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ABSTRACT

The low-frequency variability of the extratropical atmosphere involves hemispheric-scale recurring, often persistent, states known as
teleconnection patterns or regimes, which can have a profound impact on predictability on intra-seasonal and longer timescales. However,
reliable data-driven identification and dynamical representation of such states are still challenging problems in modeling the dynamics of the
atmosphere. We present a new method, which allows us both to detect recurring regimes of atmospheric variability and to obtain dynami-
cal variables serving as an embedding for these regimes. The method combines two approaches from nonlinear data analysis: partitioning a
network of recurrent states with studying its properties by the recurrence quantification analysis and the kernel principal component analy-
sis. We apply the method to study teleconnection patterns in a quasi-geostrophical model of atmospheric circulation over the extratropical
hemisphere as well as to reanalysis data of geopotential height anomalies in the mid-latitudes of the Northern Hemisphere atmosphere in
the winter seasons from 1981 to the present. It is shown that the detected regimes as well as the obtained set of dynamical variables explain
large-scale weather patterns, which are associated, in particular, with severe winters over Eurasia and North America. The method presented
opens prospects for improving empirical modeling and long-term forecasting of large-scale atmospheric circulation regimes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0109889

The behavior of weather systems over the mid-latitudes is well
known as strongly chaotic and having a very limited horizon of
reliable forecasting. While movements of synoptic-scale struc-
tures like cyclones and anticyclones are predicted well within
1–2 weeks, larger structures of atmospheric circulation with
longer time scales are still poorly investigated. As it is shown
by models and data analysis, dynamics on these time scales, also
called the low-frequency variability, is characterized by recurrent
global patterns, or regimes, which can strongly impact long-term
weather conditions in different regions. However, both identifica-
tion and dynamical representation of such regimes based on data
is a controversial problem due to the lack of robust and reliable
methods of data analysis/data analysis methods. Here, we suggest
a method that allows us to detect the regimes and, simultaneously,
obtain dynamical variables representing their dynamics. The
method involves and joins together/combines several approaches
from nonlinear data analysis: partitioning a network of recurrent

states, recurrence quantification analysis, and nonlinear princi-
pal component analysis. Studying winter low-frequency variabil-
ity (LFV) in the Northern Hemisphere (NH) mid-latitudes by the
suggested method allows us to reveal and investigate dynami-
cal properties of large-scale weather patterns, which are associ-
ated, in particular, with severe winters over Eurasia and North
America. The results presented open prospects for improving
data-driven modeling and long-term forecasting of large-scale
atmospheric circulation regimes.

I. INTRODUCTION

Many non-linear multidimensional systems exhibit chaotic
behavior with a continuum of time scales, are poorly predictable,
and are generally difficult to distinguish from a random process.
However, in the state space of the system, there may be sets of states
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in which the system is found more often than others. Such intermit-
tently recurrent states can have varying lifetimes (or persistence) and
regularity of occurrence. Their study is important from a practical
point of view, because in the space of observables, they correspond
to the most typical regimes of the system dynamics. However, both
identification and analysis of their dynamical properties based on
the observations are still challenging, especially when the observa-
tions live in a high-dimensional space, such as our weather and
climate system.1

Studies of atmospheric variability often distinguish between
synoptic scales that embed day-to-day variability steered by baro-
clinic instability in the storm track region and low-frequency vari-
ability with longer time scales. Compared to baroclinic processes,
low-frequency variability is still not entirely well understood and
is known to be challenging to model and predict.2 Low-frequency
variability embeds, in particular, tropospheric planetary waves and
coherent large-scale structures, including blocking and different
phases of teleconnections, such as the North Atlantic oscillation
(NAO). A proper understanding of low-frequency variability proves
invaluable in improving weather/climate prediction on intrasea-
sonal and/or seasonal timescales, in addition to many other appli-
cations not least subgrid parameterization, climate change feedback,
downscaling, etc. (see, e.g., the review Ref. 3, and references therein).

The atmospheric system is a highly nonlinear dynamical system
with complex interactions between very many degrees-of-freedom
involving different temporal and spatial scales. As far as large-scale
flow is concerned, there is evidence of the existence of preferred
recurrent and persistent circulation patterns.3 For example, it is well
known that Northern Hemisphere (NH) low-frequency variabil-
ity is partly manifested by several teleconnection patterns,4–8 which
can have a profound impact in improving predictability on intra-
seasonal and longer, such as subseasonal to seasonal timescales.9

Compared to the tropics, extratropical dynamics involves a
great variety of wave–wave and wave–mean flow interactions, high-
lighting, hence, more involved nonlinearity, in particular, preferred
intra-seasonal large-scale structures of nonlinear flow regimes. The
persistence timescale of these patterns is normally much longer
than synoptic baroclinic timescales but smaller than typical intra-
seasonal variability timescales of radiative fluxes and bottom bound-
ary conditions, such as sea surface temperature anomalies.5,10,11

The extratropical persistent and quasi-stationary states are
associated with teleconnection patterns and states/positions of the
jet stream.12,13 An extensive number of studies has analyzed and
identified these nonlinear flow regimes ranging from various cluster
analysis methods, bump hunting of the probability density func-
tion (pdf) to hidden Markov models, and self-organizing maps. The
number of these structures, however, is a matter of debate between
researchers and depends on the location and extension of the geo-
graphical region and season. An extensive discussion with more
details can be found in the review Ref. 3, and references therein.

One of the challenging issues in the identification of the
above extratropical nonlinear structures is the choice of the low-
dimensional space, which allows appropriate reduction of weather-
related noise and efficient separation of these states. The space
spanned by the leading empirical orthogonal functions (EOFs) is
conventionally used as reduced space. EOFs have, however, a num-
ber of weaknesses putting limits on what can be achieved.14,15 To

overcome those weaknesses and, in consistency with the nonlin-
ear nature of the dynamics, these authors applied kernel EOFs as
a low-order state space to identify the nonlinear flow structures. In
particular, those structures are interpreted as quasi-stationary states
based on the flow tendency within the same space. This flow ten-
dency can only be applied with very long time series, as is possible
with the quasi-geostrophic (QG) model of potential vorticity on the
sphere but is not appropriate for data from reanalysis.

Many problems in the real world, such as physical, computer,
and social sciences, can be formulated and solved using the con-
cept of networks or graph theory. A network is a collection of
objects or nodes that are connected by edges. These connections
can be defined based on a chosen metric in the system state space.16

An example of such graphs can be found in the Isomap method17

and an application to the Asian monsoon can be found in Ref. 18.
Many networks allow a natural splitting of the system into groups
or communities/modules.19 To complement the analysis of the low-
frequency variability system within the low-dimensional kernel EOF
space, we adopt and apply here for the first time the concept of net-
work modularity to study the nonlinear dynamical feature of the
mid-latitude atmosphere.

In this manuscript, we revisit and extend the analysis of Han-
nachi and Iqbal14 by using kernel EOFs combined with a recurrence
network partitioning method.19,20 The recurrence network analysis
allows an elegant and easy partitioning of the state space into com-
munities in a natural way, providing an efficient way to identify the
nonlinear flow structure within the low-dimensional kernel EOF
space. Moreover, this makes it possible to use the tools of recur-
rence quantification analysis (RQA)21 to study important dynamical
features of the detected structures.

The manuscript is organized as follows. Section II describes
the methodology. The data and the calculation procedure are given
in Sec. III. Section IV presents the results, and a summary and
conclusion are provided in Sec. V.

II. METHODS

A. Kernel principal component analysis

Detecting the regimes of a given (dynamical) system’s variabil-
ity can be formulated as the problem of separating structures of
related states in the phase space. Typically, when studying the atmo-
spheric dynamics, we have at our disposal multivariate time series of
some physical variables, such as temperature, pressure, geopotential
height, etc., on a spatial grid, xt, t = 1, . . . N, and hence, the struc-
tures of interest are embedded in a high-dimensional space. The
nonlinearity of the system makes traditional linear data decomposi-
tion methods, such as empirical orthogonal function (EOF) analysis,
inefficient, and sometimes inadequate in disentangling these struc-
tures. The reason is that they are not necessarily oriented along lin-
ear directions, but are possibly lying on complex manifolds, and may
be embedded in a very large number of principal components (PCs).
A suitable approach to overcome this complexity is to construct a
nonlinear embedding of the state space, through a high-dimensional
multivariate mapping ϕ(·), from the original state space into a new
feature space, so that the structures would be captured and could
be well separated by a few PCs in the new feature space. In this
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setting, the problem is reduced to linear PCA applied to the trans-
formed time series ϕ(xt) of the original multivariate d-dimensional
time series xt with t = 1, . . . , N. A straightforward way to solve this
problem—via explicit assignment of the functions ϕ—is in most
cases impractical, because it is difficult to guess both the functional
form and its dimension, which are optimal for detecting the regimes.
The kernel trick can solve this problem in an elegant way. The ker-
nel function K(·, ·) can be defined as a scalar product in such a way
that K(x, y) = ϕ(x)Tϕ(y) and can be chosen from a large family such
as polynomials or Gaussian functions. The choice of K(·, ·) then
defines implicitly the mapping ϕ, i.e., without an explicit expres-
sion of it, which is generally very high (and may be even infinite)
dimensional. Then, all we need to know for calculating PCs in the
new feature space is the matrix of inner products Kij = ϕ(xi)

Tϕ(xj)

:=
∑

l ϕl(xi)ϕl(xj). Hence specifying the mapping ϕ(·) is not needed
to perform PCA; we can just introduce the kernel function K(·, ·)
that defines the dot products Kij = K(xi, xj), i, j = 1, . . . , N. Such an
implicit kernel-based nonlinear transformation of the original space
is the core idea of the kernel PCA (KPCA) approach,1,22,23 which
was shown to be effective, e.g., in identifying the LFV regimes in
the extratropical atmosphere.15 The kernel function can be selected
based on some general assumptions reflecting the similarity of
states within the state space. According to the spectral decompo-
sition theorem, the kernel function may be decomposed into an
infinite series as K(x, y) =

∑

l λlfl(x)fl(y), where fl(·), l = 1, 2, . . .,
are the eigenfunctions of the integral operator with kernel K(·, ·).
Accordingly, the mapping ϕl(·), l = 1, 2, . . ., are then given by ϕl(x)
:=

√
λlfl(x), as mentioned in Ref. 15. Thus, the approach makes

it possible to consider infinite-dimensional embedding to achieve
optimal separation of distinct states. Technically, in kernel PCA, the
N × N matrix K is decomposed as follows:

K = K + Kc = K +
N−1
∑

i=1

ui · uT
i , (1)

where the mutually orthogonal vectors ui, i = 1, . . . , N − 1, are the
kernel principal components (KPCs), and K is

K = K − Kc =
1

N
(1 · K + K · 1) −

1

N2
1 · K · 1, (2)

representing the deviation of K from the centered matrix
Kc = C · K · C, with C being the N × N centering matrix C = I
− 1

N
1, and I and 1 are, respectively, the identity matrix and the

matrix of the same size filled with ones. The centering of the ker-
nel matrix excludes the temporal mean of the features (or states) in
the feature space from the decomposition, which could result in a
distortion of the decomposition as the leading KPC gets attracted
toward the main diagonal. This allows us to treat Kc as the matrix of
covariances between the states at different times (temporal covari-
ances) yielding, in particular, zero-mean of the KPCs. Thus, the KPC
vectors ui, i = 1, . . . , N − 1, can be obtained from the eigendecom-
position of the centered array Kc,

Kc = V · D · VT,

ui = D
1/2
ii vi, i = 1, . . . , N − 1,

(3)

where vi is the ith eigenvector, forming the matrix V, and Dii is the
corresponding eigenvalue—the variance of the ith KPC.

Following the work of Ref. 15, here we use kernels that are
Gaussian functions of a distance d(·, ·) between state vectors at
different times, i.e.,

Kij = K(xi, xj) = exp
(

−d2(xi, xj)/2σ 2
)

. (4)

Such a distance-based Gaussian kernel accounts for local similarity
between the states, which is a useful property for capturing nonlin-
ear manifolds in the phase space. The only generalization allowed in
Eq. (4), compared to the kernels used in Ref. 15, is the use of an arbi-
trary metric (not necessarily Euclidean) determined by the specific
problem. However, using some metric d(·, ·), we should ensure that
the kernel function equation (4), and, hence, the matrix K, are posi-
tive semidefinite since they are designed to define an inner product.
This requirement is fulfilled with those metrics for which the metric
space can be embedded in the Euclidean space.24 In the case of other
metrics, when negative eigenvalues of the kernel matrix are possible
(this situation is out of scope in this article), we may consider using
an approximation of K by a positive semidefinite matrix instead.

By applying KPCA to multidimensional time series, we can
expect clustering of the states in a space with a low to moder-
ate number of KPCs so that each cluster can be associated with a
certain circulation regime of variability. The problem here is that
neither the number of clusters nor the dimension of the subspace
in which the clusters are embedded, are a priori known. This means
that these parameters should be optimized for obtaining statistically
justified clustering. However, reliable optimization of the clustering
procedure is difficult in real climate applications, due to insufficient
statistics from the limited observed time series. Moreover, the clus-
ters can have substantially non-Gaussian shapes, thus making such
robust methods as, e.g., Gaussian mixture models25 or kernel den-
sity estimate,26 inefficient. Below, we describe a method providing
the detection of significant regimes that avoid such difficulties.

B. Recurrence network partitioning

Conventional recurrence networks are based on neighborhood
thresholding using a Euclidean metric between pairs of states.16

Given a set of multivariate states xt, t = 1, . . . , N, and a recur-
rence threshold ε, the recurrence matrix R = (Rij) is defined by
Rij = 1‖xi−xj‖<ε , that is, 1 if ‖xi − xj‖ < ε, and zero otherwise.21 In

this regard, the kernel matrix K can be used to produce a recurrence
matrix through binarization using the metric d(·, ·) and threshold
γ as

Rij(γ ) =

{

1, K(xi, xj) > γ ,

0, otherwise.
(5)

This matrix can be visualized as a recurrence plot (RP), by plot-
ting Rij = 1 as a black pixel (and blank elsewhere). A line is then
defined as a sequence of successive black pixels. A recurrence net-
work is a graph using R as the adjacency matrix. The nodes of the
graph correspond to the observed states xt, and if two states xi and
xj are neighbors with respect to the metric d(·, ·), then the corre-
sponding nodes are connected by an edge, i.e., Rij = 1. The number

ki =
∑N

j=1 Rij is the degree of node i and represents the number of

nodes connected to it (i.e., the number of recurrences of the state
at time i). With this conceptual framework, the problem of regime
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detection can be formulated as recognizing communities of nodes,
such that there are significantly more connections within commu-
nities than between them—a situation akin to k-means clustering
concerning between- and within-variances. Actually, each commu-
nity joins the related states of the system based on the similarity
measure Eq. (4). Therefore, dividing the network into communities
allows matching each state to a certain type of behavior.

To detect the communities, we use an approach suggested by
Newman,27 in which the best division of the network maximizes
a special cost-function called modularity. For a given division, the
modularity measures the difference between the fraction of edges
falling within the communities and the same fraction expected from
a network with randomly distributed connections, regardless of the
division. This random network is assumed to have the same number
and degrees of nodes as in the analyzed network. Since elements of
the matrix R can only take 0 or 1, the expected value of Rij in a net-
work with random connections equals to the probability to find an
edge between nodes i and j. This probability is estimated as kikj/2m,

where m = 1
2

∑N
i=1 ki, and represents the total number of edges in

the network. The modularity is then expressed as

Q =
1

2m

∑

i,j

(

Rij −
kikj

2m

)

gij =
1

2m

∑

i,j

Rijgij, (6)

with gij = 1 if nodes i and j belong to the same community and 0

otherwise. Here, the matrix Rij represents the deviation of R from
the expected adjacency matrix of a random network.

An elegant way to find the communities maximizing Eq. (6)
was proposed in Ref. 19. The approach is based on iteratively split-
ting each community into two communities so that each split must
provide the maximal positive increment of the whole network mod-
ularity, until indivisible communities are obtained. Let us consider a
particular community H—a subset of nodes of our network—which
we wish to split. If we are, for example, at the starting point of the
algorithm, then H is the whole set of nodes indexed by i = 1, . . . , N.
Splitting H into two groups can be represented by a vector s (clas-
sifier or indicator), whose elements si = −1 for the first group and
si = 1 for the second. Note that the dimension of s is the size iH of
H. It can be shown that the increment 1Q of the whole network
modularity, after this split, takes the form,

1Q =
1

4m
sTBs =

1

4m
sTW2WTs,

B = (Bij), with Bij = R
(H)

ij − δij

∑

k∈H

R
(H)

ik ,
(7)

where R
(H)

is the submatrix of R = (Rij) obtained by selecting

the elements of R with the indices i, j ∈ H, δij is the Kronecker
delta, and W2WT is the eigendecomposition of the matrix B, with
2 = diag(θ0, . . . , θiH−1). Accordingly, the problem of splitting H
boils down to finding the classifier (or indicator) vector s consisting
of numbers 1 and −1 that maximizes the quadratic form [Eq. (7)],
which is equivalent to maximizing the dot product of s with the
eigenvector w0 of the matrix B corresponding to its largest eigen-
value θ0. The exact solution is the vector s with components si having
the same sign as the corresponding components w0i of the lead-
ing eigenvector w0 of B. If matrix B has positive eigenvalues, two

new communities defined by the vector s will emerge, provided that
1Q > 0. Otherwise, if there are no positive eigenvalues in B, its
largest eigenvalue is always zero, since one of the properties of this
matrix is the zero sum over each row or column. In this case, all
components of the leading eigenvector have the same value, which
means that all si are also the same, i.e., H is no longer divisible.
The described splitting process of the network communities can
continue until the 1Q > 0 condition is violated for each current
community.28

In addition to the indicator or classifier vector s, useful infor-
mation about the structure of the resulting communities is also
provided by the leading eigenvector w0. As it can be seen from
Eq. (7), the absolute value of w0i measures the contribution of
the ith element to the modularity of the network, i.e., the gain in
modularity from the inclusion of the corresponding node in the
community. The number |w0i| is referred to as the centrality of
the corresponding node in the resulting community, and, there-
fore, for each community, we get a vector of centralities. In terms of
interpretation in connection to the atmospheric circulation regime
detection, the large centrality of some node k of the network indi-
cates that the corresponding spatial pattern xk is similar to a large
number of other patterns belonging to the same community and
represents, therefore, a typical pattern for the regime associated with
this community.

The main advantage of Newman’s method described above is
that it provides an efficient and elegant way to cluster the network
into communities without any prior information on their size and
number using simple matrix calculations. This is particularly conve-
nient in climate data analysis where the set of regimes is not known
in advance and the problem of the data-driven identification comes
to the forefront. The suggested method of decomposing the analyzed
time series allows us to label the states of the system in the space
of the leading kernel PCs in accordance with the detected commu-
nities. As a result, looking at the labeled/marked states in the KPC
space, we can easily select a number of leading KPCs that provides
clear separation of the communities (see the results below and a sim-
ple example in the Appendix). Further, the selected KPCs can play
the role of dynamical variables that describe the sporadic switching
of the system trajectory between the dynamical circulation regimes.

C. Studying dynamical properties of the regimes

The adjacency (recurrence) matrices of the partitioned recur-
rence networks can be analyzed using RQA.21 Each regime-specific
recurrence plot (RP) can be regarded as a particular subset of the
full RP constrained by the community labels. In order to compare
the dynamical properties of the different regimes, RQA is carried
out separately for each regime-specific RP.

A simple quantifier for the overall intrinsic similarity of an
atmospheric regime can be defined by the ratio of total recur-
rences in the regime-specific RP relative to the (squared) time
that is spent in the respective regime, i.e., recurrence rate RR,
RR =

∑

i,j Rij/N2. In traditional RQA, the statistics of diagonal and

vertical line structures are studied to characterize the predictabil-
ity and intermittency of a system. Diagonal lines in an RP reflect
time periods during which two segments of the phase space trajec-
tory evolve in parallel, indicating deterministic and well-predictable
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dynamics. By counting the number of diagonal lines that exceed
a specific length for the regime-specific RPs, we study if the evo-
lution of spatial patterns during different time periods is similar.
Predictability of atmospheric patterns in each regime is quantified
by the determinism DET of the RP, which is given as the fraction of
diagonal lines that exceed a minimum line length of lmin = 5 days
to all diagonal lines, i.e., DET =

∑

l≥lmin
lP(l)/

∑

lP(l), where P(l) is
the distribution of diagonal line lengths l. Vertical lines in an RP
identify periods in which the dynamics are “slowed down.” Con-
sequently, we interpret them as corresponding to quasi-stationary
patterns potentially associated with atmospheric blocking and pos-
sibly zonal flow. Persistence of atmospheric patterns in each regime
is quantified by laminarity LAM, which is computed as the frac-
tion of the total vertical lines with lmin = 5 days to all vertical lines:
LAM =

∑

v≥vmin
vP(v)/

∑

vP(v), where P(v) is the distribution of
vertical line lengths v. Recently, an approach using recurrence lacu-
narity (RL) was proposed to characterize features of an RP that
are distributed among multiple time scales and are not necessarily
expressed in line structures.29 RL generally reflects the heterogene-
ity of an RP. Thus, we interpret it as the diversity of the regime
behavior. While regular RL informs about the general heterogene-
ity of recurrences, its extension to diagonal/vertical line structures is
straightforward and is introduced here. For the computation of diag-
onal/vertical line RL (dRL/vRL), the number of diagonal/vertical
lines exceeding lmin = 5 days in each box is counted and reflects how
strongly predictability/persistence of atmospheric patterns varies
throughout different time periods. The box width is fixed to one
year, highlighting interannual variability. High values indicate that,
e.g., high persistence during one time period only has limited impli-
cations for other time periods. Thus, we always show these three
different RL-based measures of diversity.

Significance testing allows us to test the dynamical properties of
atmospheric regimes against different null hypotheses. We test for
two different hypothesis: (i) we check whether the recurrence net-
work partitioning yields regimes that are significantly different from
random regimes with respect to above mentioned recurrence quan-
tifiers and (ii) we test which regime yields significantly high values
for a given recurrence quantifier.

The first test is done by random deletion of recurrences from
the full RP. In particular, for the ith regime-specific RP with ni

recurrences, we randomly delete m = N − ni recurrences from the
full RP that contains N > ni recurrences while also reproducing
the column-wise recurrence rate of the ith regime-specific RP.
We generate 200 random samples for each RP and compute the
99%-quantile for each RQA measure from this ensemble as an upper
confidence level to test for significance.

For the second test, we apply a bootstrapping procedure
with nB = 2000 runs:30 we first collect all diagonal lines(/vertical
lines/counts) from the distributions obtained from each regime-
specific RP separately. In a single bootstrap run, we draw M times
(with replacement) from the unification of these length(/count) dis-
tributions and compute the measure of interest, yielding a single
value. M is given by the number of lines/the total count in the ith
regime-specific RP. By repeating this procedure nB times, an empir-
ical test distribution for this measure is obtained from which we
compute the upper 99%-confidence level. This method is applied
for all measures except the recurrence rate; in this case, we test

FIG. 1. Schematic representation of the proposed procedure.

against the hypothesis that recurrences are distributed among the
regimes with respect to the time spent in each regime. Consequently,
we obtain each regime-specific significance level by dividing the
total number of recurrences (from all regimes) by the individual
(squared) time spent in a regime.

D. Method summary

The whole procedure described in Secs. II A–II C is represented
schematically in Fig. 1. The main goal of the KPCA is to obtain a few
number of variables (leading KPCs), which are suitable for differen-
tiating the obtained regimes. The same kernel matrix as in KPCA is

FIG. 2. Representation of the distance defined by Eq. (8).
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FIG. 3. Modularity increment after the
first division of the network into two
communities vs the threshold γ . Curves
obtained from the three time series of the
QG3 model and the HGT reanalysis time
series are plotted in the left and right pan-
els, respectively.

used for building the recurrence network which partitioning yields
a set of regimes. As a result, we obtain a state space in which the
regimes are well separated as well as representation of the regimes
in physical space via composites and can study the properties of the
regimes by the RQA methodology.

III. DATA AND CALCULATION SETUP

A. QG3 model time series

Quasi-geostrophic (QG) models of the atmosphere are popular
polygons for testing algorithms concerning weather/climate dynam-
ics. Being simplified representations of atmospheric dynamics, QG
models demonstrate a rich spectrum of variability at different time
scales and are competitive to intermediate and full general circula-
tion models regarding complexity and dynamical features/processes.
Here, we use time series generated by a three-level QG model (QG3)
on the sphere31 with realistic orography and surface boundary con-
dition. Based on the potential vorticity equations at three (200, 500,
and 800 hPa) pressure levels,31–33 the model is tuned to simulate win-
ter atmospheric circulation over the extratropical hemisphere. The
model exhibits highly nonlinear behavior with a chaotic attractor in
its phase space with more than 100 positive Lyapunov exponents.32

The LFV behavior of the model regimes was studied in a number
of works, based on different kinds of clustering in a truncated phase
space. In particular, the authors of the work34 identified four clus-
ters in the space of three leading PCs calculated from a very long
(54 000 days) time series of the mid-level stream function anoma-
lies (SFAs). These clusters are associated with the well-documented
atmospheric modes or teleconnections, namely, Arctic oscillations
(AOs) and North Atlantic oscillation (NAO). Similar results were
obtained in Ref. 35 based on reduced data-driven models, but using a
much shorter sample of 5000 days. Hannachi and Iqbal15 used KPCs
as a space for a PDF-based cluster detection; however, only two clus-
ters related to the AO were detected. Here, we present the results of
our analysis applied to three 10 000-day time series of the mid-level
stream function anomalies, distributed over latitudes 36◦ N to 90◦ N
with approximately 5.5◦ × 5.5◦ resolution. These non-overlapping

time series are randomly taken from a very long (300 000 days)
QG3-model run. Then the analysis is performed to each time series
independently.

B. Reanalysis data

To study the circulation regimes of the real atmosphere, we
use daily geopotential height (HGT) time series at the 500 hPa pres-
sure level from the NCEP/NCAR reanalysis dataset.36 The time series
is provided on a 2.5◦ × 2.5◦ latitude-longitude resolution, north of
30◦ N covering the period 1980–2020. The data are de-seasonalized
by removing the daily seasonal mean signal over the whole period
smoothed in time with a Gaussian window with the standard devi-
ation of 15 days. Such smoothing suppresses the day-to-day noise
in the resulting annual cycle while retaining the intra-annual sea-
sonal structure. Only winter (December–January–February) values

FIG. 4. Dependence of the weight given by Eq. (9) on latitude.
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are taken from the obtained time series of daily HGT anomalies,
yielding a sample of 3579 days.

C. Distance metric, kernel, and recurrence matrices

Since our goal is to separate sets of states, each of which joins
spatial patterns yielding similar atmospheric conditions, we focus on
the pattern’s structure/shape rather than their amplitudes. Accord-
ingly, we define a distance given by the sine of the angle αij between
pairs of patterns,

d(xi, xj) =
∥

∥

∥

∥

xi

‖xi‖
−

xj

‖xj‖

∥

∥

∥

∥

= 2
∣

∣

∣
sin

αij

2

∣

∣

∣
, (8)

where ‖x‖ = (xT3x)
1
2 is the metric using a d × d diagonal weight-

ing matrix 3 reflecting the non-uniformity of the spatial grid (see
below). Clearly, this metric inherits all properties of the Euclidean
metric, as it is nothing more than the Euclidean distance between

the weighted vectors 3
1
2 x normalized to the unit norm (see Fig. 2).

This always yields a positive semi-definite kernel matrix [Eq. (4)].
A very important parameter that determines the recurrence

network structure and strongly impacts the splitting of the net-
work into communities is the threshold γ in the definition of the
recurrence matrix [Eq. (5)].37 If it is too large (remember that here
the thresholding is opposite to the classical recurrence definition),
the network degenerates into many communities yielding high

FIG. 5. Regimes of the QG3 model behavior in the space of the leading two KPCs. The three columns correspond to the three analyzed time series. In the upper panels,
the states of each regime (mode) are shown in the KPC1–KPC2 plane (see the text). States belonging to different regimes are marked by different colors; color saturation
corresponds to the centrality of a state in its community. Time series of the KPC1 and KPC2 variables are plotted in the lower panels.
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modularity. Such a network may eventually not help us to reveal
any connections between patterns except those close in time. If,
on the contrary, γ is too small, we end up with a poorly divisible
network, in which each node is connected to most of the remain-
ing nodes. Hence, this calls for the need to optimize the threshold
parameter. Here, we select γ to provide the best division of the net-
work into two basic communities at the initial splitting of the whole
network. Under this requirement, the resulting value of γ maxi-
mizes the modularity increment 1Q(γ ) at the first iteration of the
algorithm. Such a choice is justified in the case of mid-latitude atmo-
spheric dynamics, since two opposite types of circulation associated
with the strength of the polar vortex are known to be the dominant

modes in this region,38 and the network should distinguish them well
at the most basic level. It is obtained (see Fig. 3) that there are pro-
nounced maxima of this dependence for both datasets considered
here. By adjusting γ , we do not need to care too much about the
precise value of σ in the kernel function [Eq. (4)]. We find that set-
ting σ = 2 mini,j d(xi, xj) in all examples below provides quite robust
results, which is close to assumptions from Ref. 15.

D. Data weighting

The data considered here is defined on a grid that is uni-
form in polar coordinates, so its cells cover unequal areas. In line

FIG. 6. Composite patterns of the QG3 model SFA corresponding to the obtained regimes. Columns correspond to different time series and rows to different regimes. The
composites are calculated as SFA averaged over 20% of most typical states of each of the obtained regimes (see the text). Only values that are significantly different from
zero by Student’s t-test with a critical value of 0.01 are shown.
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TABLE I. Parameters of the communities extracted from three analyzed time series of the QG3 model (the time series are referred to as TS1, TS2, and TS3). First row: the

contribution of a community to the network modularity. Second row: the number of SFA states (number of days) belonging to a community. Third row: the mean contribution of a

state to the modularity of its community.

Community 1 (AO−) Community 2 (AO+) Community 3 (PNA−)

Modularity (TS1; TS2; TS3) 0.219; 0.222; 0.228 0.169; 0.174; 0.155 0.107; 0.118; 0.103
Number of states (TS1; TS2; TS3) 2235; 1861; 2484 3746; 3863; 4058 4019; 4275; 3458
Modularity per state (TS1, TS2, TS3), (×10−5) 9.8; 11.9; 9.18 4.51; 4.5; 3.82 2.66; 2.76; 2.98

with the traditional approach, we had to distribute the weights of
the grid nodes in the distances d(xi, xj) [Eq. (8)], according to the
area fractions around each grid node. This corresponds to weights
3mm ∝ cos θm, where θm is the latitude (in radians) of the mth com-
ponent xm (or mth grid point) m = 1, . . . , d, of the state vector x.
The main problem with such weighting in our case is related to the
resulting larger magnitude of anomalies at the southern bound of the
considered latitude band. This moves the focus of analysis from the
mid-latitudes—the region of interest—to the subtropics. No weight-
ing, on the other hand, a yields dramatic increase in polar latitudes
contribution, thus shifting focus on the Polar vortex region rather
than the mid-latitude circulation. The problem of proper weighting
was stated, e.g., in Refs. 39 and 40. Here, we take into account the lat-
itudinal dependence of the characteristic spatial scale of atmospheric
anomalies responsible for planetary-scale circulation regimes. In the
extratropics, this scale is proportional to the Rossby deformation
radius,41 which depends on the latitude as 1

sin θ
. Therefore, normal-

ization of the grid cell areas through scaling by the characteristic
areas of anomalies (∝ 1

sin2 θ
) allows us to better capture the peculiar-

ities and typical features of the atmospheric circulation using a given
spatial grid. As a result, we use weights in the distance measure that
focus on the midlatitudes expressed as

3mm = cos θm sin2 θm, (9)

or, equivalently, multiply the signal at each grid point by
sin θm

√
cos θm. Such weighting distinguishes mid-latitudinal and

subpolar nodes of the grid, reaching the maximum at approximately
55◦ N (Fig. 4).

IV. RESULTS

A. QG3 model time series

We apply the methodology described above to each of the three
SFA time series separately. For all time series, the recurrence net-
work division method gives the same number of communities, or
regimes, equal to three. To illustrate the clustering of the commu-
nities in the KPC space, we plot elements of each community in the
plane of the two leading KPCs (see Fig. 5). The most typical (i.e.,
having large centralities in their communities) states from differ-
ent communities are well separated in this plane, and, hence, these
two variables can serve well as an embedding for the three identified
regimes.

Unlike in EOF decomposition or some of its nonlinear gener-
alizations (see, e.g., Refs. 42 and 43), there is no explicit mapping of
the KPCs to the data space. A coarse geographical structure of SFA
relating to a specified regime can be obtained via composite analy-
sis, i.e., the spatial field of SFA averaged over the most central states
of the regime (as shown in Fig. 5, top). The resulting composites are
clearly related to the three well-known atmospheric teleconnection
patterns (Fig. 6). The first two are the positive and negative phases of
AO, connected with an anomalous pressure difference between the
polar region and the mid-latitude belt, and, respectively, stronger or
weaker (zonal) westerly flow. The third one resembles the negative

FIG. 7. Recurrence plots of atmospheric patterns obtained from the QG3 model data for the three different time series. Recurrences within a given regime are color coded
accordingly. A specific rendering is used to make the RP appear less sparse.
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FIG. 8. Results of recurrence quantification analysis for the atmospheric regimes
obtained in the QG3 model data set for one of the three time series. The four
different RQA measures are labeled with their respective interpretation. Signif-
icant (insignificant) values are printed in white (black) numbers. Color coding
illustrates the ordering of the RQA values (ascending column-ranking) for better
comparability.

Pacific North American (PNA) pattern characterized in winter sea-
sons by dominating the tripol structure with positive anomalies over
the North Pacific and near southeastern United States and negative
anomalies over central Canada. We note that we have not obtained a
separate regime corresponding to NAO, but NAO-related anomalies

are captured by mode 1, which encompasses the negative NAO
phase, whereas modes 2 and 3 feature of the positive NAO phase.

Studying the nature of, and the relation between the vari-
ous teleconnection patterns, including PNA, NAO, and AO/NAM
(Northern Hemisphere Annular Mode), has a long history
(e.g., Refs. 4 and 5). The nonlinearity and/or non-distinguishability
between the NAO and AO teleconnection has been discussed thor-
oughly in the literature (e.g., Refs. 38 and 44). The linear EOF
analysis, and even nonlinear cluster analysis, cannot categorically
distinguish between NAO and AO. For example, Feldestein and
Franzke45 examined, based on composite analysis the null hypoth-
esis that the NAO and AO/NAM persistent events are not distin-
guishable. They found that the null hypothesis cannot be rejected
even at 20% significance level. In another analysis, Dai and Tan46

examined the nature of AO through SOM (Self-Organizing Map)
analysis. They found that AO, derived from the 250-hPa geopoten-
tial height anomalies, can be interpreted in terms of a continuum
that can be approximated by five discrete AO-like patterns, which
overlap with the discrete NAO-like pattern. These findings explain
why separate NAO regimes are not identified in this analysis.

The negative AO regime is the most distinguishable mode of
the QG3 model dynamics (Table I): its contribution to the network
modularity is substantially greater than the contribution of the other
two modes, although with a small frequency of occurrence. For this
reason, the most central states of this mode are well separated from
other states, with excursions into the area of large negative values of
the first leading KPC. Consequently, the transitions to this regime
look like rare irregular outliers in the time series of the first KPC
(see Fig. 5, bottom). Indeed, this KPC1 can be considered as an index
describing joint AO and NAO dynamics. At the same time, the sec-
ond variable (KPC2) helps differentiate between the positive AO and

FIG. 9. Partitioning of HGT states into regimes. Left panel: 50% of the most typical states of each regime (mode) in the space of three leading KPCs. Color saturation
corresponds to the centrality value of a state in its community. Right panel: number of days per winter related to different regimes. The years of January of each winter are
shown (e.g., 2001 corresponds to winter 2000–2001).
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TABLE II. The same as in Table I, but for the regimes obtained from the reanalysis HGT data set.

Community 1 Community 2 Community 3 Community 4

Modularity 0.109 0.122 0.115 0.13
Number of states 777 890 940 1062
Modularity per state (×10−4) 1.4 1.37 1.22 1.22

negative PNA states (Fig. 5, top), both of which contribute to the
positive NAO.

Let us now turn to the dynamical properties by consider-
ing the RPs separately for each regime (Fig. 7, see also Sec. II C),

along with the RQA (Fig. 8). The RQA reveals distinct dynami-
cal properties of the identified regimes (Fig. 8 and Fig. 1 in the
supplementary material). The negative AO regime stands out as the
most similar, persistent, and predictable regime. This suggests that

FIG. 10. Composite patterns of HGT corresponding to the obtained regimes. The composites are calculated as HGT averaged over 20% of most typical states of each of
the regimes. Only values that are significantly different from zero by Student’s t-test with a critical value of 0.01 are shown.
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it encompasses periods of atmospheric blocking as these are charac-
terized by atmospheric patterns that persistently reside for relatively
long time periods without significant spatial variations. During a
blocking event, atmospheric conditions are consequently more sim-
ilar and predictable. On the other hand, the negative AO regime is
characterized by a high degree of diversity, reflecting the low pre-
dictability of blocking events on interannual and decadal time scales.
These findings are fostered by the corresponding regime-specific RP
(Fig. 7); on longer time scales, the RP appears heterogeneous while
block-structures reflect periods of atmospheric blocking. Note that

the statistics of such structures differ from sample to sample (see
point distributions in Fig. 7 and the characteristics of the regime in
Table I), which is a manifestation of the great diversity of this regime.
The positive AO regime is associated with a stronger westerly zonal
flow that appears to result in transient, short-lived atmospheric pat-
terns that neither exhibit a significant degree of persistence nor allow
for reliable short-term predictions. Low-frequency variability of
atmospheric patterns in this regime is relatively low as indicated by
low values in the different RL measures. Time periods, during which
atmospheric conditions are characterized best by the negative PNA

FIG. 11. Composite patterns of surface air temperatures (SATs) corresponding to the obtained HGT regimes. The composites are calculated as SAT averaged over 20% of
most typical states of each of the regimes. Only values that are significantly different from zero by Student’s t-test with a critical value of 0.01 are shown.
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regime, are identified with moderately predictable and persistent
dynamics. Given the total time this regime is detected, the number of
recurrences is relatively low, representing low similarity. Both diag-
onal and vertical line structures in the regime-specific RP exhibit
strong heterogeneity, suggesting that the temporal variations in this
regime run through both well-predictable, persistent, and stochas-
tic, volatile periods. This could be interpreted as a high degree of
non-stationarity of the dynamical properties of this regime. Finally,
results between the three different time series show good general
correspondence (Fig. 1 in the supplementary material), supporting
the given interpretation of regimes. The most significant deviation is
found for the first time series compared to the second and the third
with respect to the similarity of all three regimes.

Overall, the results (Figs. 5, 6, Table I, and Fig. 1 in the
supplementary material) confirm that the suggested methodology
gives a fairly stable solution: the number of regimes, their spatial and
temporal structures, the embedding spaces, as well as the modular-
ity rates show coherency between the three different, independently
analyzed time series.

B. Reanalysis data

For the HGT reanalysis data, we detect four regimes (Fig. 9 and
Table II). These communities are embedded well in the space of
three leading KPCs, organized into a loop/ring (Fig. 9). The com-
posites form typical HGT patterns in each community (Fig. 10).
Additionally, in order to study weather impacts of the detected cir-
culation regimes, we take the same dates as used for the HGT com-
posites to calculate the composites of near-surface air temperature
anomalies47 (Fig. 11).

The composites (Fig. 10) demonstrate qualitatively different
structures of atmospheric anomalies related to the detected regimes.
The first regime is characterized by anticyclonic anomalies south
of Greenland, projecting onto negative AO and NAO. This pattern
blocks the transport of warm air from the Atlantic to Europe while
increasing the advection of subtropical air to the northeast of North
America and advecting warm/humid air into North Africa (Fig. 11).
The second regime features a positive NAO and PNA,3,4 mani-
fested by a lowering pressure over the North Atlantic and increasing
pressure in the northeastern Pacific Ocean. Anticyclonic anoma-
lies in the Pacific Ocean block zonal airflow and lead to cooling
in the northern USA and Canada and warming in eastern Rus-
sia and Arctic. The third regime with a high pressure center over
northwest Russia and Scandinavia slows down zonal air transport
in the Euro-Atlantic region, leading to extremely cold winters in
Europe and heating the Arctic Ocean area north of central Rus-
sia. Simultaneously, stable zonal flow over the north Pacific induces
warm conditions in Canada (Fig. 11). Finally, the fourth flow pattern
relates to positive AO and NAO;38,44 it is characterized by increased
zonal airflow in the North Atlantic, providing warmer than normal
winters in Europe and Russia (Fig. 11).

The number of days in each winter corresponding to a given
flow regime (Fig. 9), as well as in the KPC time series (not shown),
we observe pronounced strong inter-annual variability of domi-
nating types of behavior of the winter atmospheric circulation. In
particular, we see that regimes 1 and 3, leading to cold weather in
Europe, can be correlated on a large scale. The amplitude of the

inter-annual variability is not regular; e.g., there are sets of extreme
winters with strong domination of a single regime (see, for example,
the abnormal winters 2009–2010 and 2019–2020 showing domina-
tion of regimes 1 and 4, respectively). Regimes 1 and 2 occur less
often than 3 and 4 (Fig. 9 and Table II), although they have larger
modularity per state, i.e., the HGT states belonging to them are more
distinguishable.

Atmospheric patterns characteristic of the first regime are
rendered persistent and predictable at intra-seasonal time scales
(Fig. 12). However, this regime exhibits high diversity, indicating
strong variability at longer (inter-annual and decadal) time scales.
This corroborates the general finding that atmospheric blocking
structures entail stationary winter atmospheric circulation while
their prediction at inter-annual to decadal time scales is cumber-
some. We find significantly high similarity for the second regime,
implying that the spatial anticyclonic anomaly patterns characteris-
tic for this regime are comparable between different years. Note that
high similarity obtained for the first and second regimes is likely
the source of large values of the modularity per state within these
regimes (see Table II). Conversely, we find that atmospheric condi-
tions as identified in the third regime, which, e.g., often result in
extremely cold European winters are poorly predictable at intra-
seasonal time scales. Finally, positive AO and NAO phases as
represented by the fourth regime are dynamically opposite to the
atmospheric blocking structures (negative AO and NAO) captured
by the first regime.

This is in agreement with Woollings et al.,12 and references
therein, who investigated the NAO time scales. They found that the
two phases of the NAO have intrinsically different decay charac-
teristics, with the negative NAO events showing enhanced persis-
tence associated with blocking (see also Ref. 48). Woollings et al.13

FIG. 12. Results of recurrence quantification analysis for the atmospheric
regimes obtained in the reanalysis data set. The four different RQA measures
are labeled with their respective interpretation. Values that significantly exceed the
values corresponding to randomly obtained partitions (see the text) are printed in
white; other values are printed in black. Color coding illustrates the ordering of the
RQA values (ascending column-ranking) for better comparability.
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investigated the jet positions over the North Atlantic region. They
found that the southern jet position, associated with the negative
NAO phase (and Greenland blocking), has a smaller tendency and,
therefore, more persistent (see Ref. 3) than the northern position,
associated with the positive NAO phase.

V. SUMMARY AND CONCLUSIONS

The proposed method allows us to (1) reveal recurrent regimes
of atmospheric circulation from spatially distributed observations
and, simultaneously, (2) obtain a set of dynamical variables serv-
ing as an embedding for the regimes. A combination of the two
nonlinear data-driven approaches “KPCA and recurrence analy-
sis” provides a comprehensive investigation of the mode content
of the observed dynamics, including the regime identification, their
dynamical representation and characteristics, and analyzing the
dynamical properties of inter-regime evolution. Both parts of the
method are based on constructing the same kernel matrix that con-
sists of pairwise similarities between atmospheric states at different
dates. In the first part, this matrix produces the recurrence network,
which when partitioned yields the separation of all observed states
into the regimes. RQA applied to the obtained submatrices relat-
ing to different regimes (or communities) and helps us to study
important properties of the temporal evolution of the regimes, e.g.,
predictability, persistence, similarity, and intermittency. In the sec-
ond part, the principal components of the kernel matrix (KPCs) are
used to construct a space in which the states belonging to different
regimes are well separated.

It is worth noting that the KPCA with Gaussian kernels is very
close to the diffusion map method,49 based on decomposition of a
diffusion operator reconstructed from the data. More precisely, the
one-step diffusion maps should give the same, up to a transforma-
tion, basis of principal components as Gaussian KPCA. Thus, we
can expect a clear separation of the regimes in the diffusion space
too. Moreover, probably the use of n-step diffusion map space as an
embedding for the regimes may be more effective since it is more
robust to noise due to the many paths between network’s nodes
being involved. In this work, we demonstrate that even the basic
Gaussian KPCA represents well the recurrence network commu-
nities due to the same distance matrix used in both the RP and
Gaussian kernels. In the future, diffusion maps can be adopted for
this purpose.

We demonstrate, using both model and observation data, that
the detected regimes of the Northern Hemisphere mid-latitude win-
ter atmosphere correspond to qualitatively different states, which
cover the well-known modes NAO, AO, and PNA. We show that
typically only a few leading KPCs are sufficient for the embedding
of the regimes. Thus, these KPCs can be used as dynamical variables
describing the alternation of the obtained regimes, and future works
can aim at predictive data-driven models of their dynamics (see, e.g.,
Refs. 50 and 51). Moreover, having the dynamical variables repre-
senting the atmospheric modes, we can state a problem of finding
long-term climatic predictors (e.g., ENSO, QBO, solar cycle, etc.)
making it possible to elaborate a scheme for the inter-annual forecast
of dominating weather patterns.

The kernels equation (4), based on the distance equation (8),
reflects the similarity between two short-term patterns, each realized

within one day. This leads to extracting the recurrent but not nec-
essarily persistent patterns (the persistence is separately studied by
the RQA), which are distributed over the whole mid-latitude belt.
However, we can change the distance definition, adapting it to the
desired properties of regimes to extract. For example, we can tar-
get the method to long-living (persistent) regimes via the time-lag
extension of states, or use other weightings, Eq. (9), to emphasize
some geographical regions. Those topics are left for future research.

SUPPLEMENTARY MATERIAL

See the supplementary material that includes supplementary
figures 1–3.
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APPENDIX: SIMPLE MODEL EXAMPLE

This section demonstrates the ability of the proposed method
to detect and separate recurrent states in a simple situation when
the true solution is known. We use a toy two-dimensional stochastic
model with three-well potential, which was suggested in Ref. 53 for
testing a clustering method and then also used in Ref. 54,

ddX = −∇V(X) + εdWt,
(A1)

V(X) = u(X − A1) + u(X − A2) + u(X − A3) + b |X − Ac|2 ,

where Wt is the Wiener process, points A1 = (0, 0), A2 = (2a, 0),
and A3 = (a, a

√
3) are the centers of profiles u(·), which takes the

form

u(X) = −α exp

[

1

|X|2 − a2

]

. (A2)

The potential function V(X) has three minima placed in the vertices

of an isosceles triangle centered in Ac =
(

a, a√
3

)

. Here, we use the

same values of parameters as in Ref. 52: α = 21, a = 0, 87, b = 0, 12,
and ε = 0.05. This model produces random walks around the local
minima of the potential function, provided that the phase trajectory
spends more time near the centers of the potential than anywhere

else. Thereby, the model simulates the situation with three regimes
or recurrent states in the phase space.

We integrate this model by the Euler method with a time step
of 0.01. To exclude from consideration, the points that are close to
each other due to the temporal ordering, we take only each 100th
point during the integration. For analysis, we use 10 000-point time
series (Figs. 13 and 14) taken after 20 000-step spin-up periods.

We applied the presented method to this data, based on two
different distances: (i) simple Euclidean distance dij =

∣

∣Xi − Xj

∣

∣ and
(ii) Euclidean distance between normalized vectors given by Eq. (8).
In both cases, we detect three regimes, the central points of which
are separated well in the plane of leading two KPCs (see Figs. 13
and 14). In the projections of the phase trajectory to this plane, states
that belong to different regimes fall on different linear manifolds. At
the same time, the time series of KPCs describe transitions between
areas of the regimes. However, the distribution of the centralities
substantially depends on the distance choice: if in the first case it
emphasizes the maxima of the probability density in 2D-space, in
the second case it captures rather the density of angles of centered
state vectors, because the normalization in Eq. (8) attaches all vec-
tors to the unit sphere. The latter is especially important in climate
applications above, where we are interested in capturing the shapes
of spatial patterns rather than their amplitudes.

FIG. 13. Analysis of time series of the three-well model [Eqs. (A1) and (A2)] based on the simple Euclidean distance between state vectors. Upper panels (from left to right):
analyzed time series presented in original variables; the same, but with states marked according to the regimes they belong to; analyzed time series presented on the plain
of leading two KPCs. Yellow dots mark the “theoretical” centers of the potential function V(·). Color intensity corresponds to the centrality of a state in its community. Low
panels: time series of original variables (left) and leading two KPCs (right).
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FIG. 14. The same analysis as in Fig. 13, but based on Euclidean distance between normalized vectors defined by Eq. (8).
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