
7712 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Master Memory Function for Delay-Based
Reservoir Computers With
Single-Variable Dynamics
Felix Köster , Serhiy Yanchuk , and Kathy Lüdge

Abstract— We show that many delay-based reservoir com-
puters considered in the literature can be characterized by
a universal master memory function (MMF). Once computed
for two independent parameters, this function provides linear
memory capacity for any delay-based single-variable reservoir
with small inputs. Moreover, we propose an analytical description
of the MMF that enables its efficient and fast computation.
Our approach can be applied not only to single-variable delay-
based reservoirs governed by known dynamical rules, such as
the Mackey–Glass or Stuart–Landau-like systems, but also to
reservoirs whose dynamical model is not available.

Index Terms— Machine learning, nonlinear dynamics, reser-
voir computing.

I. INTRODUCTION

RESERVOIR computing is a neuromorphic-inspired
machine learning paradigm, which enables high-speed

training of recurrent neural networks and is capable of solv-
ing highly complex time-dependent tasks. First proposed by
Jaeger [1] and inspired by the human brain [2], it utilizes
the inherent computational capabilities of dynamical systems.
Very recently, the universal approximation property has also
been shown for a wide range of reservoir computers, which
solidifies the concept as a broadly applicable scheme [3].
Bollt et al. [4], Gauthier et al. [5], and Jaurigue and Lüdge, [6]
pointed out a connection between reservoir computers and
vector autoregressive (VAR) and nonlinear VAR machines,
which may be one of the reasons behind the surprising
efficiency of reservoir computers for time-dependent tasks.
Realizations range from electrical and optoelectrical [7],
[8], [9] up to optical setups [10], [11], [12], [13], [14]
and have shown the relevance of reservoir computing to practi-
cal applications like human action recognition [15]. Addition-
ally, analytical and numerical analyses [16], [17], [18], [19]

Manuscript received 13 September 2021; revised 2 June 2022 and
6 September 2022; accepted 3 November 2022. Date of publication
18 November 2022; date of current version 4 June 2024. This study was sup-
ported by the “Deutsche Forschungsgemeinschaft” (DFG) in the framework
of SFB910 and Project 411803875. (Corresponding author: Felix Köster.)

Felix Köster is with the Institut für Theoretische Physik, Technische
Universität, 10623 Berlin, Germany (e-mail: f.koester@tu-berlin.de).

Serhiy Yanchuk is with the Potsdam Institute for Climate Impact Research,
14473 Potsdam, Germany, and also with the Institut für Mathematik,
Humboldt University of Berlin, 10117 Berlin, Germany.

Kathy Lüdge is with the Institute of Physics, Ilmenau University of
Technology, 98693 Ilmenau, Germany.

Digital Object Identifier 10.1109/TNNLS.2022.3220532

help in building an understanding of its working principles and
improve its performance while pinpointing to easily imple-
mentable realizations [20], [21]. Utilizing reservoir computers
as a handy supporting tool for predicting difficult spatiotem-
poral patterns has shown promising results in increasing the
accuracy for predictions of chaotic dynamics like weather
forecasting [22], [23]. Many groups endeavor to optimize
delay-based reservoir computing, e.g., through the utilization
of Taken’s embedding theorem [24], [25], [26], [27]. This
article provides additional analytical insight into the general
computation performance of delay-based reservoir computers
and with it introduces new possibilities to optimize reservoirs.

Originally, reservoir computing is performed with a network
of nonlinear nodes, which projects the input information into a
high-dimensional phase space, allowing a linear fit to regress
or to linearly separate features [1]. In time-delayed reservoir
computing, a single-dynamical node with delayed feedback
is employed as a reservoir instead of the network [28].
The time-multiplexing procedure allows for such a single-
element system to implement a recurrent ring network [28],
[29], [30], [31], see Fig. 1. The absence of the need for a
large number of nonlinear elements significantly reduces the
complexity of the reservoir hardware implementation. Promis-
ing realizations with a single-delay-based reservoir [32], [33],
[34], [35] give a first glimpse over the potential of this idea for,
e.g., time-series predictions [36], [37], [38], [39], equalization
tasks on nonlinearly distorted signals [40], and fast word
recognition [41]. For a general overview, we refer to [42],
[43], [44], and [45].

Often reservoirs are optimized to a specific task by hyper-
parameter tuning, which defeats the purpose of reservoir
computing as a fast trainable machine learning scheme.
Dambre et al. [46] introduced a task-independent quantifica-
tion of a reservoir computer, building on the memory capacity
notion already introduced in [1], whereas a high memory
capacity pinpoints to generally well-performing reservoirs.

In this article, we provide an analytical tool for finding
promising reservoir setups by introducing a master memory
function (MMF) for delay-based reservoir computing with
small inputs. The MMF allows for fast computable predictions
of the linear memory capacity and it indicates that the linear
memory capacity of reservoirs is similar for systems with
similar linearizations.

The main idea behind our method can be outlined as fol-
lows. Consider a delay-based reservoir described by a general

© 2022 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1628-9569
https://orcid.org/0000-0002-4831-8910
https://orcid.org/0000-0002-3577-3690

KÖSTER et al.: MMF FOR DELAY-BASED RESERVOIR COMPUTERS WITH SINGLE-VARIABLE DYNAMICS 7713

Fig. 1. Scheme of delay-based reservoir computing and the new analytic
approximation method called MMF. Important timescales are marked in
purple: T clock cycle, τ delay, and θ virtual node separation time. The
upper panel depicts the direct computation method of the MC via numerical
integration of the delay differential equation, and thus, the state matrix S. The
lower panel shows the newly proposed method (MMF) which can be obtained
from the measured small-signal parameters a and b, time timescales, and the
input weights winput. (a) Numeric. (b) Analytic approximation (MMF).

nonlinear system ṡ(t) = f (s(t), s(t − τ), I (t)), where I (t) is
an input signal, which is ”small” in a certain sense, s(t)
determines the state of the reservoir, and τ is a time delay
[see Fig. 1(a)]. The response s(t) of the reservoir must be
independent (at least to some extend) of its initial state, and
the property is known as the echo state. Such a situation
occurs when the reservoir is operating near an equilibrium
state s∗ that is stable in the absence of the input signal.
Therefore, all reservoir dynamics take place in a neighborhood
of this equilibrium and as a result, the reservoir linearization
δṡ(t) = aδs(t) + bδs(t − τ) + cI (t) approximates these
dynamics. Here, δs is the deviation from the equilibrium.
In the considered case of the single-variable reservoir, the
scalar parameters a and b are the only determining quantities.
The relatively simple form of the linearized system allows
us to obtain an analytical expression for the linear memory
capacity, which depends on the parameters a and b, and thus,
parametrically determines the linear memory capacity of any
reservoir with the above properties [see Fig. 1(b)]. We call
the obtained function MMF due to its universal features,
i.e., different reservoir computing setups, which possess the
same linearizations (a, b), and yield the same linear memory
capacity given by the MMF. Our results, thus, extend the
recent results that calculate the (linear) memory capacity for
either resonant setups [17], [47], i.e., setups where the clock
cycle T equals the time-delay τ , or reservoirs with τ �= T
for special cases of differential equations [48], by utilizing
an analyzing formula for arbitrary single-variable delay-based
reservoir setups with small inputs.

This article is structured as follows. First, we will briefly
revise the concept of time-delay-based reservoir computing
and the concept of linear memory capacity. We will then
present our main analytical result while additionally presenting
an example code for an efficient evaluation of the obtained
expression; the derivation is given in the Appendix. Finally,
comparisons of numerically simulated reservoir computer
performance with the semianalytical approach are provided.
We also show in Section IV-F the applications of our results
to reservoirs with an unknown dynamical model, where the
parameters a and b are evaluated using the system response
to external small periodic stimuli.

II. TIME-DELAY-BASED RESERVOIR COMPUTING

Reservoir computing utilizes the intrinsic abilities of
dynamical systems to project the input information into a
high-dimensional phase space [1]. By linearly combining
the responses of the dynamical reservoir, a specific task is
approximated. In the classical reservoir computing scheme,
often, a so-called echo state network is used by feeding the
input into a spatially extended network of nonlinear nodes.
Linear regression is then applied to minimize the Euclidean
distance between the output and a target. This approach is
particularly resourceful for time-dependent tasks because the
dynamical system that forms the reservoir acts as a memory
kernel.

In the time-delay-based reservoir computing scheme [28],
the spatially extended network is replaced by a single-
nonlinear node with a time-delayed feedback loop. A time-
multiplexing procedure with a periodic mask function g is
applied to translate the input data to a temporal input sig-
nal. Similarly, the time-multiplexing procedure translates the
single-temporal high-dimensional reservoir response to the
spatiotemporal responses of virtual nodes. The virtual nodes
play the same role as the spatial nodes in echo state networks.

A sketch of the delay-based reservoir computing setup is
shown in Fig. 1(a). In the following, we will give a short
overview of the quantities and notations used in this article.
We also refer to our previous works [27], [48], [49], [50], [51]
for a detailed explanation of how the reservoir setup is oper-
ated and task-independent memory capacities are computed.

Let us briefly remind the main ingredients of the time-
multiplexed reservoir computing scheme [28], [48], [49], [50].
We apply an input vector u ∈ R

K componentwise at times
t ∈ [tk−1, tk), tk = kT , k = 1, . . . , K , K being the number
of sample points. The administration time for each input
tk+1 − tk = T is the same and it is called the clock cycle T .
To achieve a high-dimensional response to the same input,
a T -periodic mask function g multiplies the input and the
resulting signal enters the system (see Figs. 1 and 2). The mask
g is a piecewise-constant function on NV intervals, each of
length θ = T/NV corresponding to NV virtual nodes with the
corresponding constant values winput called the input weights.
The values of the mask function g play the same role as the
input weights winput in spatially extended reservoirs, with the
difference that time-multiplexing distributes the weights winput

over time. The responses of the reservoir are collected in the

7714 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Fig. 2. Exemplary timeline sketch for time-delay-based reservoir computing. Three input intervals of length T are shown for the inputs uk−1, uk , and uk+1
in red, blue, and green, respectively. The delay time τ is τ = 7ν. The number of virtual nodes is NV = 5, and thus, τ > T . Four system states are indicated
in gray (sk−1,3, sk−1,4, sk,2 and sk+1,4), where sk,2 influences sk+1,4 directly via the delay time τ . The pink line indicates an example trajectory, with black
dots showing the measured system states, i.e., the virtual nodes.

state matrix S ∈ R
K × R

NV , see Fig. 3. The elements of the
state matrix are [S]kn = ŝ(kT + nθ) with n = 1, . . . , NV ,
and k = 1, . . . , K , where ŝ(kT + nθ) ∈ R is the state of the
dynamical element of the reservoir at time (kT + nθ) shifted
by the mean over all clock cycles ŝ(kT + nθ) = s(kT +
nθ) − 〈s(· T + nθ)〉, see [46]. The average 〈s(· T + nθ)〉
can be understood as the averaging over the column elements,
where the · denotes the variable over which the averaging is
done.

A linear combination of the state matrix is given by Swreg,
where wreg ∈ RNV is a vector of weights. Such a combination
is trained by ridge regression, i.e., the least square approxima-
tion to some target vector ŷ

arg min
wreg

[∥∥Swreg − ŷ
∥∥2

2 + λ
∥∥wreg

∥∥2
2

]
(1)

where ‖ · ‖2 is the Euclidean norm, and λ is a Tikhonov
regularization parameter. The solution to this problem is

wreg = (
ST S + λI

)−1
ST ŷ. (2)

In the case of invertible ST S, the matrix (ST S)−1ST is the
Moore–Penrose pseudoinverse. We set λ = 10−6 · maxs(S),
where maxs(S) is the largest state response in the state
matrix S. To quantify the system’s performance, we use the
capacity Cŷ (see [46], [49]) to approximate a specific task
which is given by

Cŷ = 1 − NRMSE (3)

where NRMSE [52] is the normalized root-mean-square error
between the approximation y = Sw and the target ŷ

NRMSE =
(∑K

k=1(ŷk − yk)
2

K · var(ŷ)

)1/2

(4)

where var(ŷ) is the variance of the target values ŷ =
(ŷ1, . . . , ŷK).

III. RESERVOIR COMPUTERS AND

THEIR QUANTIFICATION

Here, we introduce the linear memory capacity as a quanti-
tative measure for the memory kernel of a dynamical system
and give an overview of all used reservoir computer systems
in this article.

Fig. 3. State matrix S corresponding to the timeline shown in Fig. 2 with
NV = 5.

A. Memory Capacity

The central task-independent quantification was introduced
by Jaeger [1] and refined by Dambre et al. [46], which yields
that the computational capability of a reservoir system can
be quantified via an orthonormal set of basic functions on
a sequence of inputs. Here, we give a recap of the quantities
introduced in [27], [49], [50], and [51] and focus on the linear
memory capacity.

In particular, the capacity to fulfill a specific task is given
by

Cŷ = ŷT S
(
ST S + λI

)−1
ST ŷ

‖ŷ‖2
= ŷT y

‖ŷ‖2
(6)

which can be derived from (3) (see [46], [49]). The capacity
equals 1 if the reservoir computer computes the task perfectly,
and thus, y = ŷ; and it equals C = 0 if the prediction is
not correlated with the target. In between 0 and 1 if it is
partially capable of fulfilling the task. To quantify the system’s
capability for approximating linear recalls of inputs, an input
sequence {u} = {u−K , . . . , u−3, u−2, u−1} is applied, where
uk are uniformly distributed random numbers, independent and
identically drawn in [−1, 1]. With the input sequence {u} of
random numbers, the reservoir response is collected in the
state matrix S.

To describe a linear recall task of l steps into the past, the
target vector ŷ is defined as

ŷl = {. . . , u−3−l , u−2−l , u−1−l} (7)

which is the linear recall l steps into the past. Formally, one
considers an infinitely long sequence K → ∞. To approxi-
mate it numerically, we use K = 75 000.

KÖSTER et al.: MMF FOR DELAY-BASED RESERVOIR COMPUTERS WITH SINGLE-VARIABLE DYNAMICS 7715

The linear memory capacity MC is defined as the sum of
the capacities of all possible linear recall tasks

MC =
∞∑

l=0

Cl (8)

where Cl = Cŷl is the capacity of the lth recall into the past.
This quantification is task-independent, and thus, implications
for specific applications cannot be given. Different tasks may
need different specific capacities. The measure MC thus only
gives a hint for well-performing reservoirs in the context of
using the full scope of the given reservoirs, rather than a
direct task-specific estimate. We have to point out, that the
linear-nonlinear tradeoff is a well-known effect [46], [53],
and thus, a system with high linear memory capacity can
yield a low nonlinear transformation capability. Nevertheless,
we believe predicting a well-performing linear memory ker-
nel reservoir is beneficial for a general reservoir computer
setup, as higher nonlinear memory transformation can be
utilized by adding additional reservoir systems with increased
perturbations.

B. Reservoir Systems

The delay-based reservoir computer systems used are as
follows.

1) Stuart–Landau Oscillator [54], [55] With Delayed
Feedback:

ds(t)

dt
= (

pSL + ηI (t) + γSLs(t)2
)
s(t) + κs(t − τ). (9)

Here, s(t) describes the real-valued amplitude of the system,
κ is the feedback strength, τ the delay time, pSL is a system
parameter, and η the input strength of the information fed into
the system.

For pSL + κ > 0 and η = 0, (9) has only the trivial
equilibrium s∗ = 0, and for pSL + κ < 0, additionally, the
nontrivial equilibria (s∗)2 = −(pSL + κ)/γ exist, which
appear in a pitchfork bifurcation at pSL + κ = 0. The
linearization at the nontrivial equilibria (taking into account
the input term) reads

δs(t)

dt
= aδs(t) + bδs(t − τ) + cI (t) (10)

where a = −2 pSL − 3κ = pSL + 3γ (A∗)2, b = κ , and
c = ηs∗.

2) Mackey–Glass System [56]:

ds(t)

dt
= (pMG + ηI (t))s(t) + αs(t − τ)

1 + sq(t − τ)
(11)

where s(t) is the dynamical variable, s(t − τ) is the delayed
variable, and pMG, q , and α are control parameters. The
reservoir input is fed into the system via the term ηI (t).
We set q = 1, for which the system possesses a stable
nontrivial equilibrium s∗ = −(pMG + α)/pMG (for η = 0).
The corresponding linearization at this equilibrium is (10) with
a = pMG, b = α/(1 + s∗)2, and c = ηs∗.

TABLE I

OVERVIEW OF USED PARAMETERS AND VARIABLES

3) Ikeda-System [57], [58]:

ds(t)

dt
= −s(t) + μ sin(s(t − τ) − s0) + ηI (t) (12)

where μ is a control parameter modeling the influence of the
nonlinearity, s0 is a constant phase, τ is the time-delay, and
ηI (t) is the reservoir computer input. The fixed point of the
system for η = 0 is given by s∗ = μ sin(s∗ − s0). Being a
transcendental equation, there is no closed-form solution, and
thus, we numerically calculate s∗. The linearization values are
then given by a = −1, b = μ cos(s∗ − s0), and c = η. The
Ikeda-system is used in Section IV-F to show the application
of the MMF for unknown systems.

C. Overview of Used Parameters

An overview of all used parameters is given in Table I.
Table I is divided into the sections of the first parameter
appearance.

7716 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 6, JUNE 2024

IV. RESULTS

A. Analytic Description of Memory Capacity

From (6), we see that the capacity to approximate a specific
input is given by the inverse of the covariance matrix (ST S)−1

(corrected by λI), also called the concentration matrix [59],
and the matrix multiplication of the state matrix and the
target ST ŷ. Thus, it is necessary to derive the state matrix S
from the responses to the small perturbations of the system.
This has already been done for 1-D reservoirs with τ = T
by an Euler step scheme [17], [47], and for 1-D reservoirs
with τ �= T for special cases of differential equations [48].
We would like to extend this knowledge by analyzing arbitrary
single-variable systems and τ �= T . We assume the virtual
node distance θ to be small and τ = νθ , with ν ∈ N

+.
We also assume the operation point of the reservoir to
be a stable equilibrium. We will exemplarily validate our
analysis on the three 1-dimensional nonlinear reservoirs given
by (9), (11), and (12).

Our main analytic result is the modified state matrix S̃,
which we can use to determine the MC, while we can cal-
culate it solely from the linearized system. The mathematical
derivation is given in Appendix A. The entries [S̃] jn are given
by

[
S̃
]

ln = γ√
3

i+rν<n+(l+1)NV∑
n+lNV ≤i+rν

(
r + i

i

)
pi mrw(n−i−rν) mod NV

(13)

where p = eaθ , m = −(b/a)(1 − p), γ = −(c/a)(1 − p),
the parameters a, b, and c are given by the linearization (10),
wn are the weights of the mask function g(t), and thus, the
time-multiplexing. The index l corresponds to the lth linear
recall, and n to the nth virtual node. The columns of the
modified state matrix contain entries in the direction of the
lth shifted input. As we show in Appendix A, the covariance
of the modified state matrix approximates the original state
matrix

S̃T S̃ = ST S. (14)

Moreover, we also show in Appendix A that the full linear
memory capacity can be calculated by using solely the modi-
fied state matrix

MC ≈ MCMMF = tr
(
S̃T

(
S̃T S̃ + λI

)−1
S̃
)

(15)

and the capacity of the lth recall is given by

Cl ≈ S̃T
l

(
S̃T S̃ + λI

)−1
S̃l (16)

where S̃l is the lth row of S̃.
We call the memory capacity given by (15) the MMF. For

given parameters of the linearization a, b, and c, as well as
the mask coefficients w j , this function can be evaluated in a
much more efficient way than the direct evaluation of the linear
memory capacity via a stepwise integration of the differential
equation. A speed comparison is given in Appendix B and
shows improvement of at least by a factor of 25. The new
approach does not require calculating the reservoir, and it
does not involve the input sequence uk . We believe that such

an analytical approach to a general computation performance
like the linear memory capacity can help to build insight into
delay-based reservoir computers and give a handy tool for
new optimization approaches. We also point out that the MMF
opens the possibility to use measurements of the small signal
response of unknown dynamical systems to evaluate the linear
memory capacity.

B. Efficient Numerical Evaluation of the Memory Capacity
and the Modified State Matrix

The obtained approximations of the modified state
matrix (13) and memory capacity function (15) allow for effi-
cient numerical evaluation. For this, we propose the following
scheme, which we also show as a pseudocode in Algorithm 1.

First, we iterate over all entries of a modified Pascal’s
triangle (see Fig. 7 in the appendix for more information
on that), which can be done by two nested loops r and i .
We do this until all entries in a row q are below a given
threshold ε for i + r = q for i, r ∈ N (see Fig. 7). The
threshold ε ensures that we cut unnecessary terms smaller
than the regularization parameter λ. A third loop n goes over
all virtual nodes NV adding the result

(r+i
i

)
pi mr multiplied

with the corresponding input weights wn+i+rν mod NV to all
corresponding entries s̃
(n+i+rν)/NV �,n , that and thus, lie in the
same input interval l. See Appendix A for more information.
The algorithm to compute the modified state matrix S̃ is given
in the following, where
y� is the floor function rounding y
down to the greatest integer less than or equal to y, get
BinomialTerm (i,l,p) returns

(r+i
i

)
pi mr and winput is the mask

weight vector of length NV . The implemented C++ code can
be found in a linked GitHub repository and can be used to
calculate the memory capacity for given a,b, ν, θ , and NV .

Algorithm 1 Calculate Modified State Matrix

State ∈ R
NV ×K ;

for RowsInPascalsTriangle < maxRow do
for ColumnsInRow < RowNumber + 1 do

for VirtualNeuron < NumberVirtualNeurons do
n = VirtualNeuron;
i = RowsInPascalsTriangle;
r = ColumnsInRow;
State (
(n + i + rν)/NV �,n) +=
getBinomialTerm(i, r, p) · wn+i+rν mod NV ;
if getBinomialTerm(i, r, p) < σ for all
ColumnsInRow then

return State ;
end for

end for
end for

C. Direct Simulation of the Reservoir and Memory Capacity

Simulations have been performed in standard C++. For
linear algebra calculations, the linear algebra library
“Armadillo” [60] was used. To numerically integrate the delay-
differential equations, a Runge–Kutta fourth-order method was
applied, with integration step
t = 0.01 in dimensionless

KÖSTER et al.: MMF FOR DELAY-BASED RESERVOIR COMPUTERS WITH SINGLE-VARIABLE DYNAMICS 7717

time units. First, the system is simulated without reservoir
inputs, thus letting transients decay. After that, a buffer
time of 10 000 inputs was applied (this is excluded from
the training process). In the training process, K = 75 000
inputs were used to have sufficient statistics. Afterward,
the memory capacities Cl of linear recalls were calculated
with (6), whereby a testing phase is not necessary. The linear
memory capacity MC was calculated by summing the obtained
capacities Cl . For the piecewise-constant T -periodic mask
function g(t) independent and identically distributed random
numbers between [0, 1] were used.

For all simulations, the input strength η was fixed to 10−3.
The small input strength was used to guarantee linear answers
of the reservoir and, hence, the relevance of the approximation.
In the appendix we show a detailed analysis for increased
input strength.

D. Comparison of MMF and Direct Numeric Calculations of
the Memory Capacity

In this section, we illustrate the MMF’s effectiveness. First,
we show that the MMF provides a very good approximation of
MC using the reservoir given by (9). The analytical approxima-
tion of the MC works quite well as long as θ is small enough
compared with the linear answer time scale of the system,
given by the largest Lyapunov exponent of the local dynamics.
This is fulfilled for typical reservoir computing setups, as one
would, otherwise, lose computation speed. In the second part,
we show how MMF provides a universal, system-independent
characteristic. For this, we compare MMF with the memory
capacities of different reservoirs. Each particular reservoir
realization is described by one parameter combination of
linearization. In the last part, we describe how MMF can be
computed for reservoirs with the unknown dynamical rule. For
this, the parameters a and b of the linearization are measured
from the system’s response to a small periodic input.

Fig. 4 shows the memory recall capacity Cl obtained from
direct simulations and via the MMF for four different cases of
the Stuart–Landau system, given by (9). The exact parameters
are given in the caption of Fig. 4. The directly simulated results
are shown by blue solid lines and blue markers, whereby green
dashed lines and green markers show the MMF. For a small
virtual node distance θ = 0.5 in Fig. 4(a) and (c), the MMF
predicts the linear memory capacity very accurately. For a
higher value of θ = 1.6 [Fig. 4(b) and (d)], the accuracy
drops, though the results are still accurate for qualitative
predictions and describe the general trend of the system’s
memory capacity.

The scans in Fig. 4(c) and (d) were done with a higher delay
time τ = 3.06 T, which induces memory gaps [50]. Even
though the memory capacity has a complex dependency on l
at these parameter values, the prediction for the two different
virtual node distances θ = 0.5 and θ = 1.6 is still accurate.

A 2-D parameter scan shown in Appendix E indicates that
the predictions for the MC made by the MMF work for
all system parameters investigated there. Thus, the predictive
power of the new scheme is very promising.

Comparing the computation speed of the classical numerical
integration and the new proposed scheme shows an increase in

Fig. 4. Linear memory capacity Cl computed directly (blue dots) and via
MMF by (16) (green crosses) for the Stuart–Landau reservoir computer, plot-
ted as a function of the recall steps l. (a) and (c) θ = 0.5, (b) and (d) θ = 1.6,
and (a) and (b) τ = T , (c,d) (green) τ = 3.06T . The values are averaged
over 100 different masks. The parameters for all four setups are T = 80,
pSL = −0.05, κ = 0.06, η = 10−3, and γ = 0.1.

two to three orders of magnitude, depending on the operation
point, the number of training steps K , and the value of the
clock cycle T . A higher clock cycle T and more training
steps K increase the simulation time for the direct numerical
integration, whereas the new proposed scheme is independent
of that. If the operation point is close to a bifurcation, the
convergence of the new proposed scheme is slower, increasing
the computation time needed. See Appendix B for a plot
of the computation speed comparison in dependence of the
linearization parameter b close to a bifurcation. Still, even
very close to the bifurcation line, the computation speed is
significantly higher (with a factor of about 100) making the
MMF a valuable tool.

We also performed an analysis of the valid approximation
range for the input strength η and virtual node distance θ . Both
results are shown in Appendix C. Fig. 9 shows the results for
the Stuart–Landau delay-based reservoir computer for different
input strengths η, for which η of up to 10−2 yield comparable
good predictions of the MC via the MMF. Higher values start
to induce nonlinear answers in the system, thus inducing the
well-known linear–nonlinear tradeoff.

Fig. 10 in Appendix C shows the results for the same system
over the virtual node distance θ , ranging from θ = 0.05 up
to θ = 5. The system was simulated with different pSL, thus
changing the linear answer time-scale a from a = −0.11 up to
a = −0.29. The faster the system reacts the more inaccurate
the predictions of the MMF are for higher values of θ .
An explanation for this can be given via the assumption used in
Section A. Because θ is always small in reservoir computing,
we assumed a constant value of s(t) on one θ -interval in (27).
This approximation only holds for θ , which is small relative
to the linear answer time-scale a. The rule of thumb used
in [28] is given by θ = 0.2a. Looking at Fig. 10, we see
that our approximation holds for values of up to θ = 3a for
a relative error of
MC ≈ 0.1. We can, thus, conclude that

7718 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Fig. 5. Memory capacity computed by the MMF in the 2-D parameter plane
of the linearization parameters a and b, with NV = 100, τ = 72, and θ = 0.5.
At the edge of instability, the performance is highest. Inset: MC over the recall
steps l of the MMF for the Stuart–Landau and the Mackey–Glass system at
the parameter point indicated at the red cross.

the assumption of a constant value on one θ interval for a
delay-based reservoir computer is justified.

E. Universality

An exciting result that follows from the MMF concept is the
possibility to generalize to any 1-D reservoir with one time-
delay. Every 1-D reservoir with one time-delay that has the
same linearization yields the same linear memory capacity.
To illustrate this, we compare the Stuart–Landau reservoir
system given by (9) and the Mackey–Glass reservoir system
given by (11). The inset of Fig. 5 shows the capacity to
recall the lth step into the past Cl as a function of l for the
Stuart–Landau (blue), the Mackey–Glass (red), and the MMF
given by (16) (green). Both systems are operated such that
their linearization parameters a and b are equal. It can be
seen that in this case the Cl ’s have the same values.

This underlines that it is enough to compute the linearization
parameters a and b to predict the MC of a single-variable
delay-based reservoir computer. The color plot in Fig. 5 shows
the MMF given by (15) for different parameter values a and b.
A well-performing operation point seems to be the edge to
instability, agreeing with the known rule of thumb from the
literature [61], [62].

It, thus, follows that analyzing the Jacobian [linearization
given by (10)] for fixed delay τ , virtual node distance θ , and
the number of virtual node NV is sufficient to predict the
linear memory capacity of a single-variable time-delay-based
reservoir computer, and this memory capacity is given by the
MMF via (15) and (16).

F. Systems With Unknown Dynamics—Small Signal Response
Approach

In this chapter, we show an experimentally accessible
approach for measuring the parameters a and b for a delay
system whose dynamical equations of motion are not known
and which can be described by a single variable. The linearized
dynamical system was introduced in (10). To measure a
and b, we perturb the system with a harmonic periodic signal
I (t) = I0eiωt . When this signal is small, we can consider the

perturbed linearized system

dδs(t)

dt
= aδs(t) + bδs(t − τ) + cI0eiωt (17)

where the complex form is chosen out of convenience. Due
to linearity, the real solution is obtained simply by taking the
real part. We consider the case of real a and b, which always
holds when the reservoir variables are real.

Since the homogeneous solution decays to the stable equi-
librium (we assume its exponential stability), the solution
of (17) converges to the particular solution, given by

δsa(t) = cI0 H −1(ω)eiωt (18)

with H −1(ω) = iω−a−be−iωτ . The ratio of the output to the
input amplitude equals the transfer function

|Output|
|Input| = |δsa(t)|

|cI0| = |H −1(ω)| (19)

where |H (ω)| can be measured.
To determine the parameters a and b, it is sufficient to

measure the transfer function at two frequencies, for example,
at ωR = 2π/τ and ωA = π/τ . The first frequency is resonant
to the delay while the second is in “antiphase” to the delay τ .
We assume τ to be known, even though an extension of the
scheme to unknown τ is possible. It holds

F(ωR) := |H (ωR)|2 = ω2
R + (a + b)2

F(ωA) := |H (ωA)|2 = ω2
R + (a − b)2.

From the above, we can obtain the values for a and b

a = −1

2

(√
F(ωR) − ω2

R +
√

F(ωA) − ω2
A

)
(20)

b = −1

2

(√
F(ωA) − ω2

A −
√

F(ωR) − ω2
R

)
(21)

where the values of F(ωA) and F(ωR) can be obtained
experimentally or numerically by perturbing and measuring
the response of the reservoir.

We remark that the choices of the resonant and antiphase
perturbation frequencies are convenient but not unique.
Clearly, one can perturb at other frequencies to obtain a and b.
Moreover, the above-mentioned idea can be generalized to the
case of complex-valued parameters a and b and to unknown
time-delays τ , whereby more frequencies must be tested.

The measured values of the parameters a and b for a
reservoir with unknown dynamics can be then simply used
in MMF to determine the linear memory capacities.

To demonstrate the experimental procedure of measuring a
and b via a small signal response, we use the Ikeda-system
introduced in Section III-B in (12) with x0 = 1.5, τ = 72, and
varying nonlinearity parameter μ ranging from μmin = 0.1 up
to μmax = 1.2. In this range, the system has one stable fixed-
point solution. We choose I (t) = cos(ωt). With ωR = 2π/τ
or ωR = π/τ and η = 0.01. We simulate the systems response
and measure |sa,R/A(t)| = max |s(t)−s∗|, thus |sa,R/A(t)| is the
induced linear response oscillation amplitude superimposed
on the fixed point s∗ for the in-phase |sa,R(t)| or antiphase
|sa,A(t)| case.

KÖSTER et al.: MMF FOR DELAY-BASED RESERVOIR COMPUTERS WITH SINGLE-VARIABLE DYNAMICS 7719

Fig. 6. Measurement of the Ikeda-system via small signal response and
application of the MMF. (a) Linearization parameters a and b calculated
(green) and measured (red) plotted over the Ikeda nonlinearity parameter μ.
The black cross indicates the simulation parameters chosen for (b). (b) Linear
recall capacities Cl over the recall steps l. Blue solid lines with circle markers
show the fully numerical calculated capacities, while green dashed with cross
markers show the ones calculated via the MMF. We chose τ = 72, θ = 0.5,
and NV = 100.

The results are shown in Fig. 6(a). The red curve shows
the measured values of a and b over the Ikeda parameter μ.
We additionally calculated the true linearization parameters via
the linearization that was derived in Section III-B. The result
is shown as a green solid line in Fig. 6(a). We see that the
measured and the true values are nearly identical, and thus, the
measuring method is working as expected. We then used one
example parameter pair shown as a black cross in Fig. 6(a)
and simulated the full Ikeda-system as a delay-based reservoir
computer at this parameter setup, numerically evaluated the
linear memory capacities Cl , and plotted them over the recall
steps l in Fig. 6(b) as a blue curve. Subsequently, the MMF
was used to calculate Cl for the measured a = −1 and b ≈
−0.6169 over the same recall steps l. The results are shown
in Fig. 6(b) as a green dashed line. The fully numerically
simulated and calculated capacities Cl and the MMF values
obtained after measure a and b show very well the potential
of the MMF.

V. CONCLUSION

We have developed a simple and fast method for calculating
the linear memory capacity for time-delay-based reservoirs
with single-variable dynamics, which we call the MMF. Our
results can be used to predict reservoir computing setups with
high linear memory capacities independent of the specific
reservoir computer. We have shown universality properties
for our MMF for any single-variable delay-based reservoir
computer with small inputs, i.e., our approach predicts the
linear memory capacity of the set of all single-variable delay-
based reservoirs with small inputs. We additionally provided
a method for measuring the linearization parameters a and b
for dynamical systems with unknown models, therefore,
enabling the possibility for experimental evaluation of
the MMF. An example approach for the Ikeda-system was
given.

One of the advantages of the delay-based reservoir, which
allows the introduction of the MMF, is that it contains a small
number of system parameters, while the dynamics remain
infinite-dimensional. In the case of a small input signal and

single-variable dynamics, these are only the linearization para-
meters a and b, the time-delay τ , the virtual node distance θ ,
and the number of virtual nodes NV . Thus, if the linear
memory capacity is computed for all possible values of these
parameters, it covers the case of all possible reservoirs. This
procedure could be difficult, if not impossible, for network-
based reservoirs, where the system’s parameters may include,
e.g., multiple coupling weights.

APPENDIX A
DERIVATION OF THE MODIFIED STATE MATRIX AND

REDUCED FORMULA FOR MEMORY CAPACITY

Consider a single-variable delay-differential equation, which
describes the dynamics of the reservoir

ṡ(t) = F(s(t), s(t − τ), I (t)) (22)

where I (t) stands for an external input. We assume that s∗ is
an equilibrium of this system, i.e., F(s∗, s∗, 0) = 0, and I (t) is
small. In the case when the dynamics of (22) takes place near
the equilibrium point s∗, we can introduce the perturbative
ansatz s(t) = s∗ + δs(t). Then, the linearized system for the
perturbation δs(t) reads

δṡ(t) = aδs(t) + bδs(t − τ) + cI (t) (23)

where a = ∂1 F(s∗, s∗, 0), b = ∂2 F(s∗, s∗, 0), and c =
∂3 F(s∗, s∗, 0).

Consider θ to be the temporal node spacing of the reservoir,
which is typically θ < τ . Then, (23) on any interval [jθ, (j +
1)θ] can be considered as the simple scalar ordinary differen-
tial equation (ODE) δṡ(t) = aδs(t) with the inhomogeneity
bδs(t −τ)+cI (t). Moreover, according to the reservoir setup,
the input is constant on this interval and equals I (t) = I j .
By variation of constants formula, we obtain the solution of
(23) for t ∈ [(j − 1)θ, jθ]
δs(t) = −cI j

a

(
1 − ea(t−t j−1)

)
+ δs

(
t j−1

)
ea(t−t j−1)

+ b
∫ t

t j−1

ea(t−ξ)δs(ξ − τ)dξ (24)

where t j−1 = (j − 1)θ is the left endpoint of the interval.
Denoting δs j (t) = δs(t j−1 + t) to be the function on the

interval [t j−1, t j−1 + θ], with t ∈ (0, θ), we rewrite (24) as

δs j (t) = −cI j

a

(
1 − eat

) + δs j−1(θ)eat

+ b
∫ t

0
ea(t−ξ)δs j−ν(ξ)dξ, t ∈ [0, θ] (25)

where we additionally used the relation δs j−1(θ) = δs j(0) and
δs j−ν = δs j(t − τ), ν = τ/θ . By evaluating (25) at t = θ ,
we obtain

δs j (θ) = −cI j

a
(1 − p) + δs j−1(θ)p

+ bp
∫ θ

0
e−aξ δs j−ν(ξ)dξ, p = eaθ . (26)

Denote s j := s j(θ) = s∗ + δs j (θ), which is the approximation
for state of the reservoir (22) at the virtual node s(jθ).

7720 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Fig. 7. Pascal’s Triangle showing the series contributions for s j , given by all
the participating equilibria s∗

j−i−rν . Blue boxes show participating timesteps,
green boxes show multiplications by time propagating factors and red boxes
give equilibria contributions for the specific timesteps. Out of convenience,
we denote m = −(b/a)(1 − p) and γ = (1 + (b/a))(1 − p). Fj denotes the
fixpoint factor contributions given by γ

(r+i
i

)
pi mr I j−i−rν for a specific i, r .

From (26), we obtain

s j =
(

1 − b

a
p

)
(1 − p)s∗ − cI j

a
(1 − p) + ps j−1

+ bp
∫ θ

0
e−aξ s j−ν(ξ)dξ. (27)

Furthermore, we approximate the integral from (27) by
assuming s j−ν(ξ) ≈ s j−ν(θ) = s j−ν . The approximation holds,
in particular, when θ is small. The obtained expression

s j = ŝ∗ + γ I j + ps j−1 + ms j−ν (28)

represents a discrete map (coupled map lattice) for approxi-
mating the state matrix S. Here, ŝ∗ = (1 − (b/a)p)(1 − p)s∗,
m = −(b/a)(1 − p), and γ = −(c/a)(1 − p). If considering
it as a corresponding network with the nodes s j , see [29], [31],
[63], we see that the node s j is coupled with the two nodes
s j−1 and s j−ν in a feed-forward manner with the coupling
weights p and m, respectively. The schematic representation
of such a coupling structure leads to Pascal’s triangle shown
in Fig. 7. The first row of Pascal’s triangle from Fig. 7 shows
the dependence on I j , which is simply the multiplication by γ .
In the second row, the contributions of I j−1 and I j−ν are
shown. To obtain these dependencies explicitly, we insert s j−1

and s j−ν recursively in (28)

s j = (1 + p + m)ŝ∗ + γ
(
I j + pI j−1 + m I j−ν

)
+p2s j−2 + 2 pms j−ν−1 + m2s j−2ν (29)

that is, we obtain the terms γ pI j−1 and γ m I j−ν . To build
up further intuition about the dependence of the state matrix
on the input, we show here the third level by substituting
recursively s j−2, s j−ν−1, and s j−2ν into (29)

s j = (
1 + p + p2 + 2 pm + m + m2)ŝ∗

+ γ
(
I j + pI j−1 + m I j−ν + p2 I j−2

+ 2 pm I j−ν−1 + m2 I j−2ν

)
+ p3s j−3 + 3 p2ms j−2−ν + 3 pm2s j−2ν−1 + m3s j−3ν .

(30)

To obtain a general recursive formula, we need to split
the index into the appearing terms as j − i − kν, where
k corresponds to the delayed (“right,” m) and i to the “left”
(p) connections in the coupling network in Fig. 7

s j = A1s∗ + γ
∑
i,r=0

(
r + i

i

)
pi mr I j−i−rν (31)

where A1 is a constant depending only on p and m. For
an infinitely long input sequence, the sum in (31) goes for
all i, r from 0 to ∞. Practically, the sum is considered for
the available data I j . As a result, the reservoir states s j

are composed of a linear combination of the inputs with
corresponding coefficients given in (31). We can drop the
j -independent constant term A1s∗, because it only induces
a constant shift of the state matrix S, and thus, can be
absorbed in either a bias term or a centering preprocessing,
one of the two is always done when calculating the memory
capacity.

The elements of the state matrix S used in the reservoir
computing setup are[

S
]

kn
= ŝkNV +n = skNV +n − 〈s· NV +n〉

where 〈s· NV +n〉 is the average over the input intervals
〈s· NV + n〉 = (1/K)

∑K
k=1 skNV +n . Here and later, the dot

denotes the index, over which the averaging is performed.
Taking into account (31), we obtain

ŝkNV +n = γ
∑
i,r=0

(
r + i

i

)
pi mr

× (
IkNV +n−i−rν − 〈I· NV +n−i−rν〉

)
. (32)

The input Ik of the reservoir computer is given by the discrete
input sequence u multiplied by the input weights

Ik = u
k/NV �wk mod NV .

Therefore, we obtain

〈I· NV +n−i−rν〉 = wn−i−rν mod NV

〈
u· +
(n−i−rν)/NV �

〉 ≈ 0 (33)

since u has zero mean. Hence, we have the elements of the
state matrix

ŝkNV +n = γ
∑
i,r=0

(
r + i

i

)
pi mr I j NV +n−i−rν . (34)

Correspondingly, the elements of the covariance matrix ST S
from (6) are[

ST S
]

nn′ =
∑

k

[
S
]

kn

[
S
]

kn′ =
∑

k

ŝkNV +n ŝkNV +n′ (35)

and they describe the covariance of the virtual node n with
virtual node n′ over all clock cycles k.

By substituting (34) into (35), we obtain

[
ST S

]
nn′ = γ 2

∑
k

(∑
r,i

(
r + i

i

)
pi mr IkNV +n−i−rν

)

×
(∑

r ′,i ′

(
r ′ + i ′

i ′

)
pi ′

mr ′
IkNV +n′−i ′−r ′ν

)
. (36)

KÖSTER et al.: MMF FOR DELAY-BASED RESERVOIR COMPUTERS WITH SINGLE-VARIABLE DYNAMICS 7721

One can show that the elements from [ST S]nn′ containing
mixed terms of the form ui u j , i �= j can be approximated by
zero since the random variable u j is independently distributed
with zero mean. The only nonzero second moment, which
matters in [ST S]nn′ , is the mean square

∞∑
k=0

u2
k = 1

3
. (37)

Hence, for further simplification of [ST S]nn′ , we keep only
terms of the form u2

k . The following calculations formalize
these arguments, equation (38), as shown at the bottom of the
page, where the second summation range (*) is taken over
all values of r, i, r ′, i ′ such that n + l NV ≤ i + rν < n +
(l + 1)NV and n′ + l NV ≤ i ′ + r ′ν < n′ + (l + 1)NV . The
obtained expression (38) does not depend on the sequence uk ,
and hence, provides a significant simplification for calculating
the covariance matrix. We may further notice that the same
covariance (38) can be obtained by defining the modified state
matrix S̃ = s̃ln , where l is the lth interval of the shifted input
(the lth recall) and n the nth virtual node. s̃ln is given by the
sum over all combinations i, r that fall into the same shifted
input interval j , that is,

s̃ln = γ√
3

i+rν<n+(l+1)NV∑
n+lNV ≤i+rν

(
r + i

i

)
pi mrw(n−i−rν) mod NV . (39)

This is our main result because (39) defines the modified state
matrix S̃ from which all capacities Cl are derivable. More
specifically, we have shown

ST S ≈ S̃T S̃. (40)

Furthermore, for the lth recall, where the target is the shifted
input sequence ŷ = {uk−l }∞k=1, we have, equation (41), as
shown at the bottom of the page, therefore, it holds

ST ŷl ≈ 1√
3

S̃l

where S̃l is the lth row of S̃. Furthermore, we notice that

ŷT
l S = (

ST ŷl

)T ≈ 1√
3

S̃T
l

and ‖ ŷl‖2 ≈ 1/3. As a result, taking into account the definition
of the memory capacity (6), we obtain the approximation for
the capacity of the lth recall Cl by

Cl ≈ S̃T
l

(
S̃T S̃ + λI

)−1
S̃l . (42)

The results can be understood in such a way that we con-
structed the modified state matrix S̃, such that every column
has entries in the statistical direction of the lth shifted input
recall.

The full linear memory capacity is then given by the trace

MCMMF = tr
(
S̃T

(
S̃T S̃ + λI

)−1
S̃
)
. (43)

APPENDIX B
COMPUTATION TIME

To compare the computation speed of the full numerically
simulated differential equation and our new analytic approach,
we simulated both systems. The full system with a timestep
of dt = 0.01, buffer samples of 10 000, i.e., that 10 000 clock
cycles were simulated and discarded, and 50 000 training

[
ST S

]
nn′ = γ 2

∑
k

(∑
r,i

(
r + i

i

)
pi mr uk+
(n−i−rν)/NV �w(n−i−rν) mod NV

)

×
(∑

r ′,i ′

(
r ′ + i ′

i ′

)
pi ′

mr ′
uk+
(n′−i ′−r ′ν)/NV �w(n′−i ′−r ′ν) mod NV

)

≈ γ 2
∑
l=1

(∑
∗

(
r + i

i

)
pi mr

(
r ′ + i ′

i ′

)
pi ′

mr ′
w(n−i−rν) mod NV w(n′−i ′−r ′ν) mod NV

∑
k

u2
k+l−1

)

≈ γ 2 1

3

∑
l=1

(∑
∗

(
r + i

i

)
pi mr

(
r ′ + i ′

i ′

)
pi ′

mr ′
w(n−i−rν) mod NV w(n′−i ′−r ′ν) mod NV

)
(38)

[
ST ŷl

]
n

=
∑

k

[
S
]

kn

[
ŷl

]
k

=
∑

k

ŝkNV +nuk−l

=
∑

k

(
γ

∑
r,i

(
r + i

i

)
pi mr uk+
(n−i−rν)/NV �wn−i−rν mod NV

)
uk−l

= γ
∑
r,i

(
r + i

i

)
pi mrwn−i−rν mod NV

∑
k

uk+
(n−i−rν)/NV �uk−l

≈ γ

3

i+rν≤n+(l+1)NV∑
n+lNV <i+rν

(
r + i

i

)
pi mrwn−i−rν mod NV = 1√

3
s̃ln (41)

7722 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 6, JUNE 2024

Fig. 8. Procentual change in computation speed between the full simulated
system [Fig. 1(a)] and the analytic approach [Fig. 1(b)] as a function of
the distance to the bifurcation point bbif. tanal is the needed computation
time for the analytic and tsim for the fully numerically simulated system.
The simulations were done with a Runge–Kutta-4 method of timestep
dt = 0.01, a buffer sequence of 10 000 clock cycles, and training samples
of 50 000. The analytic approach computed all values in Pascal’s triangle
up to 10−6 · maxs(S). Parameters are τ = 141, T = 100, and NV = 100
(i.e., θ = 1 and a = −0.503).

samples to get high accuracy on the memory capacity. The
analytic program was calculated until all values in a row in
Pascal’s triangle were below 10−6 ·maxs(S). We compared the
simulation speeds of both approaches on the same hardware on
a parameter line scan of the linearization parameter b, scanning
from values close to the bifurcation value bbif in which the
linearized system destabilizes up to values of about 0.1 greater
than the bifurcation value bbif. We show the percentage of the
simulation time for the analytic approach tanal in comparison
with the simulation time tsim, i.e., tanal \ tsim% in Fig. 8.
We see that close to the bifurcation the analytic approach
increases in computation time. This comes from the fact that
the convergence of Pascal’s triangle close to the bifurcation
is slower. Still, the simulation time is at maximum 4% of the
fully simulated system, showing at least a 25-fold increase in
computation speed.

APPENDIX C
RANGE OF APPROXIMATION

We would like to show the range of approximation for
the new analytic approach for both the input strength η
and the virtual node distance θ . For the input strength η,
we compute the memory capacity MC of the fully simulated
system MCsim and the analytic approach MCanal and show
the relative memory capacity of the analytic approach to the
full system, i.e., MCanal \ MCsim. The results are shown in
Fig. 9 plotted over the input strength η for six orders of
magnitude. A result close to 1 indicates a good agreement
between the simulation and the analytic approach. For high
input strengths, starting at around η = 10−2, the analytic
approach overestimates the real memory capacity, because
high values of η induce nonlinear answers in the system, and
thus, increase the nonlinear transformations of the reservoir
in exchange for linear memory, see [46], [49], [50] for more
information on that effect. This can be seen when the MC of

Fig. 9. Comparison of memory capacity MC of the fully simulated system
MCsim and the analytic approach MCanal over the input strength η. The left
axis shows the percentage of the analytically derived MCanal to the fully
numerically simulated MCsim, while the right axis shows the MCsim directly.
The system was simulated with Runge–Kutta-4 method with timestep dt =
0.01, a buffer sequence of 10 000 clock cycles, and training samples of 50 000.
The analytic approach computed all values in Pascal’s triangle up to 10−6 ·
maxs(S). Parameters are τ = 141, T = 100, and NV = 100 (i.e., θ = 1,
a = −0.503, and b = 0.201).

Fig. 10. Comparison of memory capacity MC of the fully simulated system
MCsim and the analytic approach MCanal over the virtual node distance θ . The
quantity
MC describes the relative MC difference [see (44)]. The system
was simulated with Runge–Kutta-4 method of timestep dt = 0.01, a buffer
sequence of 10 000 clock cycles, and training samples of 50 000. The analytic
approach computed all values in Pascal’s triangle up to 10−6 · maxs(S).
Parameters are τ = NV · θ , T = NV · θ , and NV = 50.

the fully simulated system MCsim is shown, plotted for the
second y-axis in red.

As a second quantity, we plot the relative difference of the
MC, that is,

MC = |MCMMF − MCdirect|
MCdirect

(44)

over the virtual node distance θ for different values of the
Stuart–Landau control parameter pSL, where MCMMF is the
prediction of the MC for the MMF and MCdirect is the true
MC computed via a fully numerical simulation. The results
are shown in Fig. 10. The different colored graphs depict
different operation points of the Stuart–Landau delay-based
reservoir computer pSL ranging from pSL = −0.005 up to
pSL = −0.095, which corresponds to linearization parameters
of a = −0.11 up to a = −0.29, respectively. With increasing θ
the prediction of the MMF becomes less accurate. This effect
is intensified if the linearized local dynamics are faster, i.e.,
for more negative a. Faster local dynamics result in faster
changing dynamics, and thus, the assumption of a constant

KÖSTER et al.: MMF FOR DELAY-BASED RESERVOIR COMPUTERS WITH SINGLE-VARIABLE DYNAMICS 7723

Fig. 11. Two-parameter characterization of the memory capacity of sys-
tem (9) with respect the pump pSL and feedback rate κ . (a) Total linear
memory capacity of the directly simulated MCdirect. (b) Relative difference

MC of the MMF MCMMF and the directly simulated MCdirect value. The
black dashed line shows the threshold of stabilization of the nontrivial
equilibrium. The RV coefficient is RV(MCdirect, MCMMF) = 0.99925. The
parameters are NV = 100, T = 100 (corresponding to θ = 1), τ = 1.41T ,
η = 10−3, and γ = 0.1.

δs(t) on one virtual node interval θ becomes increasingly
inaccurate.

APPENDIX D
χ2

k ESTIMATION

We give a short insight into the χ2
k estimation introduced

in [46]. When calculating capacities Cl , all below a fixed
value r∗ were excluded because of finite statistics, where
r∗ is given by the following relation. CDF(χ2(NV , r∗)) is the
cumulative distribution function of the χ2 function, and r∗ is
chosen such that 1 − CDF(χ2(NV , r∗)) yields a probability
pχ2 = 10−6, i.e., the probability of a capacity having a value
greater than r∗ even though with infinite statistics (K −→ ∞),
it would have a value less than r∗. χ2 is the probability density
function of the sum of squared independent, standard normal
random variables

χ2
k =

k∑
i=1

Z 2
i . (45)

See [46] for more information.

APPENDIX E
BROADER PARAMETER RANGE CHECK

A two-parameter characterization of the memory capacity
of the Stuart–Landau system (9) is shown in Fig. 11. The
parameter space is spanned by the pump pSL and the feedback
rate κ . Fig. 11(a) shows the linear memory capacity, while
Fig. 11(b) shows the relative difference
MC of the MMF and
the direct numerics [see (44)]. Small relative differences of up
to 0.08 are seen for the simulations presented here for θ = 1.
One has to remember that reservoir computing is usually done
with very small θ . The work [1] introduced a rough estimate
of the optimal value for θ as θ ≈ 0.2λans, where λans is
the linear answer timescale of the system. In the case of the
Stuart–Landau system, this is given by λans = −2 pSL−3κ . For
the parameter space in Fig. 11, the highest value of the linear
answer timescale λans = −0.95, and thus, θ is by a factor of
five bigger than the proposed value given in [1] for optimal

virtual node distance. In our approximation, we assume a
constant state value on one θ -interval, and thus, θ = 1 is a
very high value, which is one of the reasons for the deviations.

To underline that the MMF (15) gives a reasonable esti-
mation of the memory capacity, we also calculated the
2-D correlation coefficient RV(X, Y) between the directly
simulated total linear memory capacity MCdirect and the
linear memory capacity MCMMF given by MMF in the
2-D plane of the pump pSL and the feedback rate κ para-
meters. RV(X, Y) is the generalization of the squared Pearson
coefficient for two dimensions and is calculated via

RV(X, Y) = COVV(X, Y)√
VAV(X)VAV(Y)

(46)

with

�XY = E
(
X T Y

)
(47)

COVV(X, Y) = tr(�XY �Y X) (48)

VAV(X) = tr
(
�2

X X

)
. (49)

Here, E() is the expectation value, �XY denotes the centered
covariance matrix of the matrices X and Y , COVV(X, Y)
denotes the trace of the matrix multiplication of �XY �Y X

and VAV(X) the trace of the matrix multiplication �2
X X .

Calculating RV over the parameter range shown in Fig. 11
yields a value of RV (MCdirect, MCMMF) ≈ 0.99925. The
correlation is close to the maximum of 1, allowing us to
make accurate predictions of high-performing reservoirs with
the MMF.

ACKNOWLEDGMENT

The authors thank David Hering, Lina Jaurigue, and Joscha
Matysiak for fruitful discussions.

REFERENCES

[1] H. Jaeger, “The ’echo state’ approach to analysing and training recurrent
neural networks,” German Nat. Res. Inst. Comput. Sci., Berlin, Germany,
GMD Rep. 148, 2001.

[2] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Comput., vol. 14, no. 11, pp. 2531–2560,
2002.

[3] L. Gonon and J.-P. Ortega, “Reservoir computing universality with
stochastic inputs,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 1,
pp. 100–112, Jan. 2020.

[4] E. Bollt, “On explaining the surprising success of reservoir computing
forecaster of chaos? The universal machine learning dynamical system
with contrast to VAR and DMD,” Chaos, Interdiscipl. J. Nonlinear Sci.,
vol. 31, no. 1, Jan. 2021, Art. no. 013108.

[5] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. S. Barbosa, “Next
generation reservoir computing,” Nature Commun., vol. 12, no. 1,
p. 5564, Sep. 2021.

[6] L. Jaurigue and K. Lüdge, “Connecting reservoir computing with statis-
tical forecasting and deep neural networks,” Nature Commun., vol. 13,
no. 1, p. 227, Dec. 2022.

[7] P. Antonik, F. Duport, M. Hermans, A. Smerieri, M. Haelterman, and
S. Massar, “Online training of an opto-electronic reservoir computer
applied to real-time channel equalization,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 28, no. 11, pp. 2686–2698, Nov. 2017.

[8] L. Millet, H. Jeon, B. Kim, B. Bhoi, and S.-K. Kim, “Reservoir
computing using photon-magnon coupling,” Appl. Phys. Lett., vol. 119,
no. 18, Nov. 2021, Art. no. 182405.

[9] C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu, “Reservoir
computing using dynamic memristors for temporal information process-
ing,” Nature Commun., vol. 8, no. 1, p. 2204, Dec. 2017.

7724 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 6, JUNE 2024

[10] B. Shi, N. Calabretta, and R. Stabile, “InP photonic integrated multi-
layer neural networks: Architecture and performance analysis,” APL
Photon., vol. 7, no. 1, Jan. 2022, Art. no. 010801.

[11] D. Brunner, B. Penkovsky, B. A. Marquez, M. Jacquot, I. Fischer,
and L. Larger, “Tutorial: Photonic neural networks in delay systems,”
J. Appl. Phys., vol. 124, no. 15, Oct. 2018, Art. no. 152004.

[12] K. Takano et al., “Compact reservoir computing with a photonic inte-
grated circuit,” Opt. Exp., vol. 26, no. 22, pp. 29424–29439, 2018.

[13] X. Porte, A. Skalli, N. Haghighi, S. Reitzenstein, J. A. Lott, and
D. Brunner, “A complete,” parallel and autonomous photonic neural
network in a semiconductor multimode laser,” J. Phys. Photon., vol. 3,
Apr. 2021, Art. no. 024017.

[14] J. Yang, H. Cho, H. Ryu, M. Ismail, C. Mahata, and S. Kim,
“Tunable synaptic characteristics of a Ti/TiO2/Si memory device for
reservoir computing,” ACS Appl. Mater. Interfaces, vol. 13, no. 28,
pp. 33244–33252, Jul. 2021.

[15] P. Antonik, N. Marsal, D. Brunner, and D. Rontani, “Human action
recognition with a large-scale brain-inspired photonic computer,” Nat.
Mach. Intell., vol. 1, pp. 530–537, Nov. 2019.

[16] C. Gallicchio and A. Micheli, Richness of Deep Echo State Network
Dynamics (Lecture Notes in Computer Science), vol. 11506. Cham,
Switzerland: Springer, 2019.

[17] L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega, “Time-delay
reservoir computers and high-speed information processing capacity,”
in Proc. IEEE Intl Conf. Comput. Sci. Eng. (CSE) IEEE Intl Conf.
Embedded Ubiquitous Comput. (EUC) 15th Intl Symp. Distrib. Comput.
Appl. Bus. Eng. (DCABES), Aug. 2016, pp. 492–495.

[18] Z. Tong and G. Tanaka, “Reservoir computing with untrained convolu-
tional neural networks for image recognition,” in Proc. 24th Int. Conf.
Pattern Recognit. (ICPR), Aug. 2018, pp. 1289–1294.

[19] A. Röhm, L. C. Jaurigue, and K. Lüdge, “Reservoir computing using
laser networks,” IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 1,
Jan. 2020, Art. no. 7700108.

[20] A. Röhm, D. J. Gauthier, and I. Fischer, “Model-free inference of unseen
attractors: Reconstructing phase space features from a single noisy
trajectory using reservoir computing,” Chaos, Interdiscipl. J. Nonlinear
Sci., vol. 31, no. 10, Oct. 2021, Art. no. 103127.

[21] M. Goldmann, F. Köster, K. Lüdge, and S. Yanchuk, “Deep time-
delay reservoir computing: Dynamics and memory capacity,” Chaos,
Interdiscipl. J. Nonlinear Sci., vol. 30, no. 9, Sep. 2020, Art. no. 093124.

[22] J. Pathak et al., “Hybrid forecasting of chaotic processes: Using machine
learning in conjunction with a knowledge-based model,” Chaos, Inter-
discipl. J. Nonlinear Sci., vol. 28, no. 4, Apr. 2018, Art. no. 041101.

[23] A. Wikner et al., “Combining machine learning with knowledge-based
modeling for scalable forecasting and subgrid-scale closure of large,
complex, spatiotemporal systems,” Chaos, Interdiscipl. J. Nonlinear Sci.,
vol. 30, no. 5, May 2020, Art. no. 053111.

[24] L. C. Jaurigue, E. Robertson, J. Wolters, and K. Lüdge, “Reservoir
computing with delayed input for fast and easy optimization,” Entropy,
vol. 23, no. 12, p. 1560, 2021.

[25] B. A. Marquez, J. Suarez-Vargas, and B. J. Shastri, “Takens-inspired
neuromorphic processor: A downsizing tool for random recurrent neural
networks via feature extraction,” Phys. Rev. Res., vol. 1, no. 3, Oct. 2019,
Art. no. 033030.

[26] S. Deligiannidis, C. Mesaritakis, and A. Bogris, “Performance and com-
plexity analysis of bi-directional recurrent neural network models versus
Volterra nonlinear equalizers in digital coherent systems,” J. Lightw.
Technol., vol. 39, no. 18, pp. 5791–5798, Jun. 25, 2021.

[27] T. Hülser, F. Köster, L. Jaurigue, and K. Lüdge, “Role of delay-times in
delay-based photonic reservoir computing,” Opt. Mater. Exp., vol. 12,
no. 3, pp. 1214–1231, 2022.

[28] L. Appeltant et al., “Information processing using a single dynamical
node as complex system,” Nature Commun., vol. 2, no. 13, p. 468,
Sep. 2011.

[29] J. D. Hart, D. C. Schmadel, T. E. Murphy, and R. Roy, “Exper-
iments with arbitrary networks in time-multiplexed delay systems,”
Chaos, Interdiscipl. J. Nonlinear Sci., vol. 27, no. 12, Dec. 2017,
Art. no. 121103.

[30] J. D. Hart, L. Larger, T. E. Murphy, and R. Roy, “Delayed dynamical
systems: Networks, chimeras and reservoir computing,” Philos. Trans.
R. Soc. A, vol. 377, no. 2153, 2019, Art. no. 20180123.

[31] F. Stelzer and S. Yanchuk, “Emulating complex networks with a single
delay differential equation,” Eur. Phys. J. Special Topics, vol. 230,
nos. 14–15, pp. 2865–2874, Jun. 2021.

[32] G. Dion, S. Mejaouri, and J. Sylvestre, “Reservoir computing with a
single delay-coupled non-linear mechanical oscillator,” J. Appl. Phys.,
vol. 124, no. 15, Oct. 2018, Art. no. 152132.

[33] Y. Chen et al., “Reservoir computing system with double optoelectronic
feedback loops,” Opt. Exp., vol. 27, no. 20, pp. 27431–27440, Sep. 2019.

[34] J. Schumacher, H. Toutounji, and G. Pipa, “An analytical approach to
single node delay-coupled reservoir computing,” in Proc. 23rd Int. Conf.
Artif. Neural Netw., Jan. 2013, pp. 26–33.

[35] C. Sugano, K. Kanno, and A. Uchida, “Reservoir computing using
multiple lasers with feedback on a photonic integrated circuit,”
IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 1, pp. 1–9,
Jan. 2020.

[36] J. Bueno, D. Brunner, M. C. Soriano, and L. Fischer, “Conditions
for reservoir computing performance using semiconductor lasers with
delayed optical feedback,” Opt. Exp., vol. 25, no. 3, pp. 2401–2412,
Feb. 2017.

[37] H. Toutounji, J. Schumacher, and G. Pipa, “Homeostatic plasticity
for single node delay-coupled reservoir computing,” Neural Comput.,
vol. 27, no. 6, pp. 1159–1185, Jun. 2015.

[38] K. Harkhoe and G. Van der Sande, “Task-independent computa-
tional abilities of semiconductor lasers with delayed optical feed-
back for reservoir computing,” Photonics, vol. 6, no. 4, p. 124,
Dec. 2019.

[39] Y. Kuriki, J. Nakayama, K. Takano, and A. Uchida, “Impact of input
mask signals on delay-based photonic reservoir computing with semi-
conductor lasers,” Opt. Exp., vol. 26, no. 5, pp. 5777–5788, Mar. 2018.

[40] A. Argyris et al., “Comparison of photonic reservoir computing systems
for fiber transmission equalization,” IEEE J. Sel. Topics Quantum
Electron., vol. 26, no. 1, pp. 1–9, Jan. 2020, Art. no. 5100309.

[41] L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov,
Y. K. Chembo, and M. Jacquot, “High-speed photonic reservoir com-
puting using a time-delay-based architecture: Million words per second
classification,” Phys. Rev. X, vol. 7, no. 1, Feb. 2017, Art. no. 011015.

[42] D. Brunner, M. C. Soriano, and G. Van Der Sande, Photonic Reser-
voir Computing, Optical Recurrent Neural Networks. Berlin, Germany:
De Gruyter, 2019.

[43] G. Van Der Sande, D. Brunner, and M. C. Soriano, “Advances in pho-
tonic reservoir computing,” Nanophotonics, vol. 6, p. 561, May 2017.

[44] G. Tanaka et al., “Recent advances in physical reservoir computing: A
review,” Neural Netw., vol. 115, pp. 100–123, Jul. 2019.

[45] K. Nakajima and I. Fischer, Reservoir Computing: Theory, Physical
Implementations, and Applications Natural Computing Series. Singa-
pore: Springer, 2021.

[46] J. Dambre, D. Verstraeten, B. Schrauwen, and S. Massar, “Information
processing capacity of dynamical systems,” Sci. Rep., vol. 2, p. 514,
Apr. 2012.

[47] L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega, “Optimal
nonlinear information processing capacity in delay-based reservoir com-
puters,” Sci. Rep., vol. 5, no. 1, p. 12858, Oct. 2015.

[48] F. Stelzer, A. Röhm, K. Lüdge, and S. Yanchuk, “Performance boost
of time-delay reservoir computing by non-resonant clock cycle,” Neural
Netw., vol. 124, pp. 158–169, Apr. 2020.

[49] F. Köster, S. Yanchuk, and K. Lüdge, “Insight into delay based reservoir
computing via eigenvalue analysis,” J. Phys., Photon., vol. 3, no. 2,
Apr. 2021, Art. no. 024011.

[50] F. Köster, D. Ehlert, and K. Lüdge, “Limitations of the recall capabilities
in delay based reservoir computing systems,” Cogn. Comput. Cham,
Switzerland: Springer, 2020, pp. 1–8.

[51] T. Hülser, F. Köster, K. Lüdge, and L. Jaurigue, “Deriving task specific
performance from the information processing capacity of a reservoir
computer,” Nanophotonics, pp. 1–11, Oct. 2022.

[52] R. J. Hyndman and A. B. Koehler, “Another look at measures of
forecast accuracy,” Int. J. Forecasting, vol. 22, no. 4, pp. 679–688,
Oct./Dec. 2006.

[53] M. Inubushi and K. Yoshimura, “Reservoir computing beyond memory-
nonlinearity trade-off,” Sci. Rep., vol. 7, no. 1, p. 10199, Dec. 2017.

[54] L. D. Landau, “On the problem of turbulence,” C. R. Acad. Sci. UESS,
vol. 44, p. 311, 1944.

[55] J. T. Stuart, “On the non-linear mechanics of hydrodynamic stability,”
J. Fluid Mech., vol. 4, no. 1, pp. 1–21, May 1958.

[56] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,” Science, vol. 197, p. 287, Jul. 1977.

[57] K. Ikeda, “Multiple-valued stationary state and its instability of the
transmitted light by a ring cavity system,” Opt. Commun., vol. 30, no. 2,
pp. 257–261, 1979.

KÖSTER et al.: MMF FOR DELAY-BASED RESERVOIR COMPUTERS WITH SINGLE-VARIABLE DYNAMICS 7725

[58] K. Ikeda and K. Matsumoto, “High-dimensional chaotic behavior in
systems with time-delayed feedback,” Phys. D, vol. 29, pp. 223–235,
Dec. 1987.

[59] M. H. DeGroot, Optimal Statistical Decisions. New York, NY, USA:
McGraw-Hill, 1970.

[60] C. Sanderson and R. Curtin, “Armadillo: A template-based C++ library
for linear algebra,” J. Open Source Softw., vol. 1, p. 26, Jun. 2016.

[61] R. Legenstein and W. Maass, “Edge of chaos and prediction of compu-
tational performance for neural circuit models,” Neural Netw., vol. 20,
no. 3, pp. 323–334, 2007.

[62] L. Büsing, B. Schrauwen, and R. Legenstein, “Connectivity,” dynamics,
and memory in reservoir computing with binary and analog neurons,”
Neural Comput., vol. 22, no. 5, pp. 1272–1311, 2010.

[63] F. Stelzer, A. Röhm, R. Vicente, I. Fischer, and S. Yanchuk, “Deep
neural networks using a single neuron: Folded-in-time architecture using
feedback-modulated delay loops,” Nature Commun., vol. 12, no. 1,
p. 5164, Aug. 2021.

Felix Köster received the M.Sc. degree in physics
from the Technische Universität Berlin, Berlin,
Germany, in 2018.

He has worked on the modeling of optical neurons,
laser networks, and reservoir computing.

Serhiy Yanchuk received the Diploma degree in
physics from the Moscow Engineering Physics Insti-
tute (Technical University), Moscow, Russia, and the
Ph.D. and Dr.Sc. degrees in mathematics from the
National Academy of Sciences of Ukraine, Kyiv,
Ukraine.

He was a Senior Researcher with the Institute
of Mathematics, National Academy of Sciences of
Ukraine, a Post-Doctoral Fellow with the Weierstrass
Institute, Berlin, Germany, a Junior Research Group
Leader with the Humboldt University of Berlin,

Berlin, and a Visiting Professor with the Berlin Institute of Technology,
Berlin. He is currently a Project Leader with the Potsdam Institute for
Climate Impact Research and Privatdozent, Humboldt University of Berlin.
His current research interests include nonlinear dynamics of interacting and
forced systems, dynamical and adaptive networks, spatiotemporal behavior of
distributed systems, systems with time delays, and reservoir computing.

Kathy Lüdge was born in Berlin, Germany, in 1976.
She received the Diploma and Dr.rer.nat. degrees in
physics and the Habilitation (Venia Legendi) degree
from the Berlin Institute of Technology (TU Berlin),
Berlin, in 2000, 2003, and 2011, respectively.

Since 2021, she has been a Professor with the
Ilmenau University of Technology, Ilmenau, Ger-
many, where she is the Head of the Department of
Theoretical Physics II. During her scientific career,
she was a Visiting Scientist with the University
of Minnesota, Minneapolis, MN, USA, in 2002,

a Visiting Professor with Freie Universität Berlin, Berlin, in 2015, and a
Humboldt Feodor-Lynen Fellow with The University of Auckland, Auckland,
New Zealand, in 2016. From 2016 to 2021, she was a University Professor
with TU Berlin, where she was the Head of the Department of Nonlinear
Laser Dynamics. She is known to the scientific community through more than
100 articles in renowned journals. She investigates the emission properties of
semiconductor devices using numerical methods and develops new approaches
for their optimization and innovative applications, with a focus on simulations
of spatiotemporal dynamics and machine learning methods.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

