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Abstract

We propose a new method for estimating how much decisions under
monadic uncertainty matter. The method is generic and suitable for mea-
suring responsibility in finite horizon sequential decision processes. It
fulfills “fairness” requirements and three natural conditions for respon-
sibility measures: agency, avoidance and causal relevance. We apply
the method to study how much decisions matter in a stylized green-
house gas emissions process in which a decision maker repeatedly faces
two options: start a “green” transition to a decarbonized society or
further delay such a transition. We account for the fact that cli-
mate decisions are rarely implemented with certainty and that their
consequences on the climate and on the global economy are uncer-
tain. We discover that a “moral” approach towards decision making –
doing the right thing even though the probability of success becomes
increasingly small – is rational over a wide range of uncertainties.

Keywords: climate policy, responsibility measures, uncertainty, GHG
emissions processes, verified decision making
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1 Introduction

When a person performs or fails to perform a morally significant action, we some-
times think that a particular kind of response is warranted. Praise and blame are
perhaps the most obvious forms this reaction might take. For example, one who
encounters a car accident may be regarded as worthy of praise for having saved a
child from inside the burning car, or alternatively, one may be regarded as wor-
thy of blame for not having used one’s mobile phone to call for help. To regard
such agents as worthy of one of these reactions is to regard them as responsible
for what they have done or left undone [1].

The quote from “The Stanford Encyclopedia of Philosophy” (SEP) provides a
compelling account of what responsibility is about. The car accident example
is pointed because of two reasons.

First, because it rests on an implicit and widely accepted understanding
of what a person “who encounters a car accident” with a child “inside the
burning car” shall do. Namely, their best to rescue the kid.

Second, because what the person is regarded as worthy of praise or of blame
for having done (or left undone) are best and worst actions with respect to the
goal of rescuing the child: the agent can expect little praise for having used
the mobile phone to call for help and possibly also little blame for not having
managed to get the child out of the burning car. By contrast, they can expect
blame for not having used the mobile phone to call for help.

1.1 Responsibility in climate decisions

In the context of climate policy, the measure by which praise and blame shall
be attributed to decisions is not always as clear as in the [1] example. This is
because of two reasons.

We know that decisions that are taken (or delayed) now and in the next
decades, e.g., on greenhouse gas (GHG) emissions, are crucial for events that
unfold in the centuries and millennia to come, mainly because the physical and
chemical processes involved in reabsorbing atmospheric CO2 are very slow [2].

We also know that current climate policies may lead future generations to
(attempt to) mitigate the negative effects of climate change (CC) by adopt-
ing geo-engineering measures (for example, massive injections of aerosols in
the atmosphere [3–5]) that can have severe collateral effects (for instance,
on agricultural yield, hydrological events, public health [6], ecosystems [7] or
precipitation [8, 9]) or otherwise face enormous human and economic costs.

But, in contrast to decision problems in technical sciences and in engineer-
ing, in which the goal of decision making is typically well understood, there is
little agreement on how to value (and to discount) the chances and the risks
of climate change [10].

This is especially true when such risks and the associated potential costs
are related to events that unfold in hundreds or thousands of years and thus
very much depend on assumptions about the preferences of future generations.

Because of these difficulties, most attempts at estimating the impact of
current and near term climate policies are based on comparisons of costs and
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benefits over a time horizon of one or two hundred years [4, 11–13] and, even
so, are controversial [10, 14].

In short: in climate policy one cannot rely on a widely accepted under-
standing of what the goals of decision making are. Thus, specifying such goals
is not as straightforward as in the car accident example.

The second reason why attributing praise and blame to climate decisions
is not as straightforward as in the car accident example [1] is uncertainty. Can
an agent be held responsible for (performing or for failing to perform) actions
that matter very little? What does it mean precisely for decisions to matter?

In the scientific community but also in part of the civil society (think of
the “Fridays for future” movement), there is a strong concern that decisions
that are taken (or delayed) now will have severe consequences on the options
that will (not) be available to upcoming generations.

But what do we mean when we say that current decisions matter more than
decisions that will be taken by future generations? Are there systematic ways
to measure how much decisions matter when these have to be taken under
epistemic but also political and social aleatoric [10] uncertainty? Is there a
natural way of comparing similar decisions at different points in time? To make
sure that intellectual and economical efforts are (not) devoted to decisions that
really (do not) matter?

1.2 What this paper is about

We propose a method for measuring how much decisions under uncertainty
matter and apply it to a stylized GHG emissions decision process.

The method is an application of the computational theory of policy advice
and avoidability originally proposed in [15]. This theory supports the specifica-
tion of time-discrete sequential decision problems [16, 17] and the computation
of verified best decisions under uncertainty. It is an extension of the formal
framework of vulnerability [18] and of the notion of monadic dynamical sys-
tem originally introduced in [19] and allows dealing with different kinds of
uncertainty in a logically consistent manner. The theory is formulated in Idris
[20, 21], an implementation of type theory [22].

For the sake of providing a self-contained account of our method, we sum-
marize the elements of the theory [15] that we apply in this work in section 3,
after having introduced some notation in section 2. Readers comfortable with
dependent types can safely skip section 2. Readers familiar with [15] can skip
both section 2 and 3 and jump directly to section 4.

The method for measuring how much decisions under uncertainty matter
is based on the observation that many processes in which decisions have to be
taken sequentially and under uncertainty can be represented by finite decision
networks. We introduce finite decision networks formally in section 3. Intu-
itively, a finite decision network is a network in which each decision yields a
finite number of possible outcomes.

Because the car accident example from [1], the stylized decision process
outlined in section 1.3, and many interesting decision processes in climate
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policy can all be represented as finite decision networks [23], we can apply the
theory of section 3 to study such processes.

In particular we can apply the theory to compute a best and a worst deci-
sion at each node (decision step) of the network: The idea is then to measure
how much decisions matter by comparing the values (for a specific decision-
making goal) associated with such best and worst decisions. If the values of
best and worst decisions turn out to be the same, then decisions at that deci-
sion step do not matter. By contrast, the larger the difference between the
value of best and worst decisions, the more decisions do matter.

In section 5, we formulate this simple principle and define a measure of
how much decisions matter for the stylized decision process of section 1.3. The
process is formally specified in section 4.

In section 6, we extend the specific measure of section 5 to generic respon-
sibility measures. This is done by introducing a small domain-specific language
(DSL) for expressing decision-making goals (in the car accident example, rescu-
ing the child), measures of uncertainty and methods for computing differences
in the value of decisions.

These generic responsibility measures account for all the knowledge which
is encoded in a sequential decision process or network. They are agnostic
with respect to both decision makers and decision steps: how much a deci-
sion matters does not depend on the aims or on the preferences of the (real
or hypothetical) decision maker; all decisions are measured in the same way.
These conditions ensure that responsibility measurements are fair.

Before outlining the GHG emissions process that we will use to illustrate
our method for measuring how much decisions under uncertainty matter, let
us discuss a potential criticism.

We have explained that we measure how much decisions matter at a given
decision step (under uncertainty about the consequences of such decisions both
at that step and at future steps) by applying the theory of section 3 to com-
pute best and worst decisions. What is the added value of measuring how
much decisions matter for policy making if we already know how to take best
decisions? This is a legitimate and important question to which we want to
provide a first answer right now.

Remember that, in order to obtain best (and worst) decisions for a specific
decision step one has to specify a goal of decision making. For example, rescuing
the child in the car accident example or, as we will see in the next section,
avoid long term climate change impacts or short term economic downturns.

The value of best and worst decisions and thus how much decisions matter
will then typically be different for different goals. Best decisions under a given
goal might be sub-optimal (or even worst) under another goal. Decisions that
matter a lot for a given goal might turn out to be irrelevant for another one.

In section 1.1 we have pointed out how difficult and controversial it is to
specify such goals in climate decision processes, see also the discussion on the
impossibility of “value-free” climate science in [10]. Thus, the added value of
our measures is that of providing a better understanding of the decision process
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at stake. More specifically of how the importance of specific decisions depends
on the goals of decision-making.

Understanding that a specific climate policy decision, say pushing forward
a “green” transition right now versus waiting another decade may be crucial
or irrelevant depending on which goals are put forward for the decision process
at stake would be useful, e.g., in climate negotiations.

Such understanding may lead to a more rational and collaborative
approach: decision makers who understand that, for their goals, a specific
decision matters little, could afford a more open attitude towards compro-
mises. The other way round: knowing that a decision really does matter can
strengthen coalitions and improve coordination.

Thus, besides proposing a novel approach to the problem of rational choice
and attribution of responsibility [24–26], our work is a contribution to prag-
matic decision making under uncertainty with a specific focus on climate
decisions.

1.3 A stylized decision process

Consider a GHG emissions process in which now and for a few more decades,
humanity (taken here as a global decision maker) faces two options:
1. Start a “green” transition by reducing GHG emissions according to a

“safe” corridor, for example, the one depicted at page 15, Figure SPM.3a
of the IPCC Summary for Policymakers [27]

2. Delay such transition.
In other words, assume that, over the time period between two subsequent
decisions (say, for concreteness, a decade), either a transition to a nearly decar-
bonized global socio-economic system is started or nothing happens. Further,
assume that, once a transition has been started, it cannot be halted or reversed
by later decisions or events. We consider this oversimplified situation only for
the sake of clarity, although it might well be that green transitions are in fact
fast and irreversible [28].

Selecting to start a green transition in a specific physical, social and eco-
nomic condition yields a different “new” condition at the next decision step.
Let’s call one such condition a micro-state.

The idea is that micro-states are detailed descriptions of physical, social
and economic observables. For example, a micro-state could encode values
of GHG concentrations in the atmosphere, carbon mass in the ocean upper
layer, global temperature deviations, frequency of extreme events, values of
economic growth indicators, measures of inequality, etc. Even if we knew the
“current” micro-state perfectly, the set of possible micro-states at the next
decision step (say, one decade later) would still be extremely large, reflecting
both the epistemic uncertainties (imperfect knowledge) about the (physical,
social and economical) processes that unfold in the time between now and the
next decision step and the aleatoric uncertainty [10] of those processes.

Descriptions of decision processes explicitly based on micro-states would
be both computationally intractable and, as discussed in detail in section 4.3,
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methodologically questionable. As in the the car accident example quoted at
the opening of this section, we avoid these shortcomings by considering only a
small number of sets (clusters, partitions) of micro-states. These macro-states
(in the following, just states) consist of micro-states in which:

❼ A green transition has been started or delayed (S-states, D-states).
❼ The economic wealth is high or low (H -states, L-states).
❼ The world is committed or uncommitted to severe CC impacts (C -states,

U -states).
In other words, we only distinguish between 8 possible states: DHU , DHC , DLU ,
DLC , SHU , SHC , SLU and SLC where DHU represent micro-states in which a
green transition has been delayed, economic wealth is high and the world is
uncommitted to future severe CC impacts. Similarly for DHC , DLU , etc.

Clearly, this is a very crude simplification. But it is useful to study the
impact of uncertainty on relevant climate decisions and sufficient to illustrate
our approach towards measuring how much decisions matter. Also, notice that
binary partitioning of micro-states is at the core of the original notion of
planetary boundaries [29], of the topological classification proposed in [30] and
of the social dilemmas discussed in [31].

The decision process starts in DHU . In this state, a decision to start a green
transition can lead to any of the DHU . . . SLC states, albeit with different prob-
abilities: the idea is that the probability of reaching states in which the green
transition has been started (S-states) is higher than the probability of reach-
ing D-states, in which the green transition has been delayed. Symmetrically,
we assume that the decision to delay the start of a green transition in DHU is
more likely to yield D-states than S-states.

In other words, we assume our (global, idealized) decision maker to be effec-
tive, but only to a certain degree. This accounts for the fact that, in practice,
decisions are not always implemented, be this because global coordination is
necessarily imperfect, because global players tend to be in competition and
legislations tend to have large inertia or perhaps because some other global
challenge (a pandemic or an economic downturn) has taken center stage. As
demonstrated in [32], limited effectiveness has a significant impact on opti-
mal GHG emissions policies. Thus, it would be inappropriate to assume that
decisions are always implemented with certainty.

Another essential trait of our stylized process is that decisions to start a
green transition, if implemented, are more likely to yield states with a low
level of economic wealth (L-states) than states with high economic wealth.
This assumption reflects the fact that starting a green transition requires more
investments and costs than just moving to states in which most of the work
towards a globally decarbonized society remains to be done.

Finally, we assume that the probability of entering states in which the
world is committed to severe CC impacts is higher in states in which a green
transition has not already been started as compared to states in which a green
transition has been started. Also, as one would expect, delaying transitions
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to decarbonized economies increases the likelihood of entering states in which
the world is committed to severe CC impacts.

We give a complete formal specification of our stylized decision process in
section 4. Before turning to section 2, let’s look a bit more closely at the notion
of responsibility discussed so far.

1.4 Clarifications, caveats and related work

The notion of responsibility illustrated by the car accident example depends
on a number of factors.

First and foremost, we have an entity capable of taking decision: the “one
who encounters a car accident”. In the stylized decision process outlined in
1.3, we have referred to this entity as to the decision maker.

Second, we have situations like “encountering a car accident” or like “the
child being saved”. These are coarse, macroscopic descriptions of initial, inter-
mediate or final stages of a decision process that unfolds in time. In our stylized
decision process, we have used the term state to denote such coarse descrip-
tions or, more concretely, sets of possible micro-states. We formalize the notion
of state in section 3.

The third important element we have is options. In the SEP example, the
decision maker (the “one who encounters a car accident”) may “be regarded
as worthy of praise” or “may be regarded as worthy of blame” for having or
for not having used a mobile phone to call for help: decision makers have to be
capable of performing certain actions (using a mobile phone to call for help,
save the child) for being “regarded as responsible for what they have done or
left undone”.

In our stylized decision process we have maintained that, in the initial
state DHU, the decision maker is, up to a certain extent, capable of starting
a green transition or to delay it. In this state, they might be held responsible
for having or for not having started the transition.

Notice that the options available to the decision maker in a given state typ-
ically depend on that state and, in general, also on the point in time (decision
step) at which that state has been obtained.

Also notice that, while the for in “for having or for not having” is relative to
a decision taken, the praise or the blame and therefore the extent to which the
decision maker is regarded as responsible, crucially depend on the consequences
of that decision with respect to a goal: the child being saved, the economic
wealth being high, the world not being committed to severe CC impacts.

A few remarks are in order here. First, notice that such a goal does not
need to relate to what the decision maker considers to be desirable or worth
pursuing in the decision process at stake.

Second, for a decision maker to be held responsible for a decision in a given
state, say x, the goal of decision making has to be specified in terms of future
states that are obtainable from x. If this is not the case, the decisions to be
taken in x are not causally relevant [33] and any responsibility measure should
return a verdict of “not responsible”.
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Finally, a necessary condition for a decision maker to be held responsible
for a decision in a given state is that at least two choices are available in that
state, under the principle that one cannot be held responsible if one has no
choice.

We conclude this introduction with a few caveats. The first one is about
the notion of responsibility itself: there is a huge literature on the problem of
measuring (quantifying, attributing, etc.) responsibility.

Common approaches distinguish at least between ex-ante and ex-post
notions of responsibility [34] and, when more entities contribute to a decision,
for example in voting schemes or international agreements, between individual
and collective responsibility [33].

In the context of law, notions of ex-post responsibility are crucial, e.g.,
to quantify liability for harm. But for the kind of GHG emissions decision
processes exemplified by our stylized process and as a guideline for decision
making, ex-ante responsibility is the relevant notion.

Another caveat is about the notion of stylized decision process itself. We
have introduced this notion in [32] and we will discuss it in more detail in
section 4.3. The notion is closely related with that of storyline put forward in
[10] but there are also important differences. The storyline approach has been
proposed to overcome the (essentially unavoidable) ineffectiveness of predic-
tions of climate change impacts at regional scales. It maintains that, at such
scales, questions of climate risks (for given scenarios) need to be reframed
“from the ostensibly objective prediction space into the explicitly subjective
decision space”. The distinction between epistemic and aleatoric uncertainty
and the “identification of physically self-consistent, plausible pathways” are
pivotal for such reframing and “the mathematical framework of a causal
network” is the key for “reconciling storyline and probabilistic approaches”.

The notion of stylized decision process accounts for the fact that at the
global scale “climate decisions are not made on the basis of climate change
alone”, are rarely implemented with certainty and can easily be sidetracked by
other global challenges, as discussed in section 1.3. As a consequence, questions
of climate policy need to be studied in “the explicitly subjective decision space”
at both the global and the local scale.

As in the storyline approach put forward in [10], the key for applying
stylized decision processes to accountable (that is, transparent and verified)
decision making is a mathematical framework. In our case, this is provided by
the theory [15], and the causal networks proposed in [10] are a special case of
decision networks, see also sections 3 and 4.

A final caveat is about what this paper is not about. We develop a formal
method to understand which decisions under uncertainty matter most and
apply this method to a decision problem of global climate policy. Our aim
is neither to recommend climate actions nor to design specific mechanisms,
e.g. to improve coordination and collaboration between decision makers. First
and foremost, we aim at better understanding climate decision making under
uncertainty.
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2 Functional notation

In sections 4 to 7 we apply some elements of the theory of policy advice and
avoidability [15]. These are summarized in section 3. The [15] theory is formu-
lated in Idris, a dependently typed functional language [20, 21]. Many climate
scientists are well acquainted with imperative languages but less so with func-
tional, dependently typed languages. Here we provide a minimal introduction
to the notation of section 3 and to dependent types.

2.1 Imperative, functional and dependently typed languages

Somewhat simplified, an imperative program is a sequence of instructions of
what a computing machine should do. In contrast, a functional program is a
description of what the machine should compute as a mathematical function
from input to output. Common to both paradigms is the ability to name and
reuse patterns of computation to enable concise and precise descriptions of
algorithms.

Dependently typed languages like NuPRL, Coq, Agda, Idris or Lean sup-
port implementing programs but also postulating axioms, building theories
and formulating program specifications. These are formal descriptions of what
programs are required to do. Program specifications are crucial for verified pro-
gramming. Verified programs are programs that have been machine-checked
(verified) to fulfill a specification. They represent the highest correctness
standard currently achievable [22, 35].

2.2 Expressions and their types

At the core of all programming languages is a sublanguage of expressions like
1 + 2, "Hello", [1, 7, 3, 8], etc. In strongly typed languages like Idris each “valid”
expression has a type, like N, String, List N, etc. The judgment e : t states that
the expression e has type t. Most of the power of Idris comes from its type-
checker which can check these judgments for very complex expressions e and
types t. In the examples below we use a few arbitrary but fixed types A, B and
C .

2.3 Function application and currying

In Idris (and several other functional languages like Haskell and Agda) the
notation for function application is juxtaposition. You can think of it as an
invisible infix operator binding more strongly than any other operator. Thus,
f x denotes the application of the function f to the argument x . Parentheses are
used as in mathematics to resolve operator precedence like in (2 + 3) ∗ 4 and to
denote tuples like (1,True, ’c’). It is always possible to add extra parentheses,
so f (x) is also a valid syntax for function application.

In mathematics, a function of n > 1 arguments is often “implicitly con-
verted” to a function taking as arguments n−tuples. For example, if g takes
one argument in A and another one in B and returns values in C , we write



Springer Nature 2021 LATEX template

10 Responsibility under uncertainty: which climate decisions matter most?

g (x , y) to denote the application of g to the pair (x , y) : (A,B) (in Idris, (A,B)

denotes the Cartesian product of A and B) and say that g has type (A,B) → C .
In functional notation we instead use nested function application and write

(g x) y (which can also be written g x y because function application is left-
associative) to denote the application of g to x : A and y : B. Thus g has type
A → (B → C ) or simply A → B → C , g x has type B → C and g x y : C . This
is called the curried form. Infix operators like (+) : N → N → N are, just as in
mathematics, a special case where a (binary) function can be written between
its first and second argument: 2 + 3 : N.

2.4 Definitions, pattern matching and recursion

The ability to name and reuse expressions is at the core of all programming
languages. In strongly typed functional languages, we can name and reuse
expressions as long as we provide their type.

aNumber : N

aNumber = 1738

Any time aNumber is used we can just substitute 1738. We can define functions
through lambda-expressions:

aFun : N → N

aFun = λx ⇒ 2 ∗ x + 1

or, equivalently aFun x = 2 ∗ x + 1. The latter form is useful when we want to
distinguish different cases by pattern matching :

(↑) : Double → N → Double
x ↑ Z = 1
x ↑ (S n) = x ∗ (x ↑ n)

The two cases (for zero and the successor of n) can be seen as equations we
want to hold for the “to the power of” binary operator (↑). In addition to
pattern matching, this example also introduces recursion: the function being
defined, (↑), is applied to (S n) on the left hand side and to n on the right hand
side of the second equation.

2.5 Partial application and higher order functions

If a function of two (or more) arguments, g : A → B → C , is applied to just
one argument x we obtain a function g x : B → C which is a partially applied
version of g. Thus, we can view any function as a 1-argument function, possibly
returning a function.

We can also convert g into h : (A,B) → C by pairing up the first two
arguments. More generally, we can convert any (n-argument) function into a
1-argument function that takes as arguments n-tuples. For binary functions
this conversion can be done generically:

uncurry : (A → B → C ) → ((A,B) → C )
uncurry f (a, b) = f a b

The implementation is straightforward: uncurry takes as input a function f

which takes values of type A to functions from B to C . It returns a function that
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takes as input pairs of type (A,B). This is our first example of a higher-order
function: a function taking another function as a parameter. The opposite
transformation is also short and clean:

curry : ((A,B) → C ) → (A → B → C )
curry f a b = f (a, b)

These examples are a bit abstract, so here is a more applied example: Given
a time-dependent reward function reward : N → A → Double and a parameter
rate : Double we construct a discounted reward function by applying the higher-
order function discount:

discount : Double → (N → A → Double) → (N → A → Double)
discount rate reward = λt ⇒ λx ⇒ (rate ↑ t) ∗ (reward t x)

2.6 Polymorphic functions and equality types

The types presented so far have been monomorphic: using only specific types
like N, Double and the fixed types A, B, and C . Many programs work generically
for a large class of types. For example, discount works for any A and curry for
any A, B, and C . A simpler example is the projection function fst for extracting
the first component of a pair:

fst : {A,B : Type } → (A,B) → A
fst (x , y) = x

The type of fst depends on two type variables A and B. Thus fst is in fact a
three-argument function taking two types and a pair and returning the first
component of the pair. The two first arguments are implicit arguments which
can be inferred by the system in most use cases. In section 3, most functions
are polymorphic, using a combination of explicit and implicit type arguments.

Dependently typed functional languages support reasoning about the
equality of expressions. The claim that an expression a : A is equal to an
expression b : B is written simply a = b. The infix operator (=) has type
A → B → Type and defines a whole family of types: for every a : A, and b : B we
have a type a = b. Almost all types in this family are empty (uninhabited, con-
tain no values) but a few contain one value written Refl : a = a. Thus, a value
p : a = b tells us that a and b are equal (and p is a proof of that fact). Here are
two examples of using equality types to specify properties of multiplication:

multUnitSpec : (y : Double) → 1 ∗ y = y
multAssocSpec : (x , y, z : Double) → (x ∗ y) ∗ z = x ∗ (y ∗ z )

2.7 Dependent types and data declarations

Many programming languages use types to make sure the code doesn’t go
wrong, but dependently typed languages support types which depend on val-
ues. We have already seen some examples: multUnitSpec is a function whose
return type (1 ∗ y = y) depends on y, a value of type Double. The equality type
x = y depends on the two values x and y.
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We can take advantage of dependent types to specify requirements that
multiplication shall fulfil, as in the multUnitSpec and multAssocSpec examples. We
can also apply dependent types to restrict the values of arguments, for example,
to specify a square root function that accepts only non-negative arguments.
Restricting sounds negative, but it allows to avoid nonsensical combinations
of values, which helps to eliminate whole classes of software bugs.

Let’s start with a non-dependent data declaration that introduces natural
numbers:

data N : Type where
Z : N

S : N → N

This states that N is a type and that values of type N can be constructed using
Z for zero and S n for the successor of n : N. The same declaration can be
written in a less verbose form

data N = Z | S N

where the vertical bar separates the two data constructors Z and S . In this
form, the types of N, Z and S are implicit. We apply this form of data
declaration in section 4.1, e.g., to define the data types State and StartDelay.

With N and the syntax for data declarations in place we move on to the
more complex example of lists of fixed-length:

data Vect : N → Type → Type where
Nil : Vect Z a
(::) : (x : a) → (xs : Vect n a) → Vect (S n) a

Thus, for any n : N and A : Type, values of type Vect n A are lists of length n

of elements of type A. For example

xs : Vect 3 Double
xs = 0.1 :: 0.6 :: 0.4 ::Nil

Idris also provides syntax extensions for defining vectors and lists of variable
length in square brackets notation:

ys : Vect 4 N

ys = [1, 2, 3, 4]

zs : List String
zs = [ ]

A simple example of a vector based function is head which extracts the first
element of a vector:

head : {n : N} → {A : Type } → Vect (S n) A → A
head (x :: xs) = x

Note that head is only defined for non-empty vectors: vectors of length S n for
some n. By restricting the arguments of head, we make sure that the function
is never applied to empty vectors, thus eliminating a common source of errors.

In section 3 we use a data declaration similar to Vect to define a datatype
PolicySeq for sequences of policies of fixed-length.
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2.8 Properties as types, specifications

In programming, the type Bool is often used to collect the two truth values
False and True and to implement run-time “truth” tests. In dependently typed
programming and constructive mathematics we can go one step further and
represent truth “values” at the type level. Such truths can then be type-checked
at compile time and before a (possibly incorrect) program is executed.

In much the same way as (=) : A → B → Type represents equality of
expressions at the type level (remember section 2.6) and allows us to construct
equality proofs straightforwardly,

p : 2 + 3 = 5
p = Refl

we can represent other binary relations through types. For example, we can
define a “smaller or equal” relation for natural numbers

(6) : N → N → Type

or, as in section 3.1, one that compares values in Val, the type used there to
represent rewards. In all cases the idea is the same: any inhabited type (any
type for which we can provide a value, like Refl for equality) represents truth
and empty types represent falsity. An empty type, usually called Void, is easily
defined through a data declaration with no constructors

data Void : Type where

and (6) can be defined in such a way that 7 6 3 is empty (thus, no values of this
type can be constructed) and values of type 3 6 7 can be constructed easily,
similarly to values of type 2 + 3 = 5.

The function (6) is an example of a binary predicate on natural numbers.
Similarly, unary predicates on values of type A can be represented by functions
P : A → Type. Predicates are useful to specify properties of computations,
as we have already seen with multUnitSpec and multAssocSpec. Here is another
example: given a sorting function

sort : {n : N} → {A : Type } → Vect n A → Vect n A

and a predicate representing “sortedness”:

Sorted : {n : N} → {A : Type } → Vect n A → Type

we can formulate the requirement that sort shall return sorted vectors:

sortSpec : {n : N} → (xs : Vect n A) → Sorted (sort xs)

Any valid implementation of sortSpec is then logically equivalent to a proof
that, for any vector xs, sort xs is sorted1. More generally, any function of type
(x : A) → P x (for any predicate P : A → Type) is logically equivalent to a proof
that P x is non-empty for every x : A. In section 3 we exploit this equivalence
to posit that the set of controls Y t x associated with a state x : X t shall not
be empty through the function notEmptyY .

1An implementation of sortSpec is not enough to guarantee that sort is correct but is a first
step in the right direction.
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2.9 Programs, proofs, and totality

We have seen that, in dependently typed languages, properties can be rep-
resented by types and proofs by values of these types. The correspondence
between functional notation and logic goes deeper and we sum up the main
results in Table 1:

Functional notation (Idris) Logic
p : P (p is a program of type P) p is a proof of P
inhabited type provable proposition
empty type False
singleton type True
P → Q P implies Q

Exists {A} P there exists a witness x : A such that P x holds
(x : A) → P x forall x of type A, P x holds

Table 1 Propositions-as-Types and Proofs-as-Programs (“Curry-Howard”)
correspondence relating dependent type theory and logic [36, 37].

When we embed logic in a dependently typed language, we have to require all
our functions to be total (otherwise the logic will be inconsistent).

A total function f : A → B is defined for all x : A, whereas a partial function
is undefined for some x : A. If partial functions were allowed, we could use
them to prove any theorem, including patently false ones. A simple example
is the partial function headL : List A → A which is undefined for empty lists.
Using headL we could easily prove a false theorem (like 3 = 5) by first building
an empty list of proofs, [ ] : List (3 = 5), and then extracting the first element:

surprise : 3 = 5
surprise = headL [ ]

A function may cover all cases, but still fail to be total. An extreme example
is the completely circular definition

circular : Void
circular = circular

If we require functions to be total (which we do in sections 3 to 7), the totality
checker will warn about missing cases and potentially circular definitions.

3 The theory in a nutshell

In this section, we overview the elements of the [15] theory2 that we apply
in sections 4 to 7. For motivations, comparisons with alternative formulations
and details, please see [15, 38]. In a nutshell, the theory consists of two sets of
components: one for the specification of sequential decision problems (SDPs)
and one for their solution with verified backward induction. For informal intro-
ductions to SDPs, see [15]. Reference mathematical introductions to SDP are
given in sections 1.2 and 2.1 of [17] and [16], respectively. For an application
of the theory to GHG emissions problems, see [32].

2hereafter simply referred to as the theory
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The components for the specification of SDPs are global declarations. Four
of these describe the sequential decision process that underlies a decision
problem. The first declaration

M : Type → Type

specifies the uncertainly monad M . Discussing the notion of monad here would
go well beyond the scope of this manuscript, and we refer interested readers
to [39] and [40]. The idea is that M accounts for the uncertainties that affect
the decision process. In the stylized GHG emissions process outlined in the
introduction, M represents stochastic uncertainty. For this process, values of
type M A are finite probability distributions on A, see section 4.

Remember that, as shown in section 1.3, sequential decision processes are
defined in terms of the states, of the options available to the decision maker
(in a given state and at a given decision step) and of the state transitions that
take place between two subsequent decisions.

In control theory, the options available to the decision maker are called
controls and the theory supports the specification of the states, of the con-
trols and the state transition function of a decision process in terms of three
declarations:

X : (t : N) → Type

Y : (t : N) → X t → Type

next : (t : N) → (x : X t) → Y t x → M (X (S t))

The interpretation is that X t is the type (set) of states at decision step t.
For example, the states DHU , DHC , . . . , SLC of our stylized GHG emission
process. Similarly, Y t x represents the controls available at decision step t and
in state x and next t x y is an M -structure of the states that can be obtained
by selecting control y in state x at decision step t. In the decision process of
section 1.3, Y 0 DHU (the set of controls available to the decision maker at
decision step 0 and in state DHU ) only contains two alternatives: Start and Delay.

The uncertainty monad M , the states X , the controls Y and the transition
function next completely specify a decision process: if we were given a rule
for selecting controls for a given decision process (that is, a function that
gives us a control for every possible state) and an initial state (or, in case of
epistemic uncertainty [10], a probability distribution of initial states) we could
compute all possible trajectories compatible with that initial state (or with
that probability distribution) together with their probabilities3.

Indeed, a sequential decision problem for n steps consists of finding a
sequence of n policies (in control theory, functions that map states to controls
are called policies) that, for a given decision process, maximises the value of
taking n decision steps according to those policies, one after the other.

Here, the value of taking n decision steps according to a sequence of
n policies is defined through a measure (in stochastic problems often the
expected-value measure) of a sum of rewards obtained along the trajectories.
It follows that, in order to fully specify a decision problem, one has to define

3This is not a trivial result. It holds because we have required M to be a monad.
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the rewards obtained at each decision step, the sum that the decision maker
seeks to maximize and the measure function. In the [15] theory, this is done
in terms of 6 problem specification components. These are summarized in the
next section.

3.1 Problem specification components

Val : Type

reward : (t : N) → (x : X t) → Y t x → X (S t) → Val

(⊕) : Val → Val → Val

Here, Val is the type of rewards, reward t x y x ′ is the reward obtained by
selecting control y in state x when the next state is x ′ and the infix operator
⊕ is the rule for adding rewards. A few remarks are at place here.
1. In many applications, Val is a numerical type and controls are actions that

consume certain amounts of resources: fuel, water, etc. In these cases, the
reward function encodes the value (cost) of these resources (and perhaps
also the benefits achieved by using them) over a decision step. Often, the
latter also depends on the “current” state x and on the next state x ′. For
example, in the stylized decision problem of section 1.3, reward t x y x ′

would possibly be higher than reward t x y x ′′ if x ′ is an H-state (a state
with a high level of economic wealth) and x ′′ is an L-state. The theory
nicely copes with all these situations.

2. When Val is a numerical type, ⊕ is often the canonical addition associated
with that type. However, in many applications more flexibility is needed,
e.g., to account for the fact that later rewards are often valued less than
earlier ones. Again, formulating the theory in terms of a generic addition
rule nicely covers all these applications.

3. Mapping reward t x y onto next t x y4 yields a value of type M Val. These
are the possible rewards obtained by selecting control y in state x at
decision step t. A sequential decision problem for n steps consists of find-
ing a sequence of n policies that maximises a measure of a sum of the
rewards along possible trajectories. We introduce a value function that
computes such a measure in section 3.2: as it turns out, comparing two
policy sequences for a fixed initial state essentially means comparing two
M Val values.

In mathematical theories of optimal control, the implicit assumptions
are often that Val is equal to R, values of type M Val are probability distri-
butions on real numbers and such values are compared in terms of their
expected value measures. Measuring uncertainties in terms of expected
value measures subsumes a neutral attitude towards risks. This is not
always adequate and the theory supports alternative (e.g., worst-case)
measures via the declaration:

meas : M Val → Val

4Because M is a monad, functions of type A → B can be mapped on values of type M A,
obtaining values of type M B for arbitrary A,B : Type
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In much the same way, the framework allows users to compare Val values
in terms of a problem specific total preorder

(6) : Val → Val → Type
lteTP : TotalPreorder (6)

This allows, among others, to specify multi-objective optimal control [13]
problems. Here 6 and TotalPreorder : (A → A → Type) → Type are pred-
icates like those discussed in section 2.8 and TotalPreorder R encodes the
notion that R is a total preorder.

3.2 Problem solution components

The second set of theory components formalizes classical optimal control the-
ory. Here, we only provide a concise, simplified overview. Motivation and
details can be found in [41], [15] and [32]. For an introduction to the mathe-
matical theory of optimal control, we recommend [16] and [17]. As mentioned,
policies (decision rules) are functions from states to controls:

Policy : (t : N) → Type
Policy t = (x : X t) → Y t x

Policy sequences of length n : N are then just vectors (remember section 2.7)
of n policies:

data PolicySeq : (t : N) → (n : N) → Type where
Nil : {t : N} → PolicySeq t Z
(::) : {t ,n : N} → Policy t → PolicySeq (S t) n → PolicySeq t (S n)

Perhaps, the most important notion in the mathematical theory of optimal
control is that of value function. The value function takes two arguments: a
policy sequence ps for making n decision steps starting from decision step t

and an initial state x : X t. It computes the value of taking n decision steps
according to the policies ps when starting in x :

val : Functor M ⇒ {t ,n : N} → PolicySeq t n → X t → Val
val {t } Nil x = zero
val {t } (p :: ps) x = let y = p x in

let mx ′ = next t x y in
meas (map (reward t x y

⊕
val ps) mx ′)

Notice that, independently of the initial state x , the value of the empty policy
sequence is zero. This is a problem-specific reference value

zero : Val

that has to be provided as part of the problem’s specification. The value of a
policy sequence consisting of a first policy p and of a tail policy sequence ps

is defined inductively as the measure of an M -structure of Val values. These
values are obtained by first computing the control y dictated by p in x , the
M -structure of possible next states mx ′ dictated by next and finally by adding
reward t x y x ′ and val ps x ′ for all x ′ in mx ′. The result of this functorial mapping
is then measured with the problem-specific measure meas to obtain a result of
type Val. The function which is mapped on mx ′ is just a lifted version of ⊕, as
one would expect:
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(
⊕

) : {A : Type } → (f , g : A → Val) → A → Val
f
⊕

g = λa ⇒ f a ⊕ g a

As shown in [38], val ps x does indeed compute the meas-measure of the ⊕-
sum of the reward-rewards along the possible trajectories starting at x under
ps for sound choices of meas. The advantage of the above formulation of val

[16, 17, 42] is that it can be exploited to compute policy sequences that are
provably optimal in the sense of

OptPolicySeq : Functor M ⇒ {t ,n : N} → PolicySeq t n → Type
OptPolicySeq {t } {n } ps = (ps′ : PolicySeq t n) → (x : X t) → val ps′ x 6 val ps x

Notice the universal quantification in the definition of OptPolicySeq: a policy
sequence ps is said to be optimal iff val ps′ x 6 val ps x for any ps′ and for
any x . The generic, verified implementation of backward induction from [15] is
a simple application of Bellman’s principle of optimality, often referred to as
Bellman’s equation [42]. It can be suitably formulated in terms of the notion
of optimal extension. A policy p : Policy t is an optimal extension of a policy
sequence ps : Policy (S t) n if it is the case that the value of p :: ps is at least as
good as the value of p′ :: ps for any policy p′ and for any state x : X t:

BestExt : Functor M ⇒ {t ,n : N} → PolicySeq (S t) n → Policy t → Type
BestExt {t } ps p = (p′ : Policy t) → (x : X t) → val (p′ :: ps) x 6 val (p :: ps) x

With this formalization of the notion of optimal extension, Bellman’s principle
can then be formulated as

Bellman : Functor M ⇒ {t ,n : N} →
(ps : PolicySeq (S t) n) → OptPolicySeq ps →
(p : Policy t) → BestExt ps p →
OptPolicySeq (p :: ps)

In words: extending an optimal policy sequence with an optimal extension
(of that policy sequence) yields an optimal policy sequence. Another way of
expressing the same principle is to say that prefixing with optimal extensions
preserves optimality. Proving Bellman’s optimality principle is almost straight-
forward and crucially relies on 6 being reflexive and transitive (remember that
6 is a total preorder). With Bellman and provided that we can compute best
extensions of arbitrary policy sequences

bestExt : Functor M ⇒ {t ,n : N} → PolicySeq (S t) n → Policy t

bestExtSpec : Functor M ⇒ {t ,n : N} →
(ps : PolicySeq (S t) n) → BestExt ps (bestExt ps)

it is easy to derive a verified, generic implementation of backward induction:

bi : Functor M ⇒ (t : N) → (n : N) → PolicySeq t n
bi t Z = Nil
bi t (S n) = let ps = bi (S t) n in bestExt ps :: ps

For this implementation, a machine-checked proof that bi t n is an optimal
policy sequence for any initial time t and number of decision steps n:

biLemma : Functor M ⇒ (t : N) → (n : N) → OptPolicySeq (bi t n)

is a straightforward computation, see [15, 38].
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3.3 Theory wrap-up

The components discussed in the last two sections are all what is needed to
define the measures of how much decisions matter that we have discussed in the
introduction. We introduce these measures in sections 5 and 6. As discussed
in [38], the [15] theory is slightly more general (but also more difficult to
apply) than the one summarized above. The price that we have to pay for the
simplifications introduced here are two additional requirements. First, controls
have to be non-empty:

notEmptyY : (t : N) → (x : X t) → Y t x

Second, the transition function is required to return non-empty M structures.

4 Specification of the stylized decision process

We specify the stylized GHG emissions decision process of the introduction
in the theory summarized in section 3. As a first step, we have to define the
uncertainty monad M . Our decision process is a stochastic process and thus

M = SimpleProb

Here, SimpleProb is a finite probability monad: for an arbitrary type A, a value
of type SimpleProb A is a list of pairs (A, Double+) together with a proof that the
sum of the Double+ elements of the pairs is positive. These are double precision
floating point numbers with the additional restriction (remember section 2.7)
of being non-negative.

4.1 States, controls

Second, we have to specify the states of the decision process. Consistently with
section 1.3 and with the notation introduced in section 2 we define:

data State = DHU | DHC | DLU | DLC | SHU | SHC | SLU | SLC

X t = State

Third, we have to specify the controls of the decision process. In the intro-
duction, we said that in states in which a green transition has not already
been started (that is, in D-states), the decision maker has the option of either
starting or further delaying the transition5

data StartDelay = Start | Delay

However, if a a green transition has already been started, the decision maker
has no alternatives. We formalize this idea by defining the set of controls in
S-states to be a singleton. It will be useful to have two functions that test if a
state is committed to impacts from climate change and if the economic wealth
has taken a downturn:

isCommitted , isDisrupted : (t : N) → X t → Bool

5Notice that we are using the term transition to denote two different notions: the green tran-
sition of the decision process and the function next of the theory discussed in section 3 in which
we now specify such a process!
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The idea is that isCommitted (isDisrupted) returns True in C -states (L-states) and
False in U -states (H -states).

4.2 The transition function

Finally, we have to specify the transition function of the process. As discussed
in the introduction, this is defined in terms of transition probabilities.

The probabilities of starting a green transition. Let’s first specify the
probability that a green transition is started, conditional to the decision taken
by the decision maker. Let

pS|Start : Double+

denote the probability that a green transition is started (during the time inter-
val between the current and the next decision step) given that the decision
maker has decided to start it. For a perfectly effective decision maker, pS|Start

would be one. Let’s assume a 10% chance that a decision to start a green tran-
sition fails to be implemented, perhaps because of inertia of legislations, as
discussed in section 1.3:

pS|Start = 0.9

Consistently, the probability that a green transition is delayed even if the
decision maker has chosen to start it is

pD|Start : Double+
pD|Start = 1.0− pS|Start

Similarly, we denote with pD|Delay and pS|Delay the probabilities that a green
transition is delayed (started) given that the decision maker has decided to
delay it. As a first step, we take pS|Delay to be equal to pD|Start

pD|Delay : Double+
pD|Delay = 0.9

pS|Delay : Double+
pS|Delay = 1.0− pD|Delay

but we will come back to this choice in section 7.

The probabilities of economic downturns. In the informal description
of the decision process from section 1.3, we said that an essential trait of the
decision process is that

. . . decisions to start a green transition, if implemented, are more likely to yield
states with a low level of economic wealth (L-states) than states with high economic
wealth. This assumption reflects the fact that starting a green transition requires
more investments and costs than just moving to states in which most of the work
towards a globally decarbonized society remains to be done.

We need to formulate this idea in terms of transition probabilities. Let
pL|S,DH denote the probability of transitions to states with a low level of
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economic wealth (L) given that a green transition has been started (S) from
delayed states (D) with a high level of economic wealth (H ). Similar
interpretations hold for pL|S,DL, pL|S,SH , pL|S,SL and their counterparts for the
cases in which a green transition has been delayed, pL|D,DH and pL|D,DL.
Remember that in our decision process

. . . once a transition has been started, it cannot be halted or reversed by later
decisions or events.

In terms of transition probabilities, this means that we do not need to specify
pL|D,SH and pL|D,SL because the probability of transitions from S-states to D-
states is zero. We encode the requirement that “decisions to start a green
transition, if implemented, are more likely to yield states with a low level of
economic wealth (L-states) than states with high economic wealth” by the
specification

pSpec3 : pH|S,DH 6 pL|S,DH

Because pH|S,DH = 1 − pL|S,DH , this requires pL|S,DH to be greater or equal to
50%. Let’s say that

pL|S,DH = 0.7

We also want to express the idea that starting a green transition in a weak
economy (perhaps a sub-optimal decision?) is more likely to yield a weak
economy than starting a green transition in a strong economy

pSpec4 : pL|S,DH 6 pL|S,DL

which requires specifying a value of pL|S,DL between 0.7 and 1.0, say

pL|S,DL = 0.9

This fixes the values of pL|S,DH and pL|S,DL for our decision process in the
ranges imposed by the “semantic” constraints pSpec3 and pSpec4 . We discuss
how these (and other) transition probabilities would have to be estimated in
a more realistic (as opposed to stylized) GHG emissions decision process in
section 4.3.

Next, we have to specify the remaining transition probabilities pL|S,SH ,
pL|S,SL, pL|D,DH and pL|D,DL. What are meaningful constraints for these?
Remember that pL|S,SH and pL|S,SL represent the probabilities of transitions to
low wealth states (L-states) from H and L-states, respectively, while an already
started green transition is accomplished. In this situation, and again because
of the inertia of economic systems, it is reasonable to assume that transitions
from H -states (booming economy) to H -states are more likely than transitions
from H -states to L-states and, of course, the other way round. In formulas:

pSpec5 : pL|S,SH 6 pH|S,SH

pSpec6 : pH|S,SL 6 pL|S,SL

Again, because pH|S,SH = 1 − pL|S,SH (and pH|S,SL = 1 − pL|S,SL), this requires
pL|S,SH and pL|S,SL to be below and above 50%, respectively.

In our decision process, a high value of pL|S,SL implies a low probability of
recovering from economic downturns in states in which a transition towards
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a globally decarbonized society has been started or has been accomplished.
In more realistic specifications of GHG emission processes, one may want to
distinguish between these two cases, or even to keep track of the time elapsed
since a green transition was started and define the probability of recovering
from economic downturns accordingly6.

Conversely, a low value of pL|S,SH means high resilience against economic
downturns in states in which a transition towards a globally decarbonized
society has been started or has been accomplished. In such states, we assume
a moderate likelihood of fast recovering from economic downturns:

pL|S,SL = 0.7

and also a moderate resilience

pL|S,SH = 0.3

Let’s turn the attention to the last two transition probabilities that need to
be specified in order to complete the description of the transitions leading to
economic downturns or recoveries. These are pL|D,DH and pL|D,DL.

The semantics of pL|D,DH and pL|D,DL should meanwhile be clear: pL|D,DH

represents the probability of economic downturns and 1−pL|D,DL the probability
of recovering (from economic downturns) in states in which a green transition
has not already been started. As for their counterparts discussed above, we
have the semantic requirements

pSpec7 : pL|D,DH 6 pH|D,DH

pSpec8 : pH|D,DL 6 pL|D,DL

with pH|D,DH = 1 − pL|D,DH and pH|D,DL = 1 − pL|D,DL and thus, by the same
argument as for pL|S,SH and pL|S,SL, pL|D,DH and pL|D,DL below and above 50%,
respectively.

How should pL|D,DH and pL|D,DL compare to pL|S,SH and pL|S,SL? Is the
likelihood of economic downturns in states in which a green transition has not
already been started higher or lower than the likelihood of economic downturns
in states in which a transition towards a globally decarbonized society has
been started or has been accomplished? Realistic answers to this question are
likely to depend on the decision step and on the time elapsed since the green
transition has been started, see 4.3. As a first approximation, here we just
assume that these probabilities are the same:

pL|D,DL = pL|S,SL

pL|D,DH = pL|S,SH

This completes the discussion of the probabilities of economic downturns and
recoveries.

The probabilities of commitment to severe impacts from climate
change. The last ingredient that we need to fully specify the transition func-
tion of our decision process are the probabilities of transitions to states that

6As explained in the introduction, the main purpose of this paper is to present a novel approach
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are committed to severe impacts from climate change. In the introduction, we
have stipulated that

. . . we assume that the probability of entering states in which the world is com-
mitted to future severe impacts from climate change is higher in states in which
a green transition has not already been started as compared to states in which a
green transition has been started.

We account for this assumption with four transition probabilities: pU|S,0,
pU|D,0, pU|S and pU|D. The first two represent the probabilities of transitions
(from uncommitted states) to uncommitted states at decision step zero for
the cases in which a transitions to a decarbonized economy has been
implemented and delayed, respectively. Similarly, pU|S and pU|D represent the
probabilities of transitions from U -states to U -states at later decision steps.
We take the informal specification from section 1.3 of the introduction

. . . delaying transitions to decarbonized economies increases the likelihood of enter-
ing states in which the world is committed to future severe impacts from climate
change.

by the letter and, for the sake of simplicity, assume that the whole increase in
the likelihood of entering committed states takes place during the first step of
our decision process. This is a very crude assumption and we will come back to
it when we discuss the results of measures of responsibility in section 5.4. With
these premises (and keeping in mind that pC|S,0 = 1− pU|S,0, pC|D,0 = 1− pU|D,0,
etc.) our informal specification translates into the constraints:

pSpec9 : pC|S,0 6 pU|S,0

pSpec10 : pC|S,0 6 pC|D,0

pSpec11 : pC|S 6 pU|S

pSpec12 : pC|S 6 pC|D

pSpec13 : pC|D,0 6 pC|D

For the time being, we set pU|S,0, pU|D,0, pU|S and pU|D,0 to 0.9, 0.7, 0.9 and
0.3, respectively. In words, we assume a 30% chance of committing to future
severe impacts from climate change if we fail to start a green transition at the
first decision step. We assume this chance to increase to 70% at later decision
steps. We also assume a 10% chance of severe climate change impacts if we
start a green transition at the first decision step or later. We will come back
to these numbers in section 7.2.

The transition function. With the transition probabilities in place, we
can now specify the transition function of the decision process. We proceed by
cases, starting from transitions at step zero. The first case is the one in which
the initial state is DHU and the decision was to start a green transition:

next Z DHU Start = mkSimpleProb

[(DHU , pD|Start ∗ pH|D,DH ∗ pU|D,0),

towards measuring responsibility when decisions are to be taken under uncertainty. To this end,
considering more realistic emission processes would be an unnecessary distraction.
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(DHC , pD|Start ∗ pH|D,DH ∗ pC|D,0),

(DLU , pD|Start ∗ pL|D,DH ∗ pU|D,0),

(DLC , pD|Start ∗ pL|D,DH ∗ pC|D,0),

(SHU , pS|Start ∗ pH|S,DH ∗ pU|S,0),

(SHC , pS|Start ∗ pH|S,DH ∗ pC|S,0),

(SLU , pS|Start ∗ pL|S,DH ∗ pU|S,0),

(SLC , pS|Start ∗ pL|S,DH ∗ pC|S,0)]

In the above definition, mkSimpleProb is a function that (for an arbitrary type A)
takes a list of pairs (A, Double+) and returns a value of type M A = SimpleProb A

that is, a finite probability distribution on A. The sum of the probabilities
of the list elements has to be strictly positive, thus the resulting probability
distributions are sound per construction.

The interpretation of next Z DHU Start is straightforward given the tran-
sition probabilities introduced in the previous paragraphs. We only comment
the definition of the probability of SHU , the state in which a green transi-
tion has been started, the economy is in a wealthy state and the world is not
committed to future severe impacts from climate change.

This probability is defined by the product of three transition probabilities:
the probability that a green transition is actually implemented, given that the
decision was to do so pS|Start; the probability that the economy is in a good state
(an H -state) given that a green transition has been started from an H -state
pH|S,DH ; and the probability of entering states that are not committed to severe
impacts from climate change, again given that a transition to a decarbonized
economy has been started pU|S,0.

Notice that pC|D,0 + pU|D,0 and pC|S,0 + pU|S,0 are equal to one by definition
of pC|D,0 and pC|S,0. The same holds for pH|D,DH +pL|D,DH and pH|S,DH +pL|S,DH

(by definition of pH|D,DH , pH|S,DH) and for pD|Start + pS|Start (by definition of
pD|Start). It follows that the sum of the probabilities of next Z DHU Start is one,
as one would expect.

We can derive the probability of SHU (and of all other possible next states)
given the decision to Start a green transition in DHU :

pS|Start ∗ pH|S,DH ∗ pU|S,0

rigorously if we represent our decision process as a Bayesian belief network. To
this end, it is useful to introduce some notation from elementary probability
theory. Different textbooks adopt slightly different notations; here, we follow
[43] and denote the conditional probability of entering SHU given the decision
to Start a green transition in DHU with P (SHU |Start, DHU). Thus, our obligation
is to show

P (SHU |Start, DHU) = pS|Start ∗ pH|S,DH ∗ pU|S,0

Let x1, x2, x3 denote the “components” of the current state x : X t and x′
1
,

x′
2
, x′

3
the components of the next state. Thus, for x = DHU , we have x1 = D,

x2 = H and x3 = U . As usual, we denote a decision in x at step t with y : Y t x .
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x1

x2

x3

x′
2

x′
1

y

x′
3

t

S D

Start pS|Start pD|Start

Delay pD|Delay pD|Delay

() 1 0

L H

S D H pL|S,DH pH|S,DH

S D L pL|S,DL pH|S,DL

S S H pL|S,SH pH|S,SH

S S L pL|S,SL pH|S,SL

D D H pL|D,DH pH|D,DH

D D L pL|D,DL pH|D,DL

D S ∗ α 1− α

U C

U S 0 pU |S,0 pC|S,0

U S 1... pU |S pC|S

U D 0 pU |D,0 pC|D,0

U D 1... pU |D pC|D

C ∗ * 0 1

Fig. 1 Stylized decision process as a Bayesian network.

The variables x1, x2, x3, y, x′
1
, x′

2
, x′

3
and the decision step t are associated

with the nodes of the Bayesian network of figure 1. The edges of the network
encode the notion of conditional dependency: the arrow between x1 and x′

2

posits that the probability of transitions to states with a low (high) economic
wealth depends on whether a green transition is currently underway or has
been delayed7.

The conditional probability tables associated with the nodes encode such
probabilities. Thus, for example, the table associated with x′

1
posits that the

conditional probability of entering S-states given that the decision (variable y)
was to Start a green transition is pS|Start as discussed above. Similarly, the table
associated with x′

2
encodes the specification that the probability of entering

an L-state given that an S-state was entered from a current D- and H -state is
pL|S,DH

8. We can now derive P (SHU |Start, DHU) from the Bayesian network rep-
resentation of our decision process by equational reasoning. The computation
is straightforward but we spell out each single step for clarity:

P (SHU |Start, DHU)

= -- definition of x′
1
... y ... x3

P (x′
1
= S , x′

2
= H , x′

3
= U | y = Start , x1 = D , x2 = H , x3 = U )

= -- definition of conditional probability, set theory

P (x′
2
= H , x′

3
= U , x′

1
= S | y = Start , x1 = D , x2 = H , x3 = U )

= -- chain rule

7Because of the arrows from x2 and x′
1

to x′
2
, such probability also depends on whether the

current state of the economy is low or high and on whether a green transition gets started or not.
8Notice that the conditional probability table associated with x′

2
contains an undefined value

α. This is because the probability of entering L (or H ) states given that a D-state was entered
starting from an S -state is irrelevant: the probability of transitions from S -states to D-states is
zero (remember that we have assumed that green transitions cannot be halted or reversed by later
decisions), as encoded in the third row of the table associated with x′

1
.
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P (x′
2
= H | x′

3
= U , x′

1
= S , y = Start , x1 = D , x2 = H , x3 = U ) ∗

P (x′
3
= U , x′

1
= S | y = Start , x1 = D , x2 = H , x3 = U )

= -- chain rule

P (x′
2
= H | x′

3
= U , x′

1
= S , y = Start , x1 = D , x2 = H , x3 = U ) ∗

P (x′
3
= U | x′

1
= S , y = Start , x1 = D , x2 = H , x3 = U ) ∗

P (x′
1
= S | y = Start , x1 = D , x2 = H , x3 = U )

= -- Bayesian network (conditional independence)

P (x′
2
= H | x′

1
= S , x1 = D , x2 = H ) ∗

P (x′
3
= U | x′

1
= S , x3 = U ) ∗

P (x′
1
= S | y = Start)

= -- Bayesian network (tables)

pH|S,DH ∗ pU|S,0 ∗ pS|Start

Similar derivations can be obtained, in terms of the network of figure 1, for the
other transition probabilities that define next Z DHU Start and, in fact, for all
the transition probabilities that define next. Thus, figure 1 is in fact a compact
representation of the transition function next of our decision process. Notice
that the causal networks at the core of the storyline approach [10] are also
Bayesian belief networks, albeit without a clearcut distinction between state
and control spaces.

The case in which the initial state is DHU and the decision was to delay a
green transition is similar to the first case with pD|Start and pS|Start replaced by
pD|Delay and pS|Delay, respectively:

next Z DHU Delay = mkSimpleProb

[(DHU , pD|Delay ∗ pH|D,DH ∗ pU|D,0),

(DHC , pD|Delay ∗ pH|D,DH ∗ pC|D,0),

(DLU , pD|Delay ∗ pL|D,DH ∗ pU|D,0),

(DLC , pD|Delay ∗ pL|D,DH ∗ pC|D,0),

(SHU , pS|Delay ∗ pH|S,DH ∗ pU|S,0),

(SHC , pS|Delay ∗ pH|S,DH ∗ pC|S,0),

(SLU , pS|Delay ∗ pL|S,DH ∗ pU|S,0),

(SLC , pS|Delay ∗ pL|S,DH ∗ pC|S,0)]

The cases in which the initial states are DHC , DLU , DLC , SHU , SHC , SLU

and SLC are analogous to the DHU case and complete the specification of the
transition function at decision step zero. The transition function at step one
or greater is perfectly analogous with pU|D, pC|D, pU|S and pC|S in place of
pU|D,0, pC|D,0, pU|S,0 and pC|S,0, respectively. Interested readers can find the
full specification of the transition function [44], see file “Specification.lidr” in
folder “2021.Responsibility under uncertainty: which climate decisions matter
most?”

4.3 Realistic and stylized decision processes

Before defining how much decisions under uncertainty matter in the next
section, let us clarify the notion of stylized decision process. As mentioned in
the introduction, this notion was originally introduced in [32] to contrast the
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one of realistic decision process. This is also the sense in which it has been
used in this work.

For example, in discussing the probability of economic downturns, we have
argued that, in the specification of more realistic GHG emissions decision
processes, one might want to distinguish between states in which a transition
towards a globally decarbonized society is ongoing and states in which the
transition has already been accomplished.

In the case of ongoing green transitions, one may want to consider dif-
ferent transition probabilities, perhaps depending on the degree to which the
transition has been accomplished or the time since it was started.

From this angle, more realistic essentially means a larger number of states
(remember that, as discussed in the introduction, the states of a decision
process typically represent sets of micro-states with the latter being detailed
descriptions of physical, economic and social conditions), perhaps also of con-
trol options (for example, fast or slow green transitions) and hence more
complex transition functions.

This reductionist approach towards “realism” is paradigmatic of so-called
modelling approaches. In climate policy advice, it has lead to (integrated
assessment) models of decision processes based on high-dimensional state and
control spaces and a large number of model parameters [4, 11].

While this is popular in climate policy assessment and advice, the usage
of “realistic” integrated assessment models (IAM) has also been criticized,
among others, because of their poor understandability and limited predictive
capability. For example, in [14], it was found that very different estimates of the
“right” social cost of carbon can be “obtained” by setting the values of certain
IAM parameters (for example, discount factors and climate sensitivities) to
specific, arbitrary but “plausible” values and Pindyck even argued that

IAM-based analyses of climate policy create a perception of knowledge and preci-
sion that is illusory and can fool policymakers into thinking that the forecasts the
models generate have some kind of scientific legitimacy [14].

Similar concerns and the problem that a too strong focus on reliability may be
unsuitable for climate decision making at regional scales, have been discussed
in [10].

Another weakness of IAMs for climate policy is their strong bias towards
deterministic modelling. With very few exceptions, these models assume that
decisions (e.g. of starting a global green transition) are implemented with cer-
tainty, that crucial parameterizations of climate processes (like the equilibrium
climate sensitivity) can be estimated accurately and that the costs and the
benefits of future climate changes can be accounted for in suitable “terminal”
(salvage, scrap, see [16] section 2.1.3) rewards.

Is there a way of specifying decision processes that are useful for prag-
matic climate decision making and that avoid the drawbacks of deterministic
modelling approaches based on high-dimensional state spaces?

We believe that this is the case and that, rather than neglecting uncer-
tainty, the way to address this challenge is to 0) specify low-dimensional state



Springer Nature 2021 LATEX template

28 Responsibility under uncertainty: which climate decisions matter most?

and control spaces that are logically consistent with the informal description of
the specific decision process at stake; 1) explicitly account for the uncertainties
that are known to affect best decisions for that process, 2) exploit the knowl-
edge available (from past experience, data, model simulation, etc.) to specify
trustable transition probabilities with interpretations that are consistent with
that process.

This is the essence of the approach that we have demonstrated in this
section: starting from the informal description of section 1.3, we have intro-
duced formal specifications of state and control spaces that are logically
consistent with that description. We have accounted for all the uncertainties of
the informal description in terms of 12 transition probability parameters. For
each parameter, we have provided an interpretation together with a range of
values compatible with that interpretation. Within these ranges, we have then
chosen certain values and defined the transition function in terms of those val-
ues. For example, we have postulated a 10% chance that a decision to start a
green transition fails to be implemented.

In a (more) realistic specification, this figure could perhaps have been
obtained by asking a pool of experts, perhaps political scientists, historians,
etc. Similarly, in more realistic specifications, the probabilities of recovering
from economic downturns might be obtained from climate economists. These,
in turn, might rely on model simulations, expert elicitation or perhaps statis-
tical data. Finally, climate models (general circulation models, intermediate
complexity models, low-dimensional systems of ordinary differential equations
representing global mass and energy budgets) might be applied to represen-
tative micro-states samples of a given (macro) state (for example, our initial
state DHU ) to compute more realistic estimates (for example via Monte Carlo
simulations) of transition probabilities, for instance, to committed states.

From this angle, the approach of “stylized” decision processes is similar to
the storyline approach – the “identification of physically self-consistent, plausi-
ble pathways” – proposed in [10]. The focus, there on physical consistency and
causal networks, is here on logical consistency and decision networks. Common
to both approaches is the need to integrate contributions from very different
disciplines, ranging from theoretical computer science to the social sciences
[10, 45].

In this enterprise, the theory of section 3 and the language extensions to
be discussed in sections 5 and 6 play a twofold role. On the one hand, they
help ensuring that results of model simulations, expert opinions, and statistical
data are applied consistently. On the other hand, they make it possible to
reason about pragmatic decision processes in a formal and rigorous way. We
demonstrate this second aspect in section 5.

5 Responsibility measures

We formulate and answer three questions that we raised, informally, in the
introduction:

❼ What does it mean precisely for decisions to matter?
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❼ Are there general ways to measure how much decisions matter when these
have to be taken under uncertainty?

❼ Is there a natural way of comparing similar decisions at different times?
We extend the theory of section 3 with a responsibility measure for sequential
decision processes under monadic uncertainty. The measure is obtained, for a
given decision process, in three steps.

S1 The decision process is extended to a full-fledged decision problem. This
encodes a goal of decision making. For example, “saving the child” or
“avoiding states that are committed to severe climate change impacts”.

S2 Verified “best” and “conditional worst” decisions are compared at the
specific state at which we want to measure how much decisions matter
for the goal encoded in S1.

S3 We define a degree of responsibility consistent with this measure.
This is how the theory of section 3 is applied to implement the idea outlined
in section 1.2 for measuring how much decisions under uncertainty matter. For
concreteness, we illustrate S1-S3 for the decision problem of section 4. The
extensions of the theory discussed in this section, however, are fully generic
and can be applied to arbitrary decision processes. We tackle step one by first
discussing conditions under which decisions shall not matter.

5.1 S1: When decisions shall not matter

Consider the problem of attributing a non-negative number to the states of
the GHG emissions decision process specified in section 4:

mMeas : (t : N) → X t → Double+

The idea is that mMeas t x represents how much decisions in state x do matter:
the larger, the more decisions in x matter. For the time being, assume that
mMeas t x takes values between zero and one. Under which conditions shall we
require it to be zero? First and foremost we would like mMeas t x to be zero
whenever only one option is available to the decision maker in x :

mMeasSpec1 : (t : N) → (x : X t) → Singleton (Y t x) → mMeas t x = zero

Here, we have formalized the condition that only one option is available to
the decision maker in x with the predicate Singleton (Y t x). We do not need
to be concerned with the exact definition of Singleton: it is a component of
our language and Singleton A posits that there is only one value of type A in a
concise and precise way.

The specification mMeasSpec1 is consistent with avoidance, one of the three
conditions put forwards in [33] under which “a person can be ascribed respon-
sibility for a given outcome”. The other two conditions are agency (the
capability to act intentionally, to plan, and to distinguish between desirable
and undesirable outcomes) and causal relevance.

The notion of causality is not uncontroversial [46] and its role in formaliza-
tions of responsibility has been addressed, among others by [24, 25] and [26].
In the next section we show that, at least for sequential decision processes,
it is possible to define “meaningful” measures of how much decisions matter
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without having to deal with causality. In section 5.4, we discuss the relation
between these measures and responsibility measures.

5.2 S1: Encoding goals of decision making

To measure how much decisions matter, we have to extend a decision process
to a full-fledged decision problem. First and foremost, this requires specifying
which goals shall inform decision making.

This value judgment does not depend on the aims or on the preferences
of the decision maker and, as discussed in section 3, has to be specified by
providing the definitions of Val, reward, meas, ⊕, 6 and zero from sections. In
the following, we define these components for our stylized decision process. In
section 6, we discuss generic goal functions and show how to automate the
definition of Val, reward, etc. for such functions.

As a starting point, we need to define the goal for which we seek respon-
sibility measures. In short, we have to say for what we want to measure how
much decisions matter.

For example, we might be interested in measuring how much decisions
matter for avoiding states that are committed to severe impacts from climate
change. Or perhaps we want to measure how much decisions matter for avoid-
ing climate change impacts but also economic downturns. This can be done
by defining

reward t x y x ′ = if isCommitted (S t) x ′ then 0.0 else 1.0

or

reward t x y x ′ = if isCommitted (S t) x ′ ∨ isDisrupted (S t) x ′ then 0.0 else 1.0

with Val = Double+ and ⊕, 6 and zero set to their canonical values for non-
negative double precision floating point numbers. A special attention has to be
taken in defining the measure function meas. Here, we follow standard decision
theory and take meas to be the expected value measure

meas = expectedValue

but see section 6.3 for alternative formulations.

5.3 S2: Measuring how much decisions matter

With a goal (avoiding climate change impacts but also economic downturns)
encoded via the reward function, we have now extended the decision process
of section 4 to a decision problem. This allows us to tackle the problem of
measuring how much decisions in a state do matter for that goal. For concrete-
ness, let’s consider the initial state DHU of our decision problem. In this state,
the decision maker has two options: start a green transition or further delay
it. Remember that our decision maker is effective only to a certain extent. As
shown in figure 1, a decision to start a green transition may well yield a next
state in which the transition has been delayed. According to section 4, the
probability of this event is pD|Start, that is, 10%.
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What does this uncertainty imply for the decision to be taken in the initial
state DHU? Answering this question rigorously requires fixing a decision hori-
zon. This is the number of decision steps of our decision process that we look
ahead in order to measure how much decisions matter. Remember from section
3 that the value of taking zero decision steps is always zero : Val, a problem-
specific reference value that holds for every decision step and state at that
step. Thus, if we look forward zero steps, no decision matters, independently
of the decision step and state. But, for a strictly positive number of decision
steps, we can formulate and rigorously answer the following two questions
1. Is it better, in DHU to (decide to) start or to delay a green transition?
2. How much does this decision matter (for avoiding climate change impacts

but also economic downturns)?
To do so, we first apply generic backward induction from section 3 and compute
an optimal sequence of policies ps over the horizon.

Remember that bi fulfills biLemma9. This means that no other policy
sequence entails better decisions (again, for the goal of avoiding climate change
impacts but also economic downturns) than ps. Thus, we can compute a best
decision and the (expected) value (of the sum of the rewards associated with
avoiding climate change impacts and economic downturns) over a horizon of
n steps for arbitrary states:

best : (t ,n : N) → X t → String
best t Z x = "The horizon must be greater than zero!"
best t ( S m) x =

let ps = bi (S t) m in
let p = bestExt ps in
let b = p x in
let vb = val (p :: ps) x in
"Horizon, best, value: "++ show (S m) ++ ", "++ show b ++ ", "++ show vb

What is a best decision in DHU for an horizon of only one step?

∗ Responsibility > : exec best 0 1 DHU
Horizon, best , value : 1,Delay, 0.468

This is not very surprising: from the definition of next 0 DHU Start from section
4, the probability of entering states that are either economically disrupted or
committed to severe impacts from climate change is 0.708. Thus, the expected
value of deciding to start a green transition is only

1− 0.708 = 0.292

By contrast, the expected value of deciding to delay a green transition is 0.468,
as seen above. As it turns out, one has to look forward at least over three
decision steps (or, in our interpretation, about three decades) for the decision
to start a green transition to become a best decision in DHU . We can apply
the computation

bests : (t : N) → List N → X t → IO ()
bests t Nil x = putStrLn "done!"

9If 6, ⊕, meas, etc. fulfill the specifications from section 3.2, see [47] for full machine-checked
proofs.
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bests t (n :: ns) x = do putStrLn (best t n x)
bests t ns x

to study how best decisions vary with the horizon. Again, for x = DHU one
obtains:

∗ Responsibility > : exec bests 0 [1 . . 8] DHU
Horizon, best , value : 1,Delay, 0.468
Horizon, best , value : 2,Delay, 0.635454
Horizon, best , value : 3,Start , 0.940669612
Horizon, best , value : 4,Start , 1.250012318344
Horizon, best , value : 5,Start , 1.533635393558128
Horizon, best , value : 6,Start , 1.790773853744118
Horizon, best , value : 7,Start , 2.022874449805313

As anticipated, the decision to start a green transition at the first decision step
becomes a best decision for horizons of three or more decisions. The other way
round: our decision maker would have to be very myopic (or, equivalently very
much discount future benefits) to conclude that delaying a green transition is
a best decision in DHU .

But how much does this decision actually matter? To answer this question,
we need to compare a best decision in DHU for a given time horizon to a
worst decision. Again, for concreteness, let’s for the moment fix the horizon to
7 decision steps.

What is the value (again, in terms of the sum of the rewards associated
with avoiding climate change impacts and economic downturns) of deciding to
delay a green transition in DHU? There are different ways of answering this
question, but a canonical one10 is to consider the consequences of deciding
to delay a green transition at the first decision step in DHU and take later
decisions optimally. In our specific problem, this corresponds to assuming that
future generations will do their best to avoid negative impacts from climate
change and economic downturns.

If we denote our optimal policy sequence for an horizon of 7 steps by ps, we
can compute the consequences of deciding to delay at the first decision step in
DHU and then take later decisions optimally by replacing the first policy of ps
with one that recommends Delay in DHU :

ps : PolicySeq 0 7
ps = bi 0 7

ps′ : PolicySeq 0 7
ps′ = (setInTo (head ps) DHU Delay) :: tail ps

The function setInTo in the definition of ps′ is a higher-order primitive: it takes
a function (in this case the first policy of ps), a value in its domain and one in its
codomain, and returns a function of the same type that fulfills the specification

(setInTo f a b) a = b ∧ Not (a = a ′) → (setInTo f a b) a ′ = f a ′

for all f , a, a ′ and b of appropriate type. With ps′, we can compute the value
of deciding to delay a green transition at the first decision step in DHU :

10We discuss alternative approaches in section 6.3.
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∗ Responsibility > : exec show [val ps DHU , val ps′ DHU ]
"[2.022874449805313, 1.672795254555656]"

The difference between the value of ps and the value of ps′ in DHU then is a
measure of how much decisions in DHU matter for avoiding climate change
impacts and economic downturns over a time horizon of 7 decision steps: the
bigger this difference, the more the decision matters.

5.4 S3: Responsibility measures

We have argued that the difference between the value of ps and the value of
ps′ in DHU , is a measure of how much decisions in DHU matter for avoiding
climate change impacts and economic downturns over a time horizon of 7
decision steps. This argument is justified because:

❼ We have defined optimal policy sequences to be policy sequences
that avoid (as well as it gets) climate change impacts and economic
downturns (S1).

❼ Over 7 decision steps, ps is a verified optimal policy sequence.
❼ The best decision in DHU is to start a green transition11:

∗ Responsibility > : exec show (head ps DHU )
"Start"

❼ ps′ is a sequence of policies identical to ps except for recommending
Delay instead of Start in DHU and for the first decision step:

∗ Responsibility > : exec show (head ps′ DHU )
"Delay"

These facts are sufficient to guarantee that the difference between the value
of ps and the value of ps′ in DHU is actually the difference between the value
(in terms of avoided climate change impacts and economic downturns over 7
decision steps) of the best and of the worst decisions that can be taken in DHU .

The computation and the definitions of ps and ps ′ suggest a refinement
and an implementation of the measure of how much decisions matter mMeas

put forward in the beginning of this section. First, we want mMeas to depend
on a time horizon n. Second, we want mMeas to return plain double precision
floating point numbers:

mMeas : (t : N) → (n : N) → X t → Double
mMeas t Z x = 0.0
mMeas t (S m) x = let ps = bi (S t) m in

let v = toDouble (val (bestExt ps :: ps) x) in
let v ′ = toDouble (val (worstExt ps :: ps) x) in
v − v ′

Remember that, in S1 5.2, we have encoded the goal of avoiding severe climate
change impacts and economic downturns for which we compute mMeas through
a function

reward t x y : X (S t) → Double+

11Remember from section 2.3 that head ps x = (head ps) x and that head is a function that
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that returns 0 for next states that are committed to severe climate change
impacts and economically disrupted and 1 otherwise. In this formulation, the
value 1 is completely arbitrary: it could be replaced by any other positive
number and perhaps discounted. This suggests that measures of how much
decisions matter should be normalized

mMeas : (t : N) → (n : N) → X t → Double
mMeas t Z x = 0.0
mMeas t (S m) x = let ps = bi (S t) m in

let v = toDouble (val (bestExt ps :: ps) x) in
let v ′ = toDouble (val (worstExt ps :: ps) x) in
if v 0 then 0 else (v − v ′) / v

Notice that, in states in which the control set is a singleton, any policy has to
return the same control. In particular, the best extension and the worst exten-
sion of any policy sequence have to return the same control. Therefore, mMeas

fulfills the avoidance condition from [33] discussed in S1 per construction. As a
consequence, in S-states, the measure is identically zero, independently of the
time horizon:

∗ Responsibility > : exec show (mMeas 0 4 SHU )
"0"

∗ Responsibility > : exec show (mMeas 0 6 SLC )
"0"

Notice also that mMeas can be applied to estimate how much decisions matter
at later steps of a decision process. For example, we can assess that, for our
decision process and under a fixed time horizon, decisions in DHU at decision
step 0 matter less than decisions in DHU at later steps:

∗ Responsibility > : exec show (mMeas 0 7 DHU )
"0.1730602684132721"

∗ Responsibility > : exec show (mMeas 1 7 DHU )
"0.5673067719100584"

∗ Responsibility > : exec show (mMeas 3 7 DHU )
"0.5673067719100584"

This is not surprising given that the best decision, in DHU and for a time
horizon of 7 decision steps, is to start a green transition and that, as stipulated
in the introduction and specified in section 4.2 through

pSpec9 : pC|D,0 6 pC|D

the probability of entering states in which the world is committed to future
severe impacts from climate change is higher in states in which a green tran-
sition has not already been started as compared to states in which a green
transition has been started.

returns the first element of a vector. Thus, head ps is a policy and we can apply it to a state to
obtain a control.
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5.5 Wrap-up

Through S1, S2 and S3, we have introduced a measure of how much decisions
under uncertainty matter that fulfills the requirements for responsibility mea-
sures put forward in the introduction. It accounts for all the knowledge which
is encoded in the specification of a decision process, it is independent of the
aims of a (real or hypothetical) decision maker and it is fair in the sense that
all decisions (decision makers) are measured in the same way.

Thus, we introduce mMeas as a first example of responsibility measure. In
the next section, we generalize it by introducing a small DSL for the specifi-
cation of goals of sequential decision processes under uncertainty and discuss
alternative definitions.

6 Generic goal functions and responsibility measures

In the last section we have introduced a measure mMeas of how much decisions
under uncertainty matter. We have constructed mMeas for the decision process
of section 4 in three steps and we have seen that, for this problem, mMeas fulfills
the requirements for responsibility measures put forward in the introduction.

Specifically, in S1-S3, we have introduced an ad-hoc definition of the reward
function reward in terms of the (implicit) goal of avoiding L- (low economic
wealth) and C - (committed) states and we have defined mMeas in terms of the
normalized difference between the value of two policy sequences.

In this section we generalize this construction: we drop the ad-hoc defini-
tion of reward from section 5 and introduce instead a small DSL to express
goals explicitly. The DSL is implemented as an extension of the theory from
section 3 and consists of two artifacts: an abstract syntax and an interpreta-
tion function eval. The reward function is then defined generically in terms of
the interpretation.

6.1 A minimal DSL for specifying goals

Remember the definition of reward from S1 of section 5:

reward t x y x ′ = if isCommitted (S t) x ′ ∨ isDisrupted (S t) x ′ then 0.0 else 1.0

and that reward t x y x ′ represents the reward associated with reaching state x ′

when taking decision y in state x at decision step t, rewards are non-negative
double-precision floating point numbers (Val = Double+) and the rules for
adding and comparing rewards are the canonical operations for this type.

In this formulation, the goal (avoiding states that are committed or that
have a low level of economic wealth) for which we measure how much decisions
matter is stated implicitly through the definition of reward.

Instead, we want to hide the definition of reward. In the theory of section
3, this is the function that has to be specified to express the goal of decision
making. Implementing reward could be challenging for domain experts with
little computer science background. We want to give them a means to avoid the
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implementation and at the same time the opportunity of putting forward the
goal of decision making transparently. This can be done through the definition:

goal = Avoid isCommitted &&Avoid isDisrupted

Here Avoid is a function that maps Boolean predicates to goals. It is the fourth
constructor of the abstract syntax

data Goal : Type where
Exit : Region → Goal
Enter : Region → Goal
StayIn : Region → Goal
Avoid : Region → Goal
(&&) : Goal → Goal → Goal
(‖) : Goal → Goal → Goal
Not : Goal → Goal

to specify goals for decision processes that are informed by notions of sustain-
able development or management [27, 30]: such goals are typically phrased in
terms of a verb (avoid, exit, enter, stay within, etc.) and of a region (predicate,
subset of states) that encode notions of planetary boundaries or operational
safety12. In our formalization, such regions are encoded by

Region : Type
Region = (t : N) → Subset (X t)

where Subset A is an alias for A → Bool. Notice the usage of the conjunction
&& in the specification of goal. Its semantics, like the semantics of the other
constructors of the syntax, is given by the interpretation function

eval : Goal → (t : N) → (x : X t) → Y t x → X (S t) → Bool
eval (Exit r) t x y x ′ = let t ′ = S t in elem t x (r t) ∧ ¬ (elem t ′ x ′ (r t ′))
eval (Enter r) t x y x ′ = let t ′ = S t in ¬ (elem t x (r t)) ∧ elem t ′ x ′ (r t ′)
eval (StayIn r) t x y x ′ = let t ′ = S t in elem t ′ x ′ (r t ′)
eval (Avoid r) t x y x ′ = let t ′ = S t in ¬ (elem t ′ x ′ (r t ′))
eval (g && g ′) t x y x ′ = eval g t x y x ′ ∧ eval g ′ t x y x ′

eval (g ‖ g ′) t x y x ′ = eval g t x y x ′ ∨ eval g ′ t x y x ′

eval (Not g) t x y x ′ = ¬ (eval g t x y x ′)

While the definition of eval is almost straightforward13, domain experts do not
need to be concerned with it. They just apply the constructors of Goal to specify
the goal of decision making like in the definition of goal given above. The goal
for which we measure how much decisions matter is then fully transparent and
the rewards are a straightforward function of eval goal:

reward t x y x ′ = if eval goal t x y x ′ then 1.0 else 0.0

6.2 Degrees of committment, fuzzy predicates

In more realistic (as opposed to stylized, see section 4.3) GHG emissions
decision processes, states are not necessarily either fully committed or fully

12for example, in [30], a partitioning of the state space into a sunny region and its dark com-
plement is the starting point for the construction of a hierarchy of regions: shelters, glades, lakes,
trenches and abysses, see figure 1 at page 7.

13In this definition, elem t takes a state x : X t and a Boolean function on states (a subset
of states) s : Subset (X t) and applies s to x .
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uncommitted to severe impacts from climate change and decision makers are
confronted with many degrees of committment, possibly infinitely many.

A similar situation holds for other predicates on states, like being vulnerable
(or adapted) to climate change or for measures of economic growth or welfare.
This raises the question of how to specify the goals of decision making in
decision processes in which predicates like isCommitted do not return Boolean
values but, for example, values in [0, 1]. In this situation, a partitioning of the
state space into regions is not immediately available and the specification of
goals requires an extension both of the syntax Goal for encoding goals and of
the interpretation function eval associated with this syntax.

Discussing such extensions here would go well beyond the scope of this
paper. However, the problem of developing a DSL for expressing the goals of
decision making (and defining reward functions that are consistent with such
goals) for realistic decision processes is a crucial step towards rationalizing
decision making in climate policy advice and we plan to tackle this problem
in an upcoming work.

6.3 Some caveats

With mMeas defined as in section 5 and with goal : Goal specified as above, one
can recover the results for the decision process of section 4. Before we turn
back to this process in the last section, let us discuss a few aspects of the
responsibility measures discussed so far.

One important trait of these measures is that they are obtained by extend-
ing the decision process for which one wants to measure how much decisions
matter to a fully specified finite horizon sequential decision problem. In com-
parison to approaches like those proposed in [25], [24] and, more recently, [34],
this approach has both advantages and disadvantages.

From the conceptual point of view, the major advantages are simplicity
and straightforwardness: in contrast to models of causality like those put for-
ward in the works mentioned above, finite horizon sequential decision problems
are conceptually simple and well understood. Also, for finite horizon sequen-
tial decision problems, we can compute verified best and worst policies. This
guarantees that the results obtained for a specific problem are a logical con-
sequence of the assumptions made for that problem and not of programming
errors or numerical errors. Because all the assumptions underlying a specific
problem are put forward explicitly via specifications like

goal = Avoid isCommitted &&Avoid isDisrupted ,

the approach also guarantees high standards of transparency. Simplicity and
straightforwardness are also the main drawbacks of our approach: we can only
derive responsibility measures for decision processes that can be naturally
extended to finite horizon sequential decision problems.

This is the case for the stylized GHG emissions decision process discussed
throughout our work and, indeed, for many interesting problems in climate
policy because, as pointed out in [23]:
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Climate policy decisions are necessarily sequential decisions over time under
uncertainty, given the magnitude of uncertainty in both economic and scientific
processes, the decades-to-centuries time scale of the phenomenon, and the ability
to reduce uncertainty and revise decisions along the way.

But it is not immediately obvious how our approach could be applied to mea-
sure how much decisions matter in situations in which collective decisions
emerge from a potentially large number of individual decisions, e.g., medi-
ated through certain widely accepted mechanisms like majoritarian rules like
in voting processes.

Another important aspect of the measures of responsibility proposed in this
work is the comparison between verified best and what we called “conditional
worst” decisions at the specific state at which we want to measure responsibil-
ity. Remember that, in the definition of mMeas, v and v ′ are val (bestExt ps ::ps) x

and val (worstExt ps :: ps) x , respectively. Here, x : X t is a state at decision step
t, ps is a verified optimal sequence of policies for taking n decisions starting
from step t + 1 and n + 1 is the decision horizon.

Due to the definition of bestExt, generic backward induction and biLemma

from section 3.2, bestExt ps ::ps is an optimal policy sequence and bestExt ps is an
optimal policy (a function from states to controls) at decision step t. Similarly
worstExt ps is a policy that guarantees

val (worstExt ps :: ps) x 6 val (p :: ps) x

for all x : X t and p : Policy t. In other words, we compare “best” decision
(given by bestExt ps) and ”worst” decision (given by worstExt ps) in x conditional
to future decisions being best ones.

This is crucial because the difference between best and worst decisions (and
hence our estimates of how much decisions matter) at a given step and in a
give state would in general be different if we assumed that future decision are
not taken optimally.

In the context of our decision problem, for example, we would come up with
a different measure of responsibility for “current” decisions if we assumed that
future generations do not care about avoiding negative impacts from climate
change or economic downturns or, equivalently, that they do care but do not
act accordingly. If there are reasons to believe that this is the case, the verified
optimal policy sequence ps in the definition of mMeas has to be replaced with
one which is consistent with such a belief. For example, if we believe that
the next generation will act more myopically (or more farsighted) than for a
horizon of n decision steps, we have to compute ps accordingly. This can be
done using the verified methods of the [15] theory.

Finally, we want to flag the role of the measure of uncertainty meas from
section 3 in the definition of val and thus of v and v ′. In all computations
shown in this paper we have taken meas to be the expected value measure but
other measures of uncertainty are conceivable and we refer interested readers
to [15, 19] and [38].
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7 The impact of uncertainties on responsibility measures

In sections 5 and 6 we have discussed a new method for assessing how much
decisions under uncertainty matter in specific states and at specific decision
steps of time-discrete decision processes.

We have introduced a small domain-specific language to encode the goal of
decision making in terms of simple verb-predicate clauses and implemented a
generic function mMeas that fulfills the avoidance condition put forwards in [33]
per construction. In this section, we show that, for the stylized decision pro-
cess of section 4, our measure of responsibility also fulfills the third condition
discussed by [33]: mMeas is zero for decisions that are causally irrelevant.

Further, we discuss how uncertainties affect how much decisions matter
for that process. We argue that understanding how uncertainties affect the
importance of decisions in (relatively) simple problems is a pre-condition for
studying more realistic problems like, for example, those tackled in [4, 12].
As a first step, we study the impact of uncertainties about the capability of
decision makers to actually implement decisions on mMeas. As in section 5, we
focus on values of mMeas in DHU , the initial state of the decision process.

7.1 The impact of uncertainty about the effectiveness of decision makers

The results discussed in section 5 have been obtained for decision makers who
are 90% effective: pS|Start = pD|Delay = 0.9. Specifically, we have seen that in DHU

at decision step 0 and for a horizon of 7 decision steps mMeas was about 0.173

∗Application > : exec show (mMeas 0 7 DHU )
"0.1730602684132721"

and that in states with no alternatives, mMeas is zero

∗Application > : exec show (mMeas 0 7 SHU )
"0"

and thus fulfils the avoidance condition mentioned above. What if decisions
become causally irrelevant? Remember that the transition function of the deci-
sion process from section 4 is completely defined through products of the 12
conditional probabilities that define the tables of the nodes of the belief net-
work of figure 1, see section 4.2. Of these conditional probabilities, only pS|Start

and pD|Delay depend on the decision to start or to delay a green transition. This
implies that, in our decision process, decisions become “causally irrelevant”
when

pS|Start = pS|Delay ∧ pD|Start = pD|Delay

Because pD|Start is equal to 1− pS|Start and pS|Delay is equal to 1− pD|Delay, this is
equivalent to

pS|Start = 1− pD|Delay

and we can test whether mMeas fulfills the causality relevance from [33] by
replacing the definitions of pS|Start and pD|Delay in section 4 with definitions that
make decisions causally irrelevant. For example, setting
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pS|Start = 0.9

pD|Delay = 0.1

yields

∗Application > : exec show (mMeas 0 7 DHU )
"0"

as one would expect. The same results obtains for pS|Start = pD|Delay = 0.5 and
for all decision processes in which the sum of pS|Start and pD|Delay is one.

Having ascertained that our measure of responsibility fulfills two of the
three natural conditions put forward in [33]14, we can turn the attention to the
question of how uncertainties on the capability of decision makers to actually
implement decisions affect measures of responsibility.

Let’s start by observing that it is not very realistic to assume that decision
makers are equally effective in implementing the decision to Start and to Delay

green transitions: delaying means following a minimal resistance, “business as
usual” path. By contrast, implementing a global green transition requires a
significant level of coordination and mutual trust between global players, not
to mention huge economic investments and legislative efforts.

It follows that it makes sense to study the impact of uncertainty about the
effectiveness of decision makers by fixing pD|Delay, the probability that a green
transition is delayed given that the decision was to delay it, to a relatively high
value, say 0.9, and vary pS|Start. What happens to our measure of responsibility
when pS|Start decreases? We have seen that, for pS|Start = pD|Delay = 0.9, the
measure of responsibility for a horizon of 7 decision steps was about 0.173 in
DHU and at decision step 0.

We know that mMeas 0 7 DHU has to become zero as pS|Start goes down to
0.1 (pD|Delay is fixed to 0.9) because for these values decisions become causally
irrelevant. Does the measure of responsibility mMeas 0 7 SHU linearly decrease
from 0.173 to 0 as pS|Start decreases from 0.9 to 0.1? Table 2 shows that, in
contrast to the popular intuition that “if decisions can hardly become true,
they do not matter after all”, this is not the case:
Far from being linear, the measure of responsibility is not even monotonous!
For the case in which a decision to start a green transition is implemented
with only 50% of probability, mMeas 0 7 DHU is actually higher than for
the case in which such decision is realized with certainty. Computations of
mMeas 1 7 DHU confirm these observations. In this case the responsibility
decreases monotonically with pS|Start but, again, non-linearly.

Notice also that the best decision for pS|Start = 0 is Delay. This is not
surprising: the decision to delay a green transition implies a 10% probability
that the transition is actually started. This is low but higher than 0, the
probability that a green transition gets started if the decision was Start.

This concludes the study of the impact of pS|Start and pD|Delay on our measure
of responsibility. Before turning the attention to the impact of uncertainties
about commitment to severe impacts from climate change on mMeas 0 7 DHU ,

14The third one, the “capability to act intentionally, to plan, and to distinguish right and wrong
and good and bad”, is a property of decision makers rather than a feature of decision processes.



Springer Nature 2021 LATEX template

Responsibility under uncertainty: which climate decisions matter most? 41

pS|Start best decisions mMeas 0 7 DHU mMeas 1 7 DHU

1.0 Start 0.155 0.581
0.9 Start 0.173 0.567
0.8 Start 0.187 0.551
0.7 Start 0.196 0.530
0.6 Start 0.199 0.504
0.5 Start 0.195 0.469
0.4 Start 0.181 0.420
0.3 Start 0.153 0.348
0.2 Start 0.100 0.230
0.1 Start , Delay 0.000 0.000
0.0 Delay 0.138 0.337

Table 2 pS|Start, best decisions and responsibility measures in DHU at decision steps 0
and 1 and for a horizon of 7 decision steps.

let’s remark that values of mMeas 0 7 and mMeas 1 7 in DLU are qualita-
tively similar to those in DHU albeit higher: for pS|Start = 0.2, for example
mMeas 0 7 DLU = 0.144, 44% higher than in initial states with high economic
wealth. We do not show detailed results for mMeas 0 7 DLU and mMeas 1 7 DLU

but these are available at [44]. We will come back to these observations in
section 8.

7.2 The impact of uncertainty about commitment

In section 4, we have accounted for the possibility of transitions to states
that are committed to severe impacts from climate change in terms of four
conditional probabilities pU|S,0, pU|D,0, pU|S, pU|D and their complements.

Remember that pU|S,0 represents the probability of entering uncommitted
states right after the first decision step given that a green transition was imple-
mented. Similarly, pU|S represents the probability of entering uncommitted
states at later decision steps given that a green transition was implemented in
those steps or earlier. Similarly for pU|D,0 and pU|D.

In all scenarios discussed so far pU|S,0, pU|D,0, pU|S, pU|D were set to 0.9, 0.7,
0.9 and 0.3, respectively. This means assuming a 10% chance of committing
to future severe impacts from climate change if we manage to start a green
transition at the first decision step and a 30% chance if we fail to do so.
We have also assumed that the chance of committing to future impacts from
climate change if we fail to start a green transition increases from 30% at the
first decision step to 70% at later decision steps.

This is perhaps a little bit too optimistic if we consider that, in the
Oct. 2018 “Summary for Policymakers”, the [27] estimates that about 50% of
the “pathways limiting global warming to 2 degrees Celsius with at least 66%
probability” will attain zero net CO2 emissions between about 2060 and 2080
whereas more ambitious paths (limiting global warming to 1.5 degrees Celsius)
reach zero net CO2 emissions earlier. The IPCC report suggests that a more
realistic estimate of pU|S,0 (if we identify our green transition corridor with one

It is relevant for the attribution of blame, praise, sanctions or retributions to specific individuals
but irrelevant for our work.
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that attains zero net CO2 emissions between about 2060 and 2080 and asso-
ciate commitment to severe impacts from climate change with violating the 2
degrees Celsius goal) would perhaps be about 0.66.

What if we assume pU|S,0 = 0.7 and lower pU|D,0 accordingly, say to 50%?
For consistency, we also need to decrease pU|S and pU|D, say to 0.7 and 0.1.
The corresponding measures of responsibility in DHU at decision steps zero
and one and for an horizon of 7 steps are reported in table 3.

pS|Start best decisions mMeas 0 7 DHU mMeas 1 7 DHU

1.0 Start 0.141 0.748
0.9 Start 0.159 0.733
0.8 Start 0.171 0.713
0.7 Start 0.177 0.689
0.6 Start 0.178 0.658
0.5 Start 0.170 0.616
0.4 Start 0.154 0.557
0.3 Start 0.125 0.468
0.2 Start 0.077 0.315
0.1 Start , Delay 0 0
0.0 Delay 0.098 0.485

Table 3 Like table 2 but with pU|S,0, pU|D,0, pU|S and pU|D set to 0.7, 0.5, 0,7 and 0.1
(instead of 0.9, 0.7, 0.9 and 0.3).

By comparing these results with those of table 2, we see that the effect of
increasing the probability of severe impacts from climate change by 20% has
been to systematically decrease how much decisions matter at the first decision
step and to increase how much decisions matter at the second decision step.
We will come back to this observation in the conclusion.

8 Conclusion

In this paper, we have studied the notion of responsibility under uncertainty
in sequential decision processes in the context of global climate policy. Specifi-
cally, we have extended the verified theory of policy advice and avoidability [15]
with a family of methods for measuring how much decisions under uncertainty
do matter and the degree of responsibility associated with such decisions.

We have also introduced a small domain specific language for specifying
sustainability goals in GHG emissions decision processes. We have applied
the DSL to formalize a stylized decision process in which a decision maker
repeatedly faces two options over a finite number of decision steps: start a
“green” transition to a decarbonized society or delay such transition. We have
studied how uncertainties (on the capability of decision makers to actually
implement their decisions and on the consequences of starting or delaying green
transitions) affect how much decisions at specific points in time do matter and
the degree of responsibility associated with these decisions.
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Some of the results presented in sections 5, 6 and 7 are consistent with com-
mon intuitions on how responsibility changes when the capability of decision
makers to actually impose their decisions increases or decreases.

Perhaps more surprisingly, we have also found that the measures of respon-
sibility discussed in section 5 suggest that a “moral” approach towards decision
making – doing the right thing even though the probability of success becomes
increasingly small – is perfectly rational over a wide range of uncertainties.

The fact that these results are based on verified methods for computing
optimal policies is crucial for their interpretation: they are a logical conse-
quence of the assumptions about the decision process specified in section 4 and
of the goals of decision making (avoiding short term economic downturns and
long term negative impacts from climate change) explicitly stated in section 6
and not the result of programming errors.

The fact that “best” decisions are stable with respect to both decision hori-
zons (the number of decision steps to look forward in order to define measures
of responsibility) and to the amount of uncertainty suggest that our results
could be valid for more realistic decision processes than the one studied here.

In the last section, we have also shown that the measures of responsibility
introduced in section 5 fulfill two of the three natural conditions put forward
in [33]. For the third condition, see footnote 14 on page 41.

Also in section 7, we have shown that, in DHU (green transition delayed,
economic welfare high, uncommitted to negative impacts from climate change)
the importance of taking the right decision (starting a green transition) at
decision step 0 systematically decreases (as compared to the importance of
taking the right decision – also starting a green transition – at decision step
1) as the probability of severe impacts from climate change increases.

It is important to point out that this result is only in apparent contradic-
tion with the intuition (that inspires, among others, the “Fridays for future”
movement) that current climate decisions matter more than decisions to be
taken in the upcoming decades. This is because of two reasons.

The first one is that the probability of facing the decision to either start
or to delay a green transition in DHU at decision step 1 is less than one. In
other words: it is true that, if the next generation will happen to be in DHU,
they will face a decision that matters more than the current one. But the
probability that the next generation will be in DHU is relatively low, especially
if the current decision is to further delay a green transition!

The second reason why the results discussed in section 7 are not in con-
tradiction with the notion that current climate decisions matter more than
decisions to be taken in the upcoming decades is more subtle and needs to be
discussed with some care.

In the introduction, we have pointed out a fundamental difficulty of climate
policy advice: the lack of agreement on how to account for the chances and
the risks of climate change.
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In the language introduced in section 6, lack of agreement on how to
account for the chances and the risks of climate change means lack of agree-
ment on how to define goal. Remember that the results discussed in section 7
have been obtained with

goal = Avoid isCommitted &&Avoid isDisrupted

In other words, we have measured how much decisions matter and how to
attribute responsibility to specific decisions with respect to the goal of avoiding
negative impacts from climate change and economic downturns.

This encodes notions of sustainability but not necessarily of fairness (bal-
anced share of responsibility between generations), not to mention justice:
there is nothing in the above definition of goal that prevents optimal decisions
to lead to states in which the set of options available to upcoming generations
has shrunk or to states in which decision makers have to face more crucial
decisions than the current one.

By contrast, the idea that current climate decisions matter more than deci-
sions to be taken in the upcoming decades is based on notions of fairness and
justice that are not encoded in goal and thus are not accounted for in the
analysis presented in section 7. As far as one can define predicates on states
that encode notions of fairness and justice, one can apply the measures of
responsibility from section 6.

The problem to agree on what is to be considered fair and just limits the
applicability of rigorous decision theories to climate policy. But it is a problem
that, to quote Hardin [48], “has no technical solution” and cannot be avoided –
neither by verified decision making [15], nor by generalizations of cost-benefit
analysis [45], multi-objective optimal control [13] or storylines [10].

From this perspective, this paper can also be seen as a contribution from
verified decision theory towards understanding the limits of applicability of
decision theories to policy advice.
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