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Abstract 

Understanding land use / land cover (LULC) dynamic is of great importance to sustainable development in Africa 
where deforestation is a common problem. This study aimed to assess the historical and future dynamics of LULC 
in the Nakambé River Basin. Landsat images were used to determine LULC dynamics for the years 1990, 2005 
and 2020 using Random Forest classification system in Google Earth Engine while the predicted LULC of 2050 
was simulated using the Markov Chain and Multi-Layer-Perceptron neural network in Land Change Modeler. The 
findings showed significant changes in LULC patterns. From 1990 to 2020, woodland and shrubland decreased 
by -45% and -68% respectively while water body, cropland and bare land/built-up increased by 233%, 51%, and 
75%, correspondingly. From 2020 to 2050, the results revealed that under the Business-as-usual scenario, bare 
land/built-up and water bodies could continue to increase by 99% and 1% respectively. However, cropland, 
shrubland, and woodland could decrease by -32.61%, -33.91%, and -46.86%, respectively. Under the afforestation 
scenario, the contrary of Business-as-usual could occur. While woodland, shrubland, and cropland would increase 
by 22.24%, 51.57%, and 18.13%, correspondingly, between 2020 and 2050, the area covered by water bodies and 
bare land/built-up will decrease by -6.16% and -39.04%, respectively. The results of this research give an insight 
into past and future LULC dynamics in the Nakambé River Basin and suggest the need to strengthen the policies 
and actions for better land management in the region. 

 

Keywords: Land Use/Land Cover, Random Forest, Markov Chain, Multi-Layer-Perceptron Neural Network, Land 
Change Modeler, Nakambé River Basin.  
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1. Introduction 

LULC dynamics is described as a process of change of the Earth’s land cover at temporal and spatial scales (Hassen 
et al. 2021). This change is increasingly becoming a global concern because of its impacts on terrestrial and aquatic 
ecosystems (Sibanda and Ahmed 2021). More than 75% of the Earth’s already degraded land could reach 90% by 
2050 (Cherlet et al. 2018). Between 1960 and 2019, almost one-third of the earth’s land had changed (Winkler et 
al. 2021). These authors further emphasized a global net loss of forest area of 0.8 million km² but an expansion in 
global agriculture of 1.0 million km². However, these trends vary from one region to another. In Africa for instance, 
the natural vegetation of most places have been transformed to anthropogenic land uses (Barnieh et al. 2020; 
Bullock et al. 2021; Findell et al. 2017). Between 2012 and 2017, the continent’s natural vegetation areas decreased 
significantly in favour of impervious areas (Nowak and Greenfield, 2020). This is due to population growth and 
the gradual drying up of soils due to climate change (PNUE 2004). In West Africa, between 1975 and 2013, large 
areas of savannah, open forest and woodland were converted to crop production and urban areas ( Barnieh et al. 
2020; CILSS 2016). Statistically, a third of the forest cover disappeared, while bare land areas increased by 47% 
over a period of 40 years (CILSS 2016).  

From 1975 to 2013, the Mono River Basin for instance, saw an increase of 350% in farmland and decreases of -
46% and -33% in woodland and shrubland, respectively (Koubodana et al. 2019). Additionally, these authors 
projected that between 2013 and 2027, agriculture would rise by 28% while woodland and shrubland would 
decrease by -10% and -21%, respectively. Many studies in the Volta Basin have also shown a changing trend from 
natural vegetation to cropland and built-up areas. For example, Braimoh and Vlek (2004) estimated 5% as the 
annual rate of natural vegetation conversion to cropland from 1984 to 1999 on an area of 5,400 km2 located 
between the White Volta and Oti River Basins. Within the White Volta Basin, settlement increased by 46%, 
cropland increased by 49%, whereas forest and woodland decreased between 1990 and 2015 in the Nawuni sub-
basin (Baatuuwie 2015). In the Bankandi-Loffing sub-basin, a part of the Black Volta Basin in Burkina Faso, a 
yearly conversion of 3.3% of savanna to cropland and settlement was observed between 2007 and 2013 (Idrissou 
et al. 2022, Yira et al. 2016). This rapid land use / land cover change (LULCC) is a major setback to sustainable 
development because it has negative impacts on agriculture, flood and drought occurrence, urban planning, as well 
as forest and water resource availability (Akinyemi, 2021; Akpoti et al. 2016; Bessah et al. 2020; Dimobe et al. 
2017; Nut et al. 2021). Then, an assessment of LULCC could provide a better understanding of the interactions 
between natural vegetation and anthropogenic activities ( Floreano and de Moraes 2021; Gupta and Sharma 2020).  

The Nakambé River Basin (NRB) is part of the Sahel region where land degradation is a major issue (Forkuor et 
al. 2017). It occupies about 10% of the area of Burkina Faso and provides water to more than 6 million people for 
drinking, irrigation, livestock, and hydropower purposes. It contains nine protected areas of total area 1,301 km2 
which simply exist by virtue of their name because they are heavily degraded due to human activities (Belemsobgo 
et al. 2010). Moreover, many small dams have been built in the basin over the years. The Water Resources General 
Directorate (DGRE) reported more than 437 reservoirs in the basin (DGRE 2010). In addition, poor land 
management practices that do not protect the soil are reported in the basin (Nyamekye et al. 2018).  

Several studies in the Upper NRB have highlighted an increase of bare land and cropland areas these last decades 
(Karambiri et al. 2011; Mahe et al. 2005;  Yonaba et al. 2021). However, only a few studies have attempted to 
assess the dynamics of past and future LULC over the entire basin, which supports the hydrological processes of 
the largest reservoir, Bagre, in Burkina Faso, with particular emphasis on its annual water storage. Moreover, most 
of these studies used the maximum likelihood classification method. This method is based on the resemblance of 
neighbouring pixels. Despite its capability to provide acceptable results, the maximum likelihood classification 
method is parametric and assumes normal distribution of data (Shetty 2019). Nevertheless, several non-parametric 
machine learning algorithms that do not appeal to normal distribution have been developed and are also used in 
LULC assessment. These comprise mainly Random Forest (RF), Support Vector Machines (SVM), Classification 
and Regression Trees (CART), K-Nearest Neighbour (KNN), Learning Vector Quantization (LVQ), and 
Stochastic Gradient Boosting (SGB) (Dimobe et al. 2017; Forkuor et al. 2017; Gislason et al. 2006; Hackman et 
al. 2017; Nery et al. 2016; Shetty 2019; Zoungrana et al. 2015). Among these non-parametric classifiers, a 
consensus seems to have been reached on the effectiveness of RF.  

Moreover, although various methods, such as the Cellular Automata-Markov Chain (CA-MC), Markov Chain 
Model (MCM), Stochastic Markov Chain (STMC), Multi-Layer Perceptron (MLP) Neural Network and Markov 
Chain Model, and Combined Markov-FLUS Model (Bozkaya et al. 2015; Dey et al. 2021; Girma et al. 2022; Sinha 
et al. 2020; Yang et al. 2022)have been developed to project future LULC, the most reliable technique is using the 
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Multi-Layer Perceptron Neural Network and Markov Chain Model, which is a robust machine learning algorithm 
for these projections (Eastman et al. 2020; Hussien et al. 2022)  In this study, the RF algorithm helped to assess 
the historical dynamics of LULC, and the Multi-Layer Perceptron Neural Network and Markov Chain Model 
embedded in Land Change Modeler helped to predict the future LULCC in the NRB. 

2. Materials and Methods 
2.1. Study area 

The Nakambé River basin is located in the Upper White Volta basin in Burkina Faso (Figure 1). It covers an area 
of about 32,623 km2 at Niaogho discharge station. The basin is essentially spread over the South-Sahelian and 
North-Sudanese climatic zones (DGRE 2010) where annual rainfall ranges between 300 and 800 mm. The soils 
are dominated by tropical ferruginous leached soils and poorly evolved alluvial soils. These soils have low water 
retention capacities and are very sensitive to erosion. The landscape is dominated by agricultural lands although 
natural savannah areas still exist. The basin has been experiencing accelerated degradation since the 1970s 
(Thiombiano 2011). NRB encompasses several cities, including Ouagadougou, where about 3 million of the basin's 
6 million people live (INSD 2020). The main economic activities remain agriculture and livestock. A multi-
purpose dam (Bagré) was built to supply hydropower and water for irrigation (Figure 1). 

 

 

Figure 1. Map of the Nakambé River Basin in Burkina Faso  
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2.2. Data collection 

The dataset used is composed of Landsat 5 TM images of the years1990 and 2005, and Landsat 8 OLI images of 
the year 2020. Landsat images have a spatial resolution of 30 meters and can be used to detect land use and land 
cover transition (Midekisa et al. 2017). For 1990 and 2020, Landsat 5 TM and Landsat 8 OLI surface reflectance 
image collections respectively from January 01 to December 31 were extracted from Google Earth Engine (GEE) 
Data Catalogue and used as inputs for the LULC analysis. To avoid having missing data due to the line scan 
corrector problem of Landsat 7, Landsat 5 TM was preferred for the year 2005. However, to obtain a cloud free 
image composite for the year 2005, the Landsat 5 TM surface reflectance images from 2003 to 2007 were used. 
This 2-year temporal window around 2005 was due to the low availability of Landsat 5 TM images covering the 
whole basin for the single year. Table 1 summarizes the scenes and bands of Landsat 5 TM and Landsat 8 OLI 
images used.  

Table 1: Characteristics of Landsat satellite images used 

Landsat images Scenes Selected 
bands 

Spatial 
resolution Temporal range 

Landsat 5 (TM) 
Surface 

Reflectance  

193052-53/194050-
53/195050-53/196050-53 1,2,3,4,5,7 30m 01-01-1990 to 31-12-

1990 

Landsat 5 (TM) 
Surface 

Reflectance  

193052-53/194050-
53/195050-53/196050-53 1,2,3,4,5,7 30m 01-01-2003 to 31-12-

2007 

Landsat 8 (OLI) 
Surface 

Reflectance  

193052-53/194050-
53/195050-53/196050-53 2,3,4,5,6,7 30m 01-01-2020 to 31-12-

2020 

TM: Thematic Mapper, OLI: Operational Land Imager 

Five main LULC classes were identified following a modified LULC classification scheme of Zoungrana et al. 
(2015). These are water body, woodland, shrubland, cropland, and bare land/built-up. Samples for each class were 
collected from three sources. The samples of the years 1990 and 2005 were collected using historical high-
resolution images from Google Earth and land use and land cover databases from the National Geographic Institute 
of Burkina Faso, whereas a field survey was undertaken to collect samples for the year 2020. Overall, 992, 451, 
and 239 disproportional stratified random samples of the five LULC classes were used to classify the 1990, 2005, 
and 2020 images, respectively (Table 2). 

Table 2. Sample sizes of LULC units for 1990, 2005, and 2020 

LULC units Sample sizes 
1990 2005 2020 

Water body 50 34 35 
Woodland 170 52 30 
Shrubland 346 84 32 
Cropland 204 99 52 

Bare land/built-up 222 182 90 
Total 992 451 239 

 

2.3. Data analysis 

There are major issues that arise when analysing optical satellite data on large areas such as the NRB because they 
cover many scenes. These include  data size management and availability cloud-free images (Floreano and de 
Moraes 2021). One of the most efficient ways to deal with these issues is to use cloud-based computational 
platforms such as GEE that provide scientists globally almost limitless opportunities for big data management and 
processing and allow easy integration of freely available remotely sensed images with other spatial data to tackle 
the complex socio-environmental issues of our time (Hackman et al. 2020). In other words, the GEE cloud-based 
platform is of great importance because it allows easy and fast analysis of data on large spatial regions using high-
performance computing resources without the need to download them (Fattore et al. 2021). In addition, it provides 
computation tools to process large collections of satellite images over wide temporal ranges. For example, by using 
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different filters, it is possible to exclude certain images depending on the seasonality and cloud coverage. This is 
important for studies of areas in regions such as the West African region that lack atmospherically undisturbed 
and cloud free satellite images, mainly in the rainy season (Zoungrana et al. 2015).  

2.3.1. Data pre-processing 

The pre-processing steps involved scaling, cloud masking and additional bands computation. The scaling consisted 
of applying the respective scale factors and offsets to the images in order to get the true surface reflectance values. 
The cloud masking involved the identification of all pixels with the clouds and shadows to exclude them from 
further analysis. The median filter was then applied to the resulting images for each year to obtain a cloud free 
composite. In addition to the five raw surface reflectance bands, the Normalized Difference Vegetation Index 
(NDVI) and the Normalized Difference Built-up Index (NDBI) were computed and used as additional features. 
The NDVI allows to get a clear differentiation of vegetation from non-vegetation classes (Barnieh et al. 2020; 
Feng et al. 2016; Hackman et al. 2017; Yu et al. 2014) while NDBI allows to get a differentiation of built-up and 
bare land areas from other land uses ( Hackman et al. 2020; Prasomsup et al. 2020).  

2.3.2. Image classification and accuracy assessment 

The pre-processed images were classified using the training samples mentioned in Table 2. For each year, 70% of 
samples were used to train the classification algorithm while 30% were utilized for testing. The method of 
classification was based on the RF supervised classification. As an ensemble classifier formed by the combination 
of multiple trees that is resistant to noise and overfitting issues, RF is able to process massive high-dimensional 
data while maintaining high accuracy (Gislason et al. 2006; Shetty 2019). It has been successfully used for LULC 
assessment in Burkina Faso by different researchers ( Dimobe et al.2017; Zoungrana et al. 2015). Furthermore, it 
is reportedly the best classifier for soil (Forkuor et al. 2017) and LULC mapping (Hackman et al. 2017; Thiam et 
al. 2022) compared to SVM and SGB in Burkina Faso, Ghana and Togo, respectively. Thus, Nery et al. (2016) 
suggested that RF and SVM should be prioritised when classifying time series imagery for LULCC detection. 

The classification accuracies were assessed through overall accuracy (OA), and Kappa index (K) following the 
Equations 1 and 2 described below by Rwanga and Ndambuki (2017).  

𝑂𝑂𝑂𝑂 =
∑ 𝑥𝑥𝑛𝑛1
∑ 𝑋𝑋𝑛𝑛1

 

where x is the number of correctly classified samples and X is the total of samples. 

𝐾𝐾 =
𝑁𝑁∑ 𝑥𝑥𝑖𝑖𝑖𝑖 − ∑ (𝑥𝑥𝑖𝑖 + 𝑋𝑋𝑋𝑋+1)𝑟𝑟

𝑖𝑖=1
𝑟𝑟
𝑖𝑖=1

𝑁𝑁2 − ∑ (𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑋𝑋𝑋𝑋+1)𝑟𝑟
𝑖𝑖=1

 

where r = number of rows and columns in error matrix, N = total number of observations (pixels), xii = observation 
in row i and column i, Xi+ = marginal total of row i, and X+i = marginal total of column i. 

Also, the confusion matrix for the LULC maps, 1990-2005, 2005-2020, and 1990-2020, was computed. The 
confusion matrix allows for knowing the sources of misclassification for a LULC unit (Liu et al. 2020). 

2.3.3. LULCC analysis and spatial trend of anthropogenic land use 

The dynamics between the different LULC classes were examined following the change analysis module of the 
Land Change Modeler. Moreover, percent change was computed following equation (3) (Hussien et al. 2022). 

𝑝𝑝 =
(𝐴𝐴𝑙𝑙 − 𝐴𝐴𝑒𝑒) 

𝐴𝐴𝑒𝑒
x 100 

where 𝑝𝑝 is the percent change, 𝐴𝐴𝑙𝑙is the area of a class in the later LULC map (km2), and 𝐴𝐴𝑒𝑒 is the area of a class 
in the earlier LULC map (km2). 

The spatial trend of anthropogenic land use was assessed with the spatial trend tool of Land Change Modeler. It 
consists of mapping the conversion from one or multiple classes of LULC to another following a polynomial 
function. The study used a third-degree polynomial function to map the spatial trend (Eastman 2020). 

2.3.4. Land use change driver variables and transition potentials mapping 

(1) 

(2) 

(3) 
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Changes in land use result from multiple variables consisting of physical and human factors. Many variables are 
commonly used in LCM to explain the change in land use. These are composed of the slope, elevation, soil, 
distance to reservoirs, distance from rivers, distance from roads, distance to urban, etc. (Gharaibeh et al. 2020; 
Hussien et al. 2022; Kim et al. 2020; Larbi et al. 2019). In this study, four drivers namely, (i) distance to roads, (ii) 
distance to urban, (iii) distance to rivers, and (iv) evidence likelihood, were considered and used as inputs in the 
Transition Sub-Model Structure. 

The major potential transitions from one LULC class to another were mapped using the MLP neural network 
algorithm (Larbi et al. 2019). According to Eastman (2020), MLP neural networks are the most robust technique 
for transition potential mapping, even though the logistic regression method is also viable. Moreover, it allows one 
to model several or even all transitions at once and is quite capable of modelling non-linear relationships (Eastman, 
2020). In this study, nine major transitions greater than 100,000 hectares, derived from the change analysis were 
considered to model the potential transitions. These are shrubland to woodland; woodland to shrubland; cropland 
to shrubland; woodland to cropland; shrubland to cropland; bare land/built-up to cropland; shrubland to bare 
land/built-up; and cropland to bare land/built-up. After running the transition sub-model using an MLP neural 
network, the transition potential maps were successfully implemented. The output of the transition sub-model 
gives the model skill and the most and least influencing driver variables. According to Hussien et al. (2022) and 
Clark Labs (2020), a model that forces a single independent variable to be constant while keeping one variable 
constant at a time explains better the power of explanatory drivers than the Cramer’s V method. Figure 2 
summarizes the methodology used in this study. 

 

 

Figure 2. LULC mapping and modelling Flowchart 

 

2.3.5. Model validation and LULCC projection  

To simulate the LULC of 2020, the first period of 1990-2005 was considered. The simulation was done using the 
Markov Chain Model. This technique is described and used in several studies to project future LULC (Larbi et al. 
2019; Mehrabi et al. 2019; Näschen et al. 2019; Shade and Kremer 2019; Koko et al. 2020). The simulated LULC 
map of 2020 was then compared to the actual LULC of 2020 for validation. This process used the module 
VALIDATE, which allows the computation of the Kappa index (Pontius 2000). The Kappa index ranges from -1 
to 1 and shows the agreement or disagreement between the actual and simulated maps (Pointus 2000). After the 
model validation, the future LULC of 2050 was computed based on the same drivers and parameters, and changes 
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detected in LULC between 1990 and 2020. Two futures scenarios were adopted, which were included in the 
Markov Chain Model editing matrix to model the 2050 LULC. The Business-as-usual (BAU) scenario assumes a 
probability of decreasing natural vegetation (woodland and shrubland) to the benefit of cropland and bare 
land/built-up, and a decrease of cropland to the benefit of bare land/built-up. The afforestation scenario assumes a 
probability of increasing natural vegetation (shrubland + woodland) at the expense of cropland and a decrease in 
bare land/built-up to the benefit of cropland, as summarized in Table 3. The choices for these transitions in the 
scenarios are based on reasonable knowledge of the field. 

Table 3. Probability of changes used for BAU and afforestation scenarios 

BAU AFFORESTATION 
10% Woodland to cropland 5% Cropland to woodland 

10% Woodland to bare land/built-up 5% Bare land/built-up to woodland 
15% Shrubland to cropland 15% Cropland to shrubland 

10% Shrubland to bare land/built-up 5% Bare land/built-up to Shrubland 
30% Cropland to bare land/built-up 30% Bare land/built-up to cropland 

 

3. Results  
3.1. Accuracy of Land Use and Land Cover Classification 

The results of the classification have an overall accuracy of 81%, 91%, and 93% while the Kappa coefficients are 
91%, 82% and 76% for 1990, 2005 and 2020, respectively. Tables 4-6 show the statistics of the confusion matrix 
for the 1990, 2005 and 2020 LULC maps, respectively. 

Table 4. Confusion matrix of the LULC classification in 1990 

LULC 1990 Water body Woodland Shrubland Cropland Bare land/built-up 
Water body 100.0 0.0 0.0 0.0 0.0 
Woodland 0.0 85.4 14.6 0.0 0.0 
Shrubland 0.0 5.2 94.8 0.0 0.0 
Cropland 0.0 0.0 3.9 94.1 2.0 

Bare land/built-up 0.0 0.0 0.0 2.0 98.0 
 
Table 5. Confusion matrix of the LULC classification in 2005 

LULC 2005 Water body Woodland Shrubland Copland Bare land/built-up 
Water body 100.0 0.0 0.0 0.0 0.0 
Woodland 0.0 66.7 33.3 0.0 0.0 
Shrubland 0.0 14.3 85.7 0.0 0.0 
Cropland 0.0 0.0 7.7 76.9 15.4 

Bare land/built-up 0.0 0.0 0.0 2.7 97.3 
 
Table 6. Confusion matrix of the LULC classification in 2020 

LULC 2020 Water body Woodland Shrubland Copland Bare land/built-up 
Water body 100.0 0.0 0.0 0.0 0.0 
Woodland 0.0 62.5 37.5 0.0 0.0 
Shrubland 0.0 0.0 66.7 33.3 0.0 
Cropland 0.0 0.0 0.0 87.5 12.5 

Bare land/built-up 0.0 0.0 0.0 20.0 80.0 
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3.2. Land Use and Land Cover maps in 1990, 2005, and 2020 

The results of the LULC maps of 1990, 2005 and 2020 are shown in Figure 2 and Table 7. In 1990, the NRB was 
mainly covered by shrubland (44%) and cropland (36%). These were followed by bare land/built-up, woodland 
and water body with coverages of 16%, 3% and 0.5% respectively.  However, in the year 2005 the order was 
reversed. Cropland and shrubland covered 49% and 29%, respectively. As in 1990, woodland and water body were 
the less represented LULC.  In 2020, the basin’s land cover was dominated by cropland (54%), followed by bare 
land/built-up (29%) and shrubland (14%). From 1990 to 2020, the natural vegetation has given place to 
anthropogenic land uses (cropland and bare land/built-up) (Figure 3).  

Table 7. Proportion of LULC units in 1990, 2005 and 2020  

LULC units 
1990 2005 2020 

km2 % km2 % km2 % 
Water body 131 0.40 202 0.62 436 1.34 
Woodland 946 2.90 646 1.98 522 1.60 
Shrubland 14,491 44.42 9,500 29.12 4,652 14.26 
Cropland 11,739 35.98 15,950 48.89 17,691 54.23 

Bare 
land/Built-up 5,316 16.30 6,326 19.39 9,322 28.57 

Total 32,623 100 32,623 100 32,623 100 
 

Figure 3: LULC maps of 1990, 2005, and 2020 

3.3. Changes in Land Use and Land Cover between 1990-2005, 2005-2020, and 1990-2020 

During 1990-2020, losses and gains were observed in LULC units. For the first fifteen years (1990-2005), the 
LULC classes that decreased were woodland (-32%) and shrubland (-34%), while water bodies, cropland, and bare 
land/built-up increased by 54%, 36%, and 19%, respectively (Figure 4). From 2005–2020, the same dynamics 
were noticed, with different percentages of change. Woodland and shrubland decreased by 19% and 51%, 
respectively, while an increase of 116%, 11%, and 47% were also observed for water bodies, cropland, and bare 
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land/built-up, correspondingly. The high increase in water bodies’ area could be due to the construction of the Ziga 
and Dourou dams.  Overall, during the last 31 years, the NRB experienced an increase in water bodies (233%), 
cropland (51%), and bare land/built-up (75%). These increases were likely at the expense of woodland and 
shrubland, which decreased by -45% and -68%, respectively, from 1990-2020 (Figure 3). 

 

Figure 4. Percent of changes of LULC units between 1990-2005, 2005-2020, and 1990-2020 

3.4. Contributors to cropland and bare land/built-up increase 

The contributors to the increase in cropland and bare land/built-up are shown in Figure 4. During the period 1990-
2005, the increase in cropland could mostly be attributed to the decrease in shrubland of 3,200 km2 while the 
increase in bare land/built-up could be attributed to the decrease in cropland of 900 km2. However, from 2005 to 
2020 the decrease in shrubland of almost 4,000 km2 were transformed to cropland, even though more than 3,000 
km2 of the existing cropland in 2005 had been transformed into bare land built-up in 2020. This is illustrated in 
Figure 5 as the gains in bare land/built-up between 2005 and 2020 are typically from cropland and shrubland, 
respectively. Overall, from 1990-2020, the increase in cropland could be attributed to the major loss of 6,000 km2 
of shrubland, representing 19% of the total area. Meanwhile, the increase in bare land/built-up from 2005-2020 
could be attributed to the losses in cropland (2,000 km2) and shrubland (1800 km2) areas. 

Figure 5. Contribution to net changes in cropland and bare land/built-up (in km2) for 1990-2005, 2005-2020 and 
1990-2020. 

3.5. Spatial trend of anthropogenic land uses 

The spatial trend of other land use conversions to cropland and bare land/built-up from 1990-2005 and 2005-2020 
are shown in Figures 6 (cropland) and 7 (bare land/built-up), respectively. It can be observed that the 
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transformation of other LULC classes to cropland and bare land/built-up is South-Eastward from 1990-2005 while 
during the period 2005-2020, the conversion trend is North-Westward. Also, there was somewhat strong 
correlation between cropland and bare land/built-up classes. During the first fifteen years, the intensity of change 
was higher for cropland (0.4) than bare land/built-up (0.15) whereas from 2005 to 2020, the amplitude of change 
for cropland (0.24) and bare land/built-up (0.26) was quiet the same (Figures 6 and 7). 

 

Figure 6. Spatial trend of conversion from all LULC classes to cropland (a) and bare land-built-up (b) during the 
period 1990-2005. Negative values represent a reverse spatial development for the analysed trend, whereas 
increasing positive values characterize an increasing intensity for the analysed trend. 

 

Figure 7. Spatial trend of conversion from all LULC classes to cropland (a) and bare land-built-up (b) during the 
period 2005-2020. Negative values represent a reverse spatial development for the analysed trend, whereas 
increasing positive values characterize an increasing intensity for the analysed trend. 

3.6. Land use change driver variables and potential transition mapping 

The four driver variables (Figure 8) were used to run the potential transition from one class to another. The model 
succeeded in creating the potential transition maps with an acceptable accuracy rate of 76% (Eastman, 2020). The 
results also highlight the relationship between the driver variables and land use change during the period 1990-
2005. Indeed, the evidence likelihood was found to be the most influential variable (0.5) driving the land use 
change while the distance to rivers was found as least influential variable (0.23). 
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Figure 8. Explanatory variables used for the transition potential mapping (a) Distance to urban, (b) Distance to 
roads, (c) Distance to rivers, (d) Evidence Likelihood.  

3.7. Model validation 

The simulated and classified maps of 2020 were compared by using the VALIDATE module in Idrisi software. 
Kno evaluates the overall accuracy of the model while Klocality indicates the model’s ability to identify correct 
locations (Sibanda and Ahmed 2021). The results showed a Kno of 0.86 and a Klocality of 0.85, indicating the model’s 
ability to simulate the projected LULC of 2020 although there are some slight differences between the two maps 
of 2020 (Figure 9). The model tends to overestimate bare land/built-up, shrubland, and woodland areas while it 
underestimates water body and cropland areas (Table 8). For instance, the difference between the simulated and 
the classified bare land/built-up is 2,276 km2, indicating an error of 24.42%. As for cropland, the area of the 
simulated map (14,936 km2) is less than the classified map (15,950 km2), showing an error of 5.71% (Table 8). 
The great difference between the simulated and classified water bodies’ class could be due to the fact that the 
simulation was done with LULC maps (1990 and 2005) that existed before Tougou and Seguenega dams’ 
construction. 

Table 8. Proportion of classified and simulated LULC units in 2020 and their associated errors 

LULC 
units 

Classified 2020 Simulated 2020 
Error (difference between 

Simulated 2020 and classified 
2020)  

km2 % km2 % km2 % Change 
Water 
body 436 1.34 235 0.72 -201 46.10 

Woodland 522 1.6 660 2.33 138 26.44 
Shrubland 4652 14.26 5091 15.6 439 9.44 
Cropland 15950 48.89 15039 45.79 -911 5.71 
Bare land/ 
Built-up 9322 28.57 11598 35.55 2276 24.42 

Total 32623 100 32623 100   
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Figure 9. Actual classified (left) and simulated (right) LULC for 2020 

3.8. Future LULC dynamics  

The results of the LULC projection are shown in Figure 10 and Table 9. Under the BAU scenario, the basin area 
would be dominated in 2050 by bare land/built-up whose coverage would increase to 57.07% (Table 9), followed 
by cropland, shrubland, water body, and woodland with coverages of 32.95%, 7.58%, 1.35%, and 1.06%, 
respectively. The percentage of changes from 2020 to 2050 showed that bare land/built-up area would double 
while the area covered by cropland would decrease by -32% under the BAU. Natural vegetation like woodland 
and shrubland would decrease by -33.91% and -46.86%, respectively in 2050. On the contrary, under the 
afforestation scenario the basin would be mainly covered by cropland (57.76%) in 2050. Yet, woodland and 
shrubland would increase by 22.24% and 51.57%, respectively relative to 2020. Meanwhile the area covered by 
cropland would increase by 18.13% whereas bare land/built-up and water body would decrease by -39.04% and -
6.16%, respectively (Table 9).  
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Figure 10. Projected future LULC maps for 2050 under the BAU and Afforestation scenarios 

 

Table 9. Proportion of LULC units in 2050 under the BAU and afforestation scenarios and their percentage of 
changes 

LULC units 
Afforestation 2050 BAU 2050 Classified 2020-

Afforestation 2050 
Classified 2020-

BAU 2050 
km2 % km2 % % Change % Change 

Water body 409.16 1.25 441 1.35 -6.16 1.15 
Woodland 638.10 1.96 345 1.06 22.24 -33.91 
Shrubland 7051.16 21.61 2472 7.58 51.57 -46.86 
Cropland 18841.68 57.76 10749 32.95 18.13 -32.61 

Bare land/Built-up 5682.90 17.42 18617 57.07 -39.04 99.71 
Total 32623 100 32623 100   

 

4. Discussion 
4.1. Classification accuracy, LCM validation, and historical LULC dynamics  

The study investigated the LULC dynamic in the NRB through satellites images processing. The supervised RF 
classification of Landsat images on GEE gives satisfactory accuracy as Kappa > 0.75 (Fitzgerald and Lees, 1994). 
For the different years, the accuracy of the classification seemed to be related to the number of samples used as 
RF performs better when the number of samples are high (Ramezan et al. 2021). However, the low performance 
could also be attributed to the errors in the choice of samples. The confusion matrices show more misclassifications 
in samples for the year 2020 compared to 2005 and 1990, respectively. For instance, it was observed that most of 
confusion are between cropland and natural vegetation. This could be due to the fact that in many croplands, some 
selective trees are not cut because of the ecosystems services they provide. The finding is congruent with the results 
of Forkuor (2014) and Larbi et al. (2019) who noted a confusion between cropland and grassland classification 
due to the presence of grasses and trees in harvested croplands in Vea, a sub-basin of the White Volta Basin where 
the NRB is located. 
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The LCM successfully modelled the potential transitions from 1990 to 2005 with an accuracy rate of 76%. Even 
though Eastman (2020) suggested a threshold of 80% as acceptable performance, he also highlighted that only 
modelling with an accuracy lower than 75% is not effective. Yet, Rodríguez Eraso et al. (2013) agreed on a 50% 
threshold when using the MLP neural network to run the sub model transitions of Land use and land cover change 
in the Colombian Andes. Moreover, the evidence likelihood was found as most influential driver variable that 
explained the LULC changes from the 1990-2020 in the NRB. This was also reported in the Abbay and Nashe 
watersheds in Ethiopia by Hussien et al (2022) and Leta et al. (2021), respectively. Furthermore, the model showed 
some errors between the classified and the simulated LULC of 2020. Some LULC units were overestimated while 
some were underestimated. As stated by Larbi et al. (2019), these errors could be attributed to the model structure 
because it cannot extrapolate stationary changes from the calibration (1990-2005) to the validation period (2005-
2020). These authors also emphasized the difficulty in modelling the non-linearity relationship between human 
and nature. 

In terms of historical LULC dynamics in the NRB, the study highlighted a continuous decrease in woodland and 
shrubland, and a continuous increase in water bodies, cropland, and bare land/built-up from 1990 to 2020. During 
the last 31 years, about 50% of woodland and shrubland was converted to anthropogenic land use. This rapid 
conversion could be explained by the rapid population growth. Indeed, the population of the country increased 
from 10,312,609 to 20,487,979 inhabitants from 1996 to 2019 (INSD 2020). This population growth could result 
in further deforestation for farming activities. For example, a study by Ministère de l’Environnement et du 
Developpement Durable (2015) showed that deforestation for agriculture purposes is one of the driving factors of 
natural vegetation degradation in Burkina Faso. Moreover, the world forest assessment report highlighted that 
about 1% of forest is lost each year in the country (FAO 2010). In fact, farming in the region is still based on a 
familial and extensive agriculture where farms are always expanded to increase yield with little soil amendment 
(Jane et al. 2016; Larbi et al. 2019). Such farming techniques including slash and burn farming, aggravated by the 
use of non-adaptive tools and chemical fertilizers are not suitable for soil conservation (Nyamekye et al. 2018). 
As a result, many farms lose their fertility and become degraded. This could explain why most of the bare 
land/built-up net gains are from cropland conversion (Figure 3). A study by Braimoh and Vlek (2004) showed that 
3% of cropland was abandoned from 1984-1992 in the Volta River Basin due to a decline in soil fertility. This 
finding is also evidenced by the result of the spatial trend of change. In Figures 4 and 5 for instance, where cropland 
replaced woodland and shrubland, there is an increase of bare land/built up area. This systematic process of 
transitions has been observed in other places in West Africa and South America (Barnieh et al. 2020, Rodríguez 
Eraso et al. 2013). In addition, many cities in Burkina Faso are experiencing increase in their areas this last decade 
due to a somewhat urban planning. The results of the historical LULC dynamics are congruent with those of Larbi 
et al. (2019), Okafor et al. (2019), Yonaba et al. (2021), and Zoungrana et al. (2015) who found the expansion of 
cropland, bare land and settlement areas, and a decrease in natural vegetation in the Vea, Dano, Tougou, and 
Southern Burkina, which are all part of the Volta River Basin where the NRB is located. 

4.2. Future LULC dynamics and their implications for water resources management in the NRB 

The future LULC map of 2050 in NRB was projected under the BAU and afforestation scenarios. Under the BAU 
scenario, a high increase in bare land/built-up and a decrease in natural vegetation and cropland from 2020 to 2050 
are expected. The decrease in cropland is the result of the different transitions allowed in the Markov Chain model 
to compute the LULC of 2050. The results are not in agreement with many studies, which projected an increase in 
cropland in the future (Gupta and Sharma 2020; Larbi et al. 2019; Leta et al. 2021;). However, the findings are 
congruent with the results of Hussien et al. (2022) who projected a decrease in cropland (-5623.2 km2) and an 
increase in settlement (1073.41 km2) from 2021 to 2056 in the Abbay River Basin of Ethiopia. In the same country, 
a study by Sibanda and Ahmed (2021) projected an increase of 40% and a decrease of -18% for cropland in 2035 
and 2045, respectively in the Shashe River Basin. The results of future LULC could have many impacts on water 
resources in the NRB. As reported by Mechal et al. (2022), the expansion of bare land could highly increase the 
discharge and decrease infiltration due to the higher curve number. It could also increase floods occurrence due to 
peak discharges (Yira et al. 2017). This situation could jeopardize the life and goods of the thousands of people 
who live downstream of the dams. For instance, water releases from the Bagré dam caused many deaths and 
economic losses in Burkina Faso and Ghana in 2009 (UNEP-GEF Volta Project 2013). The peak flows could also 
favour dams’ siltation due to an increase in sediment transport. The high coverage of the basin by bare land/built-
up could ultimately decrease low flows and affect the water yield (Balist et al. 2022). 
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Under the afforestation scenario, the NRB would be mostly covered by cropland (57.76%) in 2050. However, as 
set-up in the Markov Chain model, the area of woodland and shrubland would increase. Yet, the bare land/built-
up would decrease by -39%. The statistics of LULC units in 2050 under the afforestation scenario are close to 
those of LULC 2005 (Tables 7 and 9). Several studies have projected a decrease in cropland to the benefit of forest 
in the future under the afforestation scenario (Han et al. 2015; Larbi et al. 2019). However, in this study, the 
increase in cropland could be attributed to bare land/built-up decrease. Indeed, the modelling assumption is set in 
such a way that the area covered by bare land/built-up in 2020 is mainly due to the degradation of cropland area 
from 2005. However, with some techniques of soil conservation such as zaï, stone bunds, and half-moons, some 
of the degraded lands could be successfully converted for agriculture purpose (Nyamekye et al. 2018). Such a 
policy for the designed afforestation scenario could lower the peak flows and increase the groundwater recharge 
through a better percolation (Tanksali and Soraganvi 2021). 

5. Conclusions 

This study investigated the dynamics of past and future LULC in the NRB. The method used was the RF 
classification in GEE, which produced acceptable maps for 1990, 2005 and 2020.The future LULC was assessed 
using the MLP neural network and Markov Chain of LCM. The model was successfully validated using the LULC 
of 2020 as reference year. The dynamic of LULC from 1990 to 2020 showed a continuous decrease in woodland 
and shrubland areas, a continuous increase of cropland, bare land/built-up, and water bodies. The trend of LULC 
units showed strong effects of human activities on land cover change in the basin. On the one hand, the future 
LULC map in 2050 based on the BAU scenario showed that human pressure would exacerbate the natural 
vegetation, with a probable decrease in cropland. On the other hand, under the afforestation scenario, the natural 
vegetation could increase while bare land/built-up could decrease. Some policies such as “trees planting day” 
which has been implemented since 2019, could help to achieve this expected increase in natural vegetation. The 
results of this study could ultimately be useful for the Nakambé Water Agency, a key policy maker in charge of 
water management in the basin. Nevertheless, the Bagré dam, a RAMSAR site located downstream of the NRB, 
relies on the LULC dynamics of the upstream. Therefore, other actions need to be undertaken urgently by policy 
makers as the success of tree planting campaigns in the country seems low. 
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