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Abstract
We propose a new method for estimating how much decisions under monadic uncertainty matter. The method is generic 
and suitable for measuring responsibility in finite horizon sequential decision processes. It fulfills “fairness” requirements 
and three natural conditions for responsibility measures: agency, avoidance and causal relevance. We apply the method to 
study how much decisions matter in a stylized greenhouse gas emissions process in which a decision maker repeatedly faces 
two options: start a “green” transition to a decarbonized society or further delay such a transition. We account for the fact 
that climate decisions are rarely implemented with certainty and that their consequences on the climate and on the global 
economy are uncertain. We discover that a “moral” approach towards decision making — doing the right thing even though 
the probability of success becomes increasingly small — is rational over a wide range of uncertainties.
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1 Introduction

When a person performs or fails to perform a morally 
significant action, we sometimes think that a particular 
kind of response is warranted. Praise and blame are 
perhaps the most obvious forms this reaction might 
take. For example, one who encounters a car accident 
may be regarded as worthy of praise for having saved 
a child from inside the burning car, or alternatively, 
one may be regarded as worthy of blame for not hav-
ing used one’s mobile phone to call for help. To regard 

such agents as worthy of one of these reactions is to 
regard them as responsible for what they have done or 
left undone [1].

The quote from “The Stanford Encyclopedia of Philosophy” 
(SEP) provides a compelling account of what responsibility 
is about. The car accident example is pointed because of 
two reasons.

First, because it rests on an implicit and widely accepted 
understanding of what a person “who encounters a car acci-
dent” with a child “inside the burning car” shall do. Namely, 
their best to rescue the kid.

Second, because what the person is regarded as worthy of 
praise or of blame for having done (or left undone) are best 
and worst actions with respect to the goal of rescuing the 
child: the agent can expect little praise for having used the 
mobile phone to call for help and possibly also little blame 
for not having managed to get the child out of the burning 
car. By contrast, they can expect blame for not having used 
the mobile phone to call for help.

1.1  Responsibility in Climate Decisions

In the context of climate policy, the measure by which praise 
and blame shall be attributed to decisions is not always as 
clear as in the [1] example. This is because of two reasons.
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We know that decisions that are taken (or delayed) now 
and in the next decades, e.g., on greenhouse gas (GHG) 
emissions, are crucial for events that unfold in the centu-
ries and millennia to come, mainly because the physical and 
chemical processes involved in reabsorbing atmospheric CO2 
are very slow [2].

We also know that current climate policies may lead 
future generations to (attempt to) mitigate the negative 
effects of climate change (CC) by adopting geo-engineering 
measures (for example, massive injections of aerosols in the 
atmosphere [3–5] that can have severe collateral effects (for 
instance, on agricultural yield, hydrological events, public 
health [6], ecosystems [7] or precipitation [8, 9]) or other-
wise face enormous human and economic costs.

But, in contrast to decision problems in technical sciences 
and in engineering, in which the goal of decision making is 
typically well understood, there is little agreement on how to 
value (and to discount) the chances and the risks of climate 
change [10].

This is especially true when such risks and the associ-
ated potential costs are related to events that unfold in hun-
dreds or thousands of years and thus very much depend on 
assumptions about the preferences of future generations.

Because of these difficulties, most attempts at estimat-
ing the impact of current and near term climate policies are 
based on comparisons of costs and benefits over a time hori-
zon of one or two hundred years [4, 11–13] and, even so, are 
controversial [10, 14].

In short: in climate policy one cannot rely on a widely 
accepted understanding of what the goals of decision mak-
ing are. Thus, specifying such goals is not as straightforward 
as in the car accident example.

The second reason why attributing praise and blame to 
climate decisions is not as straightforward as in the car acci-
dent example [1] is uncertainty. Can an agent be held respon-
sible for (performing or for failing to perform) actions that 
matter very little? What does it mean precisely for decisions 
to matter?

In the scientific community but also in part of the civil 
society (think of the “Fridays for future” movement), there 
is a strong concern that decisions that are taken (or delayed) 
now will have severe consequences on the options that will 
(not) be available to upcoming generations.

But what do we mean when we say that current deci-
sions matter more than decisions that will be taken by future 
generations? Are there systematic ways to measure how 
much decisions matter when these have to be taken under 
epistemic but also political and social aleatoric [10] uncer-
tainty? Is there a natural way of comparing similar decisions 
at different points in time? To provide accountable confi-
dence that all the efforts that are associated with the actual 
implementation of such decisions (often involving politi-
cally difficult negotiations, changes in legislations, taxation 

and incentivations schemes, not to mention technological 
research and development) are (not) devoted to decisions 
that (do not) really matter?

1.2  What this Paper is About

We propose a method for measuring how much decisions 
under uncertainty matter and apply it to a stylized GHG 
emissions decision process.

The method is an application of the computational the-
ory of policy advice and avoidability originally proposed in 
[15]. This theory supports the specification of time-discrete 
sequential decision problems [16, 17] and the computation 
of verified best decisions under uncertainty. It is an exten-
sion of the formal framework of vulnerability [18] and of the 
notion of monadic dynamical system originally introduced 
in [19] and allows dealing with different kinds of uncertainty 
in a logically consistent manner. The theory is formulated in 
Idris [20, 21], an implementation of type theory [22].

For the sake of providing a self-contained account of our 
method, we summarize the elements of the theory [15] that 
we apply in this work in the next section. Readers familiar 
with [15] can skip Section 2 and jump directly to Section 3. 
The [15] theory is formulated in Idris, a dependently typed 
functional language [20, 21]. Many climate scientists are 
well acquainted with imperative languages but less so with 
functional, dependently typed languages. For these readers, 
we provide a minimal introduction to the notation applied 
in Sections 2 to 6 in the Appendix.

The method for measuring how much decisions under 
uncertainty matter is based on the observation that many 
processes in which decisions have to be taken sequentially 
and under uncertainty can be represented by finite decision 
networks. We introduce finite decision networks formally in 
Section 2. Intuitively, a finite decision network is a network 
in which each decision yields a finite number of possible 
outcomes.

Because the car accident example from [1], the stylized 
decision process outlined in Section 1.3, and many interest-
ing decision processes in climate policy can all be repre-
sented as finite decision networks [23], we can apply the 
theory of Section 2 to study such processes.

In particular we can apply the theory to compute a best 
and a worst decision at each node (decision step) of the net-
work: The idea is then to measure how much decisions mat-
ter by comparing the values (for a specific decision-making 
goal) associated with such best and worst decisions. If the 
values of best and worst decisions turn out to be the same, 
then decisions at that decision step do not matter. By con-
trast, the larger the difference between the value of best and 
worst decisions, the more decisions do matter.

In Section 4, we formulate this simple principle and 
define a measure of how much decisions matter for the 
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stylized decision process of Section 1.3. The process is 
formally specified in Section 3.

In Section 5, we extend the specific measure of Sec-
tion 4 to generic responsibility measures. This is done 
by introducing a small domain-specific language (DSL) 
for expressing decision-making goals (in the car accident 
example, rescuing the child), measures of uncertainty 
and methods for computing differences in the value of 
decisions.

These generic responsibility measures account for all the 
knowledge which is encoded in a sequential decision process 
or network. They are agnostic with respect to both decision 
makers and decision steps: how much a decision matters 
does not depend on the aims or on the preferences of the 
(real or hypothetical) decision maker; all decisions are meas-
ured in the same way. The conditions ensure that responsibil-
ity measurements are fair. Here, “fair” is a technical notion 
and we make no claims about fairness in any wider sense. In 
particular, this technical notion shall not be confused with 
that of generational fairness discussed in Section 7.

Before outlining the GHG emissions process that we will 
use to illustrate our method for measuring how much deci-
sions under uncertainty matter, let us discuss a potential 
criticism.

We have explained that we measure how much decisions 
matter at a given decision step (under uncertainty about 
the consequences of such decisions both at that step and at 
future steps) by applying the theory of Section 2 to compute 
best and worst decisions. What is the added value of meas-
uring how much decisions matter for policy making if we 
already know how to take best decisions? This is a legitimate 
and important question to which we want to provide a first 
answer right now.

Remember that, in order to obtain best (and worst) deci-
sions for a specific decision step one has to specify a goal of 
decision making. For example, rescuing the child in the car 
accident example or, as we will see in the next section, avoid 
long term climate change impacts or short term economic 
downturns.

The value of best and worst decisions and thus how much 
decisions matter will then typically be different for different 
goals. Best decisions under a given goal might be suboptimal 
(or even worst) under another goal. Decisions that matter 
a lot for a given goal might turn out to be irrelevant for 
another one.

In Section 1.1 we have pointed out how difficult and 
controversial it is to specify such goals in climate decision 
processes, see also the discussion on the impossibility of 
“value-free” climate science in [10]. Thus, the added value 
of our measures is that of providing a better understanding 
of how the importance of specific decisions depends on the 
(possibly conflicting) goals of decision-making and also 
on the measure of uncertainty (expected value, worst-case 

value) and on other aspects of sequential decision processes 
discussed in Section 2

Our hope is that understanding that a specific climate 
policy (say, pushing forward a “green” transition right now) 
may be crucial or irrelevant depending on which measures 
of uncertainty and goals are put forward for the decision 
process at stake will lead to a more rational and collaborative 
approach, for example in climate negotiations.

Thus, besides proposing a novel approach to the problem 
of rational choice and attribution of responsibility [24–26], 
our work is a contribution to pragmatic decision making 
under uncertainty with a specific focus on climate decisions.

1.3  A Stylized Decision Process

Consider a GHG emissions process in which now and for a 
few more decades, humanity (taken here as a global decision 
maker) faces two options: 

1. Start a “green” transition by reducing GHG emissions 
according to a “safe” corridor, for example, the one 
depicted at page 15, Figure SPM.3a of the IPCC Sum-
mary for Policymakers [27]

2. Delay such transition.

In other words, assume that, over the time period between 
two subsequent decisions (say, for concreteness, a decade), 
either a transition to a nearly decarbonized global socio- 
economic system is started or nothing happens. Further, 
assume that, once a transition has been started, it cannot 
be halted or reversed by later decisions or events. We con-
sider this oversimplified situation only for the sake of clarity, 
although it might well be that green transitions are in fact 
fast and irreversible [28].

Selecting to start a green transition in a specific physical, 
social and economic condition yields a different “new” con-
dition at the next decision step. Let’s call one such condition 
a micro-state.

The idea is that micro-states are detailed descriptions of 
physical, social and economic observables. For example, a 
micro-state could encode values of GHG concentrations in 
the atmosphere, carbon mass in the ocean upper layer, global 
temperature deviations, frequency of extreme events, values 
of economic growth indicators, measures of inequality, etc. 
Even if we knew the “current” micro-state perfectly, the set 
of possible micro-states at the next decision step (say, one 
decade later) would still be extremely large, reflecting both 
the epistemic uncertainties (imperfect knowledge) about the 
(physical, social and economical) processes that unfold in 
the time between now and the next decision step and the 
aleatoric uncertainty [10] of those processes.

Descriptions of decision processes explicitly based on 
micro-states would be both computationally intractable 
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and, as discussed in detail in Section 3.3, methodologically 
questionable. As in the car accident example quoted at the 
opening of this section, we avoid these shortcomings by con-
sidering only a small number of sets (clusters, partitions) 
of micro-states. These macro-states (in the following, just 
states) consist of micro-states in which:

• A green transition has been started or delayed (S-states, 
D-states).

• The economic wealth is high or low (H-states, L-states).
• The world is committed or uncommitted to severe CC 

impacts (C-states, U-states).

In other words, we only distinguish between 8 possible 
states: DHU, DHC, DLU, DLC, SHU, SHC, SLU and SLC 
where DHU represent micro-states in which a green tran-
sition has been delayed, economic wealth is high and the 
world is uncommitted to future severe CC impacts. Similarly 
for DHC, DLU, etc.

Clearly, this is a very crude simplification. But it is use-
ful to study the impact of uncertainty on relevant climate 
decisions and sufficient to illustrate our approach towards 
measuring how much decisions matter. Also, notice that 
binary partitioning of micro-states is at the core of the origi-
nal notion of planetary boundaries [29], of the topological 
classification proposed in [30] and of the social dilemmas 
discussed in [31].

The decision process starts in DHU . In this state, a deci-
sion to start a green transition can lead to any of the DHU 
... SLC states, albeit with different probabilities: the idea is 
that the probability of reaching states in which the green 
transition has been started ( S-states) is higher than the prob-
ability of reaching D-states, in which the green transition has 
been delayed. Symmetrically, we assume that the decision to 
delay the start of a green transition in DHU is more likely to 
yield D-states than S-states.

In other words, we assume our (global, idealized) deci-
sion maker to be effective, but only to a certain degree. 
This accounts for the fact that, in practice, decisions are not 
always implemented, be this because global coordination 
is necessarily imperfect, because global players tend to be 
in competition and legislations tend to have large inertia or 
perhaps because some other global challenge (a pandemic or 
an economic downturn) has taken center stage. As demon-
strated in [32], limited effectiveness has a significant impact 
on optimal GHG emissions policies. Thus, it would be inap-
propriate to assume that decisions are always implemented 
with certainty.

Another essential trait of our stylized process is that deci-
sions to start a green transition, if implemented, are more 
likely to yield states with a low level of economic wealth ( L
-states) than states with high economic wealth. This assump-
tion reflects the fact that starting a green transition requires 

more investments and costs than just moving to states in 
which most of the work towards a globally decarbonized 
society remains to be done.

Finally, we assume that the probability of entering states 
in which the world is committed to severe CC impacts is 
higher in states in which a green transition has not already 
been started as compared to states in which a green transi-
tion has been started. Also, as one would expect, delaying 
transitions to decarbonized economies increases the likeli-
hood of entering states in which the world is committed to 
severe CC impacts.

We give a complete formal specification of our stylized 
decision process in Section 3. Before turning to Section 2, 
let’s look a bit more closely at the notion of responsibility 
discussed so far.

1.4  Clarifications, Caveats and Related Work

The notion of responsibility illustrated by the car accident 
example depends on a number of factors.

First and foremost, we have an entity capable of taking 
decision: the “one who encounters a car accident”. In the 
stylized decision process outlined in Section 1.3, we have 
referred to this entity as to the decision maker.

Second, we have situations like “encountering a car 
accident” or like “the child being saved”. These are coarse, 
macroscopic descriptions of initial, intermediate or final 
stages of a decision process that unfolds in time. In our styl-
ized decision process, we have used the term state to denote 
such coarse descriptions or, more concretely, sets of possible 
micro-states. We formalize the notion of state in Section 2.

The third important element we have is options. In the 
SEP example, the decision maker (the “one who encounters 
a car accident”) may “be regarded as worthy of praise” or 
“may be regarded as worthy of blame” for having or for not 
having used a mobile phone to call for help: decision mak-
ers have to be capable of performing certain actions (using 
a mobile phone to call for help, save the child) for being 
“regarded as responsible for what they have done or left 
undone”.

In our stylized decision process we have maintained that, 
in the initial state DHU, the decision maker is, up to a certain 
extent, capable of starting a green transition or to delay it. In 
this state, they might be held responsible for having or for 
not having started the transition.

Notice that the options available to the decision maker in 
a given state typically depend on that state and, in general, 
also on the point in time (decision step) at which that state 
has been obtained.

Also notice that, while the for in “for having or for 
not having” is relative to a decision taken, the praise or 
the blame and therefore the extent to which the decision 
maker is regarded as responsible crucially depend on the 
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consequences of that decision with respect to a goal: the 
child being saved, the economic wealth being high, the 
world not being committed to severe CC impacts.

A few remarks are in order here. First, notice that such 
a goal does not need to relate to what the decision maker 
considers to be desirable or worth pursuing in the decision 
process at stake.

Second, for a decision maker to be held responsible for a 
decision in a given state, say x, the goal of decision making 
has to be specified in terms of future states that are obtain-
able from x. If this is not the case, the decisions to be taken 
in x are not causally relevant [33] and any responsibility 
measure should return a verdict of “not responsible”.

Finally, a necessary condition for a decision maker to be 
held responsible for a decision in a given state is that at least 
two choices are available in that state, under the principle 
that one cannot be held responsible if one has no choice.

We conclude this introduction with a few caveats. The 
first one is about the notion of responsibility itself: there is 
a huge literature on the problem of measuring (quantifying, 
attributing, etc.) responsibility.

Common approaches distinguish at least between ex-
ante and ex-post notions of responsibility [34] and, when 
more entities contribute to a decision, for example in voting 
schemes or international agreements, between individual 
and collective responsibility [33].

In the context of law, notions of ex-post responsibility 
are crucial, e.g., to quantify liability for harm. But for the 
kind of GHG emissions decision processes exemplified by 
our stylized process and as a guideline for decision making, 
ex-ante responsibility is the relevant notion.

Another caveat is about the notion of stylized decision 
process itself. We have introduced this notion in [32] and 
we will discuss it in more detail in Section 3.3. The notion is 
closely related with that of storyline put forward in [10] but 
there are also important differences. The storyline approach 
has been proposed to overcome the (essentially unavoidable) 
ineffectiveness of predictions of climate change impacts at 
regional scales. It maintains that, at such scales, questions of 
climate risks (for given scenarios) need to be reframed “from 
the ostensibly objective prediction space into the explicitly 
subjective decision space”. The distinction between epis-
temic and aleatoric uncertainty and the “identification of 
physically self-consistent, plausible pathways” are pivotal 
for such reframing and “the mathematical framework of a 
causal network” is the key for “reconciling storyline and 
probabilistic approaches”.

The notion of stylized decision process accounts for the 
fact that at the global scale “climate decisions are not made 
on the basis of climate change alone”, are rarely imple-
mented with certainty and can easily be sidetracked by other 
global challenges, as discussed in Section 1.3. As a conse-
quence, questions of climate policy need to be studied in 

“the explicitly subjective decision space” at both the global 
and the local scale.

As in the storyline approach put forward in [10], the key 
for applying stylized decision processes is a mathematical 
framework. In our case, this is provided by the theory [15], 
and the causal networks proposed in [10] are a special case 
of decision networks, see also Sections 2 and 3. To the best 
of our knowledge, [15] is still the only theory for computing 
optimal policies for decision making under monadic uncer-
tainty that has been verified. This means that the policies 
obtained with the theory can be machine-checked to be opti-
mal. The possibility of computing verified optimal policies 
was one of the two main motivations (the other one being 
the capability of enforcing transparency of assumptions) 
for formulating the theory in a dependently typed language. 
A consequence of this is that the best and the worst deci-
sions that define the responsibility measures proposed in 
our application are provably best and the worst decisions. 
We believe that providing this level of guarantees is crucial 
in climate decision making: in contrast to policy advice in, 
e.g., engineering and logistics, recommendations to deci-
sion makers in matters of climate policy cannot undergo 
empirical verification. Thus, in climate policy advice, the 
only guarantees that advisors can provide to decision makers 
have to come from formal methods and verified computa-
tions, which is the highest standard of correctness that sci-
ence can provide today.

A final caveat is about what this paper is not about. We 
develop a formal method to understand which decisions 
under uncertainty matter most and apply this method to a 
decision problem of global climate policy. Our aim is nei-
ther to recommend climate actions nor to design specific 
mechanisms, e.g., to improve coordination and collabora-
tion between decision makers. First and foremost, we aim 
at better understanding climate decision making under 
uncertainty.

2  The Theory in a Nutshell

In this section, we overview the elements of the [15] theory1 
that we apply in Sections 3 to 6. For motivations, compari-
sons with alternative formulations and details, please see 
[15, 35]. For a summary of the notation, see the Appendix.

In a nutshell, the theory consists of two sets of com-
ponents: one for the specification of sequential decision 
problems (SDPs) and one for their solution with verified 
backward induction. For informal introductions to SDPs, 
see [15]. Reference mathematical introductions to SDP are 
given in sections 1.2 and 2.1 of [17] and [16], respectively. 

1 Hereafter simply referred to as the theory
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For an application of the theory to GHG emissions prob-
lems, see [32].

The components for the specification of SDPs are global 
declarations. Four of these describe the sequential deci-
sion process that underlies a decision problem. The first 
declaration

specifies the uncertainly monad M. Discussing the notion of 
monad here would go well beyond the scope of this manu-
script, and we refer interested readers to [36] and [37]. The 
idea is that M accounts for the uncertainties that affect the 
decision process. In the stylized GHG emissions process out-
lined in the introduction, M represents stochastic uncertainty. 
For this process, values of type M A are finite probability 
distributions on A, see Section 3.

Remember that, as shown in Section 1.3, sequential 
decision processes are defined in terms of the states, of the 
options available to the decision maker (in a given state and 
at a given decision step) and of the state transitions that take 
place between two subsequent decisions.

In control theory, the options available to the decision 
maker are called controls and the theory supports the speci-
fication of the states, of the controls and the state transition 
function of a decision process in terms of three declarations:

The interpretation is that X t is the type (set) of states at 
decision step t . For example, the states DHU , DHC , ..., SLC 
of our stylized GHG emission process. Similarly, Y t x rep-
resents the controls available at decision step t and in state 
x and next t x y is an M-structure of the states that can be 
obtained by selecting control y in state x at decision step t . In 
the decision process of Section 1.3, Y 0 DHU (the set of con-
trols available to the decision maker at decision step 0 and in 
state DHU ) only contains two alternatives: Start and Delay.

The uncertainty monad M , the states X , the controls Y  
and the transition function next completely specify a deci-
sion process: if we were given a rule for selecting controls 
for a given decision process (that is, a function that gives us 
a control for every possible state) and an initial state (or, in 
case of epistemic uncertainty [10], a probability distribution 
of initial states) we could compute all possible trajectories 
compatible with that initial state (or with that probability 
distribution) together with their probabilities2.

M ∶ Type → Type

X ∶ (t ∶ ℕ) → Type

Y ∶ (t ∶ ℕ) → X t → Type

next ∶ (t ∶ ℕ) → (x ∶ X t) → Y t x → M (X (S t))

Indeed, a sequential decision problem for n steps consists 
of finding a sequence of n policies (in control theory, func-
tions that map states to controls are called policies) that, 
for a given decision process, maximizes the value of taking 
n decision steps according to those policies, one after the 
other.

Here, the value of taking n decision steps according to 
a sequence of n policies is defined through a measure (in 
stochastic problems often the expected-value measure) of 
a sum of rewards obtained along the trajectories. It follows 
that, in order to fully specify a decision problem, one has to 
define the rewards obtained at each decision step, the sum 
that the decision maker seeks to maximize and the measure 
function. In the [15] theory, this is done in terms of 6 prob-
lem specification components. These are summarized in the 
next section.

2.1  Problem Specification Components

Here, Val is the type of rewards, reward t x y x′ is the reward 
obtained by selecting control y in state x when the next state 
is x′ and the infix operator ⊕ is the rule for adding rewards. 
A few remarks are at place here. 

1. In many applications, Val is a numerical type and 
controls are actions that consume certain amounts of 
resources: fuel, water, etc. In these cases, the reward 
function encodes the value (cost) of these resources (and 
perhaps also the benefits achieved by using them) over a 
decision step. Often, the latter also depends on the “cur-
rent” state x and on the next state x′ . For example, in the 
stylized decision problem of Section 1.3, reward t x y x′ 
would possibly be higher than reward t x y x′′ if x′ is an 
H-state (a state with a high level of economic wealth) 
and x′′ is an L-state. The theory nicely copes with all 
these situations.

2. When Val is a numerical type, ⊕ is often the canonical 
addition associated with that type. However, in many 
applications more flexibility is needed, e.g., to account 
for the fact that later rewards are often valued less than 
earlier ones. Again, formulating the theory in terms of a 
generic addition rule nicely covers all these applications.

3. Mapping reward t x y onto next t x y3 yields a value of 
type M Val . These are the possible rewards obtained 

Val ∶ Type

reward ∶ (t ∶ ℕ) → (x ∶ X t) → Y t x → X (S t) → Val

(⊕) ∶ Val → Val → Val

2 This is not a trivial result. It holds because we have required M to 
be a monad.

3 Because M is a monad, functions of type A → B can be mapped 
on values of type M A , obtaining values of type M B for arbitrary 
A,B ∶ Type
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by selecting control y in state x at decision step t  . A 
sequential decision problem for n steps consists of find-
ing a sequence of n policies that maximizes a measure 
of a sum of the rewards along possible trajectories. We 
introduce a value function that computes such a measure 
in Section 2.2: as it turns out, comparing two policy 
sequences for a fixed initial state essentially means com-
paring two M Val values.

  In mathematical theories of optimal control, the 
implicit assumptions are often that Val is equal to ℝ , 
values of type M Val are probability distributions on 
real numbers and such values are compared in terms of 
their expected value measures. Measuring uncertainties 
in terms of expected value measures subsumes a neutral 
attitude towards risks. This is not always adequate and 
the theory supports alternative (e.g., worst-case) meas-
ures via the declaration: 

 In much the same way, the framework allows users to 
compare Val values in terms of a problem-specific total 
preorder 

 This allows, among others, to specify multi-objective  
optimal control [13] problems. Here ⩽ and Total Preorder ∶

(A → A → Type) → Type are predicates like those dis-
cussed in Section A8 and TotalPreorder R encodes the 
notion that R is a total preorder.

2.2  Problem Solution Components

The second set of theory components formalizes classical opti-
mal control theory. Here, we only provide a concise, simplified 
overview. Motivation and details can be found in [38, 15] and 
[32]. For an introduction to the mathematical theory of optimal 
control, we recommend [16] and [17]. As mentioned, policies 
(decision rules) are functions from states to controls:

Policy sequences of length n ∶ ℕ are then just vectors 
(remember Section A7) of n policies:

Perhaps, the most important notion in the mathematical the-
ory of optimal control is that of value function. The value 

meas ∶ M Val → Val

(⩽) ∶ Val → Val → Type

lteTP ∶ TotalPreorder (⩽)

Policy ∶ (t ∶ ℕ) → Type

Policyt = (x ∶ X t) → Y t x

data PolicySeq ∶ (t ∶ ℕ) → (n ∶ ℕ) → Type where

Nil ∶ {t ∶ ℕ} → PolicySeq t Z

(∶∶) ∶ {t, n ∶ ℕ} → Policy t → PolicySeq (S t) n →

PolicySeq t (S n)

function takes two arguments: a policy sequence ps for mak-
ing n decision steps starting from decision step t and an ini-
tial state x ∶ X t . It computes the value of taking n decision 
steps according to the policies ps when starting in x:

Notice that, independently of the initial state x , the value of 
the empty policy sequence is zero . This is a problem-specific 
reference value

that has to be provided as part of the problem’s specification. 
The value of a policy sequence consisting of a first policy p 
and of a tail policy sequence ps is defined inductively as the 
measure of an M-structure of Val values. These values are 
obtained by first computing the control y dictated by p in x , 
the M-structure of possible next states mx′ dictated by next 
and finally by adding reward t x y x′ and val ps x′ for all x′ in 
mx′ . The result of this functorial mapping is then measured 
with the problem-specific measure meas to obtain a result 
of type Val . The function which is mapped on mx′ is just a 
lifted version of ⊕ , as one would expect:

As shown in [35], val ps x does indeed compute the meas
-measure of the ⊕-sum of the reward-rewards along the pos-
sible trajectories starting at x under ps for sound choices of 
meas . The advantage of the above formulation of val [16, 17, 
39] is that it can be exploited to compute policy sequences 
that are provably optimal in the sense of

Notice the universal quantification in the definition of 
OptPolicySeq : a policy sequence ps is said to be optimal iff 
val ps′ x ⩽ val ps x for any ps′ and for any x . The generic, 
verified implementation of backward induction from [15] is 
a simple application of Bellman’s principle of optimality, 
often referred to as Bellman’s equation [39]. It can be suit-
ably formulated in terms of the notion of optimal extension. 
A policy p ∶ Policy t is an optimal extension of a policy 
sequence ps ∶ Policy (S t) n if it is the case that the value 

val ∶ Functor M ⇒ {t, n ∶ ℕ} → PolicySeq t n → X t → Val

val {t} Nil x = zero

val {t} (p ∶∶ ps) x = ��� y = p x ��

��� mx� = next t x y ��

meas (map (reward t x y
⨁

val ps) mx�)

zero ∶ Val

(
⨁

) ∶ {A ∶ Type} → (f , g ∶ A → Val) → A → Val

f
⨁

g = 𝜆a ⇒ f a⊕ g a

OptPolicySeq ∶ Functor M ⇒ {t, n ∶ ℕ} →

PolicySeq t n → Type

OptPolicySeq {t} {n} ps = (ps� ∶ PolicySeq t n) →

(x ∶ X t) →

val ps� x ⩽ val ps x
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of p ∶∶ ps is at least as good as the value of p� ∶∶ ps for any 
policy p′ and for any state x ∶ X t:

With this formalization of the notion of optimal extension, 
Bellman’s principle can then be formulated as

In words: extending an optimal policy sequence with an 
optimal extension (of that policy sequence) yields an opti-
mal policy sequence. Another way of expressing the same 
principle is to say that prefixing with optimal extensions 
preserves optimality. Proving Bellman’s optimality princi-
ple is almost straightforward and crucially relies on ⩽ being 
reflexive and transitive (remember that ⩽ is a total preorder). 
With Bellman and provided that we can compute best exten-
sions of arbitrary policy sequences

it is easy to derive a verified, generic implementation of 
backward induction:

For this implementation, a machine-checked proof that bi t n 
is an optimal policy sequence for any initial time t and num-
ber of decision steps n:

is a straightforward computation, see [15, 35].

2.3  Theory Wrap‑up

The components discussed in the last two sections are all what 
is needed to define the measures of how much decisions mat-
ter that we have discussed in the introduction. We introduce 
these measures in Sections 4 and 5. As discussed in [35], the 
[15] theory is slightly more general (but also more difficult 

BestExt ∶ Functor M ⇒ {t, n ∶ ℕ} →

PolicySeq (S t) n → Policy t → Type

BestExt {t} ps p = (p� ∶ Policy t) →

(x ∶ X t) → val (p� ∶∶ ps) x ⩽ val (p ∶∶ ps) x

Bellman ∶ Functor M ⇒ {t, n ∶ ℕ} →

(ps ∶ PolicySeq (S t) n) → OptPolicySeq ps →

(p ∶ Policy t) → BestExt ps p →

OptPolicySeq (p ∶∶ ps)

bestExt ∶ Functor M ⇒ {t, n ∶ ℕ} → PolicySeq (S t) n → Policy t

bestExtSpec ∶ Functor M ⇒ {t, n ∶ ℕ} →

(ps ∶ PolicySeq (S t) n) → BestExt ps (bestExt ps)

bi ∶ Functor M ⇒ (t ∶ ℕ) → (n ∶ ℕ) → PolicySeq t n

bi t Z = Nil

bi t (S n) = ��� ps = bi (S t) n �� bestExt ps ∶∶ ps

biLemma ∶ Functor M ⇒ (t ∶ ℕ) → (n ∶ ℕ) →

OptPolicySeq (bi t n)

to apply) than the one summarized above. The price that we 
have to pay for the simplifications introduced here are two 
additional requirements. First, controls have to be non-empty:

Second, the transition function is required to return non-
empty M structures.

3  Specification of the Stylized Decision 
Process

We specify the stylized GHG emissions decision process of 
the introduction in the theory summarized in Section 2. As 
a first step, we have to define the uncertainty monad M . Our 
decision process is a stochastic process and thus

Here, SimpleProb is a finite probability monad: for an 
arbitrary type A , a value of type SimpleProb A is a list of 
pairs (A,Double+) together with a proof that the sum of the 
Double+ elements of the pairs is positive. These are double 
precision floating point numbers with the additional restric-
tion (remember Section A.7) of being non-negative.

3.1  States, Controls

Second, we have to specify the states of the decision process. 
Consistently with Section 1.3 and with the notation intro-
duced in Appendix we define:

Third, we have to specify the controls of the decision pro-
cess. In the introduction, we said that in states in which a 
green transition has not already been started (that is, in D
-states), the decision maker has the option of either starting 
or further delaying the transition4

However, if a green transition has already been started, the 
decision maker has no alternatives. We formalize this idea 
by defining the set of controls in S-states to be a singleton. It 
will be useful to have two functions that test if a state is com-
mitted to impacts from climate change and if the economic 
wealth has taken a downturn:

notEmptyY ∶ (t ∶ ℕ) → (x ∶ X t) → Y t x

M = SimpleProb

data State = DHU|DHC|DLU|DLC|SHU|SHC|SLU|SLC

X t = State

���� StartDelay = Start ∣ Delay

4 Notice that we are using the term transition to denote two different 
notions: the green transition of the decision process and the function 
next of the theory discussed in Section  2 in which we now specify 
such a process!
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The idea is that isCommitted ( isDisrupted ) returns True in C
-states ( L-states) and False in U-states ( H-states).

3.2  The Transition Function

Finally, we have to specify the transition function of the 
process. As discussed in the introduction, this is defined 
in terms of transition probabilities.

The probabilities of starting a green transition Let’s first 
specify the probability that a green transition is started, 
conditional to the decision taken by the decision maker. Let

denote the probability that a green transition is started (dur-
ing the time interval between the current and the next deci-
sion step) given that the decision maker has decided to start 
it. For a perfectly effective decision maker, pS∣Start would 
be one. Let’s assume a 10% chance that a decision to start a 
green transition fails to be implemented, perhaps because of 
inertia of legislations, as discussed in Section 1.3:

Consistently, the probability that a green transition is 
delayed even if the decision maker has chosen to start it is

Similarly, we denote with pD∣Delay and pS∣Delay the probabili-
ties that a green transition is delayed (started) given that the 
decision maker has decided to delay it. As a first step, we 
take pS∣Delay to be equal to pD∣Start

but we will come back to this choice in Section 6.

The probabilities of economic downturns In the informal 
description of the decision process from Section 1.3, we said 
that an essential trait of the decision process is that

...decisions to start a green transition, if implemented, 
are more likely to yield states with a low level of eco-
nomic wealth ( L-states) than states with high eco-

isCommitted, isDisrupted ∶ (t ∶ ℕ) → X t → Bool

pS∣Start ∶ Double+

pS∣Start = 0.9

pD∣Start ∶ Double+

pD∣Start = 1.0 − pS∣Start

pD∣Delay ∶ Double+

pD∣Delay = 0.9

pS∣Delay ∶ Double+

pS∣Delay = 1.0 − pD∣Delay

nomic wealth. This assumption reflects the fact that 
starting a green transition requires more investments 
and costs than just moving to states in which most 
of the work towards a globally decarbonized society 
remains to be done.

We need to formulate this idea in terms of transition prob-
abilities. Let pL∣S,DH denote the probability of transitions to 
states with a low level of economic wealth ( L ) given that a 
green transition has been started ( S ) from delayed states ( D ) 
with a high level of economic wealth ( H ). Similar interpre-
tations hold for pL∣S,DL , pL∣S,SH , pL∣S,SL and their counterparts 
for the cases in which a green transition has been delayed, 
pL∣D,DH and pL∣D,DL . Remember that in our decision process

...once a transition has been started, it cannot be halted 
or reversed by later decisions or events.

In terms of transition probabilities, this means that we do not 
need to specify pL∣D,SH and pL∣D,SL because the probability 
of transitions from S-states to D-states is zero. We encode 
the requirement that “decisions to start a green transition, 
if implemented, are more likely to yield states with a low 
level of economic wealth ( L-states) than states with high 
economic wealth” by the specification

Because pH∣S,DH = 1 − pL∣S,DH , this requires pL∣S,DH  to be 
greater or equal to 50%. Let’s say that

We also want to express the idea that starting a green transi-
tion in a weak economy (perhaps a suboptimal decision?) is 
more likely to yield a weak economy than starting a green 
transition in a strong economy

which requires specifying a value of pL∣S,DL between 0.7 and 
1.0, say

This fixes the values of pL∣S,DH and pL∣S,DL for our decision 
process in the ranges imposed by the “semantic” constraints 
pSpec3 and pSpec4 . We discuss how these (and other) tran-
sition probabilities would have to be estimated in a more 
realistic (as opposed to stylized) GHG emissions decision 
process in Section 3.3.

Next, we have to specify the remaining transition prob-
abilities pL∣S,SH , pL∣S,SL , pL∣D,DH and pL∣D,DL . What are mean-
ingful constraints for these? Remember that pL∣S,SH  and 
pL∣S,SL represent the probabilities of transitions to low wealth 

pSpec3 ∶ pH∣S,DH ⩽ pL∣S,DH

pL∣S,DH = 0.7

pSpec4 ∶ pL∣S,DH ⩽ pL∣S,DL

pL∣S,DL = 0.9
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states ( L-states) from H and L-states, respectively, while 
an already started green transition is accomplished. In this 
situation, and again because of the inertia of economic 
systems, it is reasonable to assume that transitions from H
-states (booming economy) to H-states are more likely than 
transitions from H-states to L-states and, of course, the other 
way round. In formulas:

Again, because p
H∣S,SH = 1 − p

L∣S,SH (and p
H∣S,SL = 1 − p

L∣S,SL ), 
this requires pL∣S,SH and pL∣S,SL to be below and above 50%, 
respectively.

In our decision process, a high value of pL∣S,SL implies a 
low probability of recovering from economic downturns in 
states in which a transition towards a globally decarbonized 
society has been started or has been accomplished. In more 
realistic specifications of GHG emission processes, one may 
want to distinguish between these two cases, or even to keep 
track of the time elapsed since a green transition was started 
and define the probability of recovering from economic 
downturns accordingly5.

Conversely, a low value of pL∣S,SH means high resilience 
against economic downturns in states in which a transition 
towards a globally decarbonized society has been started or 
has been accomplished. In such states, we assume a moder-
ate likelihood of fast recovering from economic downturns:

and also a moderate resilience

Let’s turn the attention to the last two transition probabilities 
that need to be specified in order to complete the description 
of the transitions leading to economic downturns or recover-
ies. These are pL∣D,DH and pL∣D,DL.

The semantics of pL∣D,DH and pL∣D,DL should meanwhile be 
clear: pL∣D,DH represents the probability of economic down-
turns and 1 − pL∣D,DL the probability of recovering (from eco-
nomic downturns) in states in which a green transition has 
not already been started. As for their counterparts discussed 
above, we have the semantic requirements

pSpec5 ∶ pL∣S,SH ⩽ pH∣S,SH

pSpec6 ∶ pH∣S,SL ⩽ pL∣S,SL

pL∣S,SL = 0.7

pL∣S,SH = 0.3

pSpec7 ∶ pL∣D,DH ⩽ pH∣D,DH

pSpec8 ∶ pH∣D,DL ⩽ pL∣D,DL

with pH∣D,DH = 1 − pL∣D,DH and pH∣D,DL = 1 − pL∣D,DL and 
thus, by the same argument as for pL∣S,SH and pL∣S,SL , pL∣D,DH 
and pL∣D,DL below and above 50%, respectively.

How should pL∣D,DH and pL∣D,DL compare to pL∣S,SH and 
pL∣S,SL ? Is the likelihood of economic downturns in states in 
which a green transition has not already been started higher 
or lower than the likelihood of economic downturns in states 
in which a transition towards a globally decarbonized soci-
ety has been started or has been accomplished? Realistic 
answers to this question are likely to depend on the decision 
step and on the time elapsed since the green transition has 
been started, see Section 3.3. As a first approximation, here 
we just assume that these probabilities are the same:

This completes the discussion of the probabilities of eco-
nomic downturns and recoveries.

The probabilities of commitment to severe impacts from 
climate change The last ingredient that we need to fully 
specify the transition function of our decision process are 
the probabilities of transitions to states that are committed 
to severe impacts from climate change. In the introduction, 
we have stipulated that

...we assume that the probability of entering states in 
which the world is committed to future severe impacts 
from climate change is higher in states in which a 
green transition has not already been started as com-
pared to states in which a green transition has been 
started.

We account for this assumption with four transition prob-
abilities: pU∣S,0 , pU∣D,0 , pU∣S and pU∣D . The first two represent 
the probabilities of transitions (from uncommitted states) 
to uncommitted states at decision step zero for the cases 
in which a transition to a decarbonized economy has been 
implemented and delayed, respectively. Similarly, pU∣S and 
pU∣D represent the probabilities of transitions from U-states 
to U-states at later decision steps. We take the informal spec-
ification from Section 1.3 of the introduction

...delaying transitions to decarbonized economies 
increases the likelihood of entering states in which 
the world is committed to future severe impacts from 
climate change.

by the letter and, for the sake of simplicity, assume that the 
whole increase in the likelihood of entering committed states 
takes place during the first step of our decision process. 
This is a very crude assumption and we will come back to 
it when we discuss the results of measures of responsibility 

pL∣D,DL = pL∣S,SL

pL∣D,DH = pL∣S,SH

5 As explained in the introduction, the main purpose of this paper is 
to present a novel approach towards measuring responsibility when 
decisions are to be taken under uncertainty. To this end, considering 
more realistic emission processes would be an unnecessary distrac-
tion.



347Responsibility Under Uncertainty: Which Climate Decisions Matter Most?  

1 3

in Section 4.4. With these premises (and keeping in mind 
that pC∣S,0 = 1 − pU∣S,0 , pC∣D,0 = 1 − pU∣D,0 , etc.) our informal 
specification translates into the constraints:

For the time being, we set pU∣S,0 , pU∣D,0 , pU∣S and pU∣D,0 to 
0.9, 0.7, 0.9 and 0.3, respectively. In words, we assume a 
30% chance of committing to future severe impacts from 
climate change if we fail to start a green transition at the 
first decision step. We assume this chance to increase to 
70% at later decision steps. We also assume a 10% chance of 
severe climate change impacts if we start a green transition 
at the first decision step or later. We will come back to these 
numbers in Section 6.2.

The transition function With the transition probabilities in 
place, we can now specify the transition function of the deci-
sion process. We proceed by cases, starting from transitions 
at step zero. The first case is the one in which the initial 
state is DHU and the decision was to start a green transition:

In the above definition, mkSimpleProb is a function that (for 
an arbitrary type A ) takes a list of pairs (A,Double+) and 
returns a value of type M A = SimpleProb A that is, a finite 
probability distribution on A . The sum of the probabilities of 
the list elements has to be strictly positive; thus, the resulting 
probability distributions are sound per construction.

The interpretation of next Z DHU Start is straightforward 
given the transition probabilities introduced in the previous 
paragraphs. We only comment the definition of the prob-
ability of SHU , the state in which a green transition has been 
started, the economy is in a wealthy state and the world is 
not committed to future severe impacts from climate change.

pSpec9 ∶ pC∣S,0 ⩽ pU∣S,0

pSpec10 ∶ pC∣S,0 ⩽ pC∣D,0

pSpec11 ∶ pC∣S ⩽ pU∣S

pSpec12 ∶ pC∣S ⩽ pC∣D

pSpec13 ∶ pC∣D,0 ⩽ pC∣D

next Z DHU Start = mkSimpleProb

[(DHU, pD∣Start ∗ pH∣D,DH ∗ pU∣D,0),

(DHC, pD∣Start ∗ pH∣D,DH ∗ pC∣D,0),

(DLU, pD∣Start ∗ pL∣D,DH ∗ pU∣D,0),

(DLC, pD∣Start ∗ pL∣D,DH ∗ pC∣D,0),

(SHU, pS∣Start ∗ pH∣S,DH ∗ pU∣S,0),

(SHC, pS∣Start ∗ pH∣S,DH ∗ pC∣S,0),

(SLU, pS∣Start ∗ pL∣S,DH ∗ pU∣S,0),

(SLC, pS∣Start ∗ pL∣S,DH ∗ pC∣S,0)]

This probability is defined by the product of three transi-
tion probabilities: the probability that a green transition is 
actually implemented, given that the decision was to do so 
pS∣Start ; the probability that the economy is in a good state 
(an H-state) given that a green transition has been started 
from an H-state pH∣S,DH ; and the probability of entering 
states that are not committed to severe impacts from cli-
mate change, again given that a transition to a decarbonized 
economy has been started pU∣S,0.

Notice that pC∣D,0 + pU∣D,0 and pC∣S,0 + pU∣S,0 are equal 
to one by definition of pC∣D,0 and pC∣S,0 . The same holds 
for pH∣D,DH + pL∣D,DH and pH∣S,DH + pL∣S,DH (by definition 
of pH∣D,DH , pH∣S,DH ) and for pD∣Start + pS∣Start (by definition 
of pD∣Start ). It follows that the sum of the probabilities of 
next Z DHU Start is one, as one would expect.

We can derive the probability of SHU (and of all other 
possible next states) given the decision to Start a green tran-
sition in DHU:

rigorously if we represent our decision process as a Bayesian 
belief network. To this end, it is useful to introduce some 
notation from elementary probability theory. Different text-
books adopt slightly different notations; here, we follow 
[40] and denote the conditional probability of entering SHU 
given the decision to Start a green transition in DHU with 
P(SHU ∣Start,DHU) . Thus, our obligation is to show

Let x1 , x2 , x3 denote the “components” of the current state 
x ∶ X t and x′

1
 , x′

2
 , x′

3
 the components of the next state. 

Thus, for x = DHU , we have x1 = D , x2 = H and x3 = U . 
As usual, we denote a decision in x at step t with y ∶ Y t x.

The variables x1 , x2 , x3 , y , x′
1
 , x′

2
 , x′

3
 and the decision 

step t are associated with the nodes of the Bayesian network 
of Fig. 1. The edges of the network encode the notion of 
conditional dependency: the arrow between x1 and x′

2
 posits 

that the probability of transitions to states with a low (high) 
economic wealth depends on whether a green transition is 
currently underway or has been delayed6.

The conditional probability tables associated with the 
nodes encode such probabilities. Thus, for example, the table 
associated with x′

1
 posits that the conditional probability of 

entering S-states given that the decision (variable y ) was to 
Start a green transition is pS∣Start as discussed above. Simi-
larly, the table associated with x′

2
 encodes the specification 

pS∣Start ∗ pH∣S,DH ∗ pU∣S,0

P(SHU ∣Start,DHU) = pS∣Start ∗ pH∣S,DH ∗ pU∣S,0

6 Because of the arrows from x2 and x′
1
 to x′

2
 , such probability also 

depends on whether the current state of the economy is low or high 
and on whether a green transition gets started or not.
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that the probability of entering an L-state given that an S
-state was entered from a current D - and H-state is pL∣S,DH7. 
We can now derive P(SHU ∣Start,DHU) from the Bayesian 
network representation of our decision process by equational 
reasoning. The computation is straightforward but we spell 
out each single step for clarity:

Similar derivations can be obtained, in terms of the network 
of Fig. 1, for the other transition probabilities that define 
next Z DHU Start and, in fact, for all the transition prob-
abilities that define next . Thus, Fig. 1 is in fact a compact 
representation of the transition function next of our decision 
process. Notice that the causal networks at the core of the 
storyline approach [10] are also Bayesian belief networks, 
albeit without a clearcut distinction between state and con-
trol spaces.

The case in which the initial state is DHU and the deci-
sion was to delay a green transition is similar to the first 
case with pD∣Start and pS∣Start replaced by pD∣Delay and pS∣Delay , 
respectively:

P(SHU ∣Start,DHU)

= – definition of x�
1
...y...x3

P (x�
1
= S, x�

2
= H, x�

3
= U ∣ y = Start, x1 = D, x2 = H, x3 = U)

= – definition of conditional probability, set theory

P (x�
2
= H, x�

3
= U, x�

1
= S ∣ y = Start, x1 = D, x2 = H, x3 = U)

= – chain rule

P (x�
2
= H ∣ x�

3
= U, x�

1
= S, y = Start, x1 = D, x2 = H, x3 = U) ∗

P (x�
3
= U, x�

1
= S ∣ y = Start, x1 = D, x2 = H, x3 = U)

= – chain rule

P (x�
2
= H ∣ x�

3
= U, x�

1
= S, y = Start, x1 = D, x2 = H, x3 = U) ∗

P (x�
3
= U ∣ x�

1
= S, y = Start, x1 = D, x2 = H, x3 = U) ∗

P (x�
1
= S ∣ y = Start, x1 = D, x2 = H, x3 = U)

= – Bayesian network (conditional independence)

P (x�
2
= H ∣ x�

1
= S, x1 = D, x2 = H) ∗

P (x�
3
= U ∣ x�

1
= S, x3 = U) ∗

P (x�
1
= S ∣ y = Start)

= – Bayesian network (tables)

pH∣S,DH ∗ pU∣S,0 ∗ pS∣Start

The cases in which the initial states are DHC , DLU , DLC , 
SHU , SHC , SLU and SLC are analogous to the DHU case 
and complete the specification of the transition function at 
decision step zero. The transition function at step one or 
greater is perfectly analogous with pU∣D , pC∣D , pU∣S and pC∣S 
in place of pU∣D,0 , pC∣D,0 , pU∣S,0 and pC∣S,0 , respectively. Inter-
ested readers can find the full specification of the transition 
function [41], see file “Specification.lidr” in folder “2021.
Responsibility under uncertainty: which climate decisions 
matter most?”

3.3  Realistic and Stylized Decision Processes

Before defining how much decisions under uncertainty mat-
ter in the next section, let us clarify the notion of stylized 
decision process. As mentioned in the introduction, this 
notion was originally introduced in [32] to contrast the one 
of realistic decision process. This is also the sense in which 
it has been used in this work.

For example, in discussing the probability of economic 
downturns, we have argued that, in the specification of more 
realistic GHG emissions decision processes, one might want 
to distinguish between states in which a transition towards a 
globally decarbonized society is ongoing and states in which 
the transition has already been accomplished.

In the case of ongoing green transitions, one may want to 
consider different transition probabilities, perhaps depending 
on the degree to which the transition has been accomplished 
or the time since it was started.

From this angle, more realistic essentially means a larger 
number of states (remember that, as discussed in the intro-
duction, the states of a decision process typically represent 
sets of micro-states with the latter being detailed descrip-
tions of physical, economic and social conditions), perhaps 
also of control options (for example, fast or slow green tran-
sitions) and hence more complex transition functions.

next Z DHU Delay = mkSimpleProb

[(DHU, pD∣Delay ∗ pH∣D,DH ∗ pU∣D,0),

(DHC, pD∣Delay ∗ pH∣D,DH ∗ pC∣D,0),

(DLU, pD∣Delay ∗ pL∣D,DH ∗ pU∣D,0),

(DLC, pD∣Delay ∗ pL∣D,DH ∗ pC∣D,0),

(SHU, pS∣Delay ∗ pH∣S,DH ∗ pU∣S,0),

(SHC, pS∣Delay ∗ pH∣S,DH ∗ pC∣S,0),

(SLU, pS∣Delay ∗ pL∣S,DH ∗ pU∣S,0),

(SLC, pS∣Delay ∗ pL∣S,DH ∗ pC∣S,0)]

7 Notice that the conditional probability table associated with x′
2
 con-

tains an undefined value � . This is because the probability of enter-
ing L (or H ) states given that a D-state was entered starting from an 
S-state is irrelevant: the probability of transitions from S-states to D
-states is zero (remember that we have assumed that green transitions 
cannot be halted or reversed by later decisions), as encoded in the 
third row of the table associated with x′

1
.
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This reductionist approach towards “realism” is paradig-
matic of so-called modelling approaches. In climate policy 
advice, it has lead to (integrated assessment) models of deci-
sion processes based on high-dimensional state and control 
spaces and a large number of model parameters [4, 11].

While this is popular in climate policy assessment and 
advice, the usage of “realistic” integrated assessment mod-
els (IAM) has also been criticized, among others, because 
of their poor understandability and limited predictive capa-
bility. For example, in [14], it was found that very differ-
ent estimates of the “right” social cost of carbon can be 
“obtained” by setting the values of certain IAM parameters 
(for example, discount factors and climate sensitivities) to 
specific, arbitrary but “plausible” values and Pindyck even 
argued that

IAM-based analyses of climate policy create a percep-
tion of knowledge and precision that is illusory and can 
fool policymakers into thinking that the forecasts the 
models generate have some kind of scientific legiti-
macy [14].

Similar concerns and the problem that a too strong focus on 
reliability may be unsuitable for climate decision making at 
regional scales, have been discussed in [10].

Another weakness of IAMs for climate policy is their 
strong bias towards deterministic modelling. With very 
few exceptions, these models assume that decisions (e.g., 
of starting a global green transition) are implemented with 
certainty, that crucial parameterizations of climate processes 
(like the equilibrium climate sensitivity) can be estimated 
accurately and that the costs and the benefits of future 

climate changes can be accounted for in suitable “terminal” 
(salvage, scrap, see [16] section 2.1.3) rewards.

Is there a way of specifying decision processes that are 
useful for pragmatic climate decision making and that avoid 
the drawbacks of deterministic modelling approaches based 
on high-dimensional state spaces?

We believe that this is the case and that, rather than 
neglecting uncertainty, the way to address this challenge is 
to 0) specify low-dimensional state and control spaces that 
are logically consistent with the informal description of the 
specific decision process at stake; 1) explicitly account for 
the uncertainties that are known to affect best decisions for 
that process, 2) exploit the knowledge available (from past 
experience, data, model simulation, etc.) to specify trustable 
transition probabilities with interpretations that are consist-
ent with that process.

This is the essence of the approach that we have 
demonstrated in this section: starting from the informal 
description of Section 1.3, we have introduced formal 
specifications of state and control spaces that are logically 
consistent with that description. We have accounted for all 
the uncertainties of the informal description in terms of 
12 transition probability parameters. For each parameter, 
we have provided an interpretation together with a range 
of values compatible with that interpretation. Within these 
ranges, we have then chosen certain values and defined the 
transition function in terms of those values. For example, 
we have postulated a 10% chance that a decision to start a 
green transition fails to be implemented.

In a (more) realistic specification, this figure could 
perhaps have been obtained by asking a pool of experts, 

Fig. 1  Stylized decision process 
as a Bayesian network
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perhaps political scientists, historians, etc. Similarly, in 
more realistic specifications, the probabilities of recov-
ering from economic downturns might be obtained from 
climate economists. These, in turn, might rely on model 
simulations, expert elicitation or perhaps statistical data. 
Finally, climate models (general circulation models, inter-
mediate complexity models, low-dimensional systems of 
ordinary differential equations representing global mass 
and energy budgets) might be applied to representative 
micro-states samples of a given (macro) state (for example, 
our initial state DHU ) to compute more realistic estimates 
(for example via Monte Carlo simulations) of transition 
probabilities, for instance, to committed states.

From this angle, the approach of “stylized” decision pro-
cesses is similar to the storyline approach — the “identifica-
tion of physically self-consistent, plausible pathways” —  
proposed in [10]. The focus, there on physical consistency 
and causal networks, is here on logical consistency and 
decision networks. Common to both approaches is the need 
to integrate contributions from very different disciplines, 
ranging from theoretical computer science to the social sci-
ences [10, 42].

In this enterprise, the theory of Section 2 and the lan-
guage extensions to be discussed in Sections 4 and 5 play a 
twofold role. On the one hand, they help ensure that results 
of model simulations, expert opinions, and statistical data 
are applied consistently. On the other hand, they make it 
possible to reason about pragmatic decision processes in 
a formal and rigorous way. We demonstrate this second 
aspect in Section 4.

4  Responsibility Measures

We formulate and answer three questions that we raised, 
informally, in the introduction:

• What does it mean precisely for decisions to matter?
• Are there general ways to measure how much decisions 

matter when these have to be taken under uncertainty?
• Is there a natural way of comparing similar decisions 

at different times?

We extend the theory of Section 2 with a responsibility meas-
ure for sequential decision processes under monadic uncer-
tainty. The measure is obtained, for a given decision process, 
in three steps. 

S1  First, we need to define the goal for which we seek 
to measure responsibility, e.g., “saving the child” or 
“avoiding states that are committed to severe climate 

change impacts”. We do this by extending our decision 
process to a full-fledged decision problem (compare 
Section 2).

S2  Verified “best” and “conditional worst” decisions 
are compared at the specific state at which we want 
to measure how much decisions matter for the goal 
encoded in S1.

S3  We define a degree of responsibility consistent with 
this measure.

 This is how the theory of Section 2 is applied to implement 
the idea outlined in Section 1.2 for measuring how much deci-
sions under uncertainty matter. For concreteness, we illustrate 
S1–S3 for the decision problem of Section 3. The extensions of 
the theory discussed in this section, however, are fully generic 
and can be applied to arbitrary decision processes. First, how-
ever, let’s discuss a general condition any measure of how 
much decisions matter (for whatever goal) should satisfy.

4.1  When Decisions Shall Not Matter

A responsibility measure has to attribute a non-negative num-
ber to the states of a decision process (e.g., the GHG emissions 
decision process specified in Section 3):

The idea is that mMeas t x represents how much decisions in 
state x (at step t ) do matter: the larger, the more the decisions 
in x matter. For the time being, assume that mMeas t x takes 
values between zero and one. Under which conditions shall 
we require it to be zero? Certainly, we would like mMeas t x 
to be zero whenever only one option is available to the deci-
sion maker in x:

Here, we have formalized the condition that only one option 
is available to the decision maker in x with the predicate 
Singleton (Y t x) . We do not need to be concerned with the 
exact definition of Singleton : it is a component of our lan-
guage and Singleton A posits that there is only one value of 
type A in a concise and precise way.

The specification mMeasSpec1 is consistent with avoid-
ance, one of the three conditions put forwards in [33] 
under which “a person can be ascribed responsibility for 
a given outcome”. The other two conditions are agency 
(the capability to act intentionally, to plan, and to distin-
guish between desirable and undesirable outcomes) and 
causal relevance.

mMeas ∶ (t ∶ ℕ) → X t → Double+

mMeasSpec1 ∶ (t ∶ ℕ) → (x ∶ X t) → Singleton (Y t x) →

mMeas t x = zero
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The notion of causality is not uncontroversial [43] and its 
role in formalizations of responsibility has been addressed, 
among others by [24, 25] and [26]. In the next section we 
show that, at least for sequential decision processes, it is 
possible to define “meaningful” measures of how much 
decisions matter without having to deal with causality. In 
Section 4.4, we discuss the relation between these measures 
and responsibility measures.

4.2  S1: Encoding Goals of Decision Making

To measure how much decisions matter with respect to a 
specific goal, we extend our decision process to a decision 
problem by encoding this goal into definitions for the com-
ponents Val , reward , meas , ⊕ , ⩽ and zero discussed in Sec-
tion 2. The theory then allows the computation of best (and, 
as will be described below, conditionally worst) decisions 
for attaining that given goal. From these we will then define 
the measure of responsibility.

Note, however, that the decision problem thus specified 
is just a means to enable the definition of our measure of 
responsibility, and does not depend on the aims and prefer-
ences of an actual decision maker.

For example, in our stylized GHG emissions decision 
process, we might be interested in measuring how much 
decisions matter for avoiding states that are committed to 
severe impacts from climate change. Or perhaps we want 
to measure how much decisions matter for avoiding climate 
change impacts but also economic downturns. This can be 
done by defining

or

with Val = Double+ and ⊕ , ⩽ and zero set to their canoni-
cal values for non-negative double precision floating point 
numbers. A special attention has to be taken in defining the 
measure function meas . Here, we follow standard decision 
theory and take meas to be the expected value measure

but see Section 5.3 for alternative formulations.
In Section 5, we discuss generic goal functions and show 

how to automate the definition of Val , reward , etc. for such 
functions.

reward t x y x� = �� isCommitted (S t) x� ���� 0 ���� 1

reward t x y x� = �� isCommitted (S t) x� ∨ isDisrupted (S t) x�

���� 0

���� 1

meas = expectedValue

4.3  S2: Measuring How Much Decisions Matter

With a goal (avoiding climate change impacts but also eco-
nomic downturns) encoded via the reward function, we have 
now extended the decision process of Section 3 to a decision 
problem. This allows us to tackle the problem of measur-
ing how much decisions in a state do matter for that goal. 
For concreteness, let’s consider the initial state DHU of our 
decision problem. In this state, the decision maker has two 
options: start a green transition or further delay it. Remem-
ber that our decision maker is effective only to a certain 
extent. As shown in Fig. 1, a decision to start a green transi-
tion may well yield a next state in which the transition has 
been delayed. According to Section 3, the probability of this 
event is pD∣Start , that is, 10%.

What does this uncertainty imply for the decision to be 
taken in the initial state DHU ? Answering this question 
rigorously requires fixing a decision horizon. This is the 
number of decision steps of our decision process that we 
look ahead in order to measure how much decisions mat-
ter. Remember from Section 2 that the value of taking zero 
decision steps is always zero ∶ Val , a problem-specific 
reference value that holds for every decision step and state 
at that step. Thus, if we look forward zero steps, no deci-
sion matters, independently of the decision step and state. 
But, for a strictly positive number of decision steps, we 
can formulate and rigorously answer the following two 
questions 

1. Is it better, in DHU to (decide to) start or to delay a 
green transition?

2. How much does this decision matter (for avoiding cli-
mate change impacts but also economic downturns)?

To do so, we first apply generic backward induction from 
Section 2 and compute an optimal sequence of policies ps 
over the horizon.

Remember that bi fulfills biLemma8. This means that no 
other policy sequence entails better decisions (again, for the 
goal of avoiding climate change impacts but also economic 
downturns) than ps . Thus, we can compute a best decision 
and the (expected) value (of the sum of the rewards associ-
ated with avoiding climate change impacts and economic 
downturns) over a horizon of n steps for arbitrary states:

8 If ⩽ , ⊕ , meas , etc. fulfill the specifications from Section  2.2, see 
[44] for full machine-checked proofs.
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What is a best decision in DHU for a horizon of only one 
step?

This is not very surprising: from the definition of 
next 0 DHU Start from Section 3, the probability of entering 
states that are either economically disrupted or committed 
to severe impacts from climate change is 0.708. Thus, the 
expected value of deciding to start a green transition is only

By contrast, the expected value of deciding to delay a green 
transition is 0.468, as seen above. As it turns out, one has 
to look forward at least over three decision steps (or, in our 
interpretation, about three decades) for the decision to start 
a green transition to become a best decision in DHU . We 
can apply the computation

to study how best decisions vary with the horizon. Again, 
for x = DHU one obtains:

As anticipated, the decision to start a green transition at the 
first decision step becomes a best decision for horizons of 
three or more decisions. The other way round: our decision 
maker would have to be very myopic (or, equivalently very 

best ∶ (t, n ∶ ℕ) → X t → String

best t Z x = "��� ������� ���� �� ������� ���� ����!"

best t (S m) x =

��� ps = bi (S t) m ��

��� p = bestExt ps ��

��� b = p x ��

��� vb = val (p ∶∶ ps) x �� "�������, ����, ����� ∶ " ++ show (S m) ++", " ++ show b ++", " show vb

∗ Responsibility > ∶ exec best 0 1 DHU

Horizon, best, value ∶ 1,Delay, 0.468

1 − 0.708 = 0.292

bests ∶ (t ∶ ℕ) → List ℕ → X t → IO ()

bests t Nil x = putStrLn "����!"

bests t (n ∶∶ ns) x = �� putStrLn (best t n x)

bests t ns x

∗ Responsibility> ∶ exec bests 0 [1..8] DHU

Horizon, best, value ∶ 1,Delay, 0.468

Horizon, best, value ∶ 2,Delay, 0.635454

Horizon, best, value ∶ 3, Start, 0.940669612

Horizon, best, value ∶ 4, Start, 1.250012318344

Horizon, best, value ∶ 5, Start, 1.533635393558128

Horizon, best, value ∶ 6, Start, 1.790773853744118

Horizon, best, value ∶ 7, Start, 2.022874449805313

much discount future benefits) to conclude that delaying a 
green transition is a best decision in DHU.

But how much does this decision actually matter? To 
answer this question, we need to compare a best decision in 
DHU for a given time horizon to a conditional worst deci-
sion. What does “conditional worst” mean in this context? 
Again, for concreteness, let’s for the moment fix the horizon 
to 7 decision steps.

What is the value (again, in terms of the sum of the 
rewards associated with avoiding climate change impacts 
and economic downturns) of deciding to delay a green 
transition in DHU ? There are different ways of answering 
this question, but a canonical one9 is to consider the conse-
quences of deciding to delay a green transition at the first 
decision step in DHU and take later decisions optimally. 
The approach is canonical because it corresponds to a well-
established notion: that of stability with respect to local, not 
necessarily small, perturbations. In game theory, the notion 
is often called “trembling hands” (see [45], section 2.8) and 
was originally put forward by R. Selten in 1975 [46]. In our 
specific problem, it corresponds to considering the impact 
of a mistake (trembling hands) at the decision point at stake 
( DHU ) under the assumption that future generations will act 
rationally to avoid negative impacts from climate change and 
economic downturns.

If we denote our optimal policy sequence for a horizon of 
7 steps by ps , we can compute the consequences of deciding 
to delay at the first decision step in DHU and then take later 
decisions optimally by replacing the first policy of ps with 
one that recommends Delay in DHU:

ps ∶ PolicySeq 0 7

ps = bi 0 7

ps� ∶ PolicySeq 0 7

ps� = (setInTo (head ps) DHU Delay) ∶∶ tail ps

9 We discuss alternative approaches in Section 5.3.
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The function setInTo in the definition of ps′ is a higher-order 
primitive: it takes a function (in this case the first policy of 
ps ), a value in its domain and one in its codomain, and returns 
a function of the same type that fulfills the specification

for all f  , a , a′ and b of appropriate type. With ps′ , we can 
compute the value of deciding to delay a green transition at 
the first decision step in DHU:

The difference between the value of ps and the value of ps′ 
in DHU then is a measure of how much decisions in DHU 
matter for avoiding climate change impacts and economic 
downturns over a time horizon of 7 decision steps: the bigger 
this difference, the more the decision matters.

4.4  S3: Responsibility Measures

We have argued that the difference between the value of ps 
and the value of ps′ in DHU , is a measure of how much deci-
sions in DHU matter for avoiding climate change impacts 
and economic downturns over a time horizon of 7 decision 
steps. This argument is justified because:

• We have defined optimal policy sequences to be policy 
sequences that avoid (as well as it gets) climate change 
impacts and economic downturns (S1).

• Over 7 decision steps, ps is a verified optimal policy 
sequence.

• The best decision in DHU is to start a green transition10: 

• ps′ is a sequence of policies identical to ps except for 
recommending Delay instead of Start in DHU and for 
the first decision step: 

These facts are sufficient to guarantee that the difference 
between the value of ps and the value of ps′ in DHU is actu-
ally the difference between the value (in terms of avoided 
climate change impacts and economic downturns over 7 
decision steps) of the best and of the worst decisions that 
can be taken in DHU.

(setInTo f a b) a = b ∧ Not (a = a
�) → (setInTo f a b) a� = f a

�

∗ Responsibility > ∶ exec show [val ps DHU, val ps� DHU]

"[�.���������������, �.���������������]"

∗ Responsibility > ∶ exec show (head ps DHU)

"�����"

∗ Responsibility > ∶ exec show (head ps� DHU)

"�����"

The computation and the definitions of ps and ps′ suggest 
a refinement and an implementation of the measure of how 
much decisions matter mMeas put forward in the beginning 
of this section. First, we want mMeas to depend on a time 
horizon n . Second, we want mMeas to return plain double 
precision floating point numbers

Remember that, in Section  4.2, we have encoded the 
goal of avoiding severe climate change impacts and eco-
nomic downturns for which we compute mMeas through 
a function

that returns 0 for next states that are committed to severe 
climate change impacts and economically disrupted and 
1 otherwise. In this formulation, the value 1 is completely 
arbitrary: it could be replaced by any other positive number 
and perhaps discounted. This suggests that measures of how 
much decisions matter should be normalized

Notice that, in states in which the control set is a singleton, 
any policy has to return the same control. In particular, 
the best extension and the worst extension of any policy 
sequence have to return the same control. Therefore, 
mMeas fulfills the avoidance condition from [33] discussed 
in S1 per construction. As a consequence, in S-states, the 
measure is identically zero, independently of the time 
horizon:

Notice also that mMeas can be applied to estimate how 
much decisions matter at later steps of a decision process. 
For example, we can assess that, for our decision pro-
cess and under a fixed time horizon, decisions in DHU 
at decision step 0 matter less than decisions in DHU at 
later steps:

mMeas ∶ (t ∶ ℕ) → (n ∶ ℕ) → X t → Double

mMeas t Z x = 0.0

mMeas t (S m) x = ��� ps = bi (S t) m ��

��� v = toDouble (val (bestExt ps ∶∶ ps) x) ��

��� v� = toDouble (val (worstExt ps ∶∶ ps) x) ��

v − v�

reward t x y ∶ X (S t) → Double+

mMeas ∶ (t ∶ ℕ) → (n ∶ ℕ) → X t → Double

mMeas t Z x = 0.0

mMeas t (S m) x = ��� ps = bi (S t) m ��

��� v = toDouble (val (bestExt ps ∶∶ ps) x) ��

��� v� = toDouble (val (worstExt ps ∶∶ ps) x) ��

�� v == 0 ���� 0 ���� (v − v�) ∕ v

∗ Responsibility > ∶ exec show (mMeas 0 4 SHU)

"�"

∗ Responsibility > ∶ exec show (mMeas 0 6 SLC)

"�"

10 Remember from Section  A.3 that head ps x = (head ps) x and 
that head is a function that returns the first element of a vector. Thus, 
head ps is a policy and we can apply it to a state to obtain a control.
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This is not surprising given that the best decision, in DHU 
and for a time horizon of 7 decision steps, is to start a green 
transition and that, as stipulated in the introduction and 
specified in Section 3.2 through

the probability of entering states in which the world is 
committed to future severe impacts from climate change is 
higher in states in which a green transition has not already 
been started as compared to states in which a green transi-
tion has been started.

4.5  Wrap‑up

Through S1, S2 and S3, we have introduced a measure of 
how much decisions under uncertainty matter that fulfills 
the requirements for responsibility measures put forward in 
the introduction. It accounts for all the knowledge which 
is encoded in the specification of a decision process, it is 
independent of the aims of a (real or hypothetical) decision 
maker and it is fair in the sense that all decisions (decision 
makers) are measured in the same way.

Thus, we introduce mMeas as a first example of respon-
sibility measure. In the next section, we generalize it by 
introducing a small DSL for the specification of goals of 
sequential decision processes under uncertainty and discuss 
alternative definitions.

5  Generic Goal Functions and Responsibility 
Measures

In the last section we have introduced a measure mMeas of 
how much decisions under uncertainty matter. We have con-
structed mMeas for the decision process of Section 3 in three 
steps and we have seen that, for this problem, mMeas fulfills 
the requirements for responsibility measures put forward in 
the introduction.

Specifically, in S1-S3, we have introduced an ad hoc 
definition of the reward function reward in terms of the 
(implicit) goal of avoiding L - (low economic wealth) and C - 
(committed) states and we have defined mMeas in terms of 

∗ Responsibility > ∶ exec show (mMeas 0 7 DHU)

"�.����������������"

∗ Responsibility > ∶ exec show (mMeas 1 7 DHU)

"�.����������������"

∗ Responsibility > ∶ exec show (mMeas 3 7 DHU)

"�.����������������"

pSpec9 ∶ pC∣D,0 ⩽ pC∣D

the normalized difference between the value of two policy 
sequences.

In this section we generalize this construction: we drop 
the ad hoc definition of reward from Section 4 and introduce 
instead a small DSL to express goals explicitly. The DSL is 
implemented as an extension of the theory from Section 2 
and consists of two artifacts: an abstract syntax and an inter-
pretation function eval . The reward function is then defined 
generically in terms of the interpretation.

5.1  A Minimal DSL for Specifying Goals

Remember the definition of reward from S1 of Section 4:

and that reward t x y x′ represents the reward associated with 
reaching state x′ when taking decision y in state x at decision 
step t  , rewards are non-negative double-precision floating 
point numbers ( Val = Double+ ) and the rules for adding and 
comparing rewards are the canonical operations for this type.

In this formulation, the goal (avoiding states that are 
committed or that have a low level of economic wealth) 
for which we measure how much decisions matter is stated 
implicitly through the definition of reward.

Instead, we want to hide the definition of reward . In the 
theory of Section 2, this is the function that has to be speci-
fied to express the goal of decision making. Implementing 
reward could be challenging for domain experts with lit-
tle computer science background. We want to give them a 
means to avoid the implementation and at the same time the 
opportunity of putting forward the goal of decision making 
transparently. This can be done through the definition:

Here Avoid is a function that maps Boolean predicates to 
goals. It is the fourth constructor of the abstract syntax

to specify goals for decision processes that are informed by 
notions of sustainable development or management [27, 30]: 
such goals are typically phrased in terms of a verb (avoid, 

reward t x y x� = �� isCommitted (S t) x� ∨

isDisrupted (S t) x�

���� 0.0

���� 1.0

goal = Avoid isCommitted && Avoid isDisrupted

���� Goal ∶ Type �����

Exit ∶ Region → Goal

Enter ∶ Region → Goal

StayIn ∶ Region → Goal

Avoid ∶ Region → Goal

(&&) ∶ Goal → Goal → Goal

(∥) ∶ Goal → Goal → Goal

Not ∶ Goal → Goal
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exit, enter, stay within, etc.) and of a region (predicate, sub-
set of states) that encode notions of planetary boundaries or 
operational safety11. In our formalization, such regions are 
encoded by

where Subset A is an alias for A → Bool . Notice the usage 
of the conjunction && in the specification of goal . Its 
semantics, like the semantics of the other constructors of 
the syntax, is given by the interpretation function

While the definition of eval is almost straightforward12, 
domain experts do not need to be concerned with it. They 
just apply the constructors of Goal to specify the goal of 
decision making like in the definition of goal given above. 
The goal for which we measure how much decisions matter 
is then fully transparent and the rewards are a straightfor-
ward function of eval goal:

5.2  Degrees of Commitment, Fuzzy Predicates

In more realistic (as opposed to stylized, see Section 3.3) 
GHG emissions decision processes, states are not necessarily 
either fully committed or fully uncommitted to severe impacts 
from climate change and decision makers are confronted with 
many degrees of commitment, possibly infinitely many.

A similar situation holds for other predicates on states, 
like being vulnerable (or adapted) to climate change or for 
measures of economic growth or welfare. This raises the ques-
tion of how to specify the goals of decision making in deci-
sion processes in which predicates like isCommitted do not 
return Boolean values but, for example, values in [0, 1]. In this 

Region ∶ Type

Region = (t ∶ ℕ) → Subset (X t)

eval ∶ Goal → (t ∶ ℕ) → (x ∶ X t) → Y t x → X (S t) → Bool

eval (Exit r) t x y x� = ��� t� = S t �� elem t x (r t) ∧ ¬ (elem t� x� (r t�))

eval (Enter r) t x y x� = ��� t� = S t �� ¬ (elem t x (r t)) ∧ elem t� x� (r t�)

eval (StayIn r) t x y x� = ��� t� = S t �� elem t� x� (r t�)

eval (Avoid r) t x y x� = ��� t� = S t �� ¬ (elem t� x� (r t�))

eval (g&& g�) t x y x� = eval g t x y x� ∧ eval g� t x y x�

eval (g ∥ g�) t x y x� = eval g t x y x� ∨ eval g� t x y x�

eval (Not g) t x y x� = ¬ (eval g t x y x�)

reward t x y x� = �� eval goal t x y x� ���� 1.0 ���� 0.0

situation, a partitioning of the state space into regions is not 
immediately available and the specification of goals requires 
an extension both of the syntax Goal for encoding goals and 
of the interpretation function eval associated with this syntax.

Discussing such extensions here would go well beyond 
the scope of this paper. However, the problem of devel-
oping a DSL for expressing the goals of decision making 
(and defining reward functions that are consistent with 
such goals) for realistic decision processes is a crucial 
step towards rationalizing decision making in climate 
policy advice and we plan to tackle this problem in an 
upcoming work.

5.3  Some Caveats

With mMeas defined as in Section 4 and with goal ∶ Goal 
specified as above, one can recover the results for the deci-
sion process of Section 3. Before we turn back to this pro-
cess in the last section, let us discuss a few aspects of the 
responsibility measures discussed so far.

One important trait of these measures is that they are 
obtained by extending the decision process for which one 
wants to measure how much decisions matter to a fully 
specified finite horizon sequential decision problem. In 
comparison to approaches like those proposed in [24, 25] 
and, more recently, [34], this approach has both advantages 
and disadvantages.

From the conceptual point of view, the major advantages 
are simplicity and straightforwardness: in contrast to models 
of causality like those put forward in the works mentioned 
above, finite horizon sequential decision problems are con-
ceptually simple and well understood. Also, for finite hori-
zon sequential decision problems, we can compute verified 
best and worst policies. This guarantees that the results 
obtained for a specific problem are a logical consequence of 
the assumptions made for that problem and not of program-
ming errors or numerical errors. Because all the assumptions 
underlying a specific problem are put forward explicitly via 
specifications like

the approach also guarantees high standards of transparency. 
Simplicity and straightforwardness are also the main draw-
backs of our approach: we can only derive responsibility 

goal = Avoid isCommitted && Avoid isDisrupted,
11 For example, in [30], a partitioning of the state space into a sunny 
region and its dark complement is the starting point for the construc-
tion of a hierarchy of regions: shelters, glades, lakes, trenches and 
abysses, see Fig. 1 at page 7.
12 In this definition, elem t takes a state x ∶ X t and a Boolean func-
tion on states (a subset of states) s ∶ Subset (X t) and applies s to x.
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measures for decision processes that can be naturally 
extended to finite horizon sequential decision problems.

This is the case for the stylized GHG emissions deci-
sion process discussed throughout our work and, indeed, 
for many interesting problems in climate policy because, as 
pointed out in [23]:

Climate policy decisions are necessarily sequential 
decisions over time under uncertainty, given the mag-
nitude of uncertainty in both economic and scientific 
processes, the decades-to-centuries time scale of the 
phenomenon, and the ability to reduce uncertainty and 
revise decisions along the way.

But it is not immediately obvious how our approach could 
be applied to measure how much decisions matter in situa-
tions in which collective decisions emerge from a potentially 
large number of individual decisions, e.g., mediated through 
certain widely accepted mechanisms like majoritarian rules 
like in voting processes.

Another important aspect of the measures of responsibil-
ity proposed in this work is the comparison between verified 
best and what we called “conditional worst” decisions at 
the specific state at which we want to measure responsibil-
ity. Remember that, in the definition of mMeas , v and v′ 
are val (bestExt ps ∶∶ ps) x and val (worstExt ps ∶∶ ps) x , 
respectively. Here, x ∶ X t is a state at decision step t , ps is 
a verified optimal sequence of policies for taking n decisions 
starting from step t + 1 and n + 1 is the decision horizon.

Due to the definition of bestExt , generic backward induc-
tion and biLemma from Section 2.2, bestExt ps ∶∶ ps is an 
optimal policy sequence and bestExt ps is an optimal policy 
(a function from states to controls) at decision step t . Simi-
larly worstExt ps is a policy that guarantees

for all x ∶ X t and p ∶ Policy t . In other words, we compare 
“best” decision (given by bestExt ps ) and “worst” decision 
(given by worstExt ps ) in x conditional to future decisions 
being best ones.

This is crucial because the difference between best and 
worst decisions (and hence our estimates of how much deci-
sions matter) at a given step and in a given state would in 
general be different if we assumed that future decisions are 
not taken optimally.

In the context of our decision problem, for example, we 
would come up with a different measure of responsibility 
for “current” decisions if we assumed that future genera-
tions do not care about avoiding negative impacts from cli-
mate change or economic downturns or, equivalently, that 
they do care but do not act accordingly. If there are reasons 
to believe that this is the case, the verified optimal policy 

val (worstExt ps ∶∶ ps) x ⩽ val (p ∶∶ ps) x

sequence ps in the definition of mMeas has to be replaced 
with one which is consistent with such a belief. For example, 
if we believe that the next generation will act more myopi-
cally (or more farsighted) than for a horizon of n decision 
steps, we have to compute ps accordingly. This can be done 
using the verified methods of the [15] theory.

Finally, we want to flag the role of the measure of uncer-
tainty meas from Section 2 in the definition of val and thus 
of v and v′ . In all computations shown in this paper we have 
taken meas to be the expected value measure but other meas-
ures of uncertainty are conceivable and we refer interested 
readers to [15, 19] and [35].

6  The Impact of Uncertainties 
on Responsibility Measures

In Sections 4 and 5 we have discussed a new method for 
assessing how much decisions under uncertainty matter in 
specific states and at specific decision steps of time-discrete 
decision processes.

We have introduced a small domain-specific language 
to encode the goal of decision making in terms of simple 
verb-predicate clauses and implemented a generic function 
mMeas that fulfills the avoidance condition put forwards 
in [33] per construction. In this section, we show that, for 
the stylized decision process of Section 3, our measure of 
responsibility also fulfills the third condition discussed by 
[33]: mMeas is zero for decisions that are causally irrelevant.

Further, we discuss how uncertainties affect how much 
decisions matter for that process. We argue that understanding 
how uncertainties affect the importance of decisions in (rela-
tively) simple problems is a pre-condition for studying more 
realistic problems like, for example, those tackled in [4, 12]. 
As a first step, we study the impact of uncertainties about the 
capability of decision makers to actually implement decisions 
on mMeas . As in Section 4, we focus on values of mMeas in 
DHU , the initial state of the decision process.

6.1  The Impact of Uncertainty About 
the Effectiveness of Decision Makers

The results discussed in Section 4 have been obtained for deci-
sion makers who are 90% effective: pS∣Start = pD∣Delay = 0.9 . 
Specifically, we have seen that in DHU at decision step 0 and 
for a horizon of 7 decision steps mMeas was about 0.173

and that in states with no alternatives, mMeas is zero

∗ Application > ∶ exec show (mMeas 0 7 DHU)

"�.����������������"
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and thus fulfills the avoidance condition mentioned above. 
What if decisions become causally irrelevant? Remember 
that the transition function of the decision process from 
Section 3 is completely defined through products of the 12 
conditional probabilities that define the tables of the nodes 
of the belief network of Fig. 1, see Section 3.2. Of these con-
ditional probabilities, only pS∣Start and pD∣Delay depend on the 
decision to start or to delay a green transition. This implies 
that, in our decision process, decisions become “causally 
irrelevant” when

Because pD∣Start is equal to 1 − pS∣Start and pS∣Delay is equal to 
1 − pD∣Delay , this is equivalent to

and we can test whether mMeas fulfills the causality rel-
evance from [33] by replacing the definitions of pS∣Start and 
pD∣Delay in Section 3 with definitions that make decisions 
causally irrelevant. For example, setting

yields

∗ Application > ∶ exec show (mMeas 0 7 SHU)

"�"

pS∣Start = pS∣Delay ∧ pD∣Start = pD∣Delay

pS∣Start = 1 − pD∣Delay

pS∣Start = 0.9

pD∣Delay = 0.1

∗ Application > ∶ exec show (mMeas 0 7 DHU)

"�"

as one would expect. The same results obtain for pS∣Start =
pD∣Delay = 0.5 and for all decision processes in which the sum 
of pS∣Start and pD∣Delay is one.

Having ascertained that our measure of responsibil-
ity fulfills two of the three natural conditions put forward 
in [33]13, we can turn the attention to the question of how 
uncertainties on the capability of decision makers to actu-
ally implement decisions affect measures of responsibility.

Let’s start by observing that it is not very realistic to 
assume that decision makers are equally effective in imple-
menting the decision to Start and to Delay green transitions: 
delaying means following a minimal resistance, “business as 
usual” path. By contrast, implementing a global green transi-
tion requires a significant level of coordination and mutual 
trust between global players, not to mention huge economic 
investments and legislative efforts.

It follows that it makes sense to study the impact of uncer-
tainty about the effectiveness of decision makers by fixing 
pD∣Delay , the probability that a green transition is delayed 
given that the decision was to delay it, to a relatively high 
value, say 0.9, and vary pS∣Start . What happens to our meas-
ure of responsibility when pS∣Start decreases? We have seen 
that, for pS∣Start = pD∣Delay = 0.9 , the measure of responsibil-
ity for a horizon of 7 decision steps was about 0.173 in DHU 
and at decision step 0.

We know that mMeas 0 7 DHU has to become zero as 
pS∣Start goes down to 0.1 ( pD∣Delay is fixed to 0.9) because for 
these values decisions become causally irrelevant. Does the 
measure of responsibility mMeas 0 7 SHU linearly decrease 
from 0.173 to 0 as pS∣Start decreases from 0.9 to 0.1? Table 1 
shows that, in contrast to the popular intuition that “if deci-
sions can hardly become true, they do not matter after all”, 
this is not the case:

Far from being linear, the measure of responsibility is not 
even monotonous! For the case in which a decision to start a 
green transition is implemented with only 50% of probabil-
ity, mMeas 0 7 DHU is actually higher than for the case in 
which such decision is realized with certainty. Computations 
of mMeas 1 7 DHU confirm these observations. In this case 
the responsibility decreases monotonically with pS∣Start but, 
again, non-linearly.

Notice also that the best decision for pS∣Start = 0 is Delay . 
This is not surprising: the decision to delay a green transi-
tion implies a 10% probability that the transition is actually 
started. This is low but higher than 0, the probability that a 
green transition gets started if the decision was Start.

This concludes the study of the impact of pS∣Start and 
pD∣Delay on our measure of responsibility. Before turning the 
attention to the impact of uncertainties about commitment 
to severe impacts from climate change on mMeas 0 7 DHU , 
let’s remark that values of mMeas 0 7 and mMeas 1 7 in 
DLU are qualitatively similar to those in DHU albeit higher: 
for pS∣Start = 0.2 , for example mMeas 0 7 DLU = 0.144 , 44% 

Table 1  pS∣Start , best decisions and responsibility measures in DHU at 
decision steps 0 and 1 and for a horizon of 7 decision steps

pS∣Start best decisions mMeas 0 7 DHU mMeas 1 7 DHU

1.0 Start 0.155 0.581
0.9 Start 0.173 0.567
0.8 Start 0.187 0.551
0.7 Start 0.196 0.530
0.6 Start 0.199 0.504
0.5 Start 0.195 0.469
0.4 Start 0.181 0.420
0.3 Start 0.153 0.348
0.2 Start 0.100 0.230
0.1 Start , Delay 0.000 0.000
0.0 Delay 0.138 0.337

13 The third one, the “capability to act intentionally, to plan, and to 
distinguish right and wrong and good and bad”, is a property of deci-
sion makers rather than a feature of decision processes. It is relevant 
for the attribution of blame, praise, sanctions or retributions to spe-
cific individuals but irrelevant for our work.
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higher than in initial states with high economic wealth. 
We do not show detailed results for mMeas 0 7 DLU and 
mMeas 1 7 DLU but these are available at [41]. We will 
come back to these observations in Section 7.

6.2  The Impact of Uncertainty About Commitment

In Section 3, we have accounted for the possibility of transi-
tions to states that are committed to severe impacts from cli-
mate change in terms of four conditional probabilities pU∣S,0 , 
pU∣D,0 , pU∣S , pU∣D and their complements.

Remember that pU∣S,0 represents the probability of enter-
ing uncommitted states right after the first decision step 
given that a green transition was implemented. Similarly, 
pU∣S represents the probability of entering uncommitted 
states at later decision steps given that a green transition was 
implemented in those steps or earlier. Similarly for pU∣D,0 
and pU∣D.

In all scenarios discussed so far pU∣S,0 , pU∣D,0 , pU∣S , pU∣D 
were set to 0.9, 0.7, 0.9 and 0.3, respectively. This means 
assuming a 10% chance of committing to future severe 
impacts from climate change if we manage to start a green 
transition at the first decision step and a 30% chance if we 
fail to do so. We have also assumed that the chance of com-
mitting to future impacts from climate change if we fail to 
start a green transition increases from 30% at the first deci-
sion step to 70% at later decision steps.

This is perhaps a little bit too optimistic if we consider 
that, in the Oct. 2018 “Summary for Policymakers”, the [27] 
estimates that about 50% of the “pathways limiting global 
warming to 2 degrees Celsius with at least 66% probability” 
will attain zero net CO2 emissions between about 2060 and 
2080 whereas more ambitious paths (limiting global warm-
ing to 1.5 degrees Celsius) reach zero net CO2 emissions ear-
lier. The IPCC report suggests that a more realistic estimate 
of pU∣S,0 (if we identify our green transition corridor with 

one that attains zero net CO2 emissions between about 2060 
and 2080 and associate commitment to severe impacts from 
climate change with violating the 2 degrees Celsius goal) 
would perhaps be about 0.66.

What if we assume pU∣S,0 = 0.7 and lower pU∣D,0 accord-
ingly, say to 50%? For consistency, we also need to decrease 
pU∣S and pU∣D , say to 0.7 and 0.1. The corresponding meas-
ures of responsibility in DHU at decision steps zero and one 
and for an horizon of 7 steps are reported in Table 2.

By comparing these results with those of Table 1, we 
see that the effect of increasing the probability of severe 
impacts from climate change by 20% has been to systemati-
cally decrease how much decisions matter at the first deci-
sion step and to increase how much decisions matter at the 
second decision step. We will come back to this observation 
in the conclusion.

7  Conclusion

In this paper, we have studied the notion of responsibil-
ity under uncertainty in sequential decision processes in 
the context of global climate policy. Specifically, we have 
extended the verified theory of policy advice and avoid-
ability [15] with a family of methods for measuring how 
much decisions under uncertainty do matter and the degree 
of responsibility associated with such decisions.

We have also introduced a small domain-specific lan-
guage for specifying sustainability goals in GHG emissions 
decision processes. We have applied the DSL to formalize a 
stylized decision process in which a decision maker repeat-
edly faces two options over a finite number of decision steps: 
start a “green” transition to a decarbonized society or delay 
such transition. We have studied how uncertainties (on the 
capability of decision makers to actually implement their 
decisions and on the consequences of starting or delaying 
green transitions) affect how much decisions at specific 
points in time do matter and the degree of responsibility 
associated with these decisions.

Some of the results presented in Sections 4, 5 and 6 are 
consistent with common intuitions on how responsibility 
changes when the capability of decision makers to actually 
impose their decisions increases or decreases.

Perhaps more surprisingly, we have also found that the 
measures of responsibility discussed in Section 4 suggest 
that a “moral” approach towards decision making — doing 
the right thing even though the probability of success 
becomes increasingly small — is perfectly rational over a 
wide range of uncertainties.

The fact that these results are based on verified methods 
for computing optimal policies is crucial for their interpre-
tation: they are a logical consequence of the assumptions 
about the decision process specified in Section 3 and of the 

Table 2  Like Table 1 but with pU∣S,0 , pU∣D,0 , pU∣S and pU∣D set to 0.7, 
0.5, 0,7 and 0.1 (instead of 0.9, 0.7, 0.9 and 0.3)

pS∣Start best decisions mMeas 0 7 DHU mMeas 1 7 DHU

1.0 Start 0.141 0.748
0.9 Start 0.159 0.733
0.8 Start 0.171 0.713
0.7 Start 0.177 0.689
0.6 Start 0.178 0.658
0.5 Start 0.170 0.616
0.4 Start 0.154 0.557
0.3 Start 0.125 0.468
0.2 Start 0.077 0.315
0.1 Start , Delay 0 0
0.0 Delay 0.098 0.485
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goals of decision making (avoiding short term economic 
downturns and long term negative impacts from climate 
change) explicitly stated in Section 5 and not the result of 
programming errors.

The fact that “best” decisions are stable with respect to both 
decision horizons (the number of decision steps to look for-
ward in order to define measures of responsibility) and to the 
amount of uncertainty suggest that our results could be valid 
for more realistic decision processes than the one studied here.

In the last section, we have also shown that the measures 
of responsibility introduced in Section 4 fulfill two of the 
three natural conditions put forward in [33]. For the third 
condition, see footnote 14 on page 41.

Also in Section 6, we have shown that, in DHU (green 
transition delayed, economic welfare high, uncommitted to 
negative impacts from climate change) the importance of 
taking the right decision (starting a green transition) at deci-
sion step 0 systematically decreases (as compared to the 
importance of taking the right decision — also starting a 
green transition — at decision step 1) as the probability of 
severe impacts from climate change increases.

It is important to point out that this result is only in appar-
ent contradiction with the intuition (that inspires, among 
others, the “Fridays for future” movement) that current cli-
mate decisions matter more than decisions to be taken in the 
upcoming decades. This is because of two reasons.

The first one is that the probability of facing the deci-
sion to either start or to delay a green transition in DHU 
at decision step 1 is less than one. In other words: it is 
true that, if the next generation will happen to be in DHU, 
they will face a decision that matters more than the current 
one. But the probability that the next generation will be in 
DHU is relatively low, especially if the current decision is 
to further delay a green transition!

The second reason why the results discussed in Sec-
tion 6 are not in contradiction with the notion that current 
climate decisions matter more than decisions to be taken 
in the upcoming decades is more subtle and needs to be 
discussed with some care.

In the introduction, we have pointed out a fundamental 
difficulty of climate policy advice: the lack of agreement 
on how to account for the chances and the risks of climate 
change.

In the language introduced in Section 5, lack of agree-
ment on how to account for the chances and the risks of 
climate change means lack of agreement on how to define 
goal . Remember that the results discussed in Section 6 
have been obtained with

In other words, we have measured how much decisions mat-
ter and how to attribute responsibility to specific decisions 

goal = Avoid isCommitted && Avoid isDisrupted

with respect to the goal of avoiding negative impacts from 
climate change and economic downturns.

This encodes notions of sustainability but not necessar-
ily of fairness (balanced share of responsibility between 
generations), not to mention justice: there is nothing in 
the above definition of goal that prevents optimal deci-
sions to lead to states in which the set of options available 
to upcoming generations has shrunk or to states in which 
decision makers have to face more crucial decisions than 
the current one.

By contrast, the idea that current climate decisions 
matter more than decisions to be taken in the upcoming 
decades is based on notions of fairness and justice that are 
not encoded in goal and thus are not accounted for in the 
analysis presented in Section 6. As far as one can define 
predicates on states that encode notions of fairness and 
justice, one can apply the measures of responsibility from 
Section 5.

The problem to agree on what is to be considered fair 
and just limits the applicability of rigorous decision theo-
ries to climate policy. But it is a problem that, to quote 
Hardin [47], “has no technical solution” and cannot be 
avoided — neither by verified decision making [15], nor 
by generalizations of cost-benefit analysis [42], multi-
objective optimal control [13] or storylines [10].

From this perspective, this paper can also be seen as a 
contribution from verified decision theory towards under-
standing the limits of applicability of decision theories to 
policy advice.

Appendix. Functional Notation

A.1 Imperative, Functional and Dependently Typed 
Languages

Somewhat simplified, an imperative program is a sequence 
of instructions of what a computing machine should do. In 
contrast, a functional program is a description of what the 
machine should compute as a mathematical function from 
input to output. Common to both paradigms is the ability 
to name and reuse patterns of computation to enable con-
cise and precise descriptions of algorithms.

Dependently typed languages like NuPRL, Coq, Agda, 
Idris or Lean support implementing programs but also 
postulating axioms, building theories and formulating 
program specifications. These are formal descriptions of 
what programs are required to do. Program specifications 
are crucial for verified programming. Verified programs 
are programs that have been machine-checked (verified) 
to fulfill a specification. They represent the highest cor-
rectness standard currently achievable [22, 49].
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A.2 Expressions and Their Types

At the core of all programming languages is a sublanguage 
of expressions like 1 + 2, "�����", [1, 7, 3, 8] , etc. In strongly 
typed languages like Idris each “valid” expression has a type, 
like ℕ , String , List ℕ , etc. The judgment e ∶ t states that the 
expression e has type t  . Most of the power of Idris comes 
from its type-checker which can check these judgments for 
very complex expressions e and types t  . In the examples 
below we use a few arbitrary but fixed types A , B and C.

A.3 Function Application and Currying

In Idris (and several other functional languages like Haskell 
and Agda) the notation for function application is juxta-
position. You can think of it as an invisible infix operator 
binding more strongly than any other operator. Thus, f x 
denotes the application of the function f  to the argument 
x . Parentheses are used as in mathematics to resolve opera-
tor precedence like in (2 + 3) ∗ 4 and to denote tuples like 
(1, True, ���) . It is always possible to add extra parentheses, 
so f (x) is also a valid syntax for function application.

In mathematics, a function of n > 1 arguments is often 
“implicitly converted” to a function taking as arguments 
n−tuples. For example, if g takes one argument in A and 
another one in B and returns values in C , we write g (x, y) 
to denote the application of g to the pair (x, y) ∶ (A,B) (in 
Idris, (A,B) denotes the Cartesian product of A and B ) and 
say that g has type (A,B) → C.

In functional notation we instead use nested function 
application and write (g x) y (which can also be written 
g x y because function application is left-associative) to 
denote the application of g to x ∶ A and y ∶ B . Thus, g has 
type A → (B → C) or simply A → B → C , g x has type 
B → C and g x y ∶ C . This is called the curried form. Infix 
operators like (+) ∶ ℕ → ℕ → ℕ are, just as in mathemat-
ics, a special case where a (binary) function can be written 
between its first and second argument: 2 + 3 ∶ ℕ.

A.4 Definitions, Pattern Matching and Recursion

The ability to name and reuse expressions is at the core of 
all programming languages. In strongly typed functional 
languages, we can name and reuse expressions as long as 
we provide their type.

Any time aNumber is used we can just substitute 1738 . We 
can define functions through lambda-expressions:

aNumber ∶ ℕ

aNumber = 1738

or, equivalently aFun x = 2 ∗ x + 1 . The latter form is use-
ful when we want to distinguish different cases by pattern 
matching:

The two cases (for zero and the successor of n ) can be seen 
as equations we want to hold for the “to the power of” binary 
operator (↑) . In addition to pattern matching, this example 
also introduces recursion: the function being defined, (↑) , 
is applied to (S n) on the left hand side and to n on the right 
hand side of the second equation.

A.5 Partial Application and Higher‑order Functions

If a function of two (or more) arguments, g ∶ A → B → C , 
is applied to just one argument x we obtain a function 
g x ∶ B → C which is a partially applied version of g . 
Thus, we can view any function as a 1-argument function, 
possibly returning a function.

We can also convert g into h ∶ (A,B) → C by pairing 
up the first two arguments. More generally, we can con-
vert any (n-argument) function into a 1-argument function 
that takes as arguments n-tuples. For binary functions this 
conversion can be done generically:

The implementation is straightforward: uncurry takes as 
input a function f  which takes values of type A to functions 
from B to C . It returns a function that takes as input pairs of 
type (A,B) . This is our first example of a higher-order func-
tion: a function taking another function as a parameter. The 
opposite transformation is also short and clean:

These examples are a bit abstract, so here is a more applied 
example: Given a time-dependent reward function reward ∶

ℕ → A → Double and a parameter rate ∶ Double we con-
struct a discounted reward function by applying the higher-
order function discount:

aFun ∶ ℕ → ℕ

aFun = �x ⇒ 2 ∗ x + 1

(↑) ∶ Double → ℕ → Double

x ↑ Z = 1

x ↑ (S n) = x ∗ (x ↑ n)

uncurry ∶ (A → B → C) → ((A,B) → C)

uncurry f (a, b) = f a b

curry ∶ ((A,B) → C) → (A → B → C)

curry f a b = f (a, b)

discount ∶ Double → (ℕ → A → Double) →

(ℕ → A → Double)

discount rate reward = �t ⇒ �x ⇒ (rate ↑ t) ∗ (reward t x)
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A.6 Polymorphic Functions and Equality Types

The types presented so far have been monomorphic: using 
only specific types like ℕ , Double and the fixed types A , B , 
and C . Many programs work generically for a large class 
of types. For example, discount works for any A and curry 
for any A , B , and C . A simpler example is the projection 
function fst for extracting the first component of a pair:

The type of fst depends on two type variables A and B . Thus 
fst is in fact a three-argument function taking two types and 
a pair and returning the first component of the pair. The two 
first arguments are implicit arguments which can be inferred 
by the system in most use cases. In Section 2, most func-
tions are polymorphic, using a combination of explicit and 
implicit type arguments.

Dependently typed functional languages support rea-
soning about the equality of expressions. The claim that 
an expression a ∶ A is equal to an expression b ∶ B is 
written simply a = b . The infix operator (=) has type 
A → B → Type and defines a whole family of types: for 
every a ∶ A , and b ∶ B we have a type a = b . Almost all 
types in this family are empty (uninhabited, contain no 
values) but a few contain one value written Refl ∶ a = a . 
Thus, a value p ∶ a = b tells us that a and b are equal (and 
p is a proof of that fact). Here are two examples of using 
equality types to specify properties of multiplication:

A.7 Dependent Types and Data Declarations

Many programming languages use types to make sure the code 
doesn’t go wrong, but dependently typed languages support 
types which depend on values. We have already seen some 
examples: multUnitSpec is a function whose return type 
(1 ∗ y = y) depends on y , a value of type Double . The equal-
ity type x = y depends on the two values x and y.

We can take advantage of dependent types to specify 
requirements that multiplication shall fulfill, as in the 
multUnitSpec and multAssocSpec examples. We can also 
apply dependent types to restrict the values of arguments, for 
example, to specify a square root function that accepts only 
non-negative arguments. Restricting sounds negative, but it 
allows to avoid nonsensical combinations of values, which 
helps to eliminate whole classes of software bugs.

fst ∶ {A,B ∶ Type} → (A,B) → A

fst (x, y) = x

multUnitSpec ∶ (y ∶ Double) → 1 ∗ y = y

multAssocSpec ∶ (x, y, z ∶ Double) → (x ∗ y) ∗ z = x ∗ (y ∗ z)

Let’s start with a non-dependent data declaration that intro-
duces natural numbers:

This states that ℕ is a type and that values of type ℕ can be 
constructed using Z for zero and S n for the successor of 
n ∶ ℕ . The same declaration can be written in a less verbose 
form

where the vertical bar separates the two data constructors 
Z and S . In this form, the types of ℕ , Z and S are implicit. 
We apply this form of data declaration in Section 3.1, e.g., 
to define the data types State and StartDelay.

With ℕ and the syntax for ���� declarations in place we 
move on to the more complex example of lists of fixed-length:

Thus, for any n ∶ ℕ and A ∶ Type , values of type Vect n A 
are lists of length n of elements of type A . For example

Idris also provides syntax extensions for defining vectors 
and lists of variable length in square brackets notation:

A simple example of a vector based function is head which 
extracts the first element of a vector:

Note that head is only defined for non-empty vectors: vec-
tors of length S n for some n . By restricting the arguments 
of head , we make sure that the function is never applied to 
empty vectors, thus eliminating a common source of errors.

In Section 2 we use a data declaration similar to Vect 
to define a datatype PolicySeq for sequences of policies of 
fixed-length.

���� ℕ ∶ Type �����

Z ∶ ℕ

S ∶ ℕ → ℕ

���� ℕ = Z ∣ S ℕ

���� Vect ∶ ℕ → Type → Type �����

Nil ∶ Vect Z a

(∶∶) ∶ (x ∶ a) → (xs ∶ Vect n a) → Vect (S n) a

xs ∶ Vect 3 Double

xs = 0.1 ∶∶ 0.6 ∶∶ 0.4 ∶∶ Nil

ys ∶ Vect 4 ℕ

ys = [1, 2, 3, 4]

zs ∶ List String

zs = []

head ∶ {n ∶ ℕ} → {A ∶ Type} → Vect (S n) A → A

head (x ∶∶ xs) = x
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A.8 Properties as Types, Specifications

In programming, the type Bool is often used to collect the 
two truth values False and True and to implement run-time 
“truth” tests. In dependently typed programming and con-
structive mathematics we can go one step further and repre-
sent truth “values” at the type level. Such truths can then be 
type-checked at compile time and before a (possibly incor-
rect) program is executed.

In much the same way as (=) ∶ A → B → Type rep-
resents equality of expressions at the type level (remem-
ber Section 1) and allows us to construct equality proofs 
straightforwardly,

we can represent other binary relations through types. For 
example, we can define a “smaller or equal” relation for 
natural numbers

or, as in Section 2.1, one that compares values in Val , the 
type used there to represent rewards. In all cases the idea 
is the same: any inhabited type (any type for which we can 
provide a value, like Refl for equality) represents truth and 
empty types represent falsity. An empty type, usually called 
Void , is easily defined through a ���� declaration with no 
constructors

and (⩽) can be defined in such a way that 7 ⩽ 3 is empty 
(thus, no values of this type can be constructed) and values 
of type 3 ⩽ 7 can be constructed easily, similarly to values 
of type 2 + 3 = 5.

The function (⩽) is an example of a binary predicate on 
natural numbers. Similarly, unary predicates on values of 
type A can be represented by functions P ∶ A → Type . 
Predicates are useful to specify properties of computa-
tions, as we have already seen with multUnitSpec and 
multAssocSpec . Here is another example: given a sorting 
function

and a predicate representing “sortedness”:

we can formulate the requirement that sort shall return 
sorted vectors:

p ∶ 2 + 3 = 5

p = Refl

(⩽) ∶ ℕ → ℕ → Type

���� Void ∶ Type �����

sort ∶ {n ∶ ℕ} → {A ∶ Type} → Vect n A → Vect n A

Sorted ∶ {n ∶ ℕ} → {A ∶ Type} → Vect n A → Type

sortSpec ∶ {n ∶ ℕ} → (xs ∶ Vect n A) → Sorted (sort xs)

Any valid implementation of sortSpec is then logically equiv-
alent to a proof that, for any vector xs , sort xs is sorted14. 
More generally, any function of type (x ∶ A) → P x (for 
any predicate P ∶ A → Type ) is logically equivalent to a 
proof that P x is non-empty for every x ∶ A. In Section 2 we 
exploit this equivalence to posit that the set of controls Y t x 
associated with a state x ∶ X t shall not be empty through 
the function notEmptyY .

A.9 Programs, Proofs, and Totality

We have seen that, in dependently typed languages, proper-
ties can be represented by types and proofs by values of 
these types. The correspondence between functional nota-
tion and logic goes deeper and we sum up the main results 
in Table 3:

When we embed logic in a dependently typed language, 
we have to require all our functions to be total (otherwise 
the logic will be inconsistent).

A total function f ∶ A → B is defined for all x ∶ A , 
whereas a partial function is undefined for some x ∶ A . 
If partial functions were allowed, we could use them to 
prove any theorem, including patently false ones. A simple 
example is the partial function headL ∶ List A → A which 
is undefined for empty lists. Using headL we could easily 
prove a false theorem (like 3 = 5 ) by first building an empty 
list of proofs, [] ∶ List (3 = 5) , and then extracting the first 
element:

A function may cover all cases, but still fail to be total. An 
extreme example is the completely circular definition

surprise ∶ 3 = 5

surprise = headL []

Table 3  Propositions-as-Types and Proofs-as-Programs (“Curry-Howard”) 
correspondence relating dependent type theory and logic [50, 51]

Functional notation (Idris) Logic

p ∶ P ( p is a program of type P) p is a proof of P
inhabited type provable proposition
empty type False
singleton type True
P → Q P implies Q
Exists {A} P there exists a witness x ∶ A 

such that P x holds
(x ∶ A) → P x for all x of type A , P x holds

14 An implementation of sortSpec is not enough to guarantee that 
sort is correct but is a first step in the right direction.
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If we require functions to be total (which we do in Sections 2 
to 6), the totality checker will warn about missing cases and 
potentially circular definitions.
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