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Abstract. Soil organic carbon (SOC), one of the largest ter-
restrial carbon (C) stocks on Earth, has been depleted by an-
thropogenic land cover change and agricultural management.
However, the latter has so far not been well represented in
global C stock assessments. While SOC models often sim-
ulate detailed biochemical processes that lead to the accu-
mulation and decay of SOC, the management decisions driv-
ing these biophysical processes are still little investigated at
the global scale. Here we develop a spatially explicit data set
for agricultural management on cropland, considering crop
production levels, residue returning rates, manure applica-
tion, and the adoption of irrigation and tillage practices. We
combine it with a reduced-complexity model based on the
Intergovernmental Panel on Climate Change (IPCC) tier 2
method to create a half-degree resolution data set of SOC
stocks and SOC stock changes for the first 30 cm of min-
eral soils. We estimate that, due to arable farming, soils have
lost around 34.6 GtC relative to a counterfactual hypothetical
natural state in 1975. Within the period 1975–2010, this SOC
debt continued to expand by 5 GtC (0.14 GtCyr−1) to around
39.6 GtC. However, accounting for historical management
led to 2.1 GtC fewer (0.06 GtCyr−1) emissions than under
the assumption of constant management. We also find that
management decisions have influenced the historical SOC
trajectory most strongly by residue returning, indicating that
SOC enhancement by biomass retention may be a promising
negative emissions technique. The reduced-complexity SOC

model may allow us to simulate management-induced SOC
enhancement – also within computationally demanding inte-
grated (land use) assessment modeling.

1 Introduction

Soil organic carbon (SOC), the amount of organic carbon
stored in the Earth’s soil, exceeds the carbon in the at-
mospheric and vegetation pools by multiple times (Batjes,
1996). Even small changes in processes affecting SOC lead,
therefore, to substantial shifts in the terrestrial carbon cy-
cle and influence the amount of CO2 in the atmosphere
(Friedlingstein et al., 2020; Minasny et al., 2017). The spe-
cific amount of carbon stored in soils globally is quantified
with estimates ranging from 1500 to 2400 GtC for the first
meter of the soil profile (Batjes, 1996; Sanderman et al.,
2017).

Natural properties like climatic, biophysical, and land-
scape characteristics clearly play the most important roles
in determining SOC variations over space and time. Recent
studies have focused on the evaluation of total SOC stocks of
the world and on the spatial disaggregation of soil properties
such as SOC content (Batjes, 2016; Hengl et al., 2017; FAO,
2019). However, these studies often do not include human in-
tervention, like land cover change and agricultural manage-
ment, in their analysis. Compared to climatic and geological
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driving forces, human interventions alter terrestrial carbon
pools over much shorter timescales and are currently one of
the most dominant drivers of SOC changes on managed land
(Hansis et al., 2015; Bastos et al., 2021).

The anthropogenic impact can be measured by the SOC
debt (also referred to as the SOC component of land use
change emissions; see Pongratz et al., 2014), which is the
amount of organic carbon soils have lost under cultivation
compared to a hypothetical potential natural vegetation state.
Sanderman et al. (2017) identified the anthropogenic SOC
debt for the first meter of the soil profile due to land cover
change at around 116 GtC (37 GtC for the first 30 cm), com-
pared to previous estimates of 60–130 GtC for the first meter
(Lal, 2001).

Global assessments of the carbon cycle via dynamic global
vegetation models (DGVMs), Earth system models (ESMs),
or bookkeeping models (BKMs) have analyzed SOC losses
as part of a comprehensive evaluation of the global carbon
budget and land use change (LUC) emissions (Friedling-
stein et al., 2020). While providing estimates of the magni-
tude of SOC losses due to land cover change, most mod-
els lack a detailed representation of agricultural manage-
ment. Earlier DGVM- and ESM-based assessments only
considered changes in land cover but ignored the removal
of biomass at harvest (Strassmann et al., 2008; Betts et al.,
2015). BKMs are designed to estimate LUC-related emis-
sions and have largely been improved in the estimation of
additional emissions from wood harvest and shifting cul-
tivation. However, state-of-the-art models do not consider
impacts of varying agricultural management (Friedlingstein
et al., 2020; Houghton et al., 2012; Hansis et al., 2015; Bas-
tos et al., 2021).

Managed agricultural systems were introduced in greater
detail to DGVMs and ESMs to improve the assessment of the
terrestrial carbon balance (e.g., Bondeau et al., 2007; Lin-
deskog et al., 2013). Pugh et al. (2015) explicitly consider
agricultural management in the form of tillage, irrigation,
and biomass extraction at harvest but worked with uniform
scenario assumptions on management rather than with his-
torical management data. They also showed the importance
of accounting for the land use history, as many carbon emis-
sions from agricultural soils are caused by historical LUC
and the slow decline of SOC under cropland before a new
equilibrium is reached.

In global-scale carbon cycle assessments, management
systems are typically represented as spatially explicit pat-
terns that are static in time (e.g., for growing seasons in Port-
mann et al., 2010, multiple cropping systems in Waha et al.,
2020, and irrigation systems in Jägermeyr et al., 2015) or
as stylized (in the sense of uniform management assump-
tions) scenarios (e.g., Pugh et al., 2015; Lutz et al., 2019).
Herzfeld et al. (2021) account for historical changes in fer-
tilizer and manure inputs, residue removal rates, and tillage
systems and report SOC losses from cropland expansion over
the period from 1700–2018 of 215 GtC. Within their stylized

future management scenarios under future climate change,
they find that none of the management aspects considered
(residue management and no tillage) can create a positive
SOC stock change on current cropland areas that counter-
acts the still-continuing legacy flux from the initial land use
change.

More data sets on spatially explicit agricultural manage-
ment time series with global coverage are becoming avail-
able (e.g., on tillage systems; see Porwollik et al., 2019 and
Prestele et al., 2018), and modeling approaches are increas-
ingly being developed to project the dynamics of manage-
ment systems into the future (e.g., Iizumi et al., 2019; Minoli
et al., 2019), but have – to our knowledge – not yet found
their way into comprehensive assessments of the terrestrial
carbon cycle in DGVMs and BKMs.

Field-scale models (Del Grosso et al., 2001; Coleman
et al., 1997; Smith et al., 2010; Taghizadeh-Toosi et al., 2014)
are able to better account for historical agricultural manage-
ment if detailed information on crop yield levels, fertilizer
inputs, and various other on-farm measures are available for
the studied sites. However, due to the lack of comprehensive
global management data as input to these models, scaling up
to the global domain remains a complex challenge (Morais
et al., 2019).

Managed soils have been increasingly studied not only
for their carbon emitting behavior but also because of their
capacity to restore carbon (soil carbon sequestration (SCS)
techniques). However, assessing SCS dynamically, consid-
ering the interdependency with environmental, social, and
economic sustainability targets, has been difficult so far, as
integrated assessment models (IAMs; Popp et al., 2016; Ro-
gelj et al., 2018; Forster et al., 2018) have not integrated soil
management into their mitigation pathways. More detailed
process-based models are typically computationally too de-
manding to be integrated into optimization-based IAMs. Bet-
ter accounting for soil carbon management in IAMs thus re-
quires a lightweight model suitable for iterative modeling
with detailed options to represent agricultural soil manage-
ment.

The objectives of our study are (1) to develop a reduced-
complexity SOC model able to account for SCS in IAM
frameworks, (2) to create a comprehensive data set of the
global gridded management time series, including crop pro-
duction levels, residue input rates, manure amendments, and
the adoption of irrigation and tillage practices, and (3) to pro-
vide global and spatially explicit SOC and SOC debt esti-
mates that consider spatially explicit and time-variant agri-
cultural management. We decompose the contribution of dif-
ferent management activities through a scenario analysis,
identifying the management decisions impacting SOC de-
velopment the most. Moreover, we compare our model per-
formance against other SOC stock and SOC emission esti-
mates to evaluate the suitability of this reduced-complexity
approach for integration into IAM modeling.
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2 Methods

In Sect. 2.1, we introduce the basic concept of SOC dy-
namics as applied in this study and explained in more de-
tail in the refinement of the Intergovernmental Panel on Cli-
mate Change (IPCC) guidelines vol. 4, chap. 5 on “Crop-
land” (IPCC, 2019). We additionally describe how we con-
figured and extended the tier 2 modeling approach (for the
model code, see Karstens and Dietrich, 2022). In Sect. 2.2,
we briefly refer to the concept of stock change factors, as
outlined in the tier 1 approach of the IPCC guidelines (IPCC,
2006, 2019). Section 2.3 provides a detailed description of
the global, gridded management data used to drive the model,
including crop production levels, residue input rates, manure
amendments, and the adoption of irrigation and tillage prac-
tices (for the model code, see Bodirsky et al., 2022a). In
Sect. 2.4, we define the management scenarios used to an-
alyze the role of different management aspects in historical
cropland SOC dynamics.

2.1 SOC stocks and stock changes following the tier 2
modeling approach

Following the tier 2 modeling approach of the refinement of
the IPCC guidelines vol. 4, chap. 5 on “Cropland” (IPCC,
2019), which is referred to as the tier 2 modeling approach
in the following, we estimate SOC stocks and their change
over time for cropland at a half-degree resolution from 1975
to 2010. We restrict our analysis to the first 0–30 cm of the
soil profile. Moreover, we assume the current SOC state con-
verges towards a steady state, which itself depends on bio-
physical, climatic, and agronomic conditions. Therefore, we
take the following three steps for each year of our simulation
period:

1. We calculate annual land-use-type-specific steady states
and decay rates for SOC stocks (Sect. 2.1.1).

2. We account for land conversion by transferring SOC
from and to natural vegetation (Sect. 2.1.2).

3. We estimate SOC stocks and changes based on the
stocks of the previous time step, the steady-state stocks,
and the decay rate (Sect. 2.1.3).

To initialize the first year of our simulation period, we use a
spin-up period of 465 years (Sect. 2.1.4).

2.1.1 Steady-state SOC stocks and decay rates

In a simple first-order kinetic approach, the steady-state soil
organic carbon stocks SOCeq are given by the following:

SOCeq
i,t,sub,lu =

Cin
i,t,sub,lu

ki,t,sub,lu
, (1)

with Cin being the carbon inputs to the soil, and k denotes
the soil organic carbon decay rate. This equation is valid for

all grid cells i and all years t . We use the tier 2 modeling ap-
proach for our calculations, which assumes three soil carbon
sub-pools (sub; active, slow, and passive) and the interactions
between them, following the approach in the CENTURY
model (Parton et al., 1987). Annual carbon inflow to each
sub-pool and annual decay rates of each sub-pool are land-
use-type (lu) specific. We distinguish two land use types, i.e.,
cropland and uncropped land under potential natural vegeta-
tion as representative for all other land use types, including
forestry and grasslands (referred to as natural vegetation in
the following). Forage crops are included within cropland,
whereas pastures (including mowed meadows (perennials)
and rangelands) are assigned to natural vegetation. Carbon
flows connected to livestock are only considered in this study
when they originate from cropland feed sources, while the
manure originating from pasture biomass is disregarded, im-
plicitly assuming that this manure is excreted or applied to
pastures.

Carbon inputs for cropland are below- and aboveground
crop residues left or returned to the field (see Sect. 2.3.2) and
manure inputs (see Sect. 2.3.3); for natural vegetation, litter-
fall, including fine root turnover (Schaphoff et al., 2018b), is
the only source of carbon inflow to the soil. Following the
IPCC guidelines (IPCC, 2019, chap. 5), carbon inputs are
disaggregated into metabolic and structural components, de-
pending on their lignin and nitrogen content. For each com-
ponent, the sum of all carbon input sources is allocated to the
respective SOC sub-pools via transfer coefficients. This im-
plies that both the amount of carbon and its structural compo-
sition determine the effective inflow into the different pools.

Whereas residue and manure default lignin and nitro-
gen fractions are given by the IPCC guidelines (IPCC,
2019, chap. 5), we use plant-functional-type and plant-organ-
specific parameterization for the natural litterfall. The global
distribution of plant functional types is given by Schaphoff
et al. (2018b) and includes the separation of litter into leaf,
fine root, and wood litter compartments, while excluding lit-
ter biomass burned in wild fires. Leaf litter parameters are
given by Brovkin et al. (2012), the fine-root-to-leaf-litter
lignin ratio by Guo et al. (2021), the lignin content of wood
litter by Rahman et al. (2013), and the nitrogen content scal-
ing factors for leaves to fine roots and leaf to wood litter by
von Bloh et al. (2018). Data sources for all considered carbon
inputs and for lignin and nitrogen parameterization are listed
in Table 1.

The sub-pool-specific decay rates ksub are influenced by
climatic conditions, biophysical and biochemical soil prop-
erties, and management factors that all vary over space i and
time t . Following the tier 2 modeling approach (IPCC, 2019,
chap. 5), we consider temperature (temp), water (wat), sand
fraction (sf), and tillage (till) effects to account for spatial and
temporal variation in decay rates. Thus, ksub rates are given
by the following:
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Table 1. Type and data sources for carbon inputs and parameterization to different land use types.

Land use types Source of carbon inputs Data source Nitrogen (N) and lignin (LG) content

Cropland Aboveground residues,
belowground residues,
manure

FAO (2021),
Schaphoff et al. (2018b),
Weindl et al. (2017)

LG : C generic values according to Table 5.5B
and 5.5C from IPCC (IPCC, 2019) and
crop-specific N : C from Bodirsky et al. (2012)

Natural vegetation Annual litterfall Schaphoff et al. (2018b) Leaf N and LG concentration from Brovkin
et al. (2012), root-to-leaf-litter LG ratio from
Guo et al. (2021), lignin content of wood litter
from Rahman et al. (2013), and nitrogen scaling
factors for leaf-to-root and wood litter from von
Bloh et al. (2018)

ki,t,active,lu = kactive · tempi,t ·wati,t,lu · tilli,t,lu · sfi
ki,t,slow,lu = kslow · tempi,t ·wati,t,lu · tilli,t,lu
ki,t,passive,lu = kpassive · tempi,t ·wati,t,lu. (2)

For natural vegetation, we assume rainfed and non-tilled
conditions, whereas for cropland, we distinguish the ef-
fect of different tillage (see Sect. 2.3.5) and irrigation (see
Sect. 2.3.4) practices on decay rates. We calculate area-
weighted means for till and wat on cropland for each grid
cell, using area shares for the different tillage and irrigation
practices. Data sources and used parameters for the differ-
ent decay drivers for all land use types are listed in Table 2;
equations are based on Eqs. (5.0B)–(5.0F) in IPCC (2019).

2.1.2 SOC transfer between land use types

We calculate SOC stocks based on the area shares of land
use types (lu) within our grid cells i. If land is converted
from one land use type lu= {crop,natveg} into the other
!lu= {natveg,crop}, then a respective share of the SOC is re-
allocated within our budget. We do not distinguish between
newly converted and existing cropland but can work with the
average carbon content, as the relative decay of SOC is pro-
portional to the SOC stock (see Fig. 1). We account for land
conversion at the beginning of each time step t by calculating
a preliminary stock SOCt∗ via the following:

SOCi,t∗,sub,lu = SOCi,t−1,sub,lu−
SOCi,t−1,sub,lu

Ai,t−1,lu

·ARi,t,lu+
SOCi,t−1,sub,!lu

Ai,t−1,!lu
·AEi,t,lu, (3)

with Alu being the land use type specific areas, ARlu the area
reduction, and AElu the area expansion of the two land use
types. Data sources and methodology on land use states and
changes are described in Sect. 2.3.1.

2.1.3 Total SOC stocks and stock changes

SOC converges towards the calculated steady-state stock
SOCeq for each grid cell i, each annual time step t , each land

use type lu, and each sub-pool sub, in the following:

SOCi,t,sub,lu = SOCi,t∗,sub,lu+
(
SOCeq

i,t,sub,lu

−SOCi,t∗,sub,lu
)
· ki,t,sub,lu · 1a. (4)

Note that the decay rates have to be multiplied by 1 year
(1 a) to form a dimensionless factor. Reformulating this equa-
tion, we obtain a mass balance equation as follows:

SOCi,t,sub,lu = SOCi,t∗,sub,lu

−SOCi,t∗,sub,lu · ki,t,sub,lu · 1a︸ ︷︷ ︸
outflow

+

input (using Eq. 1)︷ ︸︸ ︷
SOCeq

i,t,sub,lu · ki,t,sub,lu · 1a. (5)

The global SOC stock for each time step t can then be
calculated via the following:

SOCt =

∑
i

∑
lu

SOCi,t,lu – land use type specific
SOC stock within cell︷ ︸︸ ︷∑

sub
SOCi,t,sub,lu︸ ︷︷ ︸

SOCi,t – total SOC stock within cell

. (6)

According to the IPCC guidelines, SOC changes can
be expressed as the difference of 2 consecutive years (see
Eq. 5.0A in IPCC, 2019). This, however, will also include
naturally occurring changes due to climatic variation over
time. For our study, we define the absolute and relative SOC
changes in relation to a potential natural-state SOCpnv under
the same climatic conditions in grid cell i at time t that is
based on the natural vegetation SOC calculations, as defined
above, without accounting for land conversion from crop-
land at any time. The absolute changes 1SOC and relative
changes F SCF are thus given by the following:

1SOCi,t = SOCi,t −SOCpnv
i,t and F SCF

i,t =
SOCi,t

SOCpnv
i,t

. (7)

Note that the absolute changes 1SOC can also be inter-
preted as the SOC debt (Sanderman et al., 2017) due to hu-
man cropping activities, whereas relative changes F SCF can
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Table 2. Type and data sources for carbon inputs to different land use types.

Land use types Type of decay driver Parameter use to represent driver Data source

All
Soil quality Sand fraction of the first 0–30 cm Hengl et al. (2017)

Microbial activity Air temperature Harris et al. (2020)

Soil moisture Precipitation and potential evapotranspiration Harris et al. (2020)

Cropland Soil moisture Irrigation Sect. 2.3.4

(additionally) Soil disturbance Tillage Sect. 2.3.5

Figure 1. Scheme of the land use transition representation. Given
an initial land use pattern (as in this example, with 2 ha land un-
der natural vegetation and 1 ha of cropland), there are separate SOC
stocks for natural vegetation and cropland. While, in this example,
we assume SOC under natural vegetation to be in a steady state,
the cropland SOC stock approaches its steady state without having
reached it yet (a). Upon cropland expansion (in this example, half
of the natural vegetation is cleared to be used as cropland), SOC
stocks on cropland increase due to a transfer of land from natu-
ral vegetation (b). Explicitly representing newly converted cropland
and existing cropland to account for SOC dynamics (c) leads to the
same weighted mean value as averaging SOC stocks (d), due to the
linearity of Eq. 4 and cropland age-independent decay rates (see
Eq. 2).

be considered to be stock change factors, as defined within
the IPCC guidelines of 2006 (IPCC, 2006). Moreover, 1SOC
is equivalent to the negated cumulative SOC component of
human land use change emissions (Pugh et al., 2015).

2.1.4 Initialization of SOC pools

The initialization of SOC pools is very important and has
to include the proper accounting for the land use history, as
many CO2 emissions from agricultural soils are caused by
historical land use change (LUC) and the slow decline of
SOC under crop cultivation before it reaches a new equilib-
rium. We initialize our SOC sub-pools using a three-step ap-
proach, since the input data availability is limited for climate
and litter estimates (starting only in 1901) and for agricul-
tural management data (starting only in 1965).

First, in order to account for the impacts of legacy fluxes
from land use changes long before the time horizon of in-
terest, we consider land use change from 1510 onwards. In
1510, we assume all SOC pools to be in natural steady state,
implying that all land use change prior to that time occurs
in 1510. We assume that, by 1901, all cropland converted in
1510 has reached its new steady state, so that it is not nec-
essary to explicitly account for even older land conversion.
Model inputs for 1901–1930 for climate and natural vegeta-
tion litterfall are repeated for 1510–1900 to mimic constant
climate conditions for this first initializing period. Similarly,
agricultural management data are held constant at the level
of 1965 until 1965. We acknowledge that this introduces a
bias, as agricultural management changed prior to 1965, but
this approach follows others studies on the effects of land
use change and management (e.g., Schaphoff et al., 2018a;
Herzfeld et al., 2021) and is limited by the data availability
on harvest statistics (and other management effects).

Second, with the availability of transient climate data af-
ter 1901, we account not only for land use change but also
for historical climate change and, consequently, natural litter
inputs to the soil from 1901 to 1965, while still considering
constant agricultural input data, which are not available prior
to 1965.

Third, we run the model for 10 years, from 1965 to 1975,
with historical dynamic data on agricultural management and
start analyzing results from 1975 onward. This is in line with
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the IPCC guidelines vol. 4, chap. 5, method suggestion to
have a 5–20-year spin-up period (IPCC, 2019).

With transient climate considered after 1901, decay rates
ksub become dynamic in time. As the decay rates are also
affected by irrigation and tillage (see Sect. 2.1.1), we also
account for transient changes in irrigated areas after 1901.
Data on no-tillage practices are only available after 1974, and
we assume conventional tillage on all cropland prior to 1975.

2.2 SOC stocks and stock changes following tier 1

Additional to the tier 2 modeling approach (IPCC, 2019)
and the detailed analysis of management data it brings, SOC
changes can be estimated using the IPCC tier 1 approach of
the IPCC guidelines (IPCC, 2006, 2019). Here, stocks are
calculated via stock change factors (F SCF) given by the IPCC
for the topsoil (0–30 cm) and based on observational data.
Note that IPCC factors are derived under the assumption that
there is a linear change between steady states over 20 years.
Estimates of F SCF are differentiated by crops, management,
and input systems (here summarized under m) reflecting dif-
ferent dynamics under changed in- and outflows without ex-
plicitly tracking these flows. Moreover, estimates of F SCF

vary for different climatic zones (c) specified by the IPCC
(see Fig. A1). The actual SOC stocks are thus calculated
based on a given reference stock SOCref by the following:

SOCi,t =

∑
c,m

Tc,i ·SOCref
i,t ·F

SCF
c,m , (8)

with Tc,i being the translation matrix for grid cells i into cor-
responding climate zones c. For this analysis, we use the de-
fault F SCF from the tier 1 method of IPCC (2006) and IPCC
(2019) as a comparison and consistency check for our more
detailed tier 2 steady-state approach.

2.3 Agricultural management data at 0.5◦ resolution

We compile the country-specific Food and Agriculture Or-
ganization (FAO) production and cropland statistics (FAO,
2021) to a harmonized and consistent data set. The data are
prepared in 5-year time steps, from 1965 to 2010, which re-
stricts our analysis to the time span from 1975 to 2010 (after
a spin-up phase from 1510–1974). For all the following data,
if not declared differently, we interpolate values linearly be-
tween the time steps and keep them constant before 1965.

2.3.1 Land use and land use change

Land use patterns are based on the Land Use Harmoniza-
tion 2 (Hurtt et al., 2020) data set (hereafter LUH2), which
we sum up from a quarter-degree to half-degree resolution.
We disaggregate the physical area (given as total land area in
106 ha) of the five different cropland subcategories (c3ann –
C3 annual crops; c3per – C3 perennial crops; c4ann – C4 an-
nual crops; c4per – C4 perennial crops; c3nfx – C3 nitrogen-
fixing crops) of LUH2 into our 17 crop groups (see Ta-

ble FAO2LUH2MAG_croptypes.csv in Karstens, 2022) by
applying the relative shares for each grid cell based on the
country- and year-specific area harvested shares of FAO-
STAT data (FAO, 2021). By calculating country-specific
multicropping factors (MCFs) using FAOSTAT data, we are
able to compute the crop-group-specific area harvested on
grid cell level. Land use transitions are calculated as net area
differences of the land use data at a half-degree resolution,
considering no split into crop-group-specific areas but only
total cropland and natural vegetation areas.

2.3.2 Crop and crop residues production

Crop production patterns are compiled into specific crop
groups using half-degree yield data from LPJmL (Lund-
Potsdam-Jena managed Land; Schaphoff et al., 2018b) and
half-degree cropland patterns (see Sect. 2.3.1). We calibrate
cellular yields with a country-level calibration factor for each
crop group to meet historical FAOSTAT production (FAO,
2021). By using physical cropland areas in combination with
harvested areas, we account for multiple cropping systems
and for fallow land.

Crop residue production and management is based on
a revised methodology of Bodirsky et al. (2012), and key
aspects are explained, as they play a central role in soil
carbon modeling. Starting from crop yield estimates Y

and respective physical crop area (CA), we estimate to-
tal aboveground (AGR) and belowground (BGR) residue
biomass (in tonnes) using crop-group-specific (cg) ratios
for aboveground residues to harvested biomass r

ag,prod
cg

in (tDM ha−1) (tDM ha−1)−1 aboveground residues to har-
vested area r

ag,area
cg in tDMha−1 and belowground residues

to aboveground biomass r
bg
cg in tDMtDM−1, as follows:

AGRi,t,cg = CAi,t,cg ·
(
Yi,t,cg · r

ag,prod
cg +MCFi,t · r

ag,area
cg

)
,

and

BGRi,t,cg = (CAi,t,cg ·Yi,t,cg+AGRi,t,cg) · r
bg
cg . (9)

Following the IPCC guidelines, we split the above-
ground residue calculations into a yield-dependent slope
(rag,prod) and a positive intercept (rag,area) fraction (IPCC,
2019, chap. 11). Residual biomass therefore increases
under-proportionally with rising yields, reflecting a shift-
ing harvest index of higher-yielding breeds. Deviating from
Bodirsky et al. (2012), we use the harvested crop area in-
stead of the physical crop area (denoted in Eq. 9 by MCF
described in Sect. 2.3.1) to account for increased residue
biomass due to multiple cropping (multiple harvests with
each lower yields) and decreased residue amounts due to fal-
low land. We assume that all BGR are left in the soil, whereas
AGR can be burned or harvested for other purposes, such as
feeding animals (Weindl et al., 2017), fuel, or for material
use.

A country-specific fixed share of the AGR is assumed
to be burned on the field, depending on the per capita in-
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come of the country. Following Smil (1999b), we assume a
burn share of 25 % for low-income countries, according to
World Bank definitions (< USD 10 000 yr−1 per capita), and
15 % for high-income (> USD 10 000 yr−1 per capita) and
linearly interpolate shares for all middle-income countries,
depending on their per capita income for the periods before
1995. After 1995, we estimate a linear decline in burn shares
to 10 % for low-income countries and 0 % for high-income
countries until 2025 to account for the recent increases in
air pollution regulation. The estimated trends show good
agreement with fire-satellite-image-derived estimates by the
Global Fire Database (van der Werf et al., 2017). Depend-
ing on the crop group, 80 %–90 % of the carbon in the crop
residues burned in the fields is lost within the combustion
process (IPCC, 2006).

From our 17 crop groups, we compile four residue groups
(straw, high- and low-lignin residues, and residues without
dual use), of which the first three are taken away from the
field for other purposes (see mappingCrop2Residue.csv in
Bodirsky et al., 2022a). Residue feed demand for five dif-
ferent livestock groups is based on country-specific feed bas-
kets (see Weindl et al., 2017) that differentiate between the
residue groups and take available AGR biomass and livestock
productivity into account. We estimate a material use share
for the straw residue group of 5 % and a fuel share of 10 % for
all used residue groups in low-income countries. For high-
income countries, no withdrawal for material or fuel use is
assumed, and the use shares of middle-income countries are
linearly interpolated, based on per capita income, following
the same rationale as for the share of burned residues de-
scribed above. The remaining AGR and all BGR are expected
to be left on the field. We limit high-residue return rates to,
at most, 10 tCha−1 in order to correct for outliers.

To transform dry matter estimates into carbon and nitro-
gen, we compiled crop-group- and plant-part-specific carbon
and nitrogen to dry matter ratios (see Table A1).

2.3.3 Livestock distribution and manure excretion

Manure, especially from ruminants, is often excreted at pas-
tures and rangelands, but due to the intensification of live-
stock systems, a lot of the manure has to be stored and can
be applied on cropland. We assume that manure is applied
in close proximity to its excretion, so that the distribution of
livestock is the driving factor for the spatial pattern of ma-
nure application.

To disaggregate country-level FAOSTAT livestock produc-
tion data to a half-degree resolution, we use the follow-
ing rule-based assumptions, drawing from the approach of
Robinson et al. (2014) and applying feed basket assumptions
based on a revised methodology from Weindl et al. (2017).
We differentiate between ruminant and monogastric systems
and extensive and intensive systems. Due to the high feed de-
mand of ruminants, we assume that ruminant livestock is lo-
cated where the production of feed occurs to minimize trans-

port of feed. We distinguish between grazed pasture, which
is converted into livestock products in extensive systems, and
primary crop feed stuff, which we consider to be consumed
in intensive systems. For poultry, egg, and monogastric meat
production, we use the per capita income of the country to
distinguish between intensive and extensive production sys-
tems. For low-income countries, we assume only extensive
production systems. We locate them according to the share
of built-up areas, based on the assumption that these animals
are held in subsistence or smallholder farming systems with
a high labor-to-animal ratio. Intensive production associated
with high-income countries is distributed within a country
using the share of primary crop production, assuming that
feed availability is the most determining factor for livestock
location. For middle-income countries, we split the livestock
production into extensive and intensive systems based on the
per capita income.

Manure production and management is based on a revised
methodology of Bodirsky et al. (2012) and is presented here
due to its central role in soil carbon modeling. Based on the
gridded livestock distribution, we calculate spatially explicit
excretion by estimating the nitrogen balance of the livestock
systems on the basis of comprehensive livestock feed bas-
kets (Weindl et al., 2017), assuming that all nitrogen in pro-
tein feed intake, minus the nitrogen in the slaughter mass, is
excreted. Carbon in excreted manure is estimated by apply-
ing fixed C : N ratios, which range from 10 for poultry up to
19 for beef cattle (for full details, see IPCC, 2019, chap. 5).
Depending on the feed system, we assume that the manure
is handled in four different ways. All manure originating
from pasture feed intake is excreted directly onto pastures
and rangelands (pasture grazing), less the manure collected
as fuel. For low-income countries, we adopt a share of 25 %
of crop residues in feed intake directly consumed and ex-
creted onto crop fields (stubble grazing), but we do not con-
sider any stubble grazing in high-income countries; middle-
income countries see linearly interpolated shares, depending
on their per capita income. For all other feed items, we as-
sume that the manure is stored in animal waste management
systems associated with livestock housing. To estimate the
carbon actually returned to the soil, we account for carbon
losses during storage, where return shares depend on differ-
ent animal waste management and grazing systems. While
we assume no losses for pasture and stubble grazing, we con-
sider that the manure collected as fuel is not returned to the
fields. For manure stored in different animal waste manage-
ment systems, we compiled carbon loss rates (see calcCloss-
Confinement.R in Bodirsky et al., 2022a, for more details),
depending on the different systems, and the associated nitro-
gen loss rates, as specified in Bodirsky et al. (2012). We limit
high-application shares at 10 tCha−1 to correct for outliers
that can occur due to inconsistencies between FAO produc-
tion and 0.5◦ land use data.
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2.3.4 Irrigation

The LUH2v2 (Hurtt et al., 2020) data set provides irrigated
fractions for its cropland subcategories. We sum up irrigation
area shares for all crop groups within a grid cell and calcu-
late the water effect coefficient (wat) on decay rates, using
these shares to compute the weighted mean between rain-
fed and irrigated wat factors. As a result, wat is the same
for all crop groups within a grid cell. Furthermore, we sup-
pose the irrigation effect to be present for all 12 months of
a year, since we do not have consistent crop-group-specific
growing periods available. This will lead to an overestima-
tion of the irrigation effect. We expect, however, that water
limitations will be a minor problem during the off-season in
temperature-limited cropping regions, causing our assump-
tion to not dramatically overestimate the moisture effects. In
tropical, water-limited cropping areas, irrigated growing pe-
riods might even span the whole year.

2.3.5 Tillage

In order to derive a spatial distribution of the three differ-
ent tillage types specified by the IPCC – full tillage, reduced
tillage, and no tillage – we assume that all natural land and
pastures are not tilled, whereas annual crops are under full
tillage and perennials under reduced tillage by default. Fur-
thermore, we assume no tillage in cropland cells specified as
no-tillage cells, based on the historical global gridded tillage
data set from Porwollik et al. (2019). This data set is ex-
tended to the period of 1975–2010 by combining the country-
level data of areas under conservation agriculture from FAO
(2020) and half-degree resolution physical crop areas from
Hurtt et al. (2020) and applying the methodology of Porwol-
lik et al. (2019) to identify potential no-tillage grid cells.

2.4 Scenario definitions

To highlight the impact of changing management effects and
to assess the sensitivity of the model towards different ini-
tialization choices, we perform a set of scenario runs. In the
following section, we outline name and idea of these scenar-
ios (for technical implementation see Karstens and Dietrich,
2022).

To single out the impact of tillage practices, residue, and
manure inputs, we defined scenarios with constant values for
these three drivers. In the constTillage scenario, the adoption
of no-tillage practices are neglected (adoption starts in 1974,
according to the available data set). The constResidues and
the constManure scenarios assume constant input rates from
residues and manure, respectively (in tha−1), at the level of
1975 onward. Within the constResidue scenario, different ef-
fects overlay each other, i.e., yields and, with them, residue
biomass increase due to productivity gains, rates of residue
left or returned to fields are rising, and shifts of cropping
pattern change the amount of residue biomass due to crop-

group-specific harvest index values. The constManagement
scenario combines all three scenarios of constTillage, con-
stResidues, and constManure.

As outlined in Sect. 2.1.4, we assume that we start in
steady-state SOC stocks for the start year of the spin-
up in 1510, followed by a long spin-up period (Initial-
spinup1510). As some SOC compartments decay over very
long timescales, the initialization setting might strongly af-
fect the overall outcome of SOC stocks and changes. Thus,
we conduct two counterfactual scenarios, Initial-natveg and
Initial-eq. While in Initial-natveg we assume SOC stocks to
be in a steady-state SOC under potential natural vegetation
for all land use types in 1901, SOC stocks start in their land-
use-type-specific steady state in 1901 for the Initial-eq sce-
nario. In that way, the two scenarios mark the two extreme
cases. In Initial-eq, all legacy fluxes already appeared in
1901, whereas in Initial-natveg, all legacy fluxes before 1901
still have to appear. We additionally combined the counter-
factual scenarios with the constManagement scenario.

3 Results

Detailed results for the spatially explicit global SOC budget,
including intermediate results on input data from manure and
residues and SOC stock results for all scenario runs, can be
found in the data repository of Karstens (2022). In the fol-
lowing, the most important results (see Karstens et al., 2022,
for the post-processing scripts) are summarized.

3.1 SOC distribution and depletion

The global SOC debt has increased by about 14 % in the pe-
riod between 1975 and 2010, from 34.6 to 39.6 GtC (Fig. 2a).
This corresponds to an average loss rate of 0.14 GtCyr−1

in comparison to a hypothetical potential natural vegetation
(PNV) state. Considering our estimate of the global SOC
stock of around 705 GtC in the upper 30 cm in 1975, global
SOC decreased by 0.2 per 1000 per year for the period be-
tween 1975 and 2010, in comparison to the PNV state. The
speed of this SOC loss has decreased towards the end of the
modeling period. Note that the SOC stock itself – without
comparing it to a PNV state – increases during the period
between 1975 and 2010, from 705 GtC to 712 GtC, which
corresponds to overall SOC stock increase of 0.2 GtCyr−1.

In Fig. 2b, we provide a world map of SOC stock esti-
mates for the first 30 cm on, cropland considering historical
management data for the year 2010. Values range between
over 100 tha−1 in northern temperate cropland to less than
5 tha−1 for arid and semiarid cropland. Our spatially explicit
results show hotspots of SOC losses and gains compared to
SOC under PNV in the following two complementary ways:

1. Absolute SOC changes 1SOC (Fig. 2c) indicate areas
with high importance for the global SOC loss. They
can be driven by large relative changes (e.g., in cen-
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Figure 2. Global SOC stocks and SOC stock changes on cropland for the first 30 cm of the soil profile, considering historical management
data. Panel (a) shows global 1SOC between historical land use and potential natural vegetation (PNV). The distribution of total global SOC
stocks for the first 30 cm on cropland for the year 2010 is depicted in panel (b). Absolute (c) and relative (d) SOC stocks changes for the year
2010 are compared to a potential natural state to identify different hotspots of SOC losses and gains.

tral Africa) or by a high natural stock from which even
small relative deviations could lead to substantial abso-
lute losses (e.g., northeast Asia).

2. Relative SOC changes measured as stock change fac-
tors F SCF (Fig. 2d) are a helpful metric to analyze the
impact of human cropping activities. They indicate ar-
eas with large differences in carbon inflows or SOC de-
cay compared to natural vegetation that may have the
potential to be overcome by improved agricultural prac-
tices. Large parts of tropical cropland seem to suffer
from strongly reduced relative stocks, indicating SOC
degradation. Conversely, irrigated cropland at the bor-
der of dry, unsuitable areas worldwide shows a strong
relative increase in SOC stocks.

The spatial distribution of the total 1SOC summed over
all land use types (Fig. 3a), and its change from 1975 to
2010 (Fig. 3b1), reveals areas of SOC debt decline and in-
crease. Regions with large cropland expansion (e.g., Brazil,
Southeast Asia, and Canada) continue to lose SOC, whereas

regions with cropland reduction (and thus SOC restoration)
or with accumulating cropland SOC can be found, e.g., in
highly productive areas of Europe and central USA.

3.2 Carbon flows in the cropland system

Carbon is removed from the atmosphere via plant growth
and allocated to different plant parts, which we aggre-
gate to three pools (harvested organ and above- and be-
lowground residues). Whereas harvested organs and above-
ground residues are taken (partially) from the field to be used
for other purposes, belowground residues (729 MtC in 2010)
are directly returned to the field. We divide crop biomass
usage into feed usage and aggregate all other usage types
(e.g., food, bioenergy, and material) into a human demand
category. Livestock feed demand for crop organ harvest and
aboveground residues of 1136 MtC is roughly equal to the
human demand of 1129 MtC. Whereas large parts of feed
intake are returned to the soils via manure (C input from
manure at 384 MtC), we assume that the carbon demanded
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Figure 3. Global total 1SOC and 1SOC change for the first 30 cm
of the soil profile. Panel (a) shows global 1SOC as the difference
between SOC under historical land use and SOC under potential
natural vegetation (PNV) in the year 2010 summed over all land
use types. Computing the difference between the 1SOC estimate
for 2010 and for 1975 (b1) depicts areas of SOC depletion (SOC
debt increase; red) and SOC accumulation (SOC debt decline; blue).
Panel (b2) shows the land use change (LUC)-induced change in
1SOC between 1975 and 2010, whereas (b3) depicts the change
due to changing agricultural management (MAN).

Figure 4. Global carbon flows within the cropland system for the
year 2010 (in MtC). Carbon is first photosynthesized by crop plants
and then used for livestock feed and various other usages subsumed
under human demand. After accounting for losses within the crop-
land system, there are three major C inputs to cropland SOC, i.e.,
manure and above- and belowground residues. Large parts of C,
however, are mineralized on the field before entering the soil. Addi-
tionally, C is transferred to and from global cropland soil stock via
land use change between cropland and natural vegetation. Finally,
SOC is mineralized and flows back to the atmosphere.

from humans (ending up as, e.g., compost, night soil, and
sewage) is not returned to soils. Besides manure C and be-
lowground residues, aboveground residues form the largest
C input to the soil, with 1350 MtC returned to the fields in
the year 2010. However, around 60 % of this organic C de-
composes before it is integrated into soils. Due to the differ-
ent composition of organic C, proportionally more C enters
the slow pool from manure than from crop residue. Accord-
ing to our model results, land use change dynamics led to
a C transfer from natural vegetation to cropland of 257 MtC
in 2010. The cropland system receives 4585 MtC assimilated
by crop plants and releases 3554 MtC mostly through respi-
ration. Accounting for SOC transfer and decomposition, the
net SOC decrease in global cropland is around 33 MtC for
the year 2010.

3.3 Agricultural management effects on SOC debt

We analyze the relative impact of different management
practices by comparing the actual historical management
scenario with counterfactual scenarios, where individual
management practices (residues in constResidues, manure
in constManure, tillage practices in constTillage, and all
three in constManagement) are kept static at the 1975 val-
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Figure 5. (a) Global 1SOC (in GtC) for different management sce-
narios. The stylized scenarios deviate from historical agricultural
management patterns (histManagement) by holding the effects of
carbon inflows from residues (constResidues) or manure (constMa-
nure) constant at the 1975 level or neglecting adoption of no-tillage
practices over time (constTillage). The scenario of constManage-
ment combines all three modifications. Note that 1SOC is defined
as the difference in SOC under land use compared to a hypothetical
natural vegetation state. Panel (b) shows the carbon inflows from
crop residue and manure.

ues (Fig. 5a). As shown by the difference between the con-
stResidues scenario and the other counterfactuals, changes in
residue return rates dominate the management effects. With-
out the historical increase in C inputs from residues to agri-
cultural soils, the global 1SOC would decrease to 41.7 GtC
at a rate of 0.20 GtCyr−1 – a 35 % increase compared
to 0.14 GtCyr−1 for the historical agricultural management
(histManagement estimates). Both the constManure and con-
stTillage scenarios show only small deviations from the his-
torical agricultural management values, with 0.15 GtCyr−1.
The effect of no tillage only becomes discernible from 2000
onwards. The large contribution of residues relative to ma-
nure also becomes visible when considering the annual C in-
puts of residues and manure to soils over a period of 35 years
(Fig. 5b).

Using the constManagement results that only include land
use change (LUC)-related changes in the SOC debt between
1975 and 2010, we are able to subtract the LUC effect from
the overall SOC debt change within the histManagement re-

sults. The remaining effect can be attributed to the chang-
ing agricultural management (MAN), as other drivers such
as climatic effects have been already canceled out by tak-
ing the difference to a PNV reference state when calculating
1SOC. The increasing SOC debt on global cropland are pri-
marily caused by LUC (red areas in Fig. 3b2). Deteriorating
management also contributed to increasing SOC debt in parts
of sub-Saharan Africa and central Asia. In contrast, agricul-
tural management has led to an decrease in SOC debt in the
USA, Europe, and in parts of China and India (blue areas in
Fig. 3b3), which is not visible in the total 1SOC change, as
LUC was happening at the same time.

Our sensitivity analysis shows that the management im-
pact is robust to the initialization of SOC stocks (see Fig. A2
and Sect. 2.4), with around 2.15 GtC difference in SOC
debt between the histManagement and the constManagement
scenarios. However, the SOC debt and SOC debt change
vary with the different initialization choices. Whereas the
default assumption (Initial-spinup1510) shows a 1SOC of
39.6 GtC for the year 2010, the Initial-natveg scenario with
high legacy fluxes to come only has a 1SOC of 33.3 GtC,
and the Initial-eq scenarios with only a few legacy fluxes al-
ready left a 1SOC of 50.7 GtC.

3.4 Model evaluation

To evaluate our model results against reference data, we
(1) compare our stock change factors (see Sect. 2.2) to IPCC
default assumptions (chap. 5 in IPCC, 2006, 2019), (2) com-
pare our global (and climate-zone-specific) total SOC stocks
to other literature estimates, and (3) compare our results to
point measurements. To evaluate the representation of our
natural SOC stocks, we (4) correlated LPJmL4 SOC stocks
for PNV with our natural state SOC results on grid level and
(5) did a similar correlation analysis for our modeled actual
SOC stocks in comparison to the results of SoilGrids 2.0
(Poggio et al., 2021), which accounts for actual land use too.

3.4.1 Stock change factors compared to IPCC
assumptions

To evaluate our modeled SOC stocks and stock changes un-
der agricultural management, we compare our results to the
default IPCC stock change factors F SCF of 2006 (IPCC,
2006, chap. 5) and their refinements in 2019 (IPCC, 2019,
chap. 5). Both estimates are based on measurement data for
cropland (see Fig. 6). To allow for comparison, we aggre-
gate our stock change factors weighted by grid-level crop-
land area to derive median factors for the four IPCC climate
zones (Fig. A1 in Appendix A). Note that IPCC tier 1 fac-
tors are derived under the assumption that there is a linear
change between steady states over 20 years, whereas our ag-
gregated factors just reflect the relative change compared to
a given potential natural vegetation reference stock without
specifically tracking the age of the cropland.
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Figure 6. F SCF in comparison to IPCC tier 1 default factors from
the guidelines in 2006 (IPCC, 2006, chap. 5) and the update in 2019
(IPCC, 2019, chap. 5). IPCC factors vary a bit with different types
of management (low, medium, and high). The results of the study
span over a wide range – indicated by the span between the 5th and
95th percentile – but do not overlap with the IPCC 2019 factors for
tropical moist regions. The median for most regions is considerably
lower than the IPCC factors.

Stock change factors for the temperate climate zones of
this study are lower than the default values of the IPCC. For
the tropical regions, the IPCC factors increased notably from
the guidelines in 2006 (IPCC, 2006, chap. 5) to the update in
2019 (IPCC, 2019, chap. 5) due to the inclusion of more data
points. Our results span over a broad range due to the differ-
ent ages of the cropland but also due to different agricultural
management practices within climate regions.

3.4.2 Global SOC stocks comparison

We compare our global SOC stocks with a wide range of
global SOC stock estimates for the first 30 cm of the soil pro-
file, using data from WISE (Batjes, 2016), SoilGrids (Hengl
et al., 2017), GSOC (FAO, 2019), LPJmL4 (Schaphoff et al.,
2018a), SoilGrids 2.0 (Poggio et al., 2021), and SOCDebtPa-
per (Sanderman et al., 2017) in Fig. 7.

The global estimates of the total SOC stock of the upper
30 cm from this study are in the middle of the wide range
of other modeled or observation-based estimates. Regional
results (Fig. A3) show that our estimates are well within the
range of other estimates for most regions but at the lower end
for tropical moist and tropical wet areas. SoilGrids (Hengl
et al., 2017) especially stands out with its high estimate, since
this model includes the litter horizon on top of the soil that
might dominate especially polar and boreal soils. SoilGrids
2.0 (Poggio et al., 2021), however, excludes litter C and thus
marks the lower end particularly for northern regions. For the
same reason, it is also more comparable to our results, which
also do not account for litter C.

Figure 7. Modeled and observation-based estimates for global SOC
stock (in GtC) for the first 30 cm of soil aggregated over all land
areas. The comparison against observation-based data (SoilGrids,
SoilGrids 2.0, GSOC, and WISE) is supplemented by modeled data
from LPJmL4 (Schaphoff et al., 2018a) and estimates from Sander-
man et al. (2017). We show values of this study for the year 2010,
accounting for the historical land use dynamics and for a hypothet-
ical PNV.

3.4.3 Point-based evaluation

In Fig. A4, we correlate our SOC results for natural vegeta-
tion and cropland in 2010 with the literature values of point
measurements (for the database, see the Appendix in Sander-
man et al., 2017). The goodness of the fit is very low, with an
R2 of 0.13. Individually, the correlations are even lower, with
a R2 of 0.09 for cropland and 0.08 for areas of natural veg-
etation. This points to the fact that differences between land
use type SOC stocks could be better matched than the spa-
tial pattern of the rather small point measurement database.
Due to the low number of small-scale measurements, statis-
tical properties of the point data variability are not derived
and, thus, could not be used to improve the point-to-grid-cell
comparison (see Rammig et al., 2018).

3.4.4 Natural SOC stock comparison with LPJmL4

Estimates of SOC stocks under natural vegetation influence
our modeled results for cropland, which has been converted
from natural vegetation at some point in time. As the tier 2
modeling approach (IPCC, 2019, chap. 5) is not specifically
parameterized for natural vegetation, it is important to eval-
uate its suitability for producing reasonable results in that
domain that are at least comparable to other modeling ap-
proaches. We therefore also compare our modeled results
for SOC under natural vegetation (derived using the litter-
fall of LPJmL4) against estimates of SOC by LPJmL4 for a
PNV simulation (see Fig. A5). Both models are driven by the
same climate conditions and the same natural litterfall and
just differ in the representation of SOC and litter dynamics.
With our focus on cropland SOC dynamics, we compare only
cells with more than 1000 ha of cropland (capturing 99.9 %
of global cropland area). Spatial correlations of PNV SOC
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Figure 8. Correlation between modeled SOC stocks of this study
and projected values from SoilGrids 2.0.

stock values are high (global R2
= 0.81), especially for dry

climate zones (Fig. A5). For temperate and tropical moist ar-
eas, estimates of this study tend to be a bit lower compared
to the LPJmL4 results.

3.4.5 Actual SOC stock comparison with SoilGrids 2.0

SoilGrids 2.0 (Poggio et al., 2021) is a digital soil mapping
approach that uses over 240 000 soil profile observations to
produce high-resolution soil maps, including SOC stocks and
estimates of their uncertainties. To evaluate the performance
of our model at the global scale, we correlate SoilGrids 2.0
SOC stock values, which were aggregated to 0.5◦ resolution,
to our estimates for the year 2010 in Fig. 8. To focus our com-
parison on cropland areas, we mask out grid cells with fewer
than 1000 ha of cropland. The spatial correlation is moder-
ate for tropical climate zones, whereas it is low for temperate
moist areas. In tropical dry and temperate dry areas, we also
simulate very low SOC values (below 10 tCha−1), which is
not found in SoilGrids 2.0, whereas our modeled SOC stocks
can be substantially higher than those reported by SoilGrids
2.0 in temperate moist areas. Additionally, we use the uncer-
tainty estimates from SoilGrids 2.0 in Fig. 9 to identify areas
where our modeled SOC stocks are below the 5th or above
the 95th percentile of the SoilGrids 2.0 data. For the vast ma-
jority of grid cells, our model results are between the 5th and
95th percentile of SoilGrids 2.0 estimates. We underestimate
SOC stocks, especially in dry areas (e.g., close to the Sahara).
Overestimated stocks are often situated in mountainous re-
gions.

Figure 9. Global map on SOC results compared to uncertainty es-
timates from SoilGrids 2.0 (Q0.05 – 5th percentile; Q0.95 – 95th
percentile).

4 Discussion

We have (1) developed a reduced-complexity model and
(2) compiled a spatially explicit time series data set of agri-
cultural management data in order to (3) analyze the role of
agricultural management in historical cropland SOC dynam-
ics. Our study shows that information on agricultural man-
agement alters estimates of the SOC debt and slows down
the loss of SOC compared to the often-used constant man-
agement assumptions.

It is important to evaluate the validity of our results,
as modeling management effects on SOC dynamics at the
global scale come with large uncertainties. The model in-
cludes a large number of parameters, and for most of these,
the uncertainty distributions have not been quantified so far.
Moreover, we think that, beyond parameter uncertainty, the
structural uncertainty of the model design is high. The man-
agement data itself are prone to uncertainties as well, as most
of the data are only indirectly calculated from reported data.

In the following, we give a qualitative assessment of the
uncertainties and limitations of this study and discuss our
three study objectives and results against the existing liter-
ature.

4.1 Comprehensive historical agricultural
management data set

Our spatially explicit time series data set of agricultural man-
agement is based on country-specific FAO production and
cropland statistics (FAO, 2021) and 0.5◦ land use data from
LUH2 (Hurtt et al., 2020). Starting from these two sources,
we derive a harmonized and consistent data set for the ma-
jor C flows within the cropping system (Fig. 4) using a mass
balance approach from the IPCC guidelines vol. 4 (IPCC,
2006, 2019) and other auxiliary data sets (e.g., Porwollik
et al., 2019).
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For some of the aspects covered in our data set, for ex-
ample, livestock distribution (Robinson et al., 2014) or ma-
nure production and application (Zhang et al., 2017), well-
compiled data sets in high resolution exist that capture real-
world conditions much better than our estimates. However,
they often come with the caveats of either being static in time,
demanding large sets of auxiliary data, or being inconsistent
with each other.

For most of the parameters used in our management es-
timates, no uncertainty estimates exist. This is why, in our
view, a large part of the uncertainty with respect to the im-
pact of SOC management – next to the parametric and struc-
tural uncertainty of the soil model – is included in the man-
agement data itself. This is especially the case for the residue
and manure production and application numbers, as these are
only indirectly derived from crop and livestock production,
feed data, and area data (FAO, 2021; Weindl et al., 2017).
The uncertainty of recycling shares adds, on top of the un-
certain total, numbers of manure and residue biomass. Previ-
ous modeling studies of SOC carbon on cropland often only
used stylized scenarios of management practices (Pugh et al.,
2015; Lutz et al., 2019) rather than trying to estimate real
management.

While our data set includes crop residues and manure,
which are likely the largest carbon inputs to soils, it does not
account for a list of minor carbon inputs from cover crops,
agroforestry, green manure, weed biomass and the applica-
tion of human excreta, sewage sludge, processing wastes,
forestry residues, or biochar. Including these sources would
correct our estimates upwards and bring our estimates closer
to the IPCC stock change factors (see Sect. 3.4.1). Unfortu-
nately, data on the quantity of these inputs are very scarce
and do not exist with global coverage.

SOC inputs from aboveground residues had the strongest
management effect on SOC debt dynamics on cropland (see
Fig. 5). As pointed out by Keel et al. (2017) and Smith
et al. (2020), carbon input calculations are highly sensitive
to the choice of allometric functions determining below-
and aboveground residue estimates from harvested quan-
tities (see Table A1 in Appendix A, for coefficients used
in this study). Keel et al. (2017) question whether below-
ground residues might increase with a fixed root-to-shoot
ratio rather than being independent of productivity gains.
Moreover, the study pointed out that plant breeding shifts
allometries, which might not be reflected in outdated data
sources. While our study considers a dynamic harvest index
with rising yields for several crops, we may still overestimate
residue biomass, in particular for belowground biomass.

4.2 Reduced complexity SOC model

Our reduced-complexity SOC model is based on a tier 2
modeling approach. This reduces the computational and data
demand of the model in comparison to DGVMs, while still
allowing for the explicit representation of agricultural man-

agement practices. Along with the effects of various C in-
puts, the impacts of water supply from rainfall and irrigation
and tillage systems can also be accounted for in the compu-
tation of SOC decay rates. As such, the model can reflect the
spatial and temporal heterogeneity in both management and
biophysical conditions.

The substantial impact of changing management practices
through time is indicated by the development of our esti-
mated stock change factors (see Fig. 6) and by the time trend
of the SOC debt (see Fig. 2a). Residue management has
changed over the last few decades, especially with the phas-
ing out of residue burning practices in several regions and in-
creased general productivity, showing a clear impact on SOC
dynamics and underlining the importance of accounting for
these effects in soil carbon modeling.

The tier 2 approach (IPCC, 2019, chap. 5) used here is ex-
plicitly designed for agricultural soils, whereas we also apply
it to soils under PNV. This is necessary in order to represent
SOC losses under land use change in a dynamic way, as this
is an important driver of SOC dynamics. The comparison of
simulated PNV data with LPJmL4 shows the model’s capa-
bility in reproducing PNV SOC stocks (Fig. A5). Concur-
rently, the point data comparison (see Fig. A4) shows low
correlation for PNV and also for cropland sites. This might
point to the fact that SOC stocks can vary considerably at
field and local scales and thus a very high number of point
data is needed to derive statistical properties that could im-
prove the point-to-grid-cell comparison (see Rammig et al.,
2018).

Using litterfall estimates from LPJmL4, we have been able
to estimate the total SOC stocks of the world which are dom-
inated by SOC under natural vegetation. However, as the
world’s SOC stock is highly uncertain, which is seen in the
wide range of global SOC stock estimates for the first 30 cm
of the soil profile (Batjes, 2016; Hengl et al., 2017; FAO,
2019; Schaphoff et al., 2018a; Poggio et al., 2021; Sander-
man et al., 2017) in Fig. 7, the only conclusion we can draw
from this is that our result is within a plausible range.

Additionally, we find our 0.2 GtCyr−1 SOC stock change
within the period between 1975 and 2010 for the first 30 cm
of the soil profile at the upper end of estimates when compar-
ing it to estimates by Ito et al. (2020) of 0.18± 0.41 GtCyr−1

within the period between 1850 and 2014 for whole soil pro-
file. This might be unsurprising, as the CO2 effect is most
likely stronger and the land use change effects weaker within
our later and shorter modeling period compared to a mean
value of the period between 1850 and 2014. The large uncer-
tainty within the estimates of SOC stock and its changes (Ito
et al., 2020) again points to the large structural uncertainty
within SOC modeling.

To avoid a strong impact of natural land representation and
its uncertainties on our results, we focus on SOC changes
on cropland. Pristine natural vegetated areas (like permafrost
and rain forests) without human land management drop out
in our calculation of SOC debt and stock change factors. Nat-
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ural SOC estimates only influence results when natural land
is converted to cropland. Moreover, the temporal dynamic of
the SOC debt and stock change factors is not (or is only to
a small degree) altered by climatic or atmospheric effects on
SOC stocks, as they are canceled out by taking the difference
(for the SOC debt) and ratio (for the stock change factors) of
cropland SOC and SOC under hypothetical PNV conditions.

The initialization of SOC stocks, however, is important for
the size of the SOC debt and its change over time, since
the presence and size of legacy fluxes affect these values
strongly (see Fig. A2). According to our sensitivity analysis,
the SOC debt varies between 33.3 and 50.7 GtC, depending
on the initialization choice, with our best guess at 39.6 GtC.
Concurrently, our results indicate that the impact of the dy-
namic agricultural management is robust to the initialization
of SOC stocks.

Comparing the geographic SOC patterns to SoilGrids 2.0
(Poggio et al., 2021, see Fig. 9), we find that our model es-
timates values of SOC stocks that are greater than the esti-
mated confidence intervals in SoilGrids 2.0 for some moun-
tainous regions across the globe. This could indicate that we
are not capable of capturing specific processes that would re-
duce the vegetation’s productivity (such as erosion on steep
slopes or shallow soils; Borrelli et al., 2017). A large swathe
of eastern North America was heavily affected by a dust bowl
event, with wind erosion removing large parts of the topsoil,
a process not considered in our model. Similarly, we likely
overestimate SOC stocks for the loess soils in northern China
and the Altiplano in Latin America; in both cases, erosion is
a likely reason. In contrast, we estimate lower SOC stocks
at the edges of the Sahara, where uncertain local water avail-
ability and artificial irrigation may dominate spatial SOC pat-
terns.

In our model, erosion might, however, only affect the spa-
tial pattern but not the aggregate SOC pool. As pointed out by
Doetterl et al. (2016), the final fate of leached or eroded car-
bon is uncertain and might even offset LUC emissions (Wang
et al., 2017). Concurrently, other studies have claimed ero-
sion moves SOC into aquatic reservoirs (Zhang et al., 2020),
thus changing the total global terrestrial SOC stock. Whereas
SOC displacement might play an important role for soil qual-
ity analysis, in this budget approach, focused especially on
the SOC debt, displaced but not emitted SOC can be treated
as SOC that remains on the cropland. Erosion and degrada-
tion impacts on yields and therefore on soil C inputs are cap-
tured by our method, as we base them on FAO statistics of
actual production. Yet the distribution of production below
the country level – which we allocate proportional to LPJmL
production potentials that do not reflect erosion feedback to
yields – will overestimate yields and therefore biomass in-
puts to eroded soils.

In comparison with default stock change factors of the
IPCC guidelines, our model estimates a stronger decline in
SOC stocks (Fig. 6) for almost all regions. Tropical soils
might suffer from low C input rates due to large yield gaps

(Global Yield Gap Atlas (GYGA); https://www.yieldgap.org,
last access: 3 January 2022) and high shares of residue re-
moval and burning in lower-income countries (Smil, 1999a;
Williams et al., 1997; Jain et al., 2014). Yet, even when com-
paring our estimates to the low-input stock change factors of
the IPCC, our SOC loss is roughly twice as large as the re-
vised 2019 IPCC default values (IPCC, 2019, chap. 5), while
it shows good agreement with the older default values from
IPCC (2006, chap. 5). However, the revised estimates of the
IPCC included many more and more recent data points, call-
ing for a closer look at causes of the large deviations between
our results and the refined tier 1 factors. On the one hand,
our approach does not account for unharvested carbon inputs
from weeds or biomass cover on short-term fallows. Shifting
agriculture with fallow periods might be prominent in trop-
ical regions. While long-term fallow land (> 4 years) is ex-
cluded from FAOSTAT as cropland, short-term fallow is not.
Thus, our carbon inputs for these areas might be underesti-
mated, leading to too low stock change factors. On the other
hand, older studies by Don et al. (2011) estimated SOC losses
for tropical soils of around 25 % on average, corresponding
to a stock change factor of 0.75, but also reported a wide
range of measured SOC changes from −80 % to +58 %. Fu-
jisaki et al. (2015), however, found much lower loss rates of
around 9 %, attributing the difference to the different time
period lengths since the conversion to cropland. As our re-
sults do not specifically account for cropland age, and most
of the cropland is older than 20 years (as assumed for the
default IPCC tier 1 stock change factors), our stock change
factors have to be lower by definition, following the steady-
state assumption that cropland will continue to approach a
new equilibrium. For the same reason, our estimates for tem-
perate regions might be lower than those default values of
both IPCC (2006, chap. 5) and IPCC (2019, chap. 5). With
the production-increasing impact of irrigation and fertiliza-
tion on carbon-poor dryland soils, SOC under cropland can
also be higher than under PNV with stock change factors
above 1 (see Fig. 2d), but these areas are much smaller than
where the stock change factors are well below unity.

Generally, limiting the analysis to the first 30 cm of the
soil profile follows the IPCC guidelines (IPCC, 2006, 2019)
and assumes that most of the SOC dynamics happen in the
topsoil. In this regard, several aspects are strongly simplified
within our approach. First, the distribution of carbon inputs
into different soil layers are neglected, and all carbon inputs
are allocated to the topsoil. This particularly overestimates
SOC stocks in the first 30 cm of soil below deeper rooting
vegetation, which is certainly the case for most of the woody
natural vegetated areas. Second, changes to the subsoil are
neglected, which is most important for tillage effects. Other
management practices might be more equally affecting top-
soil and subsoil, as they do not directly the relocates carbon
vertically. As Powlson et al. (2014) have shown, the subsoil
can be make a large difference in the evaluation of total SOC
losses or gains for no-tillage systems. No-tillage effects may
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seem larger than they actually are if only topsoil is consid-
ered. SOC transfers to deeper soil layers under tillage might
enhance subsoil SOC compared to no-till practices. However,
the effect of no till on the subsoil and its overall importance
as a SCS measure is still debated (Ogle et al., 2019). Finally,
organic soils (like peatlands and wetlands) and drained crop-
land areas are not explicitly considered, and emissions from
these cropland areas are thus likely substantially underesti-
mated.

4.3 SOC debt and SOC drivers

The analysis of SOC stock gains and losses is complex and
has several dimensions as climatic and anthropogenic effects
overlap. There is broad consensus that land conversion to
cropland has caused substantial C emissions over the his-
torical period (e.g., Friedlingstein et al., 2020). There is un-
certainty with respect to the overall size of these emissions
from different methods and reference points and with re-
spect to the contribution of cropland and agricultural man-
agement to these emissions. In order to mitigate greenhouse
gas emissions, it is essential to stop the decline of SOC stocks
or even transform cropland management to sequester atmo-
spheric C in cropland soils (Minasny et al., 2017). Defin-
ing the SOC debt of 1975 as the baseline, and measuring
land use emissions on cropland as the difference between
a potential natural state and the state under human inter-
ventions (see Pugh et al., 2015), we find that global crop-
land has acted as an emissions source since 1975. Com-
paring our SOC loss rate (the change in SOC debt) of
0.14 GtCyr−1 to estimates of land-use-change-induced emis-
sions of 2.0± 1.0 GtCyr−1 (sum of bookkeeping land use
and land cover change (LULCC) emissions and loss of addi-
tional sink capacity for the years 2009–2018 in Gasser et al.,
2020), we find SOC emissions of the first 30 cm of the soil
profile to be a minor contributor to overall land-use-change-
induced emissions. Annual C loss rates of 0.2 per 1000 C still
have the opposite trend to the promoted 4 per 1000 C seques-
tration rate target (Minasny et al., 2017). Dedicated efforts to
increase cropland SOC are thus necessary, as management
improvements at historical rates are not enough to counter-
act ongoing SOC degradation on cropland. Yet our study also
shows the substantial impact of changing management on the
development of SOC debt (Figs. 3 and 5).

According to Sanderman et al. (2017), the SOC debt
since the beginning of human cropping activities has been
at around 37 GtC for the first 30 cm of the soil, with half
of it attributed to SOC depletion on grasslands. Our esti-
mate of 39.6 GtC in 2010 for cropland debt is thus twice as
high as their estimate. However, there are large uncertainties
in modeling SOC at the global scale, and Sanderman et al.
(2017) pointed out that their results might be conservatively
low compared to experimental results.

Furthermore, Sanderman et al. (2017) modeled historical
trends based on agricultural land expansion without consider-

ing SOC variations due to time-variant agricultural manage-
ment. Pugh et al. (2015) considered management effects like
tillage and the incorporation of residues in stylized and static
scenarios only so that they could not account for the his-
torical management effects on SOC dynamics. Their study,
moreover, concludes that yield gains (by 18 % in their simu-
lations) do not lead to a substantial decline in SOC debt (less
than 1 % SOC increase). Historical yield increases, however,
are estimated to be well above 50 % (Pellegrini and Fernán-
dez, 2018; Ray et al., 2012; Rudel et al., 2009) and often lead
to an increase in below- and aboveground residue biomass
inputs to the soil. While we find substantially larger SOC
increases in response to productivity gains than the 1 % re-
ported by Pugh et al. (2015), this is not sufficient to com-
pensate SOC losses from the global cropland expansion of
around 11 % between 1974 and 2010.

The effects of agricultural productivity on cropland SOC
dynamics, including historical yield trends and associated in-
creases in residue inputs, can be directly accounted for in our
modeling approach. In contrast, process-based studies (Pugh
et al., 2015; Herzfeld et al., 2021) often lack data on rel-
evant management aspects that drive production increases.
Herzfeld et al. (2021) also consider historical management
trends for fertilizer and manure inputs and on residue re-
moval rates and tillage systems but cannot reproduce the sub-
stantial increase in agricultural productivity over the last few
decades. Still, they find that, compared to no-tillage systems,
residue management has much larger potential to affect the
strength of their projected future global cropland SOC de-
cline. This is consistent with our finding that increasing SOC
inputs from aboveground residues had the strongest effect on
the slowing down of the SOC debt increase (Fig. 5). In line
with this, Dangal et al. (2022) find that no tillage has only
minor impacts on SOC dynamics across parts of the USA.

Elliott et al. (2018) show that yield trends in the USA can
be reproduced by models but require information on inputs
that are not available at the global scale, such as annual data
on sowing dates, planting densities, and genetic traits such as
kernel number and radiation use efficiency. As such, it will
remain challenging for process-based DGVMs to capture the
trend of agricultural productivity on cropland SOC dynam-
ics.

Our study emphasizes again that the expansion of crop-
land is still a major source of CO2 emissions – not only
through the removal of vegetation but also by a slow deple-
tion of C stocks in soils. Our estimates indicate a SOC debt
of 39.6 GtC in 2010, and every additional deforested hectare
adds to this debt. Avoided deforestation and other environ-
mental regulation leads to an intensification on existing crop-
land (Humpenöder et al., 2018), and our results show that
such an intensification could lead to increased cropland SOC
if residues are returned to the soil, amplifying the C seques-
tration potential of avoided deforestation.

There is also ample potential for further improved SOC
management. As shown in Fig. 4, the annual SOC respira-
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tion (1.3 GtC yr−1) is slightly above one-quarter of the to-
tal annual net C uptake by crops (4.6 GtC yr−1). C com-
pounds have to be respired by soil organisms to maintain
basic soil functions and regulate the nutrient cycle, which
often leaves limited options to decrease C losses via SOC
respiration (Janzen, 2006). However, similar C losses occur
at the end of the food supply chain (1.2 GtC yr−1), at the
soil surface (1.5 GtC yr−1), and are smaller but still consider-
able during residue burning (0.2 GtC yr−1) and within animal
waste management systems (0.2 GtC yr−1). Improved man-
agement could include, first, a circular flow from the food
supply chain back to soils. Waste composting or excreta re-
cycling could represent a major additional C input to crop-
land soils (Brenzinger et al., 2018). Second, soil carbon se-
questration techniques (Smith, 2016), deep plowing (Alcán-
tara et al., 2016), or the transformation of C inputs to more
recalcitrant biochar (Woolf et al., 2010) may transfer larger
parts of the biomass at the litter soil barrier into permanent
soil pools. Third, reducing the share of residue burning and
improved manure recycling could further increase C inputs.
Finally, other carbon accumulating practices, such as the cul-
tivation of cover crops (Poeplau and Don, 2015; Porwollik
et al., 2022) and agroforestry (Lorenz and Lal, 2014), could
increase total C sequestration on cropland.

5 Conclusions

We have compiled a spatially explicit and time-variant data
set on agricultural management aspects relevant for crop-
land SOC dynamics. We have also developed a reduced-
complexity SOC model that is able to be applied in
optimization-based IAM frameworks, for which detailed
process-based models are computationally too expensive.
Making use of these data and this model, we are able to es-
timate spatially explicit SOC stocks, SOC debts, and stock
change factors considering agricultural management. It is
– to our knowledge – the first study that analyzes the role
of time-variant and spatially explicit historical agricultural
management for global SOC dynamics.

Our results demonstrate that historical changes in agricul-
tural management have shaped the SOC debt on cropland. It
is thus necessary to explicitly consider agricultural manage-
ment in a dynamic manner in global carbon assessments and
models, especially when exploring climate mitigation path-
ways with so-called land-based solutions (e.g., Popp et al.,
2016). That also implies that we not only need better mon-
itoring of agricultural practices to create these data but also
better accessibility of existing data. Our open-source model
(Karstens and Dietrich, 2022), published data set (Karstens,
2022), and the flexible data processing with the MADRaT
package (Dietrich et al., 2022) constitute a starting point for
building comprehensive data sets on agricultural manage-
ment aspects.

With the reduced-complexity SOC model, we are able
to account for agricultural management effects on cropland
SOC dynamics within optimization-based IAM frameworks.
Reduced input data requirements such as accounting for
changes in productivity rather than reproducing the processes
that lead to such changes in productivity (Elliott et al., 2018)
will help us to explore the role of agricultural management
in sustainable development pathway analyses (Sörgel et al.,
2021). However, we clearly see that increases in agricultural
productivity are not sufficient to create positive net SOC se-
questration in cropland soils. More management options that
explicitly target the sequestration of C in cropland soils need
to be considered. Our open-source model can be expanded to
account for additional management options for carbon farm-
ing, such as cover crops, agroforestry, or biochar applica-
tions.

Appendix A: Figures and tables

A1 Methods

Figure A1. Climate zone map adapted from IPCC. The climate
zone classification is based on the classification scheme of the IPCC
guidelines (IPCC, 2006) and has been reimplemented by Carre et al.
(2010), which is the source of these data. Note that the reduced set,
used for the comparison of stock change factors, is included in the
color code, with temperate moist in light blue, temperate dry in dark
violet, tropical moist in red, and tropical dry in orange.
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Table A1. Parameterization of harvested organs and their corresponding residues parts and allometric coefficients. This table is mainly based
on Bodirsky et al. (2012), together with simple carbon to dry matter assumptions. Allometric coefficients are used, as described in IPCC
(2006), with HIprod being slope(T ), HIarea intercept(T ), and RS RBG-BIO.

Harvested Aboveground Belowground Allometric
organs residues residues coefficients

Crop code Crop type nr/dm wm/dm c/dm nr/dm wm/dm c/dm nr/dm c/dm HIarea HIprod RS

tece Temperate cereals 0.0217 1.14 0.42 0.0074 1.11 0.42 0.0098 0.38 0.58 1.36 0.24
maiz Maize 0.016 1.14 0.42 0.0088 1.18 0.42 0.007 0.38 0.61 1.03 0.22
trce Tropical cereals 0.0163 1.14 0.42 0.007 1.18 0.42 0.006 0.38 0.79 1.06 0.22
rice_pro Rice 0.0128 1.15 0.42 0.007 1.11 0.42 0.009 0.38 2.46 0.95 0.16
soybean Soybean 0.0629 1.13 0.42 0.008 1.11 0.42 0.008 0.38 1.35 0.93 0.19
rapeseed Other oil crops 0.0334 1.08 0.42 0.0081 1.11 0.42 0.0081 0.38 0 1.86 0.22

(incl. rapeseed)
groundnut Groundnuts 0.0299 1.06 0.42 0.0224 1.11 0.42 0.008 0.38 1.54 1.07 0.19
sunflower Sunflower 0.0216 1.08 0.42 0.008 1.11 0.42 0.008 0.38 0 1.86 0.22
oilpalm Oil palm 0.0027 1.01 0.49 0.0052 1.11 0.48 0.0053 0.47 0 1.86 0.24
puls_pro Pulses 0.0421 1.1 0.42 0.0105 1.16 0.42 0.008 0.38 0.79 0.89 0.19
potato Potatoes 0.0144 4.55 0.42 0.0133 6.67 0.42 0.014 0.38 1.06 0.1 0.2
cassav_sp Tropical roots 0.0053 2.95 0.42 0.0101 6.67 0.42 0.014 0.38 0 0.85 0.2
sugr_cane Sugar beet 0.0024 3.7 0.42 0.008 3.82 0.42 0.008 0.38 0 0.67 0.07
sugr_beet Sugar beet 0.0056 4.17 0.42 0.0176 5 0.42 0.014 0.38 0 0.54 0.2
others Fruits, vegetables, 0.0267 5.49 0.42 0.0081 1.88 0.42 0.007 0.38 0 0.39 0.22

nuts
foddr Forage 0.0201 4.29 0.42 0.0192 4.1 0.42 0.0141 0.38 0 0.28 0.45
cottn_pro Cottonseed 0.0365 1.09 0.42 0.0093 1.18 0.42 0.007 0.38 0 1.48 0.13

nr/dm – nitrogen-to-dry-matter ratio; wm/dm – wet-matter-to-dry-matter ratio; c/dm – carbon-to-dry-matter ratio; HIarea – harvest index per area; HIprod – harvest index per
production; RS – root : shoot ratio.

A2 Results

Figure A2. Global 1SOC for different SOC initialization choices in the start year of 1901. Starting in 1901 with steady-state SOC under
vegetation for all land use types without any human cropping activities (Initial-natveg) leads to a smaller 1SOC in 1975 and a steeper increase
until 2010, as compared to initializing with steady-state SOC stocks under historic land use (Initial-spinup1510). On the other hand, assuming
all SOC to be in a land-use-specific steady state already in 1901 (Initial-eq) leads to the opposite effect of an already higher 1SOC in 1975
and a less steeper increase until 2010. However, the difference between the dynamic historical management assumption (histManagement)
compared to constant management assumption from 1975 onward (constManagement) is of a similar size for all initialization choices.
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Figure A3. Modeled and data-based estimation for climate-zone-specific SOC stock (in GtC) for the first 30 cm of soil aggregated over all
land areas. SoilGrids, GSOC, and WISE do not consider changes over time and rely on soil profile data gathered over a long period of time,
which makes it hard to pinpoint a specific year for these SOC estimations. In this context, they will be compared to modeled data (LPJmL4;
this study) for the year 2010. PNV denotes the potential natural vegetation state, without considering human cropping activities, calculated
as reference stock within our model. We use the climate zone specification of the IPCC (IPCC, 2006).

Figure A4. Correlation between modeled and measured SOC stocks. Given the wide span between minimum and maximum measured SOC
stocks within in a given cell, we correlated the median values with our modeled results. Both cropland (R2

= 0.09) and areas with natural
vegetation (R2

= 0.08) tend to be lower in our results than in the point measurements.
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Figure A5. Correlation between modeled SOC stocks of LPJmL4 and this study for a hypothetical potential natural state (PNV) for the year
2010. The gray lines indicate the 1 : 1 line.

Code and data availability. We compiled our calcula-
tions as open-source R packages that are available
at https://doi.org/10.5281/zenodo.7234094 (Bodirsky
et al., 2022a), for the management-related functions,
https://doi.org/10.5281/zenodo.6330155 (Karstens and Di-
etrich, 2022), for soil dynamic related functions, and
https://doi.org/10.5281/zenodo.7234083 (Bodirsky et al., 2022b),
for validation data. All libraries are based on the MADRaT package
available at https://doi.org/10.5281/zenodo.7234107 (Dietrich et al.,
2022), a framework which aims to improve the reproducibility and
transparency in data processing. Model results, including C input
data, are accessible at https://doi.org/10.5281/zenodo.4320663
(Karstens, 2022). The software code for the paper and result prepa-
ration can be found under https://doi.org/10.5281/zenodo.7234651.
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