group, counties perform
diversely, even in storms where the overall effect of
the storm is of a large magnitude. There do not
appear to be geographic patterns in the dispersion
of positive or negative county-level influence. Results
from the models including counties eligible for just
individual-level aid are included in supplementary
figure 17.

3.3. Time and FEMA aid designation affect factors
facilitating recovery
We next investigate those socioeconomic and demo-
graphic factors that most strongly determine the like-
lihood of a county having experienced a smaller
reduction in NTL compared to the average (being
‘better off ’). Employing a tree-based machine learn-
ing approach, we back out the feature importance
scores for the features used to predict each county’s
likelihood of being better off.

In figure 3, we provide the comparative import-
ance of each feature in determining if a county
was better off, and the direction of their effect
for each of four time periods and each of the
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Figure 2. Difference in light change between overall light change and when that county is omitted from the analysis (in p.p.).
Maps show the difference in nighttime light change between the overall estimation for that storm and nighttime light change
when that county is omitted, for which treatment areas received combined aid. Those storms for which the overall effect of the
storm with all counties included was a reduction in nighttime light radiance are presented on the blue/red spectrum; for storms
with an associated increase, the green/purple spectrum is used (results presented in table 2). Color gradation indicates the
magnitude and direction of that particular county’s influence and has been scaled to ease comparison. Counties colored in blue
are those defined as better off, i.e. counties that experience a smaller reduction in nightlight radiance than the average county
when the overall change is negative. The entire available timeline is used for all storms.

two treatment variables, combined public and indi-
vidual aid and individual aid. As a robustness
check, we also conduct the feature importance
analyses using exclusively each of the tree-based
algorithms tested and all time-cutoffs, regardless of
performance. We find that while the specific point
values differ, the general trends of how feature
importances change as timelines increase, are pre-
served. These figures are included as supplementary
figures 18–20.

In the case of combined aid shown in Panel (a)
of figure 3, the total amount of FEMA aid is the
most important feature across nearly all time hori-
zons. After threemonths, the direction of its influence
switches from positive to negative, where it remains,
indicating that a larger total cost for a storm makes
it more likely in the very short-term (up to three
months) and less likely thereafter that a county is bet-
ter off. It is intuitive there may be a negative correla-
tion between aid and being better off, due to the fact
that the provision of aid is likely linked to stronger

storm impact, though this may be ambiguous given
that FEMA aid is provided with the explicit purpose
to aid in the recovery of areas affected by disasters.
In our data, we see that combined aid seems to fulfill
this aim in the short term, as a larger amount of aid
is associated with a higher likelihood of an area being
better off. However, this effect reverses as the timeline
continues, suggesting that aidmay not be sufficient to
motivate full recovery.

In the case of individual-level aid alone, the
importance score of the cost of individual aid to
FEMA is consistently negative across all time scales,
indicating that a county with larger cost will be
more likely to have a stronger reduction in NTL
than the average for that storm. Additionally, employ-
ment, income, and age become increasingly import-
ant factors in the individual-level aid case, suggesting
that theymay support recovery andmitigate the effect
of hurricanes. Results for those counties which exper-
ienced an increase in light after the storm are available
in supplementary figure 21.
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Figure 3. Comparative importance of different factors explaining why a county demonstrates a smaller reduction in lights than
the aggregate reduction. SHAP importance measures the average impact each feature has on the model output (expressed as a
percentage of all features’ explanatory power). Larger bars indicate that the feature is more important to the model. Negative
values indicate the feature reduces the likelihood that the county is better off than average; positive values indicate the feature
increases the likelihood of a smaller reduction in lights than the average. Panel (a) shows the feature importances for the model
including those counties receiving combined aid, Panel (b) shows the feature importances for the model including those receiving
individual-level FEMA aid alone. Comparative importances are provided for four periods (3, 6, and 12 months after the storm as
well as the overall timeline, which can range from 52 to 16 months, dependent on the storm. Compare to figure 1).

At the six month time window, and especially in
the case of individual-level aid alone, we see a strong
trend in most factors predicting negatively. This can
be explained by the fact that the overall proportion of
counties considered to be better off are fewest for this
time horizon (supplementary figure 22).

Viewing all timelines and treatments in aggreg-
ate, the three FEMA aid related variables (total cost,
individual applications, and individual cost) consist-
ently affect the likelihood of a county being better off.

Reconstructing the analysis omitting variables relat-
ing to the quantity of FEMA aid, we find that higher
income has a consistent positive influence on the
likelihood that a county is better off, which is more
pronounced for those counties having received indi-
vidual level FEMA aid (full results are included in
supplementary figure 23.) This suggests that income
has a moderating effect on the reduction of light due
to hurricanes, especially in those areas most signific-
antly affected by the disaster.

7



Environ. Res. Lett. 17 (2022) 114015 K Barton-Henry and L Wenz

4. Discussion and conclusions

Our results shed light on the dynamics and motiv-
ators of disaster recovery. Using NTL data, we
find evidence that those areas of the United States
affected by Category 4 and 5 hurricanes between the
years 2014 and 2020 generally do not show a full
return to previous radiance levels, especially three
years or longer after the storm. This finding sup-
ports existing literature suggesting that disaster-hit
areas do not demonstrate full economic recovery,
though this research addresses significantly longer
timescales (20 years post-disaster) [9]. Given the time
granularity of our data, we are able to investigate
recovery dynamics month by month to provide a
more detailed timescale than previously studied. We
find that many areas affected by hurricanes demon-
strate large fluctuations in radiance in the short term
(both positive and negative) but those stormswith the
longest time frames do not return to the levels of NTL
radiance they demonstrated previous to the storm.

VIIRS NTL data have been shown to be well cor-
related to economic activity and population density
[24–27, 47]. Our results suggest that areas affected
by hurricanes may experience a lasting reduction in
economic activity, population density, or both. These
findings support previous evidence on the recovery-
dampening effects of out-migration from hurricane-
affected areas [8]. It is difficult to distinguish between
these motivators without further data on migration
or business activity, or more granular data on the
extent of damage in the areas affected by these storms.
Without these data, it is possible that part of the
reduction in radiance we see is due to ‘rebuilding bet-
ter’ where areas affected by the storm do experience
a full recovery, but simply emit less light due to new,
more energy-efficient infrastructure.

Data on the extent of damage due to the storm
exogenous to both economics and population dens-
ity (not derived from the costs of reconstruction or
insurance claims) would enable a more precise iden-
tification of those counties affected by the storm. Eli-
gibility for FEMA aid is a strong but imperfect proxy
for the effect of the storm. It is possible that counties
neighboring those eligible for FEMA aid were dam-
aged by the storm, but at a level that did not warrant
FEMA aid [48]. While this may muddy the difference
between our treatment and control groups, this leak-
age would lead to an underestimation of the effect of
the storm on the treatment counties, indicating that
the true effect of the storm was larger than presented
here.

Of those factors contributing to a below-average
light reduction after a storm, we find that for all peri-
ods after three months, the quantity of FEMA aid
received by the county is most influential. Given NTL
radiance’s strong correlation to economic activity, it
may be that aid to public entities drives immediate
recovery. Similarly using VIIRS NTL data, Chen and

Nordhaus [26] suggest that the types of economic
activities best captured by NTL are those depend-
ent on power for lighting at night, such as service,
retail and transportation [4]. This could mean that
these industries are fastest to recover with an influx
of aid, and may motivate the rebound in radiance we
see in the first few months after Hermine, Matthew,
Michael and Dorian. The change in direction after
three months suggests that FEMA aid may be integ-
ral to very short term recovery, as has been found in
previous work [15, 16], but does not create sustain-
able recovery in the long term. This highlights the
importance of analyzing longer time scales for a com-
prehensive overview of recovery dynamics.

When considering just those counties in which
individual-level post-disaster aid was available, we
find the factors most important in determining
the likelihood of being worse-off than average are
related to individual-level FEMA aid (total number
of individual-level FEMA applications and the total
cost of those applications). Similarly, in the case of
those areas demonstrating an increase in NTL radi-
ance after the storm, we find larger amounts of aid
to be correlated with an even larger increase in light
than the average (supplementary figure 21). This sup-
ports the hypothesis that while short term recovery is
motivated by firms, longer term recovery is sustained
by individuals.

When examining the full available timeline, eco-
nomic and demographic factors such as employment
and the proportion of elderly in the population usurp
those related to individual-level aid, suggesting that
socioeconomic status and age may play a role in the
decision to rebuild or move from areas affected by
a hurricane. Our finding that areas with larger eld-
erly populations are more likely to demonstrate less
NTL reduction than the average suggests that eld-
erly populations may be more likely to return to
hurricane-hit areas than younger residents. Though
highly moderated by levels of severe housing dam-
age, Fussell et al [49] also found this trend in studying
the return to New Orleans after Hurricane Katrina,
where two thirds of individuals over 40 returned after
14 months, compared to only half of those under 40
[49]. Similar to our results indicating that employ-
ment and income are positively related to the likeli-
hood of a county recovering, they also find a reduc-
tion in the likelihood of migration with an increase in
socioeconomic status. Using education as a proxy for
socioeconomic status, they find that half of individu-
als with college degrees returned within four months
of the storm, compared to 14 months for individuals
without.

Some areas considered in this study were hit
by several hurricanes during the timeframe of our
analysis. As we do not have data on the num-
ber of hurricanes experienced by each area pre-
vious to the beginning of our dataset, it is diffi-
cult to determine the possible accumulated effect of
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multiple hurricanes over time on the recovery or out-
migration process without biasing our data on more
recent storms. In the case of Hurricane Harvey which
hit Texas, an area less frequently hit by hurricanes, we
see a comparatively small, though negative, long-term
change in NTL radiance. This suggests that the reduc-
tion in NTL radiance we see due to other storms in
more frequently affected areas may indeed be motiv-
ated by accumulated disasters, perhaps by making
individuals more likely to out-migrate or be reluctant
to rebuild.

While we study a large geographic area, it is diffi-
cult to know how readily our results are generalizable
to other regions affected by hurricanes, or other types
of natural disasters. Especially given the importance
of FEMA aid in determining county-level outcomes,
it is difficult to generalize to regionswith different dis-
aster aid schemes (or none) or those areas with lower
levels of development. Further research is required to
understand whether, and to what extent, these results
may apply to other regions.

Our results indicate the recovery of pre-storm
levels of economic activity and population may
be dependent on more long-term individual aid
support. As extreme weather events become more
frequent and intense, it is possible that this sup-
port must also be provided in new forms. Currently
FEMA aid covers emergency disaster-related expenses
and repair costs on the public and individual level.
Our findings about the interaction of socioeconomic
class and age in long-term recovery suggest that new
forms of aid, such as those that encourage sustainable,
disaster-informed rebuilding or that encourage indi-
viduals to take proactive measures in areas frequen-
ted by hurricanes, may be key to preserving future
economic prosperity and manage hurricane-induced
migration.
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