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The radiation model is a parameter-free model of human mobility that has been applied primarily for short-
distance moves, such as commuting. When applied to migration, it underestimates the number of long-range
moves, such as between different US states. Here we show that it additionally suffers from a conceptual
inconsistency that can have substantial numerical effects on long-distance moves. We propose a modification of
the radiation model that introduces a dependence on the angle between any two alternative potential destinations,
accounting for the possibility that migrants may have preferences about the approximate direction of their move.
We demonstrate that this modification mitigates the conceptual inconsistency and improves the model fit to
observational migration data, without introducing any fitting parameters.
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I. INTRODUCTION

The radiation model (RM) was proposed as a universal
model of human mobility [1]. It builds on the concept of
intervening opportunities [2], where the flow between two
locations depends not only on the properties of those ori-
gin and destination locations, but also on the locations in
between. The RM has a number of advantages over earlier
intervening opportunity models, as well as over the commonly
used gravity models [3], in which the flow depends on the
origin, destination, and distance between them. The RM can
be derived analytically from a particle-diffusion process and
is mathematically more self-consistent than the gravity model
[1]. It is also parameter-free, which is an advantage for data-
limited applications. Especially when it comes to migration,
in many countries, data on a detailed spatial level are often
unavailable or only partially available, impeding the parame-
ter calibration necessary for gravity models.

After its proposal, the RM and variations of it have been
applied to several problems, including commuting [4], ur-
ban mobility [5], freight transportation [1], forced migration
[6], and the spreading of diseases [7]. Despite its advan-
tages, however, it has been shown that the original RM does
not fit the data well for all types of mobility, and several
modifications have been proposed to generalize the model,
often introducing one or several fitting parameters [8–11].
For instance, the RM underestimates longer-distance moves
when applied to internal migration data, while this problem
is alleviated in an extended model in which the intervening
opportunities are downweighted through an exponent [8]. An-
other extension introduces two parameters that can be used
to give the model either an exploratory or cautious behavior,
depending on the application [9]. These parameters allow
the user to fit the model to different spatiotemporal scales.
Similarly, another generalization introduces a scaling expo-
nent to make the model more applicable to different spatial
scales [10].

Notably, both the original RM and the above-mentioned
modifications are isotropic, in the sense that flow rates are
independent of the orientation of a given destination relative
to other locations. This may be true for short-distance and
temporary forms of mobility such as commuting, but may be
less plausible for permanent moves over longer distances. In
this paper we focus on within-country migration and show that
the RM yields implausible results when alternative destina-
tions are not in the same direction. To mitigate this conceptual
problem, we propose an extension of the model where the
intervening opportunities are weighted depending on their
direction relative to the destination. We further motivate this
assumption by demonstrating the corresponding direction de-
pendence in observational data and we show that the modified
angle-dependent model outperforms the original RM when
applied to large-scale migration data in several countries,
without the need of additional fitting parameters.

II. MODEL AND DATA

A. Radiation model

For the purposes of this paper we will be using the RM
as proposed by Simini et al. [1] but adding a normalization
factor according to Masucci et al. [4] (discussed below). The
RM can be derived from a particle diffusion process (see
the Appendix for a detailed derivation): Each migrant origi-
nates from a specific origin, passing through an environment
of intervening opportunities, in order to enter some specific
destination. Assuming that the distribution of incomes or
amenities, i.e., those factors that make a location attractive as
a place of residence, is the same everywhere, the actual prob-
ability for a given level of income or amenities to be available
in a given location depends on the location’s total population
size. In other words, one may imagine that a larger city offers
better-paid jobs because it offers overall more jobs, so the
probability of finding a job matching a migrant’s income
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expectations is higher. The underlying income or amenity
distribution then cancels out and the probability of a given
move to occur, as well as the overall flow rate between two
locations, depends only on the population sizes of the origin,
destination, and all locations in between.

We call the area including any number of intervening
opportunities an opportunity cell. In the following we will
use intervening opportunities and intervening population in-
terchangeably. Contrary to gravity-type models, the distance
between the origin and destination has no direct effect on
the magnitude of a migration flow. Formally, each bilateral
migration flow can be obtained through the equation

Mi j = Mi
mimj

(mi + si j )(mi + mj + si j )
, (1)

where Mi j is the number of migrants moving from origin
i to destination j; mi and mj denote the population of the
origin and destination, respectively; Mi is the total number of
migrants leaving the origin i, which can also be expressed as
NM
N mi, with NM

N the ratio of total people moving (NM) and total
population (N); and si j indicates the number of intervening
opportunities and is defined as

si j =
∑

k∀dik<di j

mk, (2)

with di j the distance between two locations i and j.
Equation (1) is accurate only in the limit of large numbers

of population units, while for finite systems it needs to be
normalized by multiplying the right-hand side by 1

1− mi
N

[4].

Since we investigate countries of different sizes and the nor-
malization can have a significant effect in some of the smaller
countries, we will be using the normalized version

Mi j = Mi
1

1 − mi
N

mimj

(mi + si j )(mi + mj + si j )
. (3)

B. Data

For our research, we will be using internal migration data
from four different countries to test and evaluate our model
approach. We choose USA, Mexico, Argentina, and Peru for
our investigation. Most tasks will be performed using the
internal migration data from the USA because it is obtained
through tax return data rather than microcensus data and there-
fore offers the highest accuracy. Furthermore, the data offers
demographic and geographic patterns that are useful for some
of our investigations.

1. USA

The data on internal migration flows in the USA are ob-
tained from the Internal Revenue Service that were recorded
between 2007 and 2008 [12]. The migration estimates are ob-
tained by evaluating the mailing addresses provided in the tax
returns. A changing address, compared to the previous year,
indicates that a person moved. Disadvantages of this data set
include that people who are not required to file tax returns, like
low-income and older people, are excluded. Additionally, tax
returns submitted after September are excluded as well. These
returns most often belong to high-income persons. Additional
data include county and state borders, distances in between

counties [13,14], and county population data [15]. In total,
we consider migration between 3140 countries in 48 states
(excluding Alaska and Hawaii) and the District of Columbia.

2. Argentina, Mexico, and Peru

Internal migration data for Argentina, Peru, and Mexico are
obtained from the IPUMS International database [16]. IPUMS
International provides microcensus data on bilateral migration
flows, obtained through the survey data on a subsample of
the total population. In addition to the survey data which
only include a fraction of the total population, they include
a set of weights which represent the number of persons in
the population represented by one entry in the data sample.
For Argentina and Peru, IPUMS provides the same weight
for each data point. These flat weights are created by divided
the sample size of the microcensus by the total population. In
total, the microcensus data for both these countries include 1%
of the total population. In Mexico the census bureau surveyed
10% of the population, which has been chosen to represent
different geographies, population sizes, and living situations.
Contrary to Argentina and Peru, the weights are not flat but are
heterogeneous so that the sample matches, for example, the
entirety of rural and urban areas. A more in depth description
of this data set can be found in [17]. Using both these data
sets, microcensus and weights, we are able to create bilateral
migration flow estimates for all three countries.

The population stocks for Argentina, Peru, and Mexico
originate from the national census, more specifically from
the National Institute of Statistics and Geography for Mex-
ico [18], the National Institute of Statistics and Censuses for
Argentina [19], and the Instituto Nacional de Estadistica e
Informatica for Peru [20]. To obtain geographical data for
Mexico we use the borders of each municipality [21] to
calculate its center. The centers are then used to calculate
the distances between individual municipalities. The data for
Mexico include 2448 municipalities within 31 states. The
geographical data for Argenitna and Peru are obtained from
Instituto Geografico Nacional (through the Humanitarian Data
Exchange Website) [22]. For Argentina we only consider the
departments, not municipalities, resulting in 24 departments.
For Peru the data set consists of 196 provinces.

III. RESULTS

In the following we will first show a discontinuity we
found in the original RM, followed by our modification, the
introduction of an angle dependence in the si j term. Further-
more, we investigate whether the data indicate directional
preferences and test the overall performance of our approach.

A. Discontinuity

The RM implies a discontinuity related to the way the inter-
vening population si j is calculated. To show the discontinuity,
we construct the following scenario. Consider a migration
flow between locations i and j and between i and k. The
locations j and k have a similar distance from i, with k being
marginally closer than j, i j = ik + δ (δ being some short dis-
tance), so that si j = sik + mk . A visualization of this scenario
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FIG. 1. (a) Migration scenario, with origin i and destinations k and j. Here dik and di j denote the respective distances, sik denotes the
intervening opportunities for a migration flow between i and k, and αk j is the angle between k and j. (b) and (c) Two migration scenarios
originating from Kings County with the destination Los Angeles or Santa Clara. Each partial circle represents the radius indicating which
population counts in the intervening opportunities and which do not. (b) The distance between KC and SC is 210 km and between KC and LA
it is 252 km, making SC part of LA’s intervening opportunities. (c) Swapped distances. The distance between KC and SC is now 252 km and
that between KC and LA is 210 km, making LA part of SC’s intervening opportunities.

is shown in Fig. 1(a). The flow rates ri j (Mi j = Mi
1

1− mi
N

ri j) and

rik can then be expressed as

rik = mimk

(mi + sik )(mi + mj + sik )
,

ri j = mimj

(mi + sik + mk︸ ︷︷ ︸
si j

)(mi + mj + sik + mk︸ ︷︷ ︸
si j

)
. (4)

If we now assume that mk ≈ mj ,

rik = mimk

(mi + sik )(mi + mk + sik )
,

ri j ≈ mimk

(mi + sik + mk )(mi + sik + 2mk )
, (5)

and compare both flow probabilities, we obtain

rik

ri j
≈ mi + sik + 2mk

mi + sik
= 1 + 2

mk

mi + sik
. (6)

Considering the final expression, one can see that the pre-
dicted flow rates differ by a factor 1 + 2 mk

mi+sik
. This factor is

close to 1 when the destinations are much less populous than
the origin and/or the surrounding region. However, in the case
of large destinations and relatively sparse populated surround-
ings, the factor can be substantial: For example, assuming that
all three locations have the same population size and that the
circle around i of radius i j is empty except for k, the model
predicts three times more migrants from i to k than from i to
j, even if j and k are at almost the same distance from i.

To illustrate this with a real world example, we calculate
the migration flows from Kings County (KC), California, to
Los Angeles (LA), California and Santa Clara (SC), Cal-
ifornia. We choose the destination counties because their
population sizes are large compared to their surrounding
(small si j) and their origin and because KC has a similar
distance to both LA (252 km) and SC (210 km). We predict
the respective flow rates, first using the actual distances and
second swapping the distances. The purpose of this exercise
is to determine the impact of LA counting in the intervening
population for migration from KC to SC [Fig. 1(b)] com-
pared to not having it count in the population [Fig. 1(c)] and

conversely the effect of SC counting or not counting in the
intervening population for migration from KC to LA.

The results show that moving each of the cities only by a
few kilometers can have a significant impact on the predicted
migration rates. The migration rate from KC to SC differs by
almost a factor of 10 and the migration rate from KC to LA
differs by a factor of 2 between the two scenarios (Table I,
column “RM”).

B. Angle-dependent radiation model approach

We argue that a model predicting substantially different
flow rates due to incrementally small differences in distance is
potentially implausible. There are cases when it may be plau-
sible. First, if j and k are located in almost the same direction
from i, i.e., k is located immediately in front of j, then it is
plausible that k intercepts many of the migrants who could
potentially also move to j. Given that everything else is equal,
migrants would tend to choose the closer destination even if
the difference in distance is small. Second, the same argument
could apply if j and k are located in different directions from
i but the distances i j and ik are short, because in such a case
the move to either destination would not displace the migrant

TABLE I. Impact of manipulated distances on the migration
flows obtained through the RM and angle-dependent radiation model
approach. The term “swapped distance” indicates that the distances
of Santa Clara (SC) and Los Angeles (LA) to Kings County (KC) are
swapped so that SC is slightly closer to KC than to LA. The column
labeled “Census” indicates the observed migration flows, RM the
values estimated by the original RM, and ADRM the estimates from
the angle-dependent radiation model approach.

Number of migrants

Origin and destination Census RM ADRM

KC → LA (normal distance) 277 68 137
KC → LA (swapped distance) 277 125 151
KC → SC (normal distance) 88 50 100
KC → SC (swapped distance) 88 6 23
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from their larger region of residence and the direction could
thus be considered unimportant for the decision to move.
(This argument should apply even more if the move is not
permanent but temporary, such as commuting, supporting the
applicability of the RM for commuting problems.)

However, in the case of migration over longer distances
and when potential destinations are in different directions,
it appears implausible that marginal differences in distance
should influence migration decisions to an extent that would
justify substantially more migration to one destination than to
another, as shown above. In other words, the isotropy of si j

in the RM implies that migrants evaluate all potential desti-
nations irrespective of their relative direction from the origin,
and thus of the distance between each other; and give clear
preference to a destination that is marginally more attractive
than the next most attractive potential destination, even if the
two are many hundreds or thousands of miles apart.

To solve this issue, we introduce a modification to calcu-
lating si j . Instead of considering the whole population within
the circle equally, as in Eq. (2), we weight the population
depending on the angle αk j between the opportunity cell k and
the destination under consideration j,

si j =
∑

k∀dik<di j

mk
b + cos αk j

b + 1
, (7)

with b � 1. This modification yields the original value of si j

when k is in a direct line between i and j and a fraction
(b − 1)/(b + 1) of the original value when it is in the opposite
direction. In this general form, the parameter b controls how
strongly the influence of k declines with increasing angle. We
will show below that the intuitive choice of b = 1,

si j =
∑

k∀dik<di j

mk

2
(1 + cos αk j ), (8)

where the contribution of k to si j becomes zero at αk j = π , is
also supported by the data.

It should be pointed out that the original RM is normalized
such that the total number of migrants in a country is con-
served: ∑

i, j

Moriginal
i j = NM . (9)

However, Eq. (7) implies that
∑

i j Mangle
i j > NM , since sangle

i j <

soriginal
i j . Therefore, in our angle-dependent radiation model

(ADRM), we include an additional normalization

Mi j = M̃i j
NM∑
kl M̃kl

, (10)

with

M̃i j = mi
1

1 − mi
N

mimj

(mi + si j )(mi + mj + si j )
. (11)

C. Direction dependence in migration data

To further motivate our approach, we provide empirical ev-
idence of a direction dependence in internal migration patterns
in the USA, using two different methods. First, we investigate
the intervening opportunities by considering three examples

of long-range (approximately 1000 km) migration, originat-
ing from Salt Lake City, Kansas City, and Minneapolis. We
choose these cities because all of them have relatively het-
erogeneous surroundings: For Kansas City and Minneapolis,
the western part of the surroundings is less densely populated
than the eastern part and for Salt Lake City the coastal area,
including, for example Los Angeles and San Francisco, has
higher populations than the eastern surroundings (Fig. 2, top
row). We identify potential destinations within a circle around
the origin.1 These locations, having a similar distance to the
origin, all yield similar values of si j in the original RM (Fig. 2
second row).

We now rearrange Eq. (1) to calculate the si j that would be
necessary for the original RM to perfectly match the migration
flows given by the census data:

si j = −2mi + mj

2

+
√(

2mimj

2

)2

+ m2
i + mimj − m2

i m j

Mcensus
i j

(
1 − mi

N

)
.

(12)

The result is far from isotropic; higher hypothetical numbers
of intervening opportunities arise in more populous parts of
the ring than in less populous parts (Fig. 2, third row), suggest-
ing that if populous areas lie near the connecting line between
origin and destination, the number of migrants will decrease
significantly more than if these high population areas would
lie in the opposite direction of the destination.

In Fig. 2 (bottom row) we display the values of si j obtained
through our ADRM. These match the spatial patterns of the
hypothetical “optimal” si j in all three cases, providing illus-
trative support for an angle-dependent model.

In addition to the results shown before, we construct a sec-
ond experiment to test for direction dependence in intervening
opportunities. We select, from the US migration data, large
samples of county triplets including an origin county i and
two destination counties j and k with 0.6 di j < dik < 0.9 di j ,
i.e., k is somewhat closer to i than j (and additionally does
not belong to the same metropolitan area as j, which could
happen if dik and di j were chosen too close to each other).
All j and k have population sizes above 1 × 106. We measure
the ratio of observed migration rates Mi j/Mik dependent on
the angle between j and k, αk j . If the hypothesis of an angle
dependence is correct, i.e., if intervening opportunities j in-
tercept more migrants that could potentially move to k if j is
located in approximately the same direction as k rather than
in the opposite direction, then we expect to find a negative
relation between Mi j/Mik and αk j .

This negative relation is indeed visible in the data, for both
small and large origin counties (Fig. 3). It emerges despite a
large spread owing to the idiosyncrasies of individual country
triplets (population sizes and distances are not identical across

1The radius and width of the ring are chosen slightly different
between the cities, to account for different county sizes as well as ge-
ographic boundaries (coasts and borders). Rings are partly curtailed
by the Californian coastline, Canadian border, and Great Lakes.
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FIG. 2. Population count and si j for counties within a circle (excluding areas outside the USA) around Salt Lake City (the radius is 1100 km
and the ring width 240 km) (left column), Kansas City (radius of 875 km and ring width of 210 km) (middle column), and Minneapolis (radius
of 825 km and ring width of 210 km) (right column). The top row displays the destination population, the second row the si j of the original
RM for each county in the outer circle being treated as a potential destination, the third row the optimal si j , calculated with Eq. (12), and the
bottom row the si j of the ADRM [Eq. (7)].

the sample, but only satisfy the conditions mentioned above).
In addition, a linear fit indicates that the median value of
Mi j/Mik approaches 1 at αk j = π . This is consistent with a
value of 1 for the parameter b in Eq. (7): If b = 1, then the
contribution of j to sik is zero at αk j = π and in a case where
mk ≈ mj and dik ≈ di j , this implies equal migration rates Mi j

and Mik according to Eq. (1) [or Eq. (11)]. Figure 3 thus
not only indicates the presence of a direction dependence of
intervening opportunities in migration data, but also supports
a choice of b = 1, i.e., the influence of j on migration rates
from i to k is negligible if j and k are located in opposite
directions.

FIG. 3. Migration rate ratios for city triplets, consisting of one origin i and two destinations k and j in relation to the angle αk j . The
distances fulfill the condition 0.6di j < dik < 0.9di j as well as (a) the origin population less than or equal to 170 000, destination population
greater than or equal to 1 000 000, and distance greater than 100 and less than 1300 and (b) origin population greater than or equal to 1 000 000,
destination population greater than or equal to 1 000 000, and distance greater than 100 and less than 2000. The sample size is (a) 1094 and
(b) 1140. Each panel shows the data binned into multiples of π/10. Boxes indicate the 25th and 75th percentiles, the whiskers indicate the 5th
and 95th percentiles, the orange lines indicate the median values for each bin, black lines indicate the linear fit through the median values, and
gray lines indicate a ratio of one.
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TABLE II. The R2 and Sørensen-Dice (SD) coefficients for the
application of the RM and the ADRM on internal migration data sets
in different countries.

RM ADRM RM ADRM
Country R2 R2 SD SD

USA −0.001 0.545 0.517 0.554
Mexico −0.263 0.069 0.276 0.311
Argentina 0.367 0.410 0.508 0.533
Peru 0.135 0.333 0.380 0.417

D. Model evaluation

Introducing directional preferences into the radiation
model, as described above and supported by empirical find-
ings, mitigates the discontinuity discussed in Sec. III A. While
incremental changes in distance between two alternative and
equal destinations still induce a jump in migration rates, this
jump is plausibly larger when the two potential destinations
are in about the same direction from the origin and becomes
small when they are in different directions. In the example of
equally sized i, j, and k and si j = mk , the angle-dependent
model (with b = 1) predicts three times more migrants to k
than to j only if k and j are in the same direction from i and it
predicts equal rates of migration to both j and k if they are in

opposite directions. Repeating the counterfactual calculation
for the Kings County–Santa Clara–Los Angeles triangle using
the angle-dependent approach yields differences of a factor 4
(instead of 10) for Santa Clara and 1.25 (instead of 2) for Los
Angeles (compare columns “RM” and “ADRM” in Table I).

As a final step, we evaluate the overall performance of the
ADRM [consisting of Eqs. (8), (10), and (11), i.e., b = 1] in
reproducing observed migration flows in four different coun-
tries and compare it with the performance of the original RM.
We also test the influence of the choice of b on the model
performance. For this evaluation we use two measures, R2 and
the Sørensen-Dice coefficient.

The R2 value is given by

R2 = 1 −
∑

i j

(
Mcensus

i j − Mmodel
i j

)2

∑
i j

(
Mcensus

i j − M̄census
)2 , (13)

with M̄census the mean of all census flows. The Sørensen-Dice
coefficient is given by [23,24]

ESørensen = 2
∑

i, j min
(
Mmodel

i j , Mcensus
i j

)
∑

i, j Mcensus
i j + ∑

i, j Mmodel
i j

. (14)

Here ESørensen can be interpreted as a similarity measure be-
tween simulations and observations. Zero indicates a total
mismatch whereas ESørensen = 1 indicates a perfect match. A

FIG. 4. Performance of the ADRM and RM tested on US internal migration data. The left column shows the difference between the
Sørensen-Dice coefficient for the ADRM and RM depending on the origin population and distance (top) and destination population and
distance (bottom). The middle column shows the number of migrants depending on the origin population and distance (top) and destination
population and distance (bottom). The right column shows the difference between the R2 score for the ADRM and RM depending on the origin
population and distance (top) and destination population and distance (bottom). Each square indicates the difference between the performance
measure of the original RM and the ADRM, red indicates that the ADRM performs better and blue that the RM performs better. The middle
column is shown to indicate which population and distance regimes are most frequented. White lines in the plot indicate no sample data for
these population and distance combinations.
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TABLE III. The R2 and Sørensen-Dice coefficients for different
parameters b of the general approach.

USA Mexico Argentina Peru

b R2 SD R2 SD R2 SD R2 SD

1 0.545 0.554 0.069 0.311 0.410 0.533 0.333 0.417
1.5 0.455 0.552 0.000 0.303 0.408 0.528 0.297 0.410
2 0.385 0.547 −0.045 0.298 0.404 0.524 0.271 0.405
3 0.293 0.540 −0.101 0.291 0.397 0.520 0.239 0.398
5 0.197 0.533 −0.157 0.286 0.388 0.388 0.205 0.380
10 0.108 0.526 −0.205 0.281 0.379 0.312 0.174 0.380

similarity measure is more useful than, e.g., a measure of
correlation, since we are interested in the variation as well as
in the magnitude of the flows. The Sørensen-Dice coefficient
is comparable to some other similarity measures such as the
Jaccard index [25]. It has been shown to have a high sensitivity
even for heterogeneous data and to be relatively unaffected by
outliers [26].

The ADRM improves both performance measures at the
national scale for all four country data sets, compared to the
original RM (Table II). It also performs best for b = 1, com-
pared to higher values of b, in all four countries (Table III),
which confirms this intuitive choice for b and the validity
of the proposed model without fitting parameters [Eqs. (8),

(10), and (11)]. To further investigate the performance of
both the original RM and the ADRM, we calculate the differ-
ence between both performance measures for the US (Fig. 4)
and Mexico (Fig. 5) dependent on traveled distance, origin,
and destination population. In the Appendix we include the
absolute performance measures for both models as well. Fur-
thermore, we include the number of census flows depending
on distance, origin, and destination population in the middle
column of these plots (Figs. 4 and 5).

First, we will be discussing the performance in the US
(Fig. 4). The performance is mostly independent of the ori-
gin and destination population but changes significantly with
distance. For the origin population– and distance-dependent
plots (top row), the results indicate that the ADRM improves
the R2 and Sørensen-Dice measures for short and intermedi-
ate distances. Furthermore, the ADRM yields slightly better
results for larger populations as well. Considering the differ-
ence in Sørensen-Dice coefficients with respect to destination
population and distance, the results indicate that the ADRM
performs significantly better for distances below 1500 km and
that the RM performs better for distances above 2000 km.
Looking at the difference in R2, we see mixed results for short
distances (less than 300 km) and otherwise a superior ADRM
for distances between 300 and 1500 km and a superior RM for
distances above 2000 km.

Considering the absolute values of both measures,
the ADRM outperforms the RM considering almost all

FIG. 5. Performance of the ADRM and RM tested on Mexican internal migration data. The left column shows the difference between
the Sørensen-Dice coefficient for the ADRM and RM depending on the origin population and distance (top) and destination population and
distance (bottom). The middle column shows the number of migrants depending on the origin population and distance (top) and destination
population and distance (bottom). The right column shows the difference between the R2 score for the ADRM and RM depending on the origin
population and distance (top) and destination population and distance (bottom). Each square indicates the difference between the performance
measure of the original RM and the ADRM, red indicates that the ADRM performs better and blue that the RM performs better. The middle
column is shown to indicate which population and distance regimes are most frequented.
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FIG. 6. Performance of the original radiation model and ADRM
tested on US internal migration data, dependent on traveled distance
(top), origin population size (middle), and destination population size
(bottom). The left column shows the Sørensen-Dice (SD) coefficient
and the right column the R2 score. Each bar denotes the performance
value for an interval of 300 km or 200 000 persons, respectively. The
R2 is clipped between −0.5 and 1.

investigated dependences (see the Appendix). In terms of
distance, the ADRM shows significant improvements for mi-
gration flows within 300 km. For longer distances the ADRM
still performs slightly better.

The ADRM also performs better than the original RM
across all groups of origin and destination population size (see
the Appendix). Considering the R2 value, we can see that the
ADRM shows positive values for all population sizes, whereas
the original model shows multiple negative values.

Next we will be discussing the performance in Mexico
(Figs. 5–7). Considering the Sørensen-Dice coefficient, we
can see that the ADRM performs better than the original

FIG. 7. Performance of the RM and ADRM on Mexican internal
migration data. The left column shows the Sørensen-Dice coefficient
and the right the R2 score. The top row shows the performance
depending on the traveled distance, the middle row depending on
the origin population, and the bottom row depending on the destina-
tion population. Each marker denotes the performance value for an
interval of 100 km or 120 000 persons, respectively. The R2 is clipped
between −1 and 1.

model for almost all distances and population sizes. The R2

values show a slightly different pattern. Even though the
ADRM performs better in most cases, the original RM shows
good results for comparably small distances (100–300 km).
We can find this pattern for most origin and destination pop-
ulation size groups. Interestingly, the ADRM still performs
better for migration flows shorter than 100 km.

In terms of absolute performance in Mexico (see the
Appendix), the ADRM shows improving Sørensen-Dice mea-
sures in all regimes. Considering the R2 values, the ADRM
performs better for most regimes.

IV. CONCLUSION

In summary, we have shown that the radiation model yields
implausible (in the case of long-distance, permanent moves)
results when alternative destinations are at similar distances
but opposite directions from the origin. Furthermore, we have
found evidence in migration data for the influence of inter-
vening opportunities to be direction dependent. Evaluating
the environment for a specific destination shows that large-
population areas have a larger impact on the migration if they
are located in between the origin and destination compared
to when they have the same distance to the origin but are
positioned in the opposite direction of the destination. In other
words, when people make the decision to migrate, they may
not consider every possible direction equally attractive.

We have proposed a modification of the RM that accounts
for such a directional dependence in the way the intervening
opportunities, i.e., the si j , are calculated. Using internal mi-
gration data for several countries, we have shown that this
angle-dependent radiation model is capable of capturing the
heterogeneous intervening opportunity patterns obtained from
the data better than the original RM. Moreover, it mitigates
potentially implausible differences in migration rates between
destinations at similar distance but opposite direction that
arise in the original RM. Finally, the ADRM matches ob-
served migration data in four countries significantly better
than the RM, as measured by R2 scores and Sørensen-Dice
coefficients. The fact that the best performance is always
obtained when intervening opportunities at 180◦ are weighted
down to zero, rather than some more moderate weighting
factor, underlines that the direction dependence is indeed
significant and allows us to abstract, from the more general
model with a weighting parameter, a model without an explicit
fitting parameter that works well in all the studied countries
and may thus be of use in other locations too even when no
calibration data are available.

We should note that we have only considered internal mi-
gration, as opposed to other forms of mobility, and the ADRM
should not be considered another generalization of the RM
that will be of use across all spatiotemporal scales. Neverthe-
less, the direction dependence in the concept of intervening
opportunities may be relevant in other contexts too, for in-
stance, in intraurban moves between different neighborhoods.
Our interest in migration is related to the fact that gravity-
type models are still the predominant approach in migration
modeling, despite their conceptual and practical shortcomings
[1,27], while radiation-type models have found less appli-
cation in studies of migration, compared to, e.g., commuter
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mobility. Improving the applicability of radiation-type models
to migration data while maintaining their conceptual rigor and
simplicity may help open new methodological avenues for
migration research.

Considering the applications of this model version, we
think it can be helpful in estimation scenarios without any
calibration data, following the idea of the original radiation
model. Furthermore, the general finding that when consider-
ing intervening opportunities their importance for the migrant
differs depending on their relative location to the origin and
destination might be of importance for other models that use
approaches accounting for intervening opportunities or any
kind of intercepting amenities.
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APPENDIX: RADIATION MODEL

In this Appendix we briefly summarize the derivation of
radiation as it was provided by Simini et al. [1]. The deriva-
tion given here should only point out the origin and some
motivation for the model and might deviate from the standard
mathematical notation.

The starting point for the derivation originates from a par-
ticle diffusion process. Each migrant can be though of as a
particle, released in some origin i, and the origin is associ-
ated with some level of amenities or benefits. These origin
amenities can be thought of as an absorption threshold. The
individual aims for an increase of amenities above the origin
level but at the same time minimizing the migration distance
and picking the closest destination that provides better bene-

fits. The amenities are assumed to scale with the population of
a certain area.

Mathematically, we start the derivation by introducing a
random variable Z representing amenities. The underlying
distribution for this variable is given by a probability density
function p(z). Next we formulate the probability of one person
moving from i to j,

P(1|mi, mj, si j )

=
∫ ∞

0
dz Probmi (Z = z)Probsi j (Z � z)Probmj (Z > z),

(A1)

where mi and mj are the origin and destination populations
and si j describes the intervening population between i and j
and can be calculated as the sum of people who live closer
to i than j is to i. The expression consists of three parts:
first, the origin term Probmi (Z = z), expressing the probability
that the maximum value extracted from p(z) after mi trials is
equal to z; second, the surroundings term Probsi j (Z � z), de-
scribing the probability that after si j trials all values extracted
from p(z) are smaller than or equal to z; and finally the
destination term Probmj (Z > z), representing the probability
that after mj trials at least one value extracted from p(z) is
larger than z. In the end, we integrate over all possible amenity
values z.

To obtain the form of the radiation model used in the main
text, we need to rewrite these three probabilities. First, we
rewrite the surroundings term

Probsi j (Z � z) = Prob(Z � z)si j =
(∫ z

0
p(z̃)dz̃

)ssi j

(A2)

and the destination term

Probmj (Z > z) = 1 − Prob(Z � z)mj . (A3)

Finally, we can express the probability density function
Probmi (Z = z) as the derivative of its cumulative distribution
function

Probmi (Z = z) = d

dz
Probmi (Z � z) = d

dz
Prob(Z � z)mi (A4)

= miProb(Z � z)mi−1 d

dz
Prob(Z � z). (A5)

Inserting all these expression into Eq. (A1) yields

P(1|mi, mj, si j ) =
∫ ∞

0
dz

(
miProb(Z � z)mi−1 d

dz
Prob(Z � z)

)
Prob(Z � z)si j [1 − Prob(Z � z)mj ] (A6)

= mi

∫ ∞

0
dz

(
d

dz
Prob(Z � z)

)
[Prob(Z � z)mi+si j−1 − Prob(Z � z)mi+mj+si j−1] (A7)

= mi

(
1

mi + si j
− 1

mi + mj + si j

)
. (A8)

The total number of migrants moving from origin i to destination j can be expressed as

Mi j = Mi
mimj

(mi + si j )(mi + mj + si j )
, (A9)

where Mi is the total number of migrants leaving the origin i.
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Note that the notation, e.g., for Probn(Z = z) for the probability of obtaining the maximum value z after n trials is unusual
but is inspired by the derivations provided in [1,9,28,29].
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