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Abstract

Weather extremes pose a persistent threat to society on multiple layers. Besides an aver-
age of ~37,000 deaths per year, climate-related disasters cause destroyed properties and
impaired economic activities, eroding people’s livelihoods and prosperity. While global
temperature rises – caused by anthropogenic greenhouse gas emissions – the direct impacts
of climatic extreme events increase and will further intensify without proper adaptation
measures. Additionally, weather extremes do not only have local direct e�ects. Resulting
economic repercussions can propagate either upstream or downstream along trade chains
causing indirect e�ects. One approach to analyze these indirect e�ects within the complex
global supply network is the agent-based model Acclimate. Using and extending this loss-
propagation model, I focus in this thesis on three aspects of the relation between weather
extremes and economic repercussions.

First, extreme weather events cause direct impacts on local economic performance. I
compute daily local direct output loss time series of heat stress, river �oods, tropical cy-
clones, and their consecutive occurrence using (near-future) climate projection ensembles.
These regional impacts are estimated based on physical drivers and local productivity distri-
bution. Direct e�ects of the aforementioned disaster categories are widely heterogeneous
concerning regional and temporal distribution. As well, their intensity changes di�erently
under future warming. Focusing on the hurricane-impacted capital, I �nd that long-term
growth losses increase with higher heterogeneity of a shock ensemble.

Second, repercussions are sectorally and regionally distributed via economic ripples within
the trading network, causing higher-order e�ects. I use Acclimate to identify three phases
of those economic ripples. Furthermore, I compute indirect impacts and analyze overall
regional and global production and consumption changes. Regarding heat stress, global
consumer losses double while direct output losses increase by a factor 1.5 between 2000–
2039. In my research I identify the e�ect of economic ripple resonance and introduce it to
climate impact research. This e�ect occurs if economic ripples of consecutive disasters
overlap, which increases economic responses such as an enhancement of consumption
losses. These loss enhancements can even be more ampli�ed with increasing direct output
losses, e.g. caused by climate crises.
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Transport disruptions can cause economic repercussions as well. For this, I extend the
model Acclimate with a geographical transportation route and expand the decision horizon
of economic agents. Using this, I show that policy-induced sudden trade restrictions (e.g.
a no-deal Brexit) can signi�cantly reduce the longer-term economic prosperity of a�ected
regions. Analyses of transportation disruptions in typhoon seasons indicate that severely
a�ected regions must reduce production as demand falls during a storm. Substituting
suppliers may compensate for �uctuations at the beginning of the storm, which fails for
prolonged disruptions.

Third, possible coping mechanisms and adaptation strategies arise from direct and in-
direct economic responses to weather extremes. Analyzing annual trade changes due
to typhoon-induced transport disruptions depict that overall exports rise. This trade
resilience increases with higher network node diversi�cation. Further, my research shows
that a basic insurance scheme may diminish hurricane-induced long-term growth losses
due to faster reconstruction in disasters aftermaths. I �nd that insurance coverage could
be an economically reasonable coping scheme towards higher losses caused by the climate
crisis. Indirect e�ects within the global economic network from weather extremes indicate
further adaptation possibilities. For one, diversifying linkages reduce the hazard of sharp
price increases. Next to this, close economic interconnections with regions that do not
share the same extreme weather season can be economically bene�cial in the medium run.
Furthermore, economic ripple resonance e�ects should be considered while computing
costs. Overall, an increase in local adaptation measures reduces economic ripples within
the trade network and possible losses elsewhere. In conclusion, adaptation measures are
necessary and potential present, but it seems rather not possible to avoid all direct or
indirect losses.

As I show in this thesis, dynamical modeling gives valuable insights into how direct and
indirect economic impacts arise from di�erent categories of weather extremes. Further,
it highlights the importance of resolving individual extremes and re�ecting amplifying
e�ects caused by incomplete recovery or consecutive disasters.
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Zusammenfassung

Wetterextreme stellen für die Gesellschaft eine anhaltende Bedrohung auf mehreren Ebe-
nen dar. Neben durchschnittlich ~37.000 Todesfällen pro Jahr verursachen meteorologi-
sche Katastrophen Eigentumsschäden und Wirtschaftsbeeinträchtigungen, wodurch die
Lebensgrundlagen und der Wohlstand der Menschen untergraben werden. Während die
globale Temperatur – verursacht durch anthropogene Treibhausgasemissionen – ansteigt,
nehmen die direkten Auswirkungen klimatischer Extremereignisse zu und werden sich
ohne geeignete Anpassungsmaßnahmen weiter verstärken. Hinzu kommt, dass Wetterex-
treme nicht nur lokal direkte Schäden anrichten, sondern sich wetterbedingte wirtschaft-
liche Auswirkungen auch entlang der Handelsketten ausbreiten und so indirekte E�ekte
nach sich ziehen. Ein Ansatz zur Analyse dieser indirekten Auswirkungen innerhalb des
komplexen globalen Versorgungsnetzes ist das agentenbasierte Modell Acclimate. In mei-
ner Dissertation verwende und erweitere ich dieses Schadenspropagationsmodell, um drei
Aspekte der Beziehung zwischen Wetterextremen und wirtschaftlichen Auswirkungen zu
untersuchen.

Erstens verursachen extreme Wetterereignisse direkte Schäden in lokaler Wirtschafts-
leistung. Die regionalen Auswirkungen werden auf der Grundlage von physikalischen
Faktoren und lokalen Produktivitätsverteilungen kalkuliert. Ich berechne tägliche Zeitrei-
hen lokaler Produktionsverluste durch Hitzestress, Überschwemmungen, tropische Wir-
belstürme und deren konsekutives Auftreten unter Verwendung von Klimaprojektionsen-
sembles. Die direkten Auswirkungen der oben genannten Katastrophenkategorien sind
sehr heterogen in Bezug auf die regionale und zeitliche Verteilung. Ebenso ändert sich ihre
Stärke unterschiedlich unter zukünftiger Erwärmung. Meine Forschungsergebnisse zeigen,
dass Kapitalstock, welcher von Wirbelstürmen beschädigt ist, langfristige Wachstumsver-
luste verursacht. Dabei nehmen die Verluste zu, wenn die Heterogenität der Schocks steigt.

Zweitens werden die wetterbedingten Auswirkungen durch wirtschaftliche Wellen inner-
halb des Handelsnetzes auf verschiedene Wirtschaftssektoren und Regionen verteilt. In
meiner Dissertation, untersuche ich die wirtschaftlichen Wellen mittels Acclimate und
mache dabei drei Wellenphasen aus. Darüber hinaus berechne ich indirekte Auswirkungen
und analysiere die regionalen und globalen Produktionsveränderungen sowie die Auswir-
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kungen auf Konsumierende. Für letztere verdoppeln sich zwischen 2000 und 2039 die
weltweiten Verluste durch Hitzestress, während im selben Zeitraum die direkten Produk-
tionsverluste nur um den Faktor 1.5 steigen. Im Zuge meiner Forschung identi�ziere ich
den E�ekt der ökonomischen Wellenresonanz und führe ihn in die Klimafolgenforschung
ein. Dieser E�ekt tritt auf, wenn sich die ökonomischen Wellen aufeinanderfolgender Ka-
tastrophen überlagern, was wirtschaftliche Reaktionen intensiviert wie beispielsweise eine
Steigerung der Konsumverluste. Diese Dynamik der Verluste kann durch zunehmende
direkte Produktionsverluste, hervorgerufen etwa durch den Klimawandel, noch verstärkt
werden.
Auch Handelsunterbrechungen können wirtschaftliche Auswirkungen haben. Um diese
zu berechnen, erweitere ich das Modell Acclimate um ein geogra�sches Transportnetz-
werk und weite den Entscheidungshorizont der Wirtschaftsakteure aus. Politisch bedingte
plötzliche Handelsbeschränkungen (z. B. ein No-Deal-Brexit) können den längerfristigen
wirtschaftlichen Wohlstand der betro�enen Regionen erheblich verringern. Analysen
von Transportunterbrechungen in der Taifunsaison zeigen, dass stark betro�ene Regio-
nen ihre Produktionen reduzieren müssen, wenn die Nachfrage während eines Sturms
sinkt. Zu Beginn eines Sturms können Handelsschwankungen durch alternative Liefe-
ranten ausgeglichen werden, was jedoch bei längeren Unterbrechungen nicht mehr gelingt.

Drittens ergeben sich mögliche Anpassungsmechanismen und -strategien aus direkten und
indirekten wirtschaftlichen Reaktionen auf Wetterextreme. Die Analyse der jährlichen
Handelsveränderungen in der Taifunsaison zeigt, dass Exporte insgesamt zunehmen. Diese
Widerstandsfähigkeit des Handels wächst mit einer höheren Diversi�zierung der Handels-
partner. Weiterhin zeigt meine Forschung an Wirtschaftswachstumsmodellen, dass ein
Versicherungssystem langfristige Wachstumsverluste, verursacht durch Tropenstürme,
durch schnelleren Wiederaufbau verringern kann. Ich komme zu dem Schluss, dass ein
Versicherungsschutz eine wirtschaftlich sinnvolle Anpassungsstrategie gegenüber höheren
Schäden durch die Klimakrise sein kann. Ebenso weisen indirekte Auswirkungen von
Wetterextremen innerhalb des globalen Wirtschaftsnetzes auf weitere Anpassungsmöglich-
keiten hin. Zunächst vermindert eine diversi�zierte Vernetzung die Gefahr eines starken
Preisanstiegs. Ebenso kann eine enge wirtschaftliche Ver�echtung von Regionen, die nicht
dieselbe Unwettersaison haben, mittelfristig wirtschaftlich vorteilhaft sein. Weiterhin
sollten bei der Berechnung der Kosten wirtschaftliche Resonanze�ekte berücksichtigt
werden. Eine Verstärkung der lokalen Anpassungsmaßnahmen verringert die Amplitude
ökonomischer Wellen und damit auch potentielle Verluste in anderen Regionen. Insge-
samt sind Anpassungsmaßnahmen notwendig, aber es scheint trotz dieser nicht möglich
zu sein, alle direkten oder indirekten Verluste zu vermeiden.

Wie ich in meiner Arbeit darlege, gibt die dynamische Modellierung wertvolle Einbli-
cke in die Art und Weise, wie direkte und indirekte wirtschaftliche Auswirkungen durch
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verschiedene Wetterextreme entstehen. Darüber hinaus wird deutlich, wie wichtig es ist,
einzelne Extremereignisse aufzulösen und Verstärkungse�ekte zu berücksichtigen, die
durch unvollständigen Wiederaufbau oder aufeinanderfolgende Katastrophen verursacht
werden.
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Introduction

Extreme weather events impair numerous spheres of society and under climate change
these threats will intensify. In this thesis, I explore how weather extremes impact regional
economic output, analyze the resulting responses of the global trade network, and identify
adaptation mechanisms. Before addressing my research questions, I brie�y outline the
impacts of weather extremes, the current research on climate change and its in�uence on
climate-related extreme events, and how socio-economic models can compute resulting
economic repercussions.

1 Extreme weather events
Since the beginning of the century, natural disasters a�ected on average ~200 million
people per year, excluding the COVID-19 pandemic [CRED, 2021]. However, disasters’
frequency and impacts are distributed highly heterogeneously between regions and time.
On a global scale, the number of climate-related disasters exceeds geophysical disasters by
about factor ten [CRED, 2015]. In 2020 the weather extremes with the highest mortality,
economic loss, or total number of a�ected people were heat stress, river �ood, and tropical
cyclone, respectively [CRED, 2021]. In this thesis, I focus on these three disaster categories
and their impacts on society.
Temperature is a key physical factor for the well-being, the functioning, and the preser-
vation of life. As ambient temperatures markedly exceed the normal optimum, animals,
plants, and humans usually experience heat stress. The pressure caused by heat a�ects
the welfare of plants [Kotak et al., 2007] as well as animals [Gonzalez-Rivas et al., 2020;
Doering et al., 2018]. In daily human life, heat stress increases health problems [Kovats
and Hajat, 2008], triggers aggressive behavior [Anderson et al., 2000; Stechemesser et al.,
2021] or puts pressure on energy supply [Au�hammer et al., 2017; Wenz et al., 2017].
Furthermore, extreme heat negatively a�ects economic domains, such as income [Dell
et al., 2009], labor productivity [Dunne et al., 2013], or agricultural output [Brás et al.,
2021]. These adverse impacts can lead to a reduction of macroeconomic output [Burke
et al., 2015], e. g. Australia lost 0.33% to 0.47% of its gross domestic product (GDP) during
the heat wave of 2012/13 [Zander et al., 2015]. Despite the economic relevance, research to
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date has not yet provided su�cient coverage of production losses correlated to heat stress
on a global scale [Au�hammer, 2018].
Next to heat stress, river �oods are one of the most frequent extreme events globally [Field
et al., 2012]. In this thesis, I expand the term weather extreme by also including river �oods,
even though a strict de�nition does not cover these. Two main factors foster river �oods.
First, �ooding occurs more likely during the increased in�ow of water masses, which can
be due to (often seasonal) snowmelt or heavy rainfall events. Second, natural or arti�cial
catchment characteristics, such as soil properties, bridges, river topography, or lack of
washland, also contribute to �ood disasters. Globally, about 58 million people per year are
exposed to river �oods [Dottori et al., 2018]. Merz et al. [2021] estimate the global �ood
mortality to have been 0.007% between 1977–2019. Further, �ood disasters may trigger
groundwater contamination [Andrade et al., 2018], outbreak of diseases [Ahern et al.,
2005], mental health problems [Tong, 2017], or migration [Dun, 2011]. Besides impacts on
human conditions, river �oods can cause severe property damage, e.g. the 2002 European
�ood cost ~USD26 bn [MunichRe, 2021], or overall production losses [Willner et al.,
2018b]. Further economic losses can be caused by transportation disruptions [Pregnolato
et al., 2017] or declined agricultural production [Chau et al., 2013].
About 150 million people are exposed to tropical cyclones each year [Geiger et al., 2018].
On a global scale, tropical cyclones cause yearly USD~29 bn of direct economic damage on
average [Guha-Sapir, 2017]. Due to Earth’s wind systems and its topography, trajectories
of tropical storms are naturally con�ned. As a result, many regions do not experience any
tropical storms, while some regions are frequently and seasonally exposed to them. For
example, in the Northern hemisphere, countries bordering the Western Paci�c (e.g. China
or the Philippines) are a�ected by most landfalling tropical storms [Geiger et al., 2018],
but Northern Africa – on a similar latitude – remains virtually una�ected. In Western
Nations, tropical cyclones are usually referred to as hurricanes and categorized by the
Sa�r–Simpson hurricane wind scale (SSHWS) depending on their 1-minute maximum
sustained wind speed [NHC, 2021]. The scale reaches from category 1 to 5 o�cially, but
for convenience weaker tropical storms below the threshold of category 1 are labeled as
category 0. While severe hurricanes (SSHWS categories 4 and 5) account for only 6%
of landfalling hurricane events in the United States of America (USA), they contribute
almost half of the normalized economic damage from all hurricanes [Pielke et al., 2008].
During a tropical storm, there may be incisions in social life [Morrow and Lazo, 2015],
closures of ports [Zhang et al., 2020], disruptions of transportation routes [Yang et al.,
2016; Wang et al., 2014], or even destruction of essential facilities [Paxton, 2019]. In the
short and medium run, tropical cyclones can disrupt power supply [Mitsova et al., 2018],
local �sheries [Thomas et al., 2019], or regular work and production [Vigdor, 2008]. In
the longer run, tropical cyclones may cause signi�cant economic growth losses [Krichene
et al., 2021], which are particular pronounced in underdeveloped countries due to multiple
social aftermaths [Berlemann and Wenzel, 2018].
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Extreme events may occur largely isolated, but they can overlap or succeed each other,
e.g. consecutive �ood and heat wave events in China [Chen et al., 2021]. These events
are typically referred to as consecutive disasters and are typologized by de Ruiter et al.
[2020], who address the importance of them for future disaster assessments. Consecutive
disasters are two or more catastrophes whose occurrences or repercussions overlap in time
or space. This includes that extreme events do not have to coincide but their aftermaths
do. If a population has not yet recovered from a previous disaster, while the impact of
another event a�ects it, the repercussions of the consecutive disasters overlap. Likewise,
extreme events do not necessarily have to occur in the same location for their resulting
repercussions to coincide. The subsequent occurrence of one or more disasters may a�ect
health [Fernandez et al., 2005], business structure [Bhaskara and Filimonau, 2021], or
risk aversion [Li et al., 2011]. These e�ects of consecutive disasters are noticeable at the
macroeconomic level as well [Gissing et al., 2021]. Despite these studies, the potential
impact of consecutive disasters on societies and possible ampli�cation mechanisms are
poorly understood and therefore a focus of current research.
Throughout this thesis, an immediate regional impact of a weather extreme is referred to
as direct e�ect. However, local extreme weather events do not occur in a void; rather, they
are embedded in a complex interconnected world. Hence, correlated impacts in regions
outside the disaster locations or feedback mechanisms involving directly a�ected regions
are possible. These are referred to as indirect or higher-order e�ects. The state of research
to compute indirect and longer-term economic consequences of extreme weather events
is outlined in section 3. While weather extremes already cause severe harm in most spheres
of society, ongoing anthropogenic climate change will very likely increase the impact of
climate-related disasters.

2 Climate change
In the last 100 years, the annual global mean temperature increased by about 1.2 K compared
to the pre-industrial era (period 1850-1900) [IPCC, 2021]. Both, temperature and speed of
warming, are extraordinary for civilizational scales. The last warmer period was about 125
thousand years ago and the highest rate of warming since the Last Glacial Maximum did not
exceed 0.18 K per 100 years [Shakun et al., 2012]. The ongoing rapid climate change results
from accelerated greenhouse gas (GHG) emissions, mainly caused by anthropogenic
use of fossil fuels. The main GHG emitted is carbon dioxide (CO2), which is taken
up only partially by land and water. Around 41% remains in the atmosphere causing
land surface temperature to rise [IPCC, 2021]. Since the pre-industrial era, the global
CO2 concentration has grown by more than 47% and has the highest value for at least
2 million years. Facing rapid climate change, the necessity to comprehend the climate
system and simulate future climate has emerged.
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Earth’s climate can be modeled with di�erent degrees of complexity, and spatial and tem-
poral resolution. Conceptual climate models consist of one or more equations, which
reproduce essential nonlinear climate behavior (e.g. Saltzman and Maasch [1988] or Bó-
dai and Tél [2012]). In Earth-system models of intermediate complexity, some physical
processes are simpli�ed, and temporal and spatial resolutions are reduced to lower compu-
tational time (e.g. Claussen et al. [2002] or Petoukhov et al. [2000]). General circulation
models (GCMs) solve the Navier-Stokes-equation in discretized grid cells. GCMs are the
most complex climate models (e.g. Jones et al. [2011] or Dufresne et al. [2013]), and the
chosen size and order of grid cells may partially lead to regionally di�erent results between
them. GCMs are used for climate projections and form the basis for further models (e.g.
hydrological models [Leng et al., 2015]) or emulators (e.g. tropical cyclone emulators
[Geiger et al., 2021]). Simulations of di�erent Earth-system models are collected in the
collaborative framework Coupled Model Intercomparison Project (CMIP) to generate
uni�ed simulation ensembles and improve climate models (among others). Phase 5 of
CMIP (CMIP5) [Taylor et al., 2012] includes the four GCMs: HadGEM2-ES [Jones et al.,
2011], IPSL-CM5A-LR [Dufresne et al., 2013], MIROC5 [Watanabe et al., 2010], and
GFDL-ESM2M [Dunne et al., 2012].
The GHG concentration in the atmosphere is an essential driver of Earth’s climate. Possible
future concentration trajectories are categorized in representative concentration pathways
(RCPs). Each pathway 1 corresponds to median warming until the end of the century, e.g.
RCP2.6 to +1.6 K or RCP6.0 to +2.8 K [IPCC, 2013]. GCMs driven by an RCP simulate
a projection of future warming under that scenario. Due to the inertia of the climate
system – a lag between GHG concentration and corresponding global mean temperature
– the uncertainty ranges of near-future warming projections (~20 years) exceed variation
of di�erent RCPs. That means that results of one GCM driven by di�erent RCPs are
barely distinguishable for the next two to three decades. Conversely, near-future warming
is mainly already determined by past emissions.
Ongoing climate change will likely change the pattern of extreme weather events. Accord-
ing to the IPCC [2021] extreme heat will increase with a medium to high con�dence for
every land and coastal region until 2050. Robinson et al. [2021] found that the recorded
extreme heat events would have been virtually impossible without global warming over the
last years. In about half of the �ood-prone regions, the occurrence of river �oods increases
with a medium to high con�dence. Until the 2040s, some regions have to drastically
increase adaptation measures towards higher river �ood risks to keep current �ood protec-
tion [Willner et al., 2018a]. Frequency projections of tropical cyclones are still uncertain,
and some studies even predict a negative trend [Knutson et al., 2013]. Nevertheless, the
frequency of severe tropical storms (SSHWS categories 4 and 5) is projected to increase
under global warming. It is estimated that annual exposure to tropical cyclones increases

1Recent studies combine RCPs with shared socioeconomic pathways to incorporate alternative socio-
economic development and possible climate policies more strongly in GHG emission scenarios.
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by 33 million people (+26% compared to 2015) for +2 K global warming [Geiger et al.,
2021].
Beyond the immediate risks of intensifying extreme weather, human civilization will
be severely challenged by the necessity of mitigating and adapting to future warming,
which make anthropogenic climate change a climate crisis. Aware of this existential
threat, the international community agreed in 2015 on the common goal of keeping global
warming well-below +2 K by the end of this century compared to the pre-industrial era.
To achieve this, humanity must undertake drastic mitigation measures. Current policies
and actions are projected to lead to a warming path of +2.7 K by the end of the century
[Stockwell et al., 2021], although warming will not have stopped by then. Furthermore,
adaptation measures need to be implemented to address the consequences of ongoing
climate change. Both mitigation and adaptation are tremendous challenges for society as
a whole. Interdisciplinary research approaches could help �nd solutions to the threats of
extreme events and climate crisis.

3 Modeling economic impacts
Weather extremes do not only impact regions directly a�ected, rather they can cause
signi�cant economic repercussions. On the one hand, production and supply disruptions
may cause shortages or surplus along supply chains. On the other hand, demand for goods
from una�ected regions could increase sharply during a disaster and in the aftermath.
Furthermore, hysteresis e�ects might cause extreme weather to impact long-term economic
development. Socio-economic models can simulate these cascade e�ects. In the following,
I brie�y depict prominent model families with which indirect economic e�ects can be
computed and discuss their scope and limitations.
Closed economy models simulate macroeconomic patterns of an isolated economy. They
re�ect the interaction of price, demand, production channels, and GDP within a self-
su�cient economic cycle. Among others, standard closed economy models address in�a-
tion (e.g. Lucas island model [Lucas Jr, 1975]), growth (e.g. Solow-Swan model [Solow,
1956]), or interest rates (e.g. IS-LM model [Hicks, 1937]). These approaches are useful to
describe qualitative e�ects in macro-economy, especially for industrialized economies with
low trade levels as it was rather typical during and after World War II [Ortiz-Ospina and
Beltekian, 2018]. However, international trade has grown dramatically (faster than national
GDPs) in the last 60 years [OWD, 2021], resulting in a need for a more interconnecting
economic theory.
Leontief [1951] pioneered the development of input-output (IO) models, which couple
economic production, trade �ows, and �nal demands in a linear mathematical relationship.
Using this, trade changes and associated economic impacts caused by perturbations can be
computed. Analyses based on IO models are useful for computing �rst-order (cascading)
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impacts. However, the coupling of economic variables is too in�exible and calculated
damages are likely to be overestimated.
Comparable to IO models, computable general equilibrium (CGE) models simulate eco-
nomic variables and their relation to each other, which are initially in general equilibrium
[Hertel, 1997; Walras, 2013]. An external perturbation disturbs this state and causes the
economic system to transition to a new general equilibrium state. The transition decision
is usually based on price adjustments and cost minimization as a constraint. Economic
systems modeled with CGE are highly �exible and adaptive. However, CGE models are
mostly calibrated on long-term equilibriums, which neglects the inertia of adaptation
processes, resulting in underestimating damages and costs of external impacts.
Workhorses of climate policy assessments are integrated assessment models (IAMs) [Rose
et al., 2017]. They couple socio-economic and environmental models into one framework.
There, anthropogenic processes (e.g. unsustainable agriculture) drive environmental
changes (e.g. rise in GHG concentration). Corresponding changes (e.g. deserti�cation)
then backlash on human activities (e.g. harvest failure). Thus, policies and possible
feedback can be evaluated, and future impacts caused by past actions can be linked to
each other. Based on this, the social cost of carbon (SCC) – the long-term societal cost of
one additional ton emitted CO2 – can be computed. SCCs are included into cost-bene�t
analyses of mitigation e�orts, adaptation measures, and their mutual cost trade-o�s [Tol,
2005, 2007, 2011]. Though widely used, IAMs have the disadvantage that they do not
properly account for short-term extreme events due to coarse temporal resolution [Otto
et al., 2020; Pindyck, 2020]. Therefore, IAMs rather underestimate direct and indirect
losses due to weather extremes.
Another approach to model social or economic processes is agent-based modeling, where
discrete decision-making agents interact. An agent-based model (ABM) can be a network
of individuals [Cuevas, 2020], collectives [Gurgone et al., 2018], or a mixture of di�erent
sized groups [Ermolova et al., 2021]. By modeling a network of autonomous agents, each
agent’s particular physical, economic, or social environment can be addressed. Further-
more, ABMs can operate at a high temporal resolution. A main drawback of ABMs are
model calibration and validation, although methods improve for both [Lamperti et al.,
2018; Fagiolo et al., 2019]. In economic studies based on ABMs, stylized facts and market
dynamics have been reproduced [Gualdi and Mandel, 2016; Dosi et al., 2018]. A network of
autonomous agents with microeconomic decision rationales can simulate macroeconomic
patterns [Stiglitz and Gallegati, 2011; Dawid et al., 2019]. ABMs can be used to analyze loss
propagation along supply chains [Gualdi and Mandel, 2016].
In this thesis, I mainly use the ABM Acclimate [Otto et al., 2017], which is designed to
study loss propagation through the economic network caused by short-term economic
impacts. The model simulates the behavior of myopic and locally optimizing economic
agents on a daily resolution and thus allows an assessment of possible regional and sectoral
responses to weather extremes. Feedback processes in both directions along the supply
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chain are integrated, similarly to other ABMs [Jaumotte and Osorio, 2015]. Through
downstream e�ects, supply deviations are passed down the supply chain. In upstream
e�ects, shifted demands and prices propagate up the supply chain. Economic agents in
Acclimate can �exibly adjust their daily actions, e.g. demand and supply allocation, to
repercussions. Endogenous price dynamics account for short-term adaptation costs and
constrain trade choices. Finite transportation times and inventories re�ect the inertia of
the trade system. Due to high regional and sectoral resolution, sub-national, national and
international economic processes can be simulated.

4 Research questions
For my doctoral thesis, I identify three research questions, with whose answers I aim to
achieve further scienti�c insights on the role of weather extremes on local economies and
their interconnected supply chains. That might contribute to solutions for the major
social challenges arising from weather extremes and climate crisis.
In my research, I lean on various tools from di�erent scienti�c �elds. Economic processes
and decision rationales are derived from experiences in microeconomics and macroeco-
nomics, e.g. utility maximization. To calculate the occurrence and patterns of weather
extremes, I use insights from climate physics, e.g. statistical distribution of tropical storms.
Furthermore, I make use of statistical measures to explore correlations between physical
drivers and societal impacts, e.g. Lorenz-curves and Gini-coe�cients to describe shock
heterogeneity of extreme events. By referring to �ndings from classical mechanics, socio-
economic phenomena are explained, e.g. loss ampli�cation due to resonance e�ects within
the economic network. It is important to me to examine the socio-economic repercussions
explicitly from the point of view that the intrinsic temporal dynamics are resolved. The
dynamic modeling and the computer-based simulation of these processes are built on my
modeling experience in theoretical physics.
In the following three sections, I formulate my research questions (�gure 1) and give a
short outline of how my research, laid out in articles A to F, provides answers.

4.1 Impact
The subject of my thesis is the economic consequences of extreme weather events. To
unfold this topic, my �rst research question addresses direct e�ects.

How do weather extremes impact local economic performance?

To answer this, I focus on three disaster categories: heat stress, river �oods, and tropical
cyclones. The disaster category heat stress is examined in articles A and C. To compute the
economic impact in an area a�ected by heat stress, I use a linear temperature-productivity
correlation found by Hsiang [2010]. The functional dependency is sector-speci�c and can
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How do weather extremes impact 
local economic performance?

How are repercussions of extreme events 
distributed in the economic network?

How do and could societies adapt to 
weather extreme-induced repercussions?

A, B, C, D

A, B, C, E, F

A, B, C, D, F

Research questions Articles

Figure 1: Schema of my thesis. Research questions (left) and corresponding articles of my
thesis (right).

be applied beyond a daily mean temperature threshold of 27◦C. I compute local economic
productivity changes due to heat stress using gridded temperature data based on CMIP5’s
GCMs driven by RCP2.6 and RCP6.0 and the temperature-productivity correlation.
Regional output reductions are aggregated weighted by gridded population data as a proxy
of the productivity of an area.
To compute economic impacts of river �oods [C], I use results of Willner et al. [2018a],
which base on �ve hydrological models, driven by the four GCMs of CMIP5 and RCPs 2.6
and 6.0. I calculate the regional production failure by assuming that a �ooded area stops
its production in non-service sectors for the duration of a �ood. In the disaster aftermath,
the production recovers depending on the �ood depth.
I further compute the economic impacts of tropical cyclones by using three di�erent
approaches. In article B, the production failures due to Hurricane Sandy (2012) are derived
from the estimated business interruption in the most a�ected US states, New York and
New Jersey. In article C, tropical cyclone trajectories simulations are based on methods
from Geiger et al. [2018, 2021] and are driven again by mentioned GCMs and RCPs.
Analog to river �oods, I assume that non-service production in the tropical cyclone-
a�ected area stops and that productivity recovery is wind speed dependent. In article
D, the impact of damaged capital due to landfalling hurricanes on economic growth is
calculated by using a modi�ed closed economy growth model. The computations are
based on historical events and their variation of shock sizes. I implement the Gini index
as a metric of shock heterogeneity and show that the variation of individual shock sizes
a�ects economic growth.
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By overlapping the time series of productivity reduction caused by di�erent disaster cate-
gories, I compute the direct impact of consecutive disasters of all three disaster categories
[C].

4.2 Distribution
My second research question focuses on indirect e�ects of weather extremes within the
complex economic network.

How are repercussions of extreme events distributed in the economic network?

To answer this question, I use the agent-based loss-propagation model Acclimate, which
computes responses in regional and global supply, demand, and prices due to local pro-
duction changes or transport perturbations. The Acclimate model consists of a complex
network of 26 sectors, i.e. representative �rms, and one consumer per region. The network
is built by 268 regions – 186 nations, 31 Chinese provinces, and 51 federal US states, includ-
ing the District of Colombia. The complex trading network has over 1.8 million linkages
between 7,236 economic agents. The 26 trading goods and services are non-substitutable.
Firms (consumers) locally optimize their pro�t (consumption) in response to short-term
production, price, or supply changes. These changes are depicted as deviations from
the economic baseline, which is derived from the Eora database, a static multi-regional
input-output table [Lenzen et al., 2012]. The economic agents decide myopically, and the
price dynamics is endogenous. The model was described by Otto et al. [2017].
As one indicator of how economic repercussion propagates through the complex eco-
nomic network, I focus on regional and global consumption of goods and services. Since
consumers are at the end of supply chains, conclusions can be drawn about the distribu-
tion of supply shortages and price changes. In article A, I examine price and consumption
changes due to heat stress-induced local production reduction and project near-future loss
intensi�cation due to global warming. In article B, I focus on a single event, Hurricane
Sandy (2012), to outline the repercussion propagation mechanism of extreme events and
describe the emerging three-phased ripple within the complex economic network. In
article C, resonance e�ects of ripples in the trading network due to consecutive disasters
and consequences for consumers are analyzed.
Domestic and inter-regional trade are in the focus of articles E and F, as they are additional
indicators of distribution of economic impact in a trading network. For this, I extend
the Acclimate model with a geographical transportation route network, which consists of
land entities, maritime entities, and ports. Economic agents autonomously compute their
best transportation route based on a developed cost algorithm. This extension enables to
obstruct the �ow of goods through trade hubs. Network repercussions due to trading
perturbation caused by a hypothetical no-deal Brexit [E] or observed typhoons [F] are
examined. Important to note that no �rm reduces production directly due to external
perturbation in those studies. Thus, there are no direct output losses contrary to studies
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A, B, and C. The daily product �ows between ~1.8 million linkages are aggregated to
reasonable trade �ows between summarized economic regions or economic blocs.

4.3 Adaptation
My third and �nal research question addresses possibilities for adaptation strategies.

How do and could societies adapt to weather extreme-induced repercussions?

I study under which conditions the network of economic agents can mitigate or even
overcome external disturbances. In article F, I focus on the changes in trade due to typhoon-
induced transport perturbations. In my study, I �nd that di�erent economic baselines
show a trend in regional trade responses. To understand the reason for these deviations, I
use network metrics like share of network �ow and node inter-connectivity. The latter
is measured in the number of outside connections normalized to the number of �rms
of a region. Here, an outside connection refers to a linkage to a �rm or consumer which
does not belong to the same region. I study how these network metrics in�uence trade
responses and potential trade resilience.
In article D, I analyze how hurricane-induced capital damage a�ects economic growth
while explicitly resolving individual landfalling tropical storms. I extend a classic Solow-
Swan growth model by including a time-dynamic insurance scheme. Thereby, an economy
uses previously reserved disaster funds for reconstruction in shock aftermaths. The insured
capital is not paid out instantaneously, but rather the dynamic is adapted to the sigmoidal
disbursement pattern of real-life payout processes. An insured capital stock reduces eco-
nomic growth in the �rst place but triggers a faster recovery in the disaster aftermath.
Using this, I examine such insurance scheme’s societal bene�t and adaptation potential on
a historical observed impact level. I also explore if a basic insurance scheme may mitigate
possible climate change-induced increased losses. For this, I project capital damages for a
+2 K world (barely Paris-compatible) and a +2.7 K world (pathway of current mitigation
policies and actions) using a wind speed approach and a surge index approach. For the
former, I map historical damages of tropical storms to SSHWS categories and change the
relative frequency of categories 0-3 (decrease) and categories 4-5 (increase) as Knutson et al.
[2013] project. For the latter, I �nd a positive correlation between capital damage and surge
index. Using this correlation and the surge index increase per degree of global warming
(empirically found by Grinsted et al. [2013]), I project capital damages for a warmer world.
Thus, I study the adaptation possibilities of an insurance scheme under di�erent climate
change projections.
Regarding the unfolding of the climate crisis for the next 20 years, mitigation measures
are already too late. Therefore, besides further mitigation e�orts, near-future adaptation
measures are urgently needed. To �nd further potential adaptation advice, I refer to
the insights of my �rst two research questions and interpret them in a connected-world
framework. While computed impacts in articles A, B, and C are based on di�erent direct
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loss approaches, I analyze similarities and di�erences in the network’s responses to these
and present possible coping mechanisms like crisis-conscious trading corporations.
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Articles

My thesis is built on six scienti�c articles. Four of them are published in peer-review jour-
nals and two are submitted to journals at the time of submission of this thesis. Each article
by itself is a stand-alone contribution, which consist of an introduction, methods, results,
discussion, and respective references. The supplementary information of each article can
be found in the appendix of this thesis. As a short overview, I provide information on
authors, journal, content, and my contribution to each article.
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Future heat stress to reduce people’s purchasing power
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Capsule summary

Under near-future climate change, the frequency of local heat waves increases, which leads
to intensi�ed heat stress pressure on society. In this study, the impact on productivity
due to heat stress for the �rst four decades of this century is computed. The resulting
propagation of supply shortages and regional responses along the trading network are
examined by using the network-based model Acclimate. Higher prices may increase the
pro�t value of �rms but reduce consumption for the vast majority of regions. The trend
of the results is robust for di�erent economic baselines. The analysis even implies that a
more inter-linked network adapts worse to regionally and temporally widely distributed
heat stress.
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Abstract

With increasing carbon emissions rising temperatures are likely to impact our economies

and societies profoundly. In particular, it has been shown that heat stress can strongly

reduce labor productivity. The resulting economic perturbations can propagate along the

global supply network. Here we show, using numerical simulations, that output losses due

to heat stress alone are expected to increase by about 24% within the next 20 years, if no

additional adaptation measures are taken. The subsequent market response with rising

prices and supply shortages strongly reduces the consumers’ purchasing power in almost

all countries including the US and Europe with particularly strong effects in India, Brazil, and

Indonesia. As a consequence, the producing sectors in many regions temporarily benefit

from higher selling prices while decreasing their production in quantity, whereas other coun-

tries suffer losses within their entire national economy. Our results stress that, even though

climate shocks may stimulate economic activity in some regions and some sectors, their

unpredictability exerts increasing pressure on people’s livelihood.

Introduction

Anthropogenic greenhouse gas emissions have already led to an increase in global mean tem-

perature by about 1˚C compared to pre-industrial levels [1–3]. Due to inertia in the climate

system, the planet will continue to warm over the next two decades even under possible emis-

sion reductions [4]. With global mean temperature rising, the number and intensity of extreme

heat events are expected to increase [5, 6]. A growing body of empirical literature suggests that

rising temperatures have various socio-economic impacts by affecting, for example, agricul-

tural output [7], human health [8], energy supply [9, 10], income [11, 12], and labor productiv-

ity [13, 14]. Nevertheless, on a global scale there is not yet satisfying coverage on the overall

production loss estimates due to heat stress [15].

Labor productivity, which is strongly impacted by heat stress [16], has been shown to

decrease quasi-linearly with daily mean temperatures exceeding 27˚C [17, 18]. Possible rela-

tions to physiological heat stress make this particularly relevant for outdoor sectors such as
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forestry, mining, and construction, where workers are strongly exposed to ambient tempera-

ture [19–21]. Stronger efforts to mitigate climate change are needed to avoid further increase

in heat stress [22–24], but warming is unlikely to be halted in the next two decades. Without

specific adaptation measures—which come at their own costs [25]—an increasing number of

hot days due to globally rising temperatures will thus lead to temporarily reduced productivity

of these sectors.

These losses can be substantial; for instance, the Russian heat wave in 2010 caused output

losses of about USD 15bn in the Russian economy alone [26]. The business interruptions asso-

ciated with such a strong shock to a local economy (“direct losses”) can additionally spread to

other sectors and regions via demand and supply cascades as well as associated price signals

[27–30]. Resulting indirect losses [31, 32] can be particularly high in today’s densely connected

global economic network. However, there can also be gains through market adjustments,

which effectively redistribute production in the short run [33–35]. Thus, depending on the

structure of the economic network [36], the flexibility of the economic actors within that net-

work [37], and the strength and regional pattern of the heat stress signal, direct losses can be

both, amplified and mitigated through economic response dynamics.

In this study, we estimate the short-term effects of heat stress-induced reduction in labor

productivity and corresponding output losses for 2020–2039 in comparison to 2000–2019.

The effects are short-term in the sense that they are on the scale of days to weeks arising from

direct productivity reduction beyond a daily temperature threshold on each individual day. In

particular, we show the short-term repercussions of these specific shocks in the global eco-

nomic network in terms of indirect production losses, price changes, and effects on consump-

tion on a national and global scale. We show that the latter can be substantial and are likely to

increase in many regions. We add up these daily economic repercussions to annual values and

depict a long-term trend of these aggregated short-term effects for the next double decade. For

that, we employ a loss-propagation model including a total of 7, 236 economic agents which

form a network of about 1.8 million interconnections. Results are thus under the economic

structure of 2012 in the absence of adaptation.

Materials and methods

Temperature data

We use time series of daily mean temperature for the period 2000–2039 as a physical driver for

economic outages. The projected temperature data are provided by four global climate models

(GCMs) of the CMIP5 [38] ensemble (HadGEM2-ES [39], IPSL-CM5A-LR [40], MIROC5

[41], GFDL-ESM2M [42]), which have been bias-corrected within ISIMIP [43] (project phase

2b) towards an observation-based data set using a trend-preserving method [44] at a spatial

resolution of 0.5˚ × 0.5˚. Using a bias-correction, extreme weather phenomena, which in the

GCMs tend to be averaged out, can be better represented in the time series; thus, the daytime

temperatures do not correspond to the historical values, but are well represented in their statis-

tics over the ensemble (for consistency we also use ISIMIP2b output (historical scenario) for

the historic period). For each model we use the representative concentration pathways (RCPs)

2.6 and 6.0. This combination results in an ensemble of eight daily temperature time series and

thus eight direct output loss time series. Although the emission path for the next two decades

is largely determined due to the inertia of the climate system, the usage of different RCPs pro-

vides a larger simulation ensemble.
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Population data for distribution of production

Population data rely on the Population Count v4.11 for the year 2015 of the GPW data set [45]

aggregated to the resolution of the physical input data (0.5˚ × 0.5˚). We use these population

data as a proxy for the distribution of production of a region over a gridded area, meaning that

a cell where x% of a region’s population lives accounts for x% of its production as well. Thus, a

heat wave over a densely populated area causes a higher direct loss of production than over

sparsely populated area. As a region mask we use GADM data [46], which we rasterize to the

same resolution (0.5˚ × 0.5˚) advanced in coastal areas to account for inaccuracies at shape

boundaries.

Direct output losses due to heat stress

To obtain a region and sector specific damage function, we employ the empirical relationship

between daily temperature and production capacity derived by Hsiang et al [17]. The produc-

tion reduction bases solely on short-term performance shortfalls and not on longer-term struc-

tural damage, such as destroyed infrastructure. Though originally focuses on Caribbean

countries, we transfer the productivity-temperature-correlation to all countries in the world.

In our study, we take a look at the spatio-temporal responses of the global economic network.

For this, a linear temperature-productivity-relation approach for every region makes slightly

less assumptions than a non-linear relation. We translate the local daily mean temperature to

direct output production losses within a regional sector. Every grid cell r where the daily mean

temperature Tr(t) at day t surpasses 27˚C suffers a linear reduction αs in its productivity ps,r(t)
per ˚C beyond 27˚C for the sectors {s}:

• agriculture (−0.8 p.p./˚C),

• fishing (−0.8 p.p./˚C),

• mining and quarrying (−4.2 p.p./˚C),

• hotels and restaurants (−6.1 p.p./˚C),

• wholesale trade (−6.1 p.p./˚C),

• and others (−2.2 p.p./˚C)

(the unit p.p./˚C corresponds to percent points per additional degree Celsius).

Thereby we only consider sectors for which statistically significant results in reduction of

labor productivity have been found [17] as well as the agriculture and fishery as important sec-

tors (impact on these is comparatively small, though). Thus, we exclude the sectors transport,

communications, construction and manufacturing for which the empirical results were not

statically significant.

Thus, we have a perturbed productivity of

ps;rðtÞ ¼ 1 � asðTrðtÞ � 27 �CÞ for TrðtÞ � 27 �C: ð1Þ

The perturbed productivity per sector s of each cell r, which belongs to a region R, is aggre-

gated to the daily perturbed productivity per sector s of a region R weighted by the population

distribution:

ps;RðtÞ ¼
P

r2Rps;rðtÞPrP
r2RPr

;

with Pr being the population of cell r.
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Absolute output losses are then determined by multiplying the perturbed productivity with

the baseline production of that region (see next section).

Economic network

As the underlying baseline for the global economic network, we use multi-regional input-out-

put (MRIO) tables of the EORA simplified data set v199.82 [47]. The build-up and harmoniza-

tion of the input-output table base on certain assumptions, which barely affect the general

structure of the flows, but rather their details. In our sensitivity analysis we show that our

results are stable with respect to changes of individual flows. The commodity flows in the

MRIO table are provided as monetary flows (in USD of the data year) between regional sec-

tors. The economic baseline network is build from the EORA MRIO table for the year of 2012.

Flows smaller than 1000$/year and regional sectors with negative value added are removed

from the network. A few regions (Belarus, Guyana, Moldova, Zimbabwe) with inaccurate data

basis, causing partially an extremely unrealistic temporal evolution, were neglected in our anal-

ysis. Because of their large economic power, we further disaggregate [48] the United States of

America and China into 51 states and 32 provinces using gross regional product (GRP) data

[49, 50] of the individual states and provinces, respectively. We thereby split the flows of goods

and services from and to a subregion according to the share of the subregion’s GRP of the total

country’s GDP. Each economic sector in a nation, US state or Chinese province, which we

refer to as regions for simplicity, forms an individual agent or “regional sector” in the loss-

propagation model Acclimate (see below). In addition to mapping the flows of goods and ser-

vices, the EORA MRIO table is used to calculate the baseline production of each regional sec-

tor. The resulting economic network comprises 27 sectors (including one consumer sector)

and 268 regions, a total of 7, 236 agents.

Indirect production losses—The Acclimate model

We use the agent-based loss-propagation model Acclimate [51] to project the dynamics of the

global economic network and derive overall production and consumption losses. This anom-

aly model revolves around the economic baseline given by the multi-regional input-output

data. The direct output losses, given as short-term production reduction, impact this economic

baseline network; Acclimate then simulates the behavior of firms (regional sectors) and con-

sumers when perturbed from the baseline by a demand, supply, or price shock. In that, each

regional sector, represented by a node in the input–output network, individually maximizes its

profit by choosing the optimal production level and corresponding upstream demand as well

as the optimal distribution of this demand among its suppliers.

In more detail, every time step consists of three subsequent decision points for each agent.

In the first sub-step, a firm calculates its current production level in order to maximize its

profit (difference between revenue and costs) under the current supply and demand circum-

stances. Any restrictions, such as limited production capacity or limited number of input

goods, are taken into account. In particular, production costs increase non-linearly if firms

extend their production beyond baseline quantities. In their sales prices firms are bound by

the demanded requests and price offers received from their purchasers. Ordering these orders

by descending price results in a concave revenue curve. Similar to firms, consumers decide on

their consumption, but following the perceived prices according to their respective consump-

tion elasticity. In the second sub-step agents update their expectations for the next time step

according to goods received in the first sub-step. In the last sub-step, each agents decides via

cost-minimization the distribution of demand among its suppliers in terms of quantity and

price. This is based on supplier’s offer prices as well as expectations on their cost curves. Thus
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prices are endogenous non-equilibrium prices that are can differ locally for each supplier-pur-

chaser pair. Supplied goods are transported between agents following a distance-based delay.

Together with storage inventories, these transport pathways act as buffers for supply shocks.

Overall, the model dynamics focuses on the perturbations around a baseline equilibrium.

Whereas this baseline is assumed to be optimal on longer time scales the endogenous local

price changes as well as supply and demand mismatches are resolved explicitly over time. In

the disaster aftermath, these relax back to the unperturbed baseline equilibrium over a time-

scale determined by the market. Computed losses thus account for price effects such as

demand surge and supply shortages. With its focus on short-term perturbation dynamics the

model does not include structural changes in the global trade network, such as investments,

relocation of production or the establishment of new trade relations. A comprehensive model

description of Acclimate is provided in Otto et al [51].

Consumer price elasticity

The consumers’ reaction to price changes depends on consumed commodity and services as

well on their own economic background. To reflect this in our model, the consumer price elas-

ticity differs among regions and sectors. For that, we divide the regions into four groups,

income levels, corresponding to their gross national income (GNI) per capita (GNI/pc) (S2

Table) (low, lower-middle, upper-middle, high income level). As income rises, the flexibility to

react to prices increases which enables countries with a higher GNI/pc to respond more resil-

iently to price changes. The World Bank provides an annually and inflation-adjusted defini-

tion of income levels and country-specific data [52], which we use as a basis for our

classification for the year 2012. We do not consider other national socio-economic structures

(education, wealth distribution, etc.) in this study. Accordingly, we base the classification on

average income only.

Within the Global Trade Analysis Project (GTAP) [53], target income elasticities of demand

have been calculated for 140 regions and 10 commodity classes [54]. The regions of EORA and

GTAP do not match perfectly. For non-GTAP-countries we assign the consumption price elas-

ticities via the respective income level group specific parameter. To link the different sectoral

resolutions, we map our economic sectors to the GTAP classes and then group them into three

categories: vital, relevant, and other. The categorization of the sectors used is given in S1 Table.

The more life essential goods or services are, the less flexible consumers can be in responding

to price fluctuations. Using the three sector categories and the World Bank’s country classifica-

tion, we assign a specific consumer price elasticity from the GTAP data set [55] for any pair of

level income and sector category (S3 Table). We do not consider cross-sector elasticity as one

can assume low to no substitutability for the large sector classes we use (S1 Table).

Limitations

Into this short-term loss-propagation model labor productivity shocks enter as direct reduc-

tions in productivity, but do not take into account longer-term damage, such as destroyed

infrastructure. As we focus on these short-term shocks and the corresponding economic reper-

cussions, we assume that there is no investment and no explicit capital on these time scales.

Also neither firms nor consumers have the explicit notion of savings. However, on a daily time

scale, the effects of corporate growth or relocation of production are small compared to exter-

nal production constraints [35]. With its agent-based short-term dynamics, the Acclimate

model is particularly suited to assess the global distribution of consequences of unanticipated

short-term shocks such as those caused by heat stress. Nevertheless, this study only focuses on

a single impact channel of climate change disturbing the global economy. Naturally, this
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occurs additional to other economic activity. Our results should thus not be interpreted as

quantitative projections, but show trends between the last and upcoming double decades.

Results

We find (i) increases in direct output losses, (ii) a very heterogeneous distribution of overall

total production losses and gains when incorporating price changes and other indirect effects

(with gains in a majority of countries), and (iii) a differently distributed consumption response

with almost all regions reducing consumption while increasing expenditure. In the following,

we give detailed results for the median of the ensemble of four climate models and two repre-

sentative concentration pathways each. These results should not be interpreted as literal pro-

jections, but show trend and magnitude of the higher-order effects of this one particular

impact channel of climate change—under the current economic structure and in absence of

adaptation.

Direct output losses

According to global climate models, global mean temperature increases by about 0.8˚C

between 2000 and 2039 and as a consequence direct output losses increase by 47%—if no fur-

ther adaptation measures are taken (Fig 1A and 1C). Within the next two decades, the global

direct output loss will increase by 24% (in 2039 compared to 2020). This corresponds to an

increase in global direct output losses of about USD 127bn per degree of global warming.

These local heat stress-induced losses are heterogeneously distributed across regions (Fig 1b).

Fig 1. Global mean temperature anomaly and heat stress-induced direct output losses. A,C: Temporal evolution of A global mean temperature

anomaly relating to pre-industrial level and C heat stress-induced direct output losses for the four climate models, HadGEM2-ES (blue),

IPSL-CM5A-LR (green), MIROC5 (red), GFDL-ESM2M (orange) and RCP2.6 (dashed) and RCP6.0 (dotted), and ensemble median (black line). The

higher temperature anomaly of climate model IPSL-CM5A-LR compared to the other climate models is due to the relatively lower model-internal pre-

industrial temperature. B,D: Regional maps of B absolute and D relative annual direct output loss due to heat stress based on the respective regional

projected median for 2020–2039. Regions with an absolute or relative direct annual output loss below USD 1bn or 0.2% of baseline (unperturbed)

production are depicted in light purple.

https://doi.org/10.1371/journal.pone.0251210.g001
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For all maps shown in this paper, shapes of countries are based on GADM data [46]. About

84% of all regions exhibit an annual median output loss of less than USD 1bn p.a. in 2020–

2039 whereas several major economies experience substantially higher output losses. Among

those are Saudi Arabia (USD 22bn p.a.), China (USD 29bn p.a.), USA (USD 40bn p.a.), and

India (USD 44bn p.a.). In terms of relative losses, i.e. a percentage of a country’s overall pro-

duction level, countries of the Sahel, the Arabian Peninsula, and South Asia are impacted the

strongest (Fig 1d). The global rise in temperature leads regionally to an increase in direct losses

in the billions USD (e.g. in India, Saudi Arabia, or Mexico) or nearly double the direct output

losses (e.g. in Northern America or Europe) within the next decades (S1 and S2 Figs).

Total production losses and gains. These direct output losses evoke a market response

locally as well as across country borders. The heat stress-induced scarcity inflates prices of

intermediate goods and services as well as consumer prices. On a global level, the increase in

value of produced goods rises from 0.23% p.a. in 2000 to 0.36% p.a. in 2039 (Fig 2a). Again,

there are large differences between countries. Some sectors in some countries even profit from

heat stress-induced outages of their competitors when scarcity inflates the prices for their

product and/or they receive more demand requests. For example, the US state of Texas and

the country of Iraq have to cut back their production in the petroleum and non-metallic min-

eral sector, while Iran and Russia are ramping up their production in this sector. Many coun-

tries, including most G20 countries, are able to increase the value of their goods and services

due to price effects despite direct output losses (Fig 2b). Economic relations are a relevant fac-

tor here. Although Spain and Greece suffer significant direct output losses (Fig 1), they are still

increasing their production value through the European Single Market (Fig 2b). This is in con-

trast to Arizona and Texas failing to convert their direct output losses within the US economic

system into total production gains. A few countries (e.g. Saudi Arabia, India, Thailand), suffer

from many hot days in a year and therefore cannot benefit from a positive change in total pro-

duction as well (Fig 3).

Consumption losses and change in expenditure

Facing higher prices, consumers have a certain willingness and ability to increase their expen-

diture in order to reduce consumption losses. This behavior determines the increase in house-

hold expenditures alongside a price-driven reduction in material consumption. In our model,

consumers’ willingness and ability to adjust their expenditures in response to rising prices is

described by the consumption price elasticity. Since economic well-being and necessity of

goods and services have a crucial role on consumption decision, we use a country and sector-

specific consumption price elasticity (see Methods for a detailed description).

As a consequence, as global output decreases and prices inflate, consumption is diminished.

However, our results show that this occurs regardless of the question if the country itself actu-

ally gains from increased prices in production value or not (Fig 3)—only a few economically

small states show (very small) consumption gains. This is due to the strong global interconnec-

tedness transferring heat-stress losses in terms of consumption also to countries not affected

themselves. Though some of these countries can benefit in their production values, the con-

sumption reduction can only partiality be compensated for; in most countries there is a higher

share of production gain than consumption loss (Fig 3). Although in the three largest eco-

nomic regions, USA, China, and the European Union, the heat stress-induced direct produc-

tion losses are distributed heterogeneously within their regions (Fig 1B and 1D), the EU

exhibits an enhanced consumption loss and total production gain (Fig 3). This may be due to

the strong economic connection among US states and among provinces of China. These con-

nections make it easier to compensate for production losses within these countries. Compared
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Fig 2. Total production losses and gains. A: Temporal evolution of global total production change for the four climate models,

HadGEM2-ES (blue), IPSL-CM5A-LR (green), MIROC5 (red), GFDL-ESM2M (orange), and RCP2.6 (dashed) and RCP6.0 (dotted),

and ensemble median (black line). B: Regional map of total production gains and losses based on the respective regional projected

median for 2020–2039 and the full GCM–RCP ensemble. Quantities are given relative to the baseline (unperturbed) production.

https://doi.org/10.1371/journal.pone.0251210.g002
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to the historical period (2000–2019), gains and losses of total production and consumption

increase moderately in the future, but the qualitative pattern of the countries remains similar

(Fig 3 and S3 Fig).

Global consumption decreases, i.e. heat stress-induced consumption losses increase from

0.15% p.a. in 2020 to 0.30% p.a. in 2039 (Fig 4A). These quantitative losses come at a higher

consumer expenditure, which increases from 0.11% p.a. in 2020 to 0.16% p.a. in 2039 (Fig 4C).

Per degree of warming, expenditure thus rises by 0.06 percentage points as consumption falls

by 0.18 percentage points. These results are regionally fairly homogeneous (Fig 4B); about 93%

of the global population lives in a region where consumer expenditures increase (Fig 4D). The

pattern of pressure on consumers does not change between historical and future periods (S4B

and S4C Fig).

Neglecting other economic benefits such as potentially higher wages because of increased

production value (as most, though not all, countries with diminished consumption show), this

Fig 3. Consumption and total production change per country for the time period 2020–2039. The area of each dot is proportional to the

corresponding country’s baseline (unperturbed) production. The dot colours denote the geographic regions (see S2 Table). Quantities are given relative

to the baseline (unperturbed) production and consumption, respectively.

https://doi.org/10.1371/journal.pone.0251210.g003
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comes at a decrease of household welfare. Overall, one can say that the heat stress shocks on

productivity lead to a reduced overall economic efficiency which cannot be fully mitigated by

market flexibility.

Changing the underlying economic network

The results above all assume a constant baseline structure of the global economic network, i.e.

they are to be interpreted “given the world economy of 2012”. Nevertheless, our results are

qualitatively robust to the network used when compared to results with the network structures

of 1992 and 2002 (Fig 5). Quantitatively, however, earlier network structures show a smaller

response, in particular in the total production changes, due to their much smaller interconnec-

tedness [36]. Interestingly, consumer expenses are similar for all three networks, though con-

sumption losses are by far highest for the 2012 network (Fig 5B and 5C). For the future world

economy assuming further globalization of supply and trade chains, one would thus expect an

even stronger response to heat stress even without climate change.

Results robust against parameter choice

Central to the overall consumer behavior in our model is the consumption price elasticity. To

assess its influence on our results, we conduct a sensitivity analysis sampling this parameter for

every consumer in a range from −1.0 (highly flexible to price changes) to −0.1 (almost disre-

garding price changes) (Fig 6A). In the analysis, all consumers have the same consumption

parameter so that results are directly comparable. In our parameter study, we use the eight

direct output loss time series to shock Acclimate and we focus on the global consumption

Fig 4. Consumption and expenditure change. A,C: Temporal evolution of A global consumption change and C global expenditure change for the

four climate models, HadGEM2-ES (blue), IPSL-CM5A-LR (green), MIROC5 (red), GFDL-ESM2M (orange), and RCPs 2.6 (dashed) and 6.0 (dotted),

and ensemble median (black line). B,D: Regional maps of B annual consumption change and D annual expenditure change based on the respective

regional projected median for 2020–2039 and the full GCM–RCP ensemble. Quantities are given relative to the baseline (unperturbed) consumption

and expenditure, respectively.

https://doi.org/10.1371/journal.pone.0251210.g004
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Fig 5. Total production, consumption, and expenditure change for economic networks of 2012, 2002, and 1992.

Temporal evolution of A total production changes, B consumption change and C expenditure change for economic

networks of 2012 (blue), 2002 (orange) and 1992 (red). Ensemble members and median are depicted in light and thick

lines, respectively.

https://doi.org/10.1371/journal.pone.0251210.g005
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losses and expenditure raise in 2039. On the one hand, global expenditure rises with increasing

inflexibility. This is reasonable to expect as consumers are less likely to accept price increases

with greater flexibility. On the other hand, global consumption losses due to heat stress hardly

change. So the future heat stress-related pressure on people’s purchasing power is largely

insensitive to the choice of the consumption price elasticity.

This study uses quasi-linear direct production reduction based on empirical econometric

values [17]. A sensitivity analysis of this functions shows that the trend of our results persists

against changes in the direct production reduction (Fig 6B). For that, the damage function

parameters are sampled in their standard error range [17]. Global consumption losses and

expenditure rise increase with higher direct output reduction. An increased sensitivity to heat

stress leads to more disturbed production. The higher price increase due to greater scarcity is

passed on to the consumer, who spends more and consumes less. Overall, our qualitative

results are robust under a wide range of values of those parameters.

Discussion

Our results are in line with studies looking at the direct effect of heat stress [17, 18] and its con-

sequences on the local economy [56]. We hereby give an additional global perspective includ-

ing the impact of heat stress on short-term price changes as well as supply and trade chains.

Besides a chance for “building back better” after an economic shock as suggested by other

studies [57], we also identify a potential positive side effect for many less affected regions when

considering shifting of demand and supply. We show that this effect, however, comes at the

expense of the consumer. On a longer time scale, e.g. by affecting economic growth, also pro-

duction might be affected negatively [58]. A stimulating effect of productivity shocks would

also cease for stronger disasters, such as floods, which have an overall negative effect on

directly as well as indirectly affected regions [37]. It is important to note that our study focuses

Fig 6. Results are robust against choice of consumption price elasticity and temperature-productivity-uncertainty. Median of RCPs-GCMs-

Ensemble and likely range (16.7 to 83.3 percentiles) of heat stress-induced changes in consumer expenditure and consumption in 2039 relative to

unperturbed baseline for A different consumption price elasticities and B change in intensity of productivity reduction due to heat stress.

https://doi.org/10.1371/journal.pone.0251210.g006
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on consecutive extreme events [59] rather than singular shocks; locally, heat stress constitutes

many small but lasting background shocks to the economy, partly even simultaneously at dif-

ferent regions, and thus puts a persistent pressure on the global supply network. Building on

our results, further studies could provide estimates on sub-national distribution of heat

induced consumption losses as well as on economic impacts due to heat stress for the mid-

and end-century.

Since the interaction between consumption, production, and price is based on a complex

chain of measurable factors (e.g. income) and psychological factors (e.g. expectations) [60],

any modeling of these variables is necessarily based on generalizing assumptions. Here, we

specify the main assumptions of our study and and discuss their adequacy. Regional daily tem-

peratures from climate projections and resulting possible heat-related losses are not exact fore-

casts but rather serve as exemplary conditions here. For that, we use an ensemble of individual

loss time series derived from eight different RCPs–GCMs combination. Since the trend and

magnitude of the results are consistent within the ensemble, we observe that our results are

robust with respect to the uncertainties of climate projections and independent of individual

daily weather conditions. In this study we focus specifically on the impact on the economy and

consumers due to short-term heat stress-related production losses. Therefore we opt a daily

temperature-production-correlation. In particular, we generalize a heat impact shown only for

Caribbean countries [17] to every region of the world. This assumption is supported by

research showing that climatic conditions have non-linear effects on human productivity in

any country [18, 21]. Similar to Hsiang et al [17], other studies are limited to a specific region

as well [61]. With this damage function we show the trend evolution of consumption losses in

the past and future double decade.

Apart from physical and econometric uncertainties, there are also constraints on economic

and human behavior modeling due to their complexity. In order to properly interpret our

results in the light of the limits of our study, we clarify the main boundaries of our modeling in

the following. For one, we are simulating short-term economic repercussions, so we do not

need to consider longer-term socio-economic changes, such as investment strategies of firms

or new trade linkages. In particular, we use the economic trade network of 2012 as the fixed

socio-economic baseline. Our sensitivity analysis on the networks depict that the trend of our

results is robust against different economic networks. Additionally, the results of our analysis

imply that in a more interconnected world trade the impact of heat stress is likely to increase.

Furthermore, we explicitly neglect adaptation, since we do not want to make assumptions on

possible adaptation measures and their effects. Thus we can interpret our results as a more

direct response of the global supply network. In this respect, our results indicate that adapta-

tion measures to heat stress in production are necessary. Global warming makes such mea-

sures even more vital.

Conclusion

Our results must not be interpreted as literal and comprehensive predictions of the effects of

future heat stress events. They may rather serve as a qualitative prediction with quantitative

predictive skill limited to the order of magnitude of the signal. Overall, they highlight that

heat stress will, without adaptation measures, increase direct output production losses,

regionally and globally. Those unexpected climatic events such as heat waves can reduce the

welfare of consumers, even if economic key indicators such as production value, and thus

nominal GDP, suggest beneficial economic effects in many regions. This indicates that inten-

sified and more frequent heat waves constitute an increasing threat to prosperity of nations

in the near future.
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Supporting information

S1 Fig. Heat stress-induced median annual direct output losses for the historic time period

2000–2019. Regional maps of A absolute and B relative annual direct output loss due to heat

stress based on the respective regional bias-corrected median for 2000–2019. Regions with an

absolute or relative direct annual output loss below USD 1bn or 0.2% of baseline (unper-

turbed) production are depicted in light purple, respectively.

(TIF)

S2 Fig. Projected increase of heat stress-induced annual direct output losses between his-

toric (2000–2019) and future (2020–2039) period. A Absolute annual increase of regional

direct output losses of period 2020–2039 compared to 2000–2019. B Increase of direct output

losses in the future period in terms of losses in the historic period.

(TIF)

S3 Fig. Consumption and total production change per country for the historic period

2000–2019. The area of each dot is proportional to the corresponding country’s baseline

(unperturbed) production. The dot colors denote the geographic regions (see S2 Table). Quan-

tities are given relative to the baseline (unperturbed) production and consumption, respec-

tively.

(TIF)

S4 Fig. Total production, consumption, and expenditure change for the historic period

2000–2019. Median annual change of A total production, B consumption and C expenditure

relative to the unperturbed baseline.

(TIF)

S1 Table. Sectors used in the simulations. For sectors prone to heat stress-induced productiv-

ity loss the respective reduction factor (see Methods) is given in the last column.

(PDF)

S2 Table. Regions used in the simulations. Income level corresponds to Gross National

Income per capita (GNIpc) of 2012.

(PDF)

S3 Table. Consumption price elasticities per income level and sector category. Values are

based on GTAP [55].

(PDF)
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Abstract
Tropical cyclones range among the costliest disasters on Earth. Their economic repercussions along
the supply and trade network also affect remote economies that are not directly affected. We here
simulate possible global repercussions on consumption for the example case of Hurricane Sandy in
the US (2012) using the shock-propagation model Acclimate. The modeled shock yields a global
three-phase ripple: an initial production demand reduction and associated consumption price
decrease, followed by a supply shortage with increasing prices, and finally a recovery phase.
Regions with strong trade relations to the US experience strong magnitudes of the ripple. A
dominating demand reduction or supply shortage leads to overall consumption gains or losses of a
region, respectively. While finding these repercussions in historic data is challenging due to strong
volatility of economic interactions, numerical models like ours can help to identify them by
approaching the problem from an exploratory angle, isolating the effect of interest. For this, our
model simulates the economic interactions of over 7000 regional economic sectors, interlinked
through about 1.8 million trade relations. Under global warming, the wave-like structures of the
economic response to major hurricanes like the one simulated here are likely to intensify and
potentially overlap with other weather extremes.

1. Introduction

Globally, tropical cyclones range among the costli-
est and deadliest natural disasters. While they consti-
tute only 16.5% of all recorded billion-dollar events
in the United States between 1980 and 2018, they are
responsible for more than half of the costs result-
ing from all extreme weather events combined [1, 2].
Their frequency is expected to decrease or to remain
static under global warming but most projections
anticipate an increase in intensity of themost extreme
tropical cyclones [3], especially in the Atlantic basin
[4] (where tropical cyclones are called hurricanes).
In consequence, economic losses in hurricane-prone
regions are expected to increase in the future due to
climate change [5–8] through higher storm intensity
[9] and sea level rise [10] but also due to changes in
the economic values at risk [11, 12]. Local economies

can be affected through destroyed capital stock (stock
losses or damages) or through lost production out-
put (flow losses). Since we do not consider damages
in this work, we here generally imply lost produc-
tion in the notion of loss. In particular, we refer to
losses in a region that is directly affected by a hur-
ricane as direct losses. However, losses can spread
through the supply network, which is then referred
to as higher-order losses [13–15]. We here refer to
the latter as indirect losses. These may represent
a substantial or even dominant share of total eco-
nomic disaster losses [16–18]. Indirect losses can res-
ult from supply shortages due to direct losses that
propagate downstream along supply chains. Direct
losses and an associated production decrease may
also lead to reduced demand (production demand,
generally in contrast to final demand for household
consumption) which propagates upstream in the
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supply network. These downstream and upstream
effects are also called forward and backward propaga-
tion [19] or ripple effects [20]. Here, we invest-
igate the possible ripple response to Hurricane
Sandy (2012) and its effect on global consumption
expenditure.

There is good consensus in the literature that
extremeweather events have adverse effects on house-
hold consumption [21], which is commonly used
in economic models as a measure for societal wel-
fare [22] and is therefore often regarded in disaster
impact analyses. In this study, we refer to the latter
as final consumption or simply consumption where
we also include government spending. In a glob-
alized world, local disasters can have global eco-
nomic repercussions [23], one prime example being
the COVID-19 pandemic [24] with huge estimated
indirect consumption losses worldwide [25]. How-
ever, most studies [26–29] on the impacts of historic
extreme weather events focus on the local economic
impacts of the disaster and therefore miss the global
dimension [23].

With this work, we choose a different scope of
analysis and investigate a single historic hurricane’s
possible impact on consumption on a global scale.
We simulate the potential global indirect impacts on
consumption that a major hurricane in the United
States can have globally, using an agent-based net-
workmodel.We choose amodeling approach because
this allows us to investigate aspects of higher-order
effects of a single event that cannot be found in his-
toric data. While local effects of hurricanes are —
in large parts — well-studied [30–32], higher-order
effects and the way they propagate in the trade net-
work are still poorly understood. Lenzen [14] con-
ducted a study on the higher-order indirect effects of
a single hurricane in Australia but focus on national
spillover effects. Other studies [7, 33, 34] give a
global perspective but cannot link effects to single his-
toric events or do not consider indirect losses. We
here propose one means to study loss propagation
and global effects on consumption after a single his-
toric major hurricane. As a case study, we choose
Hurricane Sandy which made landfall in the US in
2012.

Sandy severely hit the US and in particular the
states of New York (NY) and New Jersey (NJ) in 2012.
It was the fourth-costliest hurricane in history and
caused an estimated total damage of $65bn [35] (in
2012 US Dollar), predominantly by driving a storm
surge into the coastlines of NY and NJ [36]. Given
the magnitude of this local economic shock and the
importance of the economically strong regions of NY
and NJ in the global trade network, Hurricane Sandy
most likely also entailed indirect effect in regions
not directly affected. To understand how these reper-
cussions may have spread in the global supply and
trade network, we here simulate global consumption
expenditure across the global economy in the direct

aftermath of the strong economic shock in NY and
NJ after Sandy.

We thereby add to the discussion on the wel-
fare impacts of extreme weather events in two major
points. First, by taking a modeling approach, we
can go beyond a local case study and simulate con-
sumption impacts globally as a result of production
shortages and price effects propagating in the global
supply network. This allows us to investigate effects
that are otherwise hidden in coarse and noisy data.
We find that although directly affected regions show
the strongest effects, we observe an overall impact
on consumption on the global level. Regions with
strong trade relations to the US are affected most.
Second, our approach allows us to analyze the under-
lying propagation effects inside our model that lead
to the observed global consumption anomalies. The
propagation follows a three-phase ripple of prices.
An initial upstream effect results in price decreases
and associated consumption increases. The follow-
ing downstream effect leads to price increases and
reduced consumption, followed by a normalization
phase.

2. Method overview

Our simulations are carried out using the dynamic
agent-basedmodelAcclimate [37] whichmodels loss-
propagation on the global supply network, assuming
a demand-driven economy. In this model, economic
sectors (in case of the United States and China on a
state and province level respectively, otherwise on a
national level) are modeled as agents that are inter-
linked through trade flows, with each agent maxim-
izing its own profit. The economy of each region is
divided into 27 sectors, including the final consumer.
With a total of 268 modeled regions, this results in
over 7000 agents. By applying an external shock in
the form of a reduction in the production capacity of
one or more agents, the initial baseline state of equi-
librium can be disturbed. We model this production
shock to represent the direct losses due to Hurricane
Sandy in the affected areas of New York and New Jer-
sey. We use a disaggregated [38] version of the EORA
MRIO dataset for the year 2012 [39] as economic
baseline. Acclimate then simulates anomalies around
this baseline state that result from the production
capacity reduction by profit-maximization of each
individual agent on a daily time scale. Prices in the
model are endogenous variables which account for
local scarcities and transport costs. They always reflect
price changes relative to baseline prices and do not
represent absolute prices of traded goods (which are
unknown since they are not contained in the EORA
dataset).

The conceptual approach of this study is sum-
marized in figure 1. We model the direct economic
impact from Hurricane Sandy for NY and NJ only
(orange and blue, respectively), although another ten
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Figure 1. Conceptual design of the study. Hurricane Sandy (track shown as dotted line) resulted in physical damages in multiple
US states. New York (orange) and New Jersey (blue) received the largest damages. Dark gray shaded states were affected in a
comparatively minor way (see main text) and production shocks in these states therefore are not considered. We derive a
disaster-driven reduction of production capacity for New York and New Jersey based on the GRP of counties with reported high
water marks (hatched areas) and estimated recovery duration from business interruptions. We simulate the resulting impacts on
global consumption through loss propagation in the global trade network. As an example, we here show import and export
volumes of New York and New Jersey with Europe, China, Canada, and Mexico, aggregated over all sectors. Trade flows are
directed from the sharp end to the large end of a wedge. The width of the large end shows the trade flow magnitude. Note that in
the actual model, there are potentially trade flows between any two of the over 7000 economic agents, consisting of 27 sectors in
268 simulated regions. All region shape files retrieved from GADM [41], storm track from IBTrACS [42].

states and the District of Columbia (DC) were also
affected (hatched areas). However, NY and NJ were
most affected, receiving more than 96% of Congress’
Disaster Relief Appropriations Act funds from Janu-
ary 2013 ($50.5bn in total) [40]. And according to
estimates of the National Oceanic and Atmospheric
Administration [1], the damage share for all other
areas is less than 5% of the total damage. We derive
production shocks for NY and NJ (supplementary
figure 1, supplementary table 1 (available online
at stacks.iop.org/ERL/16/124049/mmedia)) based on
estimated business interruption (BI) due to the dis-
aster. In this, we assume all sectors to be affected in
the same way.While this is generally a strong assump-
tion, we find it reasonable for the short time in the
immediate aftermath of the hurricane. We then ana-
lyze the resulting global levels of final consumption
and related prices as well as production levels, pro-
duction prices, and demands communicated in the
network to assess the higher-order repercussions of
Hurricane Sandy. These result from the inter-linkages
of NY and NJ within the global trade network (exem-
plary trade flows in figure 1). For a detailed descrip-
tion of the approach, see appendix A.

3. Three-phase consumption ripple

We compute the relative consumption change in the
first 100 d after the disaster for all regions globally

(figure 2, supplementary table 2). A region’s con-
sumption change is computed as the ratio between
the absolute aggregated difference from baseline con-
sumption and the consumption that these regions
would exhibit in the unperturbed baseline scenario
during this time (equation (5) in appendix A).

A normalisation of consumption and consump-
tion prices in the United States of America occurs
about 100 d after the event (figure 3). On a
national level, the US show the strongest consump-
tion decrease of all regions within our study. How-
ever, on a US state level we find both consumption
increases as well as losses (figure 2(b)) in our sim-
ulations. Within the US, there is a strong correla-
tion between the gross regional production (GRP)
of a state and its consumption change. Economically
strong states like California, Texas, or Florida exhibit
strong consumption decreases whereas consumption
increases in states with a lower GRP like Vermont,
Wyoming, or Montana.

Both increases and reductions in consumption
are a result of consumption price changes. The
consumption level depends directly on the con-
sumption price with sector and region specific con-
sumption price elasticities (see appendix A, supple-
mentary tables 2–4). The latter reflect the sensitiv-
ity of consumption (quantity) to price changes. Of
course, post-disaster price elasticities might deviate
from those during normal times. However, this is
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Figure 2. Consumption changes in the direct aftermath of Hurricane Sandy. Changes relative to baseline values during the first
100 d after the disaster (equation (5)) are shown (a) globally and (b) for the US only. Red and purple shading indicate a
consumption decrease compared to baseline consumption, blue and yellow shading indicate a consumption increase. Grey areas
are excluded from the calculation due to low data quality.

Figure 3. Changes of consumption and consumption prices relative to baseline values. All values are in percent compared to
baseline levels (dashed lines). (Left column) Relative consumption price change. (Right column) Relative consumption change.
(Upper panels) Results for the directly affected US states NY and NJ and all remaining US states and DC (in grey shades). (Middle
panels) Results for Mexico and Canada. (Lower panels) Results for Europe, Germany and China.

difficult to estimate and only relevant for the final
consumption in the directly affected states NY and
NJ. Consumption in all other regions can be assumed
to follow normal elasticities. Previous sensitivity ana-
lysis [43] on model-internal price elasticities showed
that this parameter choice has no significant impact
on results derived via Acclimate.

In all regions, we observe an initial consumption
price drop directly after the disaster, resulting in a
consumption level above baseline. This initial price
drop results from a reduction in the (production)
demand of the directly affected states of NY and
NJ and its quick upstream propagation along the
global supply chains. Therefore, reducing demand
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instantaneously results in a situation of surplus sup-
ply, which causes prices to decline and consumption
to rise. However, direct production losses in NY and
NJ simultaneously propagate downstream through
the global supply network and result in scarcity situ-
ations also in other regions that are not directly
affected. As a result, shortly after the initial small
consumption increase, consumption prices rise again
with prices inUS states reaching values above baseline
level only few days after the hurricane and a max-
imum peak at over +1.3% about 30 d after the dis-
aster. In case of the United States, the initial price
drop associated with increased consumption is there-
fore quickly reversed by a scarcity driven price infla-
tion resulting in a reduction in consumption. While
the upstream effect happens without time delay, the
downstream propagation of scarcities is initially buf-
fered by the agents’ inventories but also by transport
chains through which goods are delivered. There-
fore, in contrast to demand shortages propagating
upstream, the downstream propagation of scarcities
only shows effects with some lag time. The persisting
shortage of supply leads to price inflation of inter-
mediate goods that are passed on to the final con-
sumers. As a consequence, the latter have to decrease
their consumption. A normalization of US prices
and consumption occurs about 100 d after the event.
While theUS aremost impacted by the event, changes
from the baseline economic state due to the hur-
ricane event occur globally. A similar development
with an initial small consumption increase followed
by a stronger counter effect of decreasing consump-
tion can be observed — yet with smaller magnitude
— in Mexico and Canada, which have strong trade
relations with the United States.

Generally, consumption shows a three-phase
wave pattern of an initial price drop due to upstream
effects, followed by a price increase attributable to
downstream effects and finally a normalization phase
where prices develop back towards baseline values.
Depending on how strong the upstream and down-
stream effects are with regards to a particular region,
average prices range above or below baseline. For
example, the upstream effect for Canada and Mexico
is small compared to the downstream effect, leading
to higher average prices. In Europe and its strongest
economy Germany as well as China, the initial price
drop due to the fast upstream effect is large enough to
permanently keep prices below baseline (figure 3(e)).

4. Regions’ trade with the US

In the simulated disaster aftermath, the magnitude of
the effect on a region’s consumption depends on the
trade relations of that region with the US (i.e. the sum
of all imports and exports, figure 4(a)), following a
power law relationship. Both high import and export
trade flows result in a strong consumption changes

(supplementary figure 2). Linear regression in the
log-log space indicates an exponent that is below 1,
i.e. the absolute consumption difference increases less
than linearly with growing trade volume with the
US. Regions with strong trade relations experience a
stronger price effect. However, due to the prescribed
negative price elasticities, this price effect affects con-
sumption less than linearly.

Whether or not a region experiences total gains
or losses in consumption depends on the country-
specific shape of the three-phase ripple, i.e. whether
the upstream or downstream effects is dominant. To
show this, we analyze additional simulations with
longer recovery times (80, 100, 120 d, figure 4),
which mainly intensifies the slower propagating
downstream effect (supplementary figure 3). Initially,
most regions (with the exception of Mexico, Canada
and the Philippines) show consumption gains. With
longer duration, the latter decrease and consump-
tion losses increase. With a recovery time extension
of 20 d (figure 4(b)), additional regions transitions
from gains to losses (e.g. Australia, Venezuela, Ire-
land, Singapore, Hong Kong). The initially small con-
sumption loss increases with further recovery time
extension (panels (c) and (d)). Likewise, regions
like Canada, Mexico and the Philippines that show
losses already with the original recovery time fur-
ther increase their losses. In the case of Mexico and
Canada, this can supposedly be explained by the geo-
graphic and economic proximity of the regions to the
US, resulting in a faster downstream propagation to
these countries. This suggests that each region has an
individual threshold where the direct impact in NY
and NJ becomes too strong and a dominating down-
stream effect results in overall consumption losses.
This threshold is already crossed for the Philippines as
well as Mexico and Canada with the original recovery
time of 60 d.

Generally, the consumption reaction of all regions
to the shock duration in NY and NJ appears to fol-
low an inverted U-shape.Without a shock, all regions
consume at their baseline level. Short shocks result in
consumption gains that increase with the shock dur-
ation at first. At some point—depending on the trade
relations with the US—consumption gains decrease
and eventually transition into losses. Regions with
a large trade volume tend to transition sooner than
those with smaller trade to the US.

5. Price dynamics

So far we analyzed the consumption price and result-
ing consumption levels on a regional level and found
a three-phased ripple that can result in both overall
gains and losses of consumption. In the following, we
investigate the underlying price dynamics that lead
this ripple which originates in the directly affected
regions NY and NJ. For this, we look at changes of
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Figure 4. Consumption change over total trade volume with the US with varied recovery times. Consumption changes are
cumulated for the first 100 d after the hurricane. US trade volume is the sum of a region’s total exports and imports with the
United States. Size of the scatters indicates the consumption change relative to what regions would consume under baseline
conditions during this time. Green and red colors indicate consumption gains and losses, respectively. The dashed line is the
linear fit in the log-log space. Recovery time is set to (a) 60 (default recovery), (b) 80, (c) 100 and (d) 120 d.

production prices and levels of incoming demand as
well as changes of the capacity utilization in NY and
NJ as well as the rest of the US. We use the economic
notion of capacity utilization [44] that is defined as
the ratio of actual output to the output that would
minimize production costs. This measure quantifies
if and by how much a region is in a state of over-
production, relative to the actual production capa-
city. For the directly affected regions, we need to first
adjust production capacity for the applied produc-
tion shock. We also calculate the similarly adjusted
demand exceedance which indicates if fulfilling the
entire incoming demand at a given time step would
drive the agent into overproduction, i.e. by howmuch
current incoming demand exceeds the production
capacity (for both adjusted capacity utilization and
demand exceedance see appendix A). Time series for
production prices, demand exceedance and capacity
utilization in our simulations are shown in figure 5

for the directly affected US states NJ and NY as well
as an aggregate over all other US states and DC. We
refer to the latter in the following as USA-OTH.

In the Acclimate model, production prices and
ultimately consumption prices are driven by the
demand that agents receive. In the immediate
aftermath of the disaster, NY and NJ cannot satisfy
their incoming demand due to the applied external
reduction of production capacity. This is reflected by
a high demand exceedance. As a result, the directly
affected states switch to overproduction directly after
the disaster, similarly indicated by an increased capa-
city utilization. At the same time, NY and NJ reduce
their demand towards other regions. Due to the res-
ulting initial upstream propagation, the remainder
of the US does not fully use the available produc-
tion capacity and production prices decrease at first
(note that the apparent contradiction for the pooled
region USA-OTH of positive demand exceedance
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Figure 5. Production price, demand exceedance and capacity utilization for the United States. Directly affected states NJ and NY
are shown individually, remaining 48 states and DC are aggregated as USA-OTH. Dashed lines represent baseline values. (a)
Changes of the production price from baseline values. (b) Demand exceedance relative to baseline values. (c) Relative change in
capacity utilization from baseline values.

and simultaneous low capacity utilization during the
first days after the disaster is simply a result of the
aggregation that we perform over the US regions and
their individual sectors, see appendix A). However,
the longer the disruption prevails, themore of the lost
production in NY and NJ propagates downstream in
the economic network, resulting in scarcity of goods.
This scarcity is compensated by other US states and
also the latter eventually switch to overproduction.
Yet, overproduction comes at the cost of production
prices increasing super-linearly with the production
level and average prices rise above baseline levels dur-
ing this upstream phase. In the situation of scarcity
in the disaster aftermath, agents in the network are
willing to pay these higher-than-usual prices and
producing agents keep their increased production
level.

We observe this behavior of rising production
prices until about 45 d after the disaster, when pro-
duction prices rapidly drop again. This drop marks
the beginning of the normalization phase. Note that
it coincides with a change of the capacity utilization
change from positive to negative values, causing
agents to switch from an overproduction state to a
normal production regime. The sudden price drop
results from the fact that now production prices no
longer depend super-linearly on the produced quant-
ity. Two factors lead to the end of the overproduction
regime: (1) many purchasing firms decide simultan-
eously to reduce their demand due to the high level
of prices, and (2) the reduction of production capa-
city in the directly affected states is released enough so
that the new, reduced incoming demand can be satis-
fied without overproduction.
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Figure 6. Schematic time evolution of a directly affected agent. Dashed lines represent baseline values. Explicit values and
durations are not given because magnitudes and time scales differ between disasters. (a) Production capacity reduction factor
with initial production shock λ0. (b) Relative production price change. Grey shaded area denotes the price pressure development
time until the price drop. (c) Demand exceedance. Grey shaded area denotes the time during which the economic shock has not
decayed enough for demand variations to end the overproduction regime. Noise is due to demand fluctuation from the profit
maximization and associated demand shifts of all agents. When the production capacity has recovered enough, this noise can be
strong enough to make an agent switch from an overproduction to a normal production regime (production regime change). (d)
Relative change in capacity utilization. Light grey area denotes the time during which the agent does not fulfill the incoming
demand while in a state of overproduction. The dark grey shaded area is the time during which the entire demand can be satisfied
with overproduction. (e) Timeline with the initial disaster impact, the consumption price peak and upstream, downstream and
normalization phases.

As can be seen in figure 5, the demand exceedance
for NY and NJ decreases exponentially after the dis-
aster, which is simply due to the defined exponential
economic recovery. About 45 d after the event, when
we observe the production price drop, the production
capacity reduction has released enough for smaller

demand variations to cause the demand exceedance
to drop below 0. Such variations are a result of the
complex dynamics of the model. Since each agent
may redistribute its demand in each time step and
will do so in order to maximize its profit, the incom-
ing demand (and hence, the demand exceedance) is
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subject to some fluctuation. The price tension that
previously built up in the network releases and prices
drop back towards baseline levels.

A schematic time evolution for the analyzed
quantities of a directly affected agent is shown in
figure 6 (panels (a)–(d)) with coincident events and
phases in the aftermath of the hurricane (panel (d)).
While we expect the general behavior of directly
affected agents to may be similar for other natural
disasters that show an exponential BI recovery, time
scales and magnitudes may well be different and are
therefore omitted in the figure.

6. Discussion

In this study, wemodeled the impact that a severe dis-
aster like Hurricane Sandy (2012) can have on global
consumption, resulting from economic forward and
backward loss propagation in the global supply net-
work. We find a three-phase economic ripple in the
supply chain network. This ripple is characterized by
an initial upstream effect and resulting consumption
increase, followed by an opposing and slower down-
stream effect and associated reduced consumption.
The last phase is a price normalization.

The magnitude of consumption effects on a
region depends on its trade volume with the US.
Whether a region experiences overall gains or losses
depends on which of the upstream or downstream
effect during the ripple is dominating. In our simu-
lations, most regions experience slight consumption
gains.With longer duration of the direct impact, these
regions show a tendency of decreasing consumption
gains and eventually a transition to consumption
losses. Many regions experience these losses already
with an additional recovery time of only 20 d. This
is important for two reasons. First, direct losses of
hurricanes must be expected to increase in the future
due to climate change [8, 45], resulting in potentially
longer recovery durations. Second, the recovery from
BI was particularly quick after Hurricane Sandy and
it can take much longer for other economies subjec-
ted to different natural disasters to recover. In the case
of Hurricane Katrina in 2005, the economic activity
recovered to pre-disaster levels only about one year
later [46].

Of course, results from socioeconomic models
like the one used in this study are subject to uncertain-
ties due to the necessary assumptions on which the
model builds. In particular, these uncertainties con-
cern the absolute magnitudes of the reported results
which may appear small at first sight. We emphas-
ize that these values result from only one local, isol-
ated extreme weather event and are therefore still
considerable. Previous research [47] has also shown
that economic ripples from disasters can amplify each
other. More importantly however, we stress the qual-
itative nature and importance of our findings regard-
ing the economic ripple. Our finding of a three-phase

ripple and related consumption changes is qualitat-
ively robust against variations of the local production
disruption (supplementary figures 3–5).

While we focused on the specific regions of
New York and New Jersey in the United States for
this study, similar ripple waves can be expected for
major shocks in other regions of the world. Besides
hurricanes, we also expect other categories of extreme
weather events to have similar economic impacts
on consumption. Consecutive and compound events
(e.g. the 2020 flood in China and the concurrent heat
wave in Europe as recent examples) will likely fur-
ther increase the magnitudes of the observed indir-
ect effects. Since all these extremes are projected
to intensify—at least on a local level—under global
warming [48], we believe that modeling approaches
like the one we conducted here can contribute valu-
able insights for necessary mitigation by allowing to
simulate and better understand higher-order effects
that otherwise cannot be studied.
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Abstract
The most complex but potentially most severe impacts of climate change are caused by extreme
weather events. In a globally connected economy, damages can cause remote perturbations and
cascading consequences—a ripple effect along supply chains. Here we show an economic ripple
resonance that amplifies losses when consecutive or overlapping weather extremes and their
repercussions interact. This amounts to an average amplification of 21% for climate-induced heat
stress, river floods, and tropical cyclones. Modeling the temporal evolution of 1.8 million trade
relations between>7000 regional economic sectors, we find that the regional responses to future
extremes are strongly heterogeneous also in their resonance behavior. The induced effect on
welfare varies between gains due to increased demand in some regions and losses due to demand or
supply shortages in others. Within the current global supply network, the ripple resonance effect of
extreme weather is strongest in high-income economies—an important effect to consider when
evaluating past and future economic climate impacts.

1. Introduction

Climate change due to anthropogenic greenhouse gas
emissions is likely to intensify both weather extremes
[1] and their impact on society [2, 3]. Disruptions
by extreme weather events impact the health sector
[4, 5] aswell as the economy through perturbations of
income [6], employment [7], economic growth [8, 9],
energy supply [10, 11], and food security [12, 13]. In
the aftermath of an extreme weather event, regions
react in a variety of ways. Some might not manage
to recover in between subsequent events [14] others
might even profit from disasters when the economy
is build back more resilient or more efficient after the
shock [15, 16]. On an inter-regional level, local pro-
duction shocks induced by extreme events can, via

price and demand fluctuations in the highly intercon-
nected global trading network, result in losses or gains
in production or consumption elsewhere in the world
[17–19].

The short and long-term economic impact of
each of individual disaster categories by themselves
have been studied in regional case studies [20–22]
as well as on the individual regional or even at the
global level [23–25]. Additionally, events such as heat
stress, fluvial floods, and tropical storms, can also
overlap spatially as well as temporally, often referred
to as compound events [26]. This paper contributes
to this literature, which so far mostly focuses on the
natural science perspective or regards only local dir-
ect economic consequences [27]. We here focus on
how local and cross-regional economic repercussions

© 2021 The Author(s). Published by IOP Publishing Ltd
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of such events can interact due to trade and produc-
tion supply linkages in a non-linear way [28] either
amplifying or mitigating the economic losses caused
by the individual events. Additionally, disasters due
to extreme weather events (e.g. flooding of factories)
can lead not only to direct local (production) output
losses, but also to indirect losses due to the propaga-
tion of losses in the global trade network causing eco-
nomic ripple effects [29]. Thus, the question arises of
whether accounting for the interaction of these losses
is important, and whether doing so amplifies or mit-
igates overall losses at a global level.

2. Methods summary

Here we model the response of the global supply net-
work to heat stress [30, 31], river floods [25, 32], and
tropical cyclone events [33, 34] for the years 2020–
2039. The daily time series of the events are derived
from an ensemble of four global climate models, each
forced by two representative concentration pathways
for all three event categories, as well as five hydro-
logical models for river floods and five tropical cyc-
lones realizations (8 time series for heat stress, 40
time series for river floods and tropical cyclones; see
section 2 for details). From these we derive direct out-
put losses. For heat stress, we use a linear reduction in
local labor productivity for selected economic sectors
for every degree warmer than a daily local temperat-
ure of 27 ◦C [30]. For the duration of a river flood in
an area, production capacity is reduced by the relat-
ive amount of affected area for all non-service sectors.
Similarly, the productivity of all non-service sectors
vanishes when an area is on the track of a hurricane
with wind speed exceeding 64 knots. This transla-
tion is rather simplistic and does not take account
for short-term adaptation only by allowing for lim-
ited efforts to use additional production capacity at
higher costs. During the short actual duration of
each event we believe this linear translation to be a
valid assumption. After the disaster has ceased, dir-
ect production capacity recovers depending on on
flood depth and wind speed, respectively, thereby
accounting for additional cleanup efforts. The pro-
duction recovery of an affected area is exponential
(80% per day). By overlapping the direct output loss
time series (i.e. local impacts) of those three extreme
event types we generate a direct output loss time
series, where individual extreme events can overlap
spatially and/or temporally. Following [28], we refer
to these as consecutive disasters (200 time series for
consecutive disaster scenarios).

We translate these regional direct output losses
into overall losses (direct plus indirect losses) using
the loss-propagation model Acclimate [18], which
includes a complex network of 26 sectors per region,
i.e. representative firms, and one consumer within
each of the 256 regions of the model (184 nations
as well as 51 US-states and 32 Chinese provinces).

Each consumer consumes each of the 26 goods
independent of the others. Similar to firms each
good in general is supplied by many firms pro-
ducing that good in different regions. This results
in about 1.8 million interconnections between 7236
economic agents. Local profit optimization, caus-
ing demand and production changes, enables firms
to react to short-term production, supply, or price
shocks. Those economic shocks are depicted as devi-
ations from the baseline, which rely on static multi-
regional input-output data from the Eora database5

[35] for the year 2015. Perturbed supply can lead to
regional economic benefits through temporary pro-
duction extension or result in loss cascades along sup-
ply chains. Inventories and transport delaymay buffer
this loss propagation as supply shortages do not dir-
ectly constrain other firms’ production. Consump-
tion optimization by each regional consumer causes
demand shifts which cast back to the firms’ produc-
tion behavior. There is hence a two-way feedback
between consumers and producers. With its endo-
genous prices and agent-based daily dynamics, the
Acclimate model is particularly suited to assess the
global distribution of the consequences of unanticip-
ated short-term shocks such as those by the three dis-
aster types considered here.

3. Results

Due to inertia in the climate system the different
carbon emission scenarios yield temperature scen-
arios that are well within model uncertainty within
the next two decades [1]. Accordingly, we combine
the individual years of the different scenarios into a
full ensemble to improve statistics similar to previous
publications [25, 32]. For that, we derive annual val-
ues of indirect losses from daily losses as computed by
Acclimate. We then compare two situations. On the
one hand, we use simulations with all three classes
of weather extremes occurring together (i.e. consec-
utive disaster scenarios). The corresponding quantit-
ies, such as the consumption losses and production
losses, are referred to as total quantities. On the other
hand, we sum the results of three separate simulation
classes with each having only one category of weather
extremes. Their resulting quantities are denoted as
aggregated. For direct losses, generally, the sum of the
direct output losses of the three classes of weather
extremes (aggregated direct losses) equals the losses of
consecutively occurring disasters (total direct losses)
(see section 2 for details). Using an ensemble of pro-
jected weather extremes of three disaster categories,
enables us to get a broad range of consecutive disaster
events, spatially as well as temporally. Accordingly, in
the ensemble we observe disasters of very different
sizes and combinations.

5 www.worldmrio.com.
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Figure 1. Global consumption losses are higher when
impacts interact. Global annual consumption losses as they
depend on annual direct output losses. For the total impact
(red diamond) consumption losses are higher than for the
aggregated sum of independent impacts (purple triangle)
also for the same direct losses. This amplification is shown
in figure 2. Each data point represents one year within the
ensemble. Consumption and direct output losses are with
respect to the baseline consumption and production,
respectively.

3.1. Consecutive disasters increase global
consumption losses
Global welfare, measured as the sum of the final con-
sumption of all regions, decreases in response to the
direct losses in both cases, the aggregated as well as
the total case (figure 1). The local production reduc-
tions are passed on via the supply network as supply
and price shocks up to the final consumer. The latter
usually just has the option to consume less, because
of lack of supply or in response to increasing prices.
Thus, price inflation of goods and services decreases
consumption in the disasters aftermath (see section 2
for details).

Globally, we observe an economic ripple resonance
of extreme weather events. We define this resonance
as the amplification of regional and global economic
disruptions that result from the interaction of the
economic repercussions of individual event impacts.
Here, total annual consumption losses are larger than
the aggregated losses from single disaster scenarios for
the whole simulated ensemble (figures 1 and 2(A)).
Specifically, the resonance leads to both an additional
consumption losses that is independent of the level
of direct losses (the resonance offset C0), and a lin-
ear amplification of consumption losses with increas-
ing direct losses (the resonance amplification factor
A). Consequently, losses from consecutive disasters
are always larger than the sum of their individual
scenarios, and this difference grows with the size of
direct losses, e.g. for stronger disruptive events. We

Figure 2. Economic ripple resonance—consumption losses
of consecutive disasters are increased in comparison to
losses of aggregated single disasters. (A), (B) Annual
consumption losses for the total impact over those for the
aggregated sum of independent impacts, globally ((A), grey
dots) as well as for China, EU, and the USA ((B), colored
dots). Each data point represents one year within the
ensemble. Losses are relative to the (unperturbed) baseline
consumption. The solid lines depict the resonance analysis
with resonance amplification factor A and resonance offset
C0. (C) Resonance amplification factor and offset per
country. The area of each circle represents the country’s
share of the world production, its color depicts the
geographic region. A few extreme outliers (of economically
small countries) are not in the visual range.

thus observe an increase of global total consumption
losses ∆CT compared to aggregated consumption
losses∆CA with, on average,∆CT = (1+A) ·∆CA +
C0. The global resonance offset C0 = 0.01% indic-
ates the extent to which consumption losses in the
global trading network are intensified for consecut-
ive disasters (figure 2(A)). The resonance amplific-
ation factor A= 21% of global losses implies that
an increase of 10bn USD of aggregated consumption
losses yield to an increase of more than 12bn USD of
total consumption losses. In order to help modelers
account for this effect, we provide tables of the ampli-
fication factors and resonance offsets for regions com-
monly used in integrated assessment models in the
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Figure 3. Non-linear price increase due to increasing
demand—consumption response to ripple resonance.
Upper panel: due to a supplier outage, a firm shifts its
demand to other suppliers (of the same
commodity/service). Consequent prices (P∗ +∆P∆D)
grow non-linearly with increasing demand (D∗ +∆D) due
to extra costs for additional production, potentially
reducing the firm’s output. This price increase and supply
shortage propagates through the supply network and leads
to fewer consumption goods and services for a higher price
for the consumer. Lower panel: if more suppliers fail, the
fewer remaining suppliers face more demand (D∗ + 2∆D),
which increases the price enormously (P∗ +∆P2∆D). In
fact, a price change due to a doubling of the demand change
is greater than twice the price change due to a demand
change (∆P2∆D > 2∆P∆D). A firm therefore produces less
but that for a significantly higher price. At the end of the
supply chain, the high expenditure for less goods and
services result in a drastic reduction in consumption.

appendix (available online at stacks.iop.org/ERL/16/
114010/mmedia).

The global enhancement of welfare losses via eco-
nomic ripple resonance can be explained by non-
linear price inflation due to rising demand (figure 3).
If a firm increases its demand to some of its sup-
pliers due to supply shortages elsewhere, the price
increases non-linearly due to additional production
costs. These higher prices and output losses are likely
to be passed down the supply chain to the consumer,
who has a lower consumption amount for a higher
price. If other suppliers fail, due to economic reper-
cussions of different weather extremes, these price
deviations may interfere and the resulting declines
in consumption can be intensified. Hence spatial
and temporal consecutive disasters can amplify indir-
ect consumer losses. It is important to note that
individual extremeweather events are not responsible
for the ripple resonance. Rather, the overlap of eco-
nomic repercussions caused by several extreme events
resonate and thus trigger the enhancement and amp-
lification of consumption losses.

Figure 4.Median annual direct output losses due to heat
stress, river floods, and tropical cyclones. Regional maps of
(A) absolute and (B) relative median annual direct output
losses due to heat stress, river floods and tropical cyclones.
Regions with absolute or relative direct annual output
losses below USD 1bn or 0.2% of baseline (unperturbed)
production are depicted in light purple.

3.2. Regional welfare losses increase due to ripple
resonance
Additionally, various regional direct losses (e.g. vary-
ing exposure to natural hazards), network effects
(e.g. interference of demand anomalies), and market
effects (e.g. strong price fluctuations) may result in
regionally heterogeneous responses to the economic
ripple resonance (figure 2(B)). In the following, we
look at the summed results for the largest economic
blocs, the United States of America, China, and the
European Union, which consist of their federal states,
provinces, and national states, respectively. Explicitly
resolving their internal trade dynamics allows us to
provide more specific insights for these economic
blocs. They are of high economic relevance and
exhibit robust sub-regional data resolution. Since we
use the economic network of 2015, we refer to the
EU as the former pre-Brexit European Union with 28
member states.

Locally, the EU experiences less relative direct
output losses in contrast to the USA and China
(figure 4). Nevertheless, production losses elsewhere
can cause—via the supply network—local consump-
tion losses. This is the case in the EU, where
consumers experience higher total and aggregated
consumption losses than Chinese or US consumers
(figure 2(B)). Most other regions, except Canada
and the northern US states, experience higher out-
put losses than the EU. These production losses
impact the EU via supply shortages. Additionally, the
EU faces increased demand from outside as other
regions seek substitutes for directly impact suppliers.
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In response to this scarcity the EU increases its pro-
duction and exports (figure S1) and, following mar-
ket principle, this scarcity yields an increase in prices
for EU products. These higher prices (on the ‘world
market’ in ourmodel) are not passed on solely to cus-
tomers abroad, but also to customers inside the EU
(figure S1). Since national supply is generally stronger
than imports the non-EU consumers experience less
of the price pressure from the EU than consumers
within the union. The trade within the EU is about
a factor 10 higher than with the outside. Due to this
the EU consumer experiences the increased prices
more clearly, because they are more directly depend-
ent on the products and prices of the EU firms. Thus,
the advantage of the EU firms—increased production
and higher prices—becomes a disadvantage for their
own consumers.

The ripple resonance further intensifies the EU’s
consumption losses with a resonance amplification
factor similar to the USA, AEU = 16% and AUSA =
17%. Thus, domestic production losses and resulting
demand shifts and price increases, due to stronger dis-
asters, similarly intensify consumption losses for the
USA and the EU. Hence, under climate change and
without adequate adaptation measures, we expect
more frequent heat stress and more intense tropical
storms as well as their superposition to contribute to
a larger welfare decline in the USA and EU.

For China, the ripple resonance of consecutive
disasters has a crucial impact on its economy, which
experiences significantly higher losses of consump-
tion due to heat stress than due to flooding (figure 5).
Nevertheless, the overlapping of event categories
(total impact) causes an increase in consumption
losses which exceeds the sum of the separate losses
(aggregate impact). Here, China exhibits a resonance
amplification factor of AChina = 27%. This implies
that a fourfold increase of aggregated consumption
losses roughly translates to a fivefold increase in total
consumption losses. Furthermore, China experiences
one of the highest resonance offsets (0.08%). With
such a high loss offset China is able to mitigate con-
sumption losses for each disaster category individu-
ally; decreased foreign supply can be buffered by
increasing domestic production.

However, this coping mechanism is less effective
against consecutive disasters. In fact, Chinese con-
sumption depicts a qualitative response shift; poten-
tial consumption gains (negative losses) of aggregated
single disaster scenarios turn into consumption losses
for consecutive disasters (figure 2(B)). In otherwords,
measured by changes in consumption, China can
change from a net-winner (aggregated impacts) to a
net-loser (total impacts). This hints that single case
assessments of extreme events may not only under-
estimate regional welfare losses but may even leave it
undetected.

Figure 5. Ripple resonance of consecutive disasters has a
crucial impact on the Chinese economy—sample time
series of direct output losses and resulting changes in
consumption. The disaster categories heat stress, river
floods, tropical cyclones, the aggregation of them and
consecutive disasters are depicted in orange, blue, green,
black and red, respectively. Upper panel (A): temporal
evolution of direct output losses for China due to different
disaster categories for one sample year and sample
bio-physical time series. Lower panel (B): temporal
evolution of corresponding consumption losses. It is
important to note that the consumption losses are not
solely due to domestic production losses but rather reflect
the repercussions on consumers of disrupted supply chains
and global market effects.

Even for prominent global economic players,
domestic trade has a much greater weight than for-
eign trade. Therefore, domestic production losses are
largely redistributed in the internal market. Chinese
firms have a strong exposure to all three extreme
events (figure 5) especially compared to the EU and
USA (figure 4). For isolated extreme events, the
Chinese market is able to mitigate part of the direct
output losses. However, when considering regional
consecutive disasters, the economic repercussions are
superimposed within the Chinese trade network—
a domestic ripple resonance effect—which results
in disproportionately higher consumption losses
(figure 5). Thus, for consecutive disasters, the Chinese
economy is no longer able to mitigate these overlap-
ping losses; they are too severe to be compensated
by non-domestic trading partners, even for a major
trading power as China. Accordingly, when firms or
policy makers prepare for disasters they should not
only consider individual but also the interactions of
several events.

In conclusion, the three biggest economic blocs,
China, the European Union, and the United States of
America are affected differently by the three disaster
categories and the resulting economic repercussions.
This follows from their different embedding within
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the international trade network, their unequal bal-
ance of trade between one another, and their hetero-
geneous domestic economic structure. Accordingly,
they exhibit different resilience to extreme events
(figure 2(B)).

3.3. Heterogeneous response to economic ripple
resonance among countries
Between individual countries a broader spectrum
of response behavior emerges (figure 2(C)). Every
country shows a positive resonance offset for total
consumption losses. But, in contrast to China, the
EU, and the USA, some economies, including Brazil,
Canada, India, Mexico, Russia, and Sweden, exhibit
a negative resonance amplification factor. In these
regions, the discrepancy between total consumption
losses and aggregated consumption losses shrinks
with growing losses and therefore the increase in
losses is mitigated in consecutive disaster scenarios
(figure S2). Such a negative resonance amplification
can be caused by competing producers experiencing
higher indirect production outages for single disaster
scenarios. These then lower their purchasing prices
due to less demand of production and consumption
goods.

Further analysis suggests that the resonance amp-
lification tends to become smaller as the direct output
losses relative to baseline production output increase
(figure S3). Consecutive disasters cause more pro-
duction than single disasters, which could partly lead
to less demand and therefore to lower commodity
prices. Countries which experience already high dir-
ect output losses from single events, e.g. heat stress
in India, may benefit from these lower prices due
to consecutive disasters compared to single disaster
events. We also compare the regions’ response for
different income levels as well as to economic out-
put (figure S4). This shows that, mostly low-income
countries tend to exhibit a negative resonance amp-
lification factor, whereas higher-income countries
tend to perceive positive amplification. A distinct
correlation between resonance offset or amplifica-
tion factor, on the one hand, and national share of
world production, on the other hand, has not been
identified. However, there is a trend that countries
with strongermitigation reactions (negative amplific-
ation factor) are prone to a higher resonance offset
(figure 2(C)).

It is important to note that all countries have
a positive resonance offset and total consumption
losses exceed aggregated consumption losses in most
countries. From this follows that a comprehens-
ive consideration of extreme events reveals higher
national welfare losses which are caused by eco-
nomic ripple resonance. Even if some nations depict a
negative amplification rate, the majority of economic
production (82% of global production) lies in regions
with a positive amplification factor.

The resonance offsets and amplification factors
for all regions used in the simulations are given in
table S2. In order to help estimate the economic
costs of extreme events, we also apply our estim-
ation of quantifying the ripple resonance to the
regions of different Integrated Assessment Models
(see tables S3–S8). We hope this helps to transfer
aggregated consumption losses of various studies to
their corresponding losses for consecutive disasters.

4. Discussion

Our study shows an economic ripple resonance
within the global supply network, which causes
consecutive disasters to trigger higher consumption
losses compared to separate single disaster categor-
ies. In general, this loss intensification becomes even
more amplified for increasing losses. However, the
extent or even the trend of loss amplification can vary
substantially across regions. The three biggest eco-
nomic blocs (China, EU, USA) exhibit strong amp-
lification due to ripple resonance of consecutive dis-
asters, despite different exposure to extreme events.
On a national level, China’s economic wealth, which
grew outstandingly in recent decades, is particularly
at risk due to China’s exposure to several natural
hazards. Apart from this, nations with small direct
output losses from extreme weather events should
become aware of their embedding in the global trade
network. They also experience an increase in con-
sumption losses due to overlapping extreme events in
other countries. While we find first hints regarding
the source of different resonance behavior—there is
a trend indicating that high-income countries exper-
ience a higher resonance amplification—the under-
lying cause of different regional responses requires
further in-depth research. The high resolution of the
economic data from China, the EU, and the USA
enables us to resolve their internal dynamics in more
depth.

Socioeconomic modeling is subject to the inher-
ent limitations of its assumptions and to certain
uncertainties—nevertheless, this study explores and
stresses the qualitative effect of ripple resonance. In
this study, we focus on only three event categories,
heat stress [30], floods [25], and tropical cyclones
[33, 34], as well as on one particular economic net-
work of 2015. Repeating our analysis on the eco-
nomic network of 2012 reproduces the magnitude
and trend of our results (figure S5). Previous studies
indicate that reduced trade tends to hinder the mit-
igation of economic losses due to weather extremes
[25]. New trade agreements or protectionistmeasures
would likely alter the overall economic response to
extreme weather events and thus could lead to a dif-
ferent ripple resonance effect. As the economic ripple
resonance is a non-linear effect, further extreme event
categories and different baseline networksmay lead to
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different resonance quantities. With the overall effect
of an increase in losses when considering the total
impact, we would further expect a stronger ripple res-
onance with more event categories. The same argu-
mentation holds for a stronger increase in disaster fre-
quency and severity than in the period we consider
here (2020–2039). In order to consider a full range
of potential meteorological time series, we here use
an ensemble of four global climate models, two rep-
resentative concentration pathways, five hydrological
models, and five tropical cyclones realizations, overall
minimizing outlier effects.

Numerous profound studies assess the economic
impacts of individual extreme weather events. The
results of our study suggest that considering only indi-
vidual damages or event categories likely leads to an
underestimation of their overall economic losses. On
that line, our study potentially even underestimates
this effect, as we only focus on three disaster categor-
ies. Also, the economic interactions studied here hap-
pen on top of other economic activity and shocks.
Thus, in reality, further interactionswill occur; we can
here, naturally, only show this effect in its isolation.

Overall, our study demonstrates the import-
ance of considering the interaction of the economic
response to consecutive events in order to grasp
the full picture of the economic impacts of cli-
mate change. As human-induced climate change
progresses, the frequency and intensity of extreme
weather events is likely to increase, leading to a high
probability of increasing direct production losses and
consequently to higher consumption losses. Thus,
resonating economic effects leading to insufficient
adaptation and a false sense of preparedness—these
kinds of resonances should be considered for further
adaptation measures and mitigation efforts.

Data availability statement

The data that support the findings of this study are
openly available at the following URL/DOI: https://
zenodo.org/record/4935179. The implementation of
the Acclimate model is available as open source on
https://github.com/acclimate/acclimate with iden-
tifier 10.5281/zenodo.853345, the implementa-
tion of the disaggregation algorithm can be found
on https://github.com/swillner/libmrio (10.5281/
zenodo.832052).

Acknowledgments

This research has received funding from the Ger-
man Academic Scholarship Foundation and the Ger-
man Federal Ministry of Education and Research
(BMBF) under the research Projects CLIC (FKZ:
01LA1817C), QUIDIC (01LP1907A), and SLICE
(FKZ: 01LA1829A), from the Horizon 2020 Frame-
work Programme of the European Union (Grant

Agreement No. 820712), as well as from the Leib-
niz foundation under the research Project ENGAGE
(SAW-2016-PIK-1).

Author contributions

K K, S W, C O, and A L designed the research. T G
and SW provided the tropical cyclone and river flood
input data, respectively. S W and C O developed the
Acclimate model. K K conducted the analysis. K K,
S W, C O, and A L analyzed and interpreted the res-
ults, wrote the manuscript with contributions from
all authors. All authors discussed the results.

Conflict of interest

The authors declare that they have no competing
interests.

ORCID iDs

Kilian Kuhla https://orcid.org/0000-0002-8698-
1246
Sven Norman Willner https://orcid.org/0000-
0001-6798-6247
Christian Otto https://orcid.org/0000-0001-5500-
6774
Tobias Geiger https://orcid.org/0000-0002-8059-
8270
Anders Levermann  https://orcid.org/0000-0003-
4432-4704

References

[1] IPCC 2021 AR6 Climate Change 2021: The Physical Science
Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate
Change (Cambridge: Cambridge University Press)

[2] IPCC 2014 AR5 Climate Change 2014: Impacts, Adaptation
and Vulnerability vol 1 (Cambridge: Cambridge University
Press)

[3] IPCC 2009Managing the Risks of Extreme Events and
Disasters to Advance Climate Change Adaptation
(Cambridge: Cambridge University Press)

[4] Anderson B G and Bell M L 2009 Weather-related mortality
Epidemiology 20 205–13

[5] Rhodes J, Chan C, Paxson C, Rouse C E, Waters M and
Fussell E 2010 The impact of hurricane Katrina on the
mental and physical health of low-income parents in New
Orleans Am. J. Orthopsychiatry 80 237–47

[6] Dell M, Jones B F and Olken B A 2009 Temperature and
income: reconciling new cross-sectional and panel estimates
Am. Econ. Rev. 99 198–204

[7] Wu X, Xu Z, Liu H, Guo J and Zhou L 2019 What are the
impacts of tropical cyclones on employment? An analysis
based on meta-regressionWeather Clim. Soc. 11 259–75

[8] Dell M, Jones B F and Olken B A 2012 Temperature shocks
and economic growth: evidence from the last half century
Am. Econ. J. Macroecon. 4 66–95

[9] Winsemius H, Aerts J and van Beek L 2016 Global drivers of
future river flood risk Nat. Clim. Change 80 381–5

[10] Wenz L, Levermann A and Auffhammer M 2017
North–south polarization of European electricity
consumption under future warming Proc. Natl Acad. Sci.
USA 114 E7910–8

7
51



Environ. Res. Lett. 16 (2021) 114010 K Kuhla et al

[11] Auffhammer M, Baylis P and Hausman C H 2017 Climate
change is projected to have severe impacts on the frequency
and intensity of peak electricity demand across the United
States Proc. Natl Acad. Sci. USA 114 1886–91

[12] Gbegbelegbe S, Chung U, Shiferaw B, Msangi S and
Tesfaye K 2014 Quantifying the impact of weather extremes
on global food security: a spatial bio-economic approach
Weather Clim. Extremes 4 96–108

[13] Sietz D, Mamani Choque S E and Lüdeke M K 2011 Typical
patterns of smallholder vulnerability to weather extremes
with regard to food security in the Peruvian altiplano Reg.
Environ. Change 12 489–505

[14] Marto R, Papageorgiou C and Klyuev V 2018 Building
resilience to natural disasters: an application to small
developing states J. Dev. Econ. 135 574–86

[15] Mannakkara S and Wilkinson S 2014 Re-conceptualising
“building back better” to improve post-disaster recovery Int.
J. Manag. Proj. Bus. 7 327–41

[16] Hallegatte S, Rentschler J and Walsh B 2018 Building back
better: achieving resilience through stronger, faster, and
more inclusive post-disaster reconstruction Technical Report
(Washington, DC: World Bank)

[17] Levermann A 2014 Climate economics: make supply chains
climate-smart Nature 506 27–29

[18] Otto C, Willner S, Wenz L, Frieler K and Levermann A 2017
Modeling loss-propagation in the global supply network: the
dynamic agent-based model acclimate J. Econ. Dyn. Control
83 232–69

[19] Inoue H and Todo Y 2019 Propagation of negative shocks
across nation-wide firm networks PLoS One 14 e0213648

[20] Yiou P, Ribereau P, Naveau P, Nogaj M and Brázdil R 2006
Statistical analysis of floods in Bohemia (Czech republic)
since 1825 Hydrol. Sci. J. 51 930–45

[21] Baade R A, Baumann R and Matheson V 2007 Estimating
the economic impact of natural and social disasters, with an
application to hurricane Katrina Urban Stud. 44 2061–76

[22] Zander K K, Botzen W J, Oppermann E, Kjellstrom T and
Garnett S T 2015 Heat stress causes substantial labour
productivity loss in Australia Nat. Clim. Change 5 647–51

[23] Ranson M, Kousky C, Ruth M, Jantarasami L, Crimmins A
and Tarquinio L 2014 Tropical and extratropical cyclone
damages under climate change Clim. Change
127 227–41

[24] Burke M, Hsiang S M and Miguel E 2015 Global non-linear
effect of temperature on economic production Nature
527 235–9

[25] Willner S N, Otto C and Levermann A 2018 Global
economic response to river floods Nat. Clim. Change
8 594–8

[26] Zscheischler J et al 2018 Future climate risk from compound
events Nat. Clim. Change 8 469–77

[27] Zscheischler J et al 2020 A typology of compound weather
and climate events Nat. Rev. Earth Environ. 7 333–47

[28] Ruiter M C, Couasnon A, Homberg M J, Daniell J E, Gill J C
and Ward P J 2020 Why we can no longer ignore consecutive
disasters Earth’s Future 8 e2019EF001425

[29] Hallegatte S 2014 Economic Resilience: Definition and
Measurement (Washington, DC: The World Bank)

[30] Hsiang S 2010 Temperatures and cyclones strongly
associated with economic production in the Caribbean
and central America Proc. Natl Acad. Sci. USA
107 15367–72

[31] Kuhla K, Willner S N, Otto C, Wenz L and Levermann A
2021 Future heat stress to reduce people’s purchasing power
PLoS One 16 e0251210

[32] Willner S N, Levermann A, Zhao F and Frieler K 2018
Adaptation required to preserve future high-end river flood
risk at present levels Sci. Adv. 4 eaao1914

[33] Geiger T, Frieler K and Bresch D N 2018 A global historical
data set of tropical cyclone exposure (TCE-DAT) Earth Syst.
Sci. Data 10 185–94

[34] Geiger T, Gütschow J, Bresch D N, Emanuel K and Frieler K
2021 Double benefit of limiting global warming for tropical
cyclone exposure Nat. Clim. Change (https://doi.org/
10.1038/s41558-021-01157-9)

[35] Lenzen M, Kanemoto K, Moran D and Geschke A 2012
Mapping the structure of the world economy Environ. Sci.
Technol. 46 8374–381

852



Article D

Incomplete recovery to enhance economic growth losses
from US hurricanes under global warming

Authors

Christian Otto†, Kilian Kuhla†, Tobias Geiger, Jacob Schewe, Katja Frieler
† with equal contributions

Status

Submitted to Nature Communications,
preprint doi: 10.21203/rs.3.rs-654258/v2.

Capsule summary

The impact of hurricanes on long-term economic growth is computed using an event-based
macroeconomic growth model, which resolves the dynamic response to each individual
hurricane. A basic insurance scheme is included in this model to examine potential
adaptation measures. The results depict that growth losses depend on an ensemble’s
shock size distribution of landfalling hurricanes, although the number of events and total
damage remain constant. Incomplete recovery – subsequent shock repercussion during
the recovery process to a former shock – has been identi�ed as the cause. This highlights
the relevance of (short-term) impact resolution to economic growth. Further, the results
depict that growth losses can be mitigated, even under certain circumstances concerning
climate change.

Author contributions

All authors designed the research. Christian Otto and Kilian Kuhla conducted the analysis.
Kilian Kuhla implemented the model code and made the visualization for the study. Kilian
Kuhla developed the climate change projections with contributions of Christian Otto and
Tobias Geiger. Christian Otto and Kilian Kuhla wrote the manuscript with contributions
from all authors.

53

https://doi.org/10.21203/rs.3.rs-654258/v2


Incomplete recovery to enhance economic growth losses from
US hurricanes under global warming

Christian Otto†a,*, Kilian Kuhla†a,b, Tobias Geigera,c,

Jacob Schewea, Katja Frielera

aPotsdam Institute for Climate Impact Research, Telegrafenberg A56, Potsdam, Germany
bInstitute of Physics, Potsdam University, Karl-Liebknecht-Str. 24, Potsdam, Germany

cDeutscher Wetterdienst, Klima und Umwelt, Potsdam, Germany
† with equal contributions

*Correspondence to: christian.otto@pik-potsdam.de

Abstract

Ongoing global warming is likely to increase the return frequency of very intense hurri-

canes in the North Atlantic. Here, we analyse how this frequency increase may impact

on economic growth. To this end, we introduce an event-based macroeconomic growth

model that temporally resolves how growth depends on the heterogeneity in timing and

intensity of hurricane impacts. We calibrate the model to the United States and find that

economic growth losses scale super-linearly with their heterogeneity. We explain this

by a disproportional increase of indirect losses with event severity which can lead to an

incomplete recovery of the economy between consecutive intense landfall events. Based

on two different methods to estimate the future frequency increase of intense hurricanes

compared to the period 1980-2014, we estimate annual growth losses to increase between

10% and 146% in a Paris-compatible 2°C world and even up to 522% in a 2.7°C world

in compliance with the median end-of-century warming under currently implemented or

enacted policies. We finally study the efficacy of disaster insurance as an adaptation

strategy and find that higher insurance coverage may higher insurance coverage may be

a viable means to mitigate these climate change-induced increases in growth losses.
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Introduction

Already in the present climate, hurricanes in the North Atlantic cause substantial economic

losses in the United States (US). Between 1980 and 2019, these storms caused on average

losses about US$ 31 billion in direct economic losses per year, peaking at US$ 266.5

billion in 2005 according to MunichRe’s NatCatSERVICE database1. Moreover, there is

increasing empirical evidence that, in addition to these direct losses, tropical cyclones can

substantially reduce economic growth of affected countries for more than a decade2;3;4.

These long-term growth impacts may have important implications for the adaptation to,

and coping with, the impacts of tropical cyclones under global warming, since there is

strong evidence that the proportion of very intense storms may increase5;6;7. There are at

least two mechanisms through which this increase could overcompensate a possible mild

decline of the overall number of tropical cyclones5 driving up economic losses. First, the

most intense storms cause dis-proportionally larger direct economic losses than smaller

storms. For instance, major hurricanes of the two highest categories 4–5 on the Saffir-

Simpsons scale8 have accounted for almost half of normalised economic damage from

all hurricanes that made landfall in the US in the period 1900-2005 despite representing

only about 6% of landfall events9. Second, an increase of the return frequency implies

that, on average, there is less time for the economy to recover in between consecutive

events; incomplete recovery has been identified as one main factor that may increase the

vulnerabilities of the economy to climate extremes and thereby drive up losses10;11.

Catastrophe insurance is discussed as a means to reduce vulnerabilities of the econ-

omy to extreme weather events by shortening the recovery time in the disaster after-

math12;13;14;15, and it may thereby even promote economic growth on the macroeconomic

level16. These promising findings may explain the rising popularity of multilateral climate

risk insurance schemes and the G20 InsuResilience Global Partnership initiative17. How-

ever, it remains an open question whether higher insurance coverage and better insurance

schemes will be sufficient to counteract climate change impacts in a warming world18;19.

Progress in answering this question has been also made difficult by the limitations of

state-of-the-art climate integrated assessment models (IAMs). These standard workhorses

for climate policy assessments (see20;21 for detailed reviews of IAMs)) – such as the

seminal DICE model22 which is used by the US government to estimate the cost of carbon
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emissions to society – have been criticised for not being able to appropriately account

for the impacts of climate extremes23;24. The main reason is that the coarse temporal

resolution of most models (typically 1–10 years) simply does not allow for the representation

of individual extreme weather events; potentially important non-linearities arising from a

disproportional increase of total economic losses with impact intensity or from incomplete

recovery between consecutive events cannot be resolved. In consequence, IAM-based

studies usually report relatively small, or even negligible, impacts of climate extremes

on the economy25;26 which are at odds with recent estimates in the climate econometric

literature27;3;2.

Main

Here, we first study how the heterogeneity of US hurricane impacts has affected economic

growth in the period 1980–2014. We then project increases in growth losses that would

arise from changes in the return frequencies of the storms and associated changes in

storm number and impact heterogeneity in a Paris-compatible 2°C world as well as in

a world, which is 2.7°C warmer than in preindustrial times corresponding to the median

warming estimate by 2100 under the currently implemented or enacted policies (“current

policy path”)28. Since there is substantial uncertainty on how the return frequencies of

hurricanes will change with global warming, and the magnitude of the effect strongly

depends on the underlying methodology used to estimate this change5, we consider

two different approaches at both ends of the uncertainty range. In addition, we assess

the efficacy and limits of disaster insurance in mitigating the climate change-induced

increase in growth losses. To this end, we build a simple – and transparent – event-based

neoclassical growth model for a national economy. The model accounts for losses to

the stock of physical assets that result from individual landfall events. Reconstruction

investments can be capped in the disaster aftermath to describe inefficiencies slowing

down the economic recovery such as scarcity of trained labour and building materials and

other financial and technical constraints in the reconstruction process29;30. Further, we

integrate a compulsory non-profit hurricane insurance financed by a flat fee on all citizens,

regardless of their individual risk12. This insurance scheme represents a precautionary

56



savings mechanism where premiums accumulated in normal times are issued to affected

households in the disaster aftermath.

In the standard calibration of the model, the insurance ratio is set to 50% the average

ratio of insured losses in the US between 1980 and 2014 according to the NatcatSERVICE

database1 and reconstruction investments are capped to 0.2% of weekly output following

ref.29. This model calibration allows us to obtain average annual output growth losses that

are comparable to those reported in the recent climate econometric literature2;4 when

driving the model with the direct asset losses of the 88 hurricanes that made landfall in the

US in the period 1980–2014 according to the NatCatSERVICE database1.

Insurance accelerates economic recovery

To illustrate the interplay of insurance payouts and limits of reconstruction investments,

we first study the economic recovery dynamics in the aftermath of an individual storm

that destroys 1% of the physical capital stock in month 3 (Fig. 1A). Besides the “realistic”

standard calibration of the model (or scenario) (green full lines), we consider two limiting

scenarios, one without insurance (red lines) and one with full insurance coverage of

all losses (blue lines). Further, to test the sensitivity of the model with regard to the

construction investment cap, we consider a 1% reconstruction investment cap (dashed

lines) in addition to the 0.2% reconstruction investment cap (solid lines) and contrast

both to a limiting case where all available investments (difference between output and

savings) can be used for reconstruction (“no investment cap”, dotted lines) (Fig. 1B). Since

insurance premiums depend on insurance coverage, each growth trajectory is normalised

to the balanced growth path of an unperturbed economy with the same insurance premium.

To account for delays in insurance payouts, we fit data on cumulative insurance payouts of

the Reinsurance Association of America31 indicating that 60% (90%) of the insured losses

are paid out after one (three) year(s) with a sigmoidal function (see Methods for details).

The resulting weekly payouts are shown in the inset of Fig. 1B.

Generally, the recovery of the economy can be divided into a first phase of rapid

reconstruction of destroyed capital, and a second phase, where the economy slowly

approaches the balanced growth path of the unperturbed system. The recovery speed

in the first phase is reduced when the reconstruction investment cap is lowered. For the
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Fig. 1. The contribution of insurance
and reconstruction investment on the
economic recovery dynamics in the af-
termath of an individual hurricane with
landfall. Response dynamics in the after-
math of a 1% shock to the capital stock
with no (red), 50% (green), and full (blue)
insurance coverage, for scenarios where
maximum weekly reconstruction invest-
ment is not limited (dotted lines) as well
as limited to 0.2% (solid lines) and 1%
(dashed lines) of weekly output, respec-
tively. A Time series of weekly output rela-
tive to the output of an unperturbed econ-
omy on the balanced growth path. B Time
series of weekly reconstruction investment
(in % of weekly output) and weekly insur-
ance payout (in % of direct asset losses to
the capital stock, inset). C Cumulative out-
put losses until full recovery of production
capacity as a function of the direct asset
losses (both in terms of annual output in
the year before the landfall). Vertical grey
lines indicate the asset losses caused by
the historical major hurricanes Sandy, An-
drew, and Katrina according to the NatCat-
SERVICE database1.
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scenario with the lowest reconstruction investment cap and no insurance, the cap even

limits the recovery dynamics in the slow second phase (red solid lines in Fig. 1A). In

line with empirical findings, recovery speed increases with insurance coverage for two

reasons32;33: First, since insurance provides additional financial means for reconstruction,

the reconstruction investment cap can be temporarily exceeded, e.g., to compensate for

scarcity driven wage increases34. This accelerates the recovery process especially in the

first reconstruction phase. Second, the larger the insurance coverage the lower is the

share of the output that has to be reinvested in reconstruction efforts. In consequence,

more output can instead be invested in new capital. This fosters output growth especially

in the slow recovery phase. Except in the limiting, overly optimistic, case of full insurance

coverage and no reconstruction investment cap, cumulative output losses increase super-

linearly with the size of the direct asset losses, i.e. indirect losses increase faster than

shock size (Fig. 1C). In consequence, in the aftermath of intense hurricane shocks it

can take multiple months or even years for the economy to recover. For instance, in the

standard scenario, it takes more than 5 months for the production capacity to recover after

the major hurricanes Andrew and Sandy that struck Florida and Louisiana in 1992 and New

York and New Jersey in 2012, respectively, both causing asset losses equivalent to about

0.4% of the US’s annual output in the years of landfall, respectively (grey vertical lines in

Fig. 1C). Further, our modelling suggests that in the aftermath of the largest historical loss

event, the landfall of hurricane Katrina in New Orleans in 2005, that caused asset losses

equivalent to 0.8% of the US’s annual output in this year, it took more than one year and a

half for the production capacity to recover.

Growth losses increase with shock heterogeneity

Next, we study how the economic response dynamics depends upon the heterogeneity

of hurricane shocks (Fig. 2). For that, we assume that landfall events are Poisson35

distributed within the US hurricane season (June–November). Further, we assume that

direct asset losses (relative to the gross domestic product (GDP) in the year of landfall)

are log-normally distributed (see supplementary Fig. S5 for a log-normal fit of the data).

This yields conservative damage estimates as even power law distributions with higher tail

risk are currently discussed for US hurricane damages36;37. In the remainder of this paper,
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Fig. 2. Recovery dynamics of production capacity in dependence of hurricane shock
heterogeneity. Economic impacts of hurricane shocks for a period of 35 years. The heterogeneity
of shocks increases from A to C. Hurricane number and relative cumulative asset losses are fixed
to the 88 hurricanes that reportedly made landfall in the United States in the period 1980-2014 and
caused 3.24% of cumulative asset losses (relative to the growth domestic product of the years the
hurricanes made landfall) according to the NatCatSERVICE database1. B depicts the impacts of
the observed historical time series of hurricanes with landfall. Left panel: Exemplary time series
of available production capacity (in % of full production capacity (grey horizontal lines)). Periods
of reduced capacity in the disaster aftermaths are marked in red and shocks are marked by grey
dots with the size of the dots indicating the shock size. Right panel: Lorenz curves to illustrate
the heterogeneity of the shock distribution. Red lines indicate the cumulative share of production
capacity losses as a function of the cumulative share of the shocks. Grey diagonal lines indicate
the Lorenz curves for equally distributed shocks. The Gini index G ≡ Le−Li

Le
as measure for shock

heterogeneity is determined by the ratio of the areas under the red (Le, light blue shading) and
blue lines (Li , dark blue shading). D Mean cumulative available production capacity (in % of the
production capacity of unperturbed system) as a function of the Gini index. Red dots and grey
shaded areas indicate the values of the Gini index obtained for the runs in A–C and the 16.7-83.3
percentile confidence interval, respectively. The grey vertical line indicates the median Gini index
of the historical shock distribution (see Methods). Other parameters: Insurance coverage 50%;
reconstruction investment cap 0.2% of weekly output.
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we will refer to the distribution of relative asset losses as shock distribution. As detailed

in Sec. A.3 of the Methods, drawing from this shock distribution allows us to generate

synthetic time series of asset losses with defined length, event number, and value for

the cumulative relative asset losses. To isolate the impact of shock heterogeneity, we

then vary the heterogeneity of the asset losses – measured by the Gini index (G) of the

event distribution – but keep the number of hurricanes with landfall (88) (and thus average

hurricane return frequency) as well as relative cumulative direct asset losses (3.24% of

cumulative output) at their values reported in the NatCatSERVICE database1 fixed for the

study period 1980–2014 (35 years). Here, normalization of direct asset losses relative to

real national GDP in the year of impact allows us to generate representative synthetic time

series irrespective of the year of occurrence of each underlying event. Note that we thereby

adjust losses for inflation and economic growth but assume no changes in vulnerability

(e.g., due to adaptive measures taken on the ground), see refs.38;39;40 for a discussion on

different normalization approaches with respect to hurricane damages.

For a nearly homogeneous shock distribution (G = 0.018), asset losses (grey circles in

(Fig. 2A–C) are relatively small and production capacity can mostly recover between loss

events and stays close to the one of the unperturbed system for the whole study period

(Fig. 2A). For higher values of the Gini index, we obtain many small but few high intensity

loss events. Since cumulative output losses increase dis-proportionally with event intensity

(cf. Fig. 1C), also the risk for incomplete recovery between events increases for higher

values of the Gini index (cf. Fig. 2B and C for G = 0.83 and G = 0.87). For instance,

when driving the model with the historical sequence of landfall events, we find that the US

economy may not have recovered in between the major hurricanes Katrina and Sandy

(Fig. 2B).

To gain a systematic understanding on how production capacity depends upon shock

heterogeneity, we study the cumulative production capacity over 35 years as a function

of shock heterogeneity. For a given shock distribution, cumulative production capacity in

general differs between event realisations due to differences in the timing and the size

of the shocks. To account for this uncertainty, we generate a large ensembles of 20,000

realisation for each shock distribution. The cumulative production capacity is then plotted

as a function of the median Gini index as obtained across all realisations (see Sec. A.2

of Methods) (Fig. 2D). (Note that values of the Gini index for individual realisations may
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substantially deviate from the median Gini index. For instance, the Gini index for the

observed historical storm sequence (G = 0.83) is substantially higher than the median

value of the Gini index across all realisations for the historical storm distribution (G = 0.71)

(compare red dot to vertical grey line in Fig. 2D).) We find that the available production

capacity reduces super-linearly with increasing shock heterogeneity. The reduction is

strongest in the high heterogeneity range to the right of the median Gini index for the

historical period (grey line in Fig. 2D), where incomplete recovery becomes more likely.

Similarly, economic growth declines super-linearly with increasing shock heterogeneity

(Fig. 3). Besides the standard scenario with a 0.2% reconstruction investment cap and

50% insurance coverage (red line in Fig. 3B), we again consider scenarios with a 1%

and no investment cap (green and blue lines in Fig. 3) as well as the limiting cases of no

and complete insurance (Fig. 3A and Fig. 3C). We find that the dependence of economic

growth on shock heterogeneity increases when i) the reconstruction investment cap and ii)

the insurance coverage is lowered.

For low values of the investment cap, the growth reduction with increasing shock

heterogeneity can be quite substantial. For instance, for the standard scenario, annual

growth losses increase by more than 16% from 0.0238 percentage points (p.p.) for the

lowest to 0.0275 p.p. for the highest value of the Gini index (red line in Fig. 3B). While

these growth rate reductions may appear small, they imply that for the highest value of

the Gini index output losses accumulate over three and a half decade to 16,218 US$

per-capita, an additional 2,196 US$ per-capita compared to the lowest value of the Gini

index. The dependence of growth on shock heterogeneity can again be understood by

the disproportional increase of indirect losses with shock intensity making incomplete

recovery between events more likely with increasing Gini index (cf. Fig. 1A). In line with

this reasoning, we find that, in the scenario without construction investment cap, where the

recovery time is substantially shorter then in the scenarios with caps (cf. Fig. 1), growth

losses are nearly independent of the Gini index.

Further, for each fixed level of shock heterogeneity, growth losses decrease with

increasing insurance coverage which can be understood as follows: Insurance provides

additional financial means for reconstruction and thereby mitigates the impact of shocks

that are large compared to the reconstruction investment cap by reducing the recovery time

and therefore suppressing incomplete recovery. For instance, for the standard scenario
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and the median Gini index of the historical period (grey vertical line in Fig. 3), output losses

accumulate over three and a half decades to 14,904 US$ per-capita. They are therefore, on

average 832 US$ per-capita and 1,121 US$ per-capita higher than for the corresponding

scenarios with a 1% and without reconstruction investment cap, respectively.

The greatest benefit of insurance is, however, that it strongly mitigates the magnitude of

growth losses. For the median Gini index of the historical period and the lowest investment

cap, hurricanes reduce annual growth on average by 0.048 p.p. in the uninsured scenario.

These losses are already roughly halved to 0.025 p.p. for the standard scenario with 50%

insurance coverage and reduced by a magnitude larger than ten to 0.0045 p.p. in the fully

insured scenario. Accordingly, output losses accumulate over three and a half decade

decrease from 28,807 US$, over 14,904 US$, to 2,746 US$ per-capita. Critically, there is a

tradeoff between the increase in consumption in the disaster aftermath in the presence of

insurance and consumption and economic growth losses due to lower capital accumulation

in normal times. We find that the studied insurance scheme only fosters economic growth

(supplementary Fig. S7) and national consumption when large indirect losses arise, i.e.

when the reconstruction process is slow and shocks are heterogeneously distributed

as this likely was the case in the historical period. Thereby, the benefit of insurance for

national consumption (averaged over many shock realisations) increases with insurance

penetration and shock heterogeneity (supplementary Fig. S8 and Fig. S9)). Insurance

premiums increase with insurance coverage but remain small compared to average per-

capita consumption. For instance, for the standard scenario of 50% insurance and the

mean shock heterogeneity of the historical period, mean annual insurance premiums equal

110 US$ which is only a tiny fraction (about 0.003%) of US households’ average annual

consumption in the historical period. (supplementary Fig. S10)

To set all these numbers into context, it is important to keep in mind that our model, by

construction, computes growth losses borne by the US in total. Local growth losses in the

affected counties may be much larger.

Better insurance coverage can help mitigate climate change-induced growth losses

To account for the substantial uncertainty on how climate change will impact on hurri-

cane climatology, we employ two different approaches estimating climate change-induced
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changes in the return frequencies of hurricanes, one at the lower and one at the upper

end of the impacts reported in the recent literature5. Both approaches consistently predict

an increase of the proportion of very intense storms, though the magnitude of this change

– and in consequence the resulting changes to direct asset losses – differs substantially

between the two approaches. Importantly, in contrast to the last section, where only the

heterogeneity of events was mutable, these climate change-induced frequency increases

may additionally translate into changes of the distribution of direct asset losses with respect

to i) the number of hurricanes and ii) the cumulative direct asset losses during the study

period (Fig. 4) (see Methods for details). Knutson et al. report a moderate increase of the

Fig. 4. Visualisation of climate change-
induced shifts of the hurricane shock
distribution. Under global warming, the
historical distribution of the direct asset
losses caused by the Ns = 88 historical
hurricanes that made landfall in the US
in the 35-years period from 1980 to 2014
(black filled circle) according to the Nat-
CatSERVICE database1 is projected to
change along three dimension: i) the me-
dian shock heterogeneity measured by the
Gini index (x-axis), ii) the number of land-
falls for a 35 years period (y-axis) and iii)
the median cumulative direct asset losses
(size of circles). Blue and red circles indi-
cate estimates for +2°C (filled) and +2.7°C
(hashed) worlds (above pre-industrial lev-
els) based on Grinsted et al.6 and Knutson
et al.7, respectively. The numbers in the
circles refer to the median cumulative rel-
ative asset losses for a 35 years period
(see Methods for details).

return frequency of the most intense (Cat. 4-5) hurricanes by 45% in a 2°C world (2.7°C:

39%) but a reduction of the overall number of hurricanes (of all categories) by 22% (2.7°C:

24%), which the authors derive from changes in the maximum lifetime wind speeds of

the storms obtained from dynamical down-scaled global circulation model runs7 (“wind

speed-based” estimate). In contrast, Grinsted et al. use observational storm surge data

and estimate a considerable increase of relative return frequencies ranging from 1.4 fold

(2.7°C: 1.6 fold) for storms with a small surge index to a 6.4 fold (2.7°C: 15.2 fold) for the
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most intense storms6 (“surge-based” estimate). The authors’ statistical analyses cannot

distinguish whether this frequency increase is caused by an overall increase in the number

of storms or merely implies a shift of the distribution of storm surges to higher intensity

events. However, since there is relatively good agreement in the literature that the average

number of hurricane per season will not strongly change with global warming5, in our

derivation of future direct asset losses according to Grinsted’s surge-based estimate, we

assume that the number of storms does not change compared to the historical study period

(see Methods for details).

For both, the wind speed- and surge-based estimates, we obtain a moderate increase

of shock heterogeneity with the median Gini index increasing from its historical value of

0.71 to 0.77 (2.7°C: 0.78) and 0.77 (2.7°C: 0.80), respectively. For the latter, the hurricane

number (88) remains unchanged compared to the historical period, whereas it decreases

to 69 (2.7°C: 67) for the latter. Further, under the assumption of constant adaptation levels,

the estimated cumulative relative asset losses over 35 years increase only moderately

from 3.24% for the historical period to 3.76% (2.7°C: 3.66%) for the wind speed-based

estimate but more than double (7.25%) (2.7°C: 14.05%) for the surge-based estimate.

In terms of median annual growth losses, we obtain a moderate increase by 10% (for

2°C as well as 2.7°C) compared to the historical standard scenario for the wind field-

based estimate but a strong increase by 146% (2.7°C: 522%) for the storm surge-based

estimate (Fig. 5A). The reason is that for the former the additional growth losses due

to the increases of shock heterogeneity and cumulative direct asset losses are partially

compensated by the reduction of growth losses due to the reduced absolute number of

hurricanes; whereas for the latter the increases of shock heterogeneity, cumulative direct

asset losses, and hurricane number all enhance growth losses. Since we always consider

growth losses relative to a baseline scenario with the same reconstruction investment

cap (and insurance coverage), these findings are robust with regard to changes in the

reconstruction investment cap (cf. Fig. 5B and Fig. 5C).

We finally address the question whether an increase in insurance coverage would be

sufficient to compensate for the additional global warming-induced growth losses. We find

that, to this end, the historical insurance coverage of 50% would have to be substantially

raised to 84% (2.7°C: 99%) according to the surge-based estimate, whereas a moderate

increase to 58% for 2°C as well as 2.7°C would suffice according to the wind field-based
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and the effectiveness of insurance as coping strategy. Annual growth losses (relative to the
corresponding unperturbed economies evolving on the balanced growth paths) as obtained for
the historical shock distribution (50% insurance coverage, period 1980-2014; 1st column), for
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cap (C). Climate change projections of growth losses are derived from two different methods to
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estimate for the standard scenario (cf. columns 2 and 6 with columns 3 and 7 (2.7°C: 5

and 9) in Fig. 5). Again, these findings are fairly robust with regard to different values of

the construction investment cap.

Discussion

These numbers suggest that a better insurance coverage could indeed be a viable means

to compensate for climate change-induced increases in tropical storm-related losses,

even in the absence of other adaptation measures. However, we caution that we do not

account for several drivers of losses in the future projections, which may lead to an over-

or underestimation of future losses. On the one hand, we assume no future changes

in the vulnerability of the economy to tropical cyclone impacts. While this may result

in an overestimation of future losses, since vulnerability may be reduced by additional

adaptation efforts, there also exists empirical evidence that the vulnerability of the US

economy to tropical cyclone strikes has rather increased over the past decades41;42.

Assuming constant vulnerability thus provides a balanced perspective. On the other hand,

our estimates of climate-induced changes in direct asset losses are based on estimates for

the changes in the return frequencies of the storms only; other potential channels through

which climate change may impact on the economic losses caused by tropical cyclones,

such as increasing storm surge risk due to sea level rise43;44, and stronger precipitation

associated with hurricanes45 are neglected. Neglecting these additional drivers as well as

non-economic losses such as lives lost most likely results in an underestimation of future

economic losses46;47.

Further, using a simple macroeconomic growth model with only one homogeneous

output good, our analysis cannot provide information on the recovery dynamics of individual

sectors and may therefore underestimate delays arising from the scarcity of intermediate

goods from strongly affected sectors needed for production in other sectors and the

associated scarcity-induced price inflation in the disaster aftermath. In consequence, we

may underestimate recovery costs48;49;50 and, in turn, growth losses. Finally, we do not

discuss moral hazard issues that may arise from the considered mandatory precautionary

savings scheme and may require the introduction of deductibles, for instance, to de-

incentive the construction of new buildings in storm-surge prone locations51. This might
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provide an over-optimistic assessment of the efficacy of insurance in mitigating disaster

losses.

Our research stresses the importance of non-linear economic responses to consecutive

extreme weather events. In particular, our results suggest that only by i) resolving the

response to individual events, and by ii) accounting for a realistic timing of the events

(e.g., accounting for the hurricane season), it is possible to estimate the full economic

impact of extreme events23. Further, these findings are key to assess the efficacy of

adaptation and coping strategies. For instance, in our study the limited pace of insurance

payouts delays reconstruction efforts in the disaster aftermath, but a similar reasoning

holds for physical protection measures, which once damaged may take months or even

years to be repaired52. Thus, temporally resolving the economic recovery phase is critical

for the assessment and comparison of disaster response measures. This aspect becomes

especially important since extreme weather events are projected to intensify and become

more frequent with global warming, at least on a regional level53. In this regard, our findings

may also encourage the climate integrated assessment modelling community to consider

new approaches allowing to go beyond smooth damage functions translating changes

in global mean temperature into aggregate output losses. As shown here, this common

approach may underestimate the economic repercussions of extreme weather events

since it neglects potentially important non-linearities in the economic response such as the

disproportional increases of indirect losses with impact intensity or the case of incomplete

recovery23. This may also explain the discrepancy between the loss estimates reported

in the recent climate econometrics literature and the estimates of climate integrated

assessment models.

While our estimates on how climate change may impact on economic losses caused

by hurricanes in the US are subject to several sources of uncertainty, they nonetheless

show that the mitigating effect of increased insurance coverage is of the same order of

magnitude as the climate change-induced loss increase. Though insurance premiums may

increase under global warming by up to a factor of four, they likely will remain affordable

for US consumers. This suggests that insurance can be a major building block of future

climate change adaptation strategies, at least in developed countries. For developing

countries the hurdles to adapt to climate change are much higher since they are often

more strongly affected by – and more vulnerable to – climate change impacts and lack the
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financial means and strong institutions to implement comprehensive climate adaptation

measures54. To illustrate this, we have analysed the tropical cyclone-prone Small Island

Developing State of Haiti (Sec. B.2) and find that the tropical cyclone induced growth losses

it suffers in the present climate are already by one magnitude larger than those of the US

(cf. Fig. 3B with Fig. S12A). One reason is that Haiti’s disaster insurance market is much

less developed and nearly all of the past tropical cyclone losses were not insured1. Further,

already in the present climate Haiti is affected so strongly that even in the idealistic limit of

full insurance coverage, it would still suffer growth losses comparable in magnitude to those

of the US today (cf. Fig. 3B with Fig. S12C), and tropical cyclone impacts are projected

to further aggravate for Haiti under continued climate change (appendix B.2.1). To this

end, our results stress the importance – for developing and developed countries alike – to

complement insurance solutions with other measures to build resilience to extreme weather

events such as investments into better housing standards and resilient infrastructure55;56

or coping strategies such as managed retreat57;58 in a risk-layering approach59. However,

in contrast to rich developed countries of the Global North, strongly affected developing

countries will be only able to successfully adapt to climate change impacts when national

and international mechanisms and institutions providing concessional climate finance and

expertise in climate adaptation such as the United Nations’ Green Climate Fund are further

strengthened by ensuring that they have both, the financial resources and the effective

government, to fulfil their mandates.
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A Methods

A.1 Modeling approach

As the standard neoclassical Solow-Swan growth model for a closed economy60, our

model InGroClIM (Insured Growth under Climate Impacts) describes the growth of a per-

capita stock of physical capital k for a unique indistinguishable good under investments

and capital depreciation. Here, we neglect changes in labour market and population growth

as drivers of capital growth. In extension to the standard model, we account for a non-profit

insurance scheme and obtain two coupled differential equations for k and the per-capita

capital stock of the insurance kI reading

Ȧ(t) = ΛA(t), (1a)

k̇(t) = sy(t)− [δ + rI ] k(t) + FI(t), (1b)

k̇I(t) = rIk(t)− FI(t). (1c)

Here, ˙(·) denotes the derivative with respect to time t . We assume that total factor produc-

tivity (TFP) A growth exponentially with trend growth rate Λ, and s, y , and δ denote savings

rate, production function, and depreciation rate of capital, respectively. The insurance

premium rI ≡ rI(rc) depends on the economy’s insurance coverage rc, and FI(t) denotes

the insurance payouts in the disaster aftermaths. Both terms are detailed below. Further,

we assume that the production process can be described by a Cobb-Douglas production

function y(t) ≡ A(t)k(t)α, where α ∈ (0, 1] denotes the capital share of income. We

model the impact of extreme weather events as shocks to the capital stock. Following29,

we describe the economic recovery in the disaster aftermath as the superposition of two

different mechanisms: i) a fast reconstruction process of the damaged capital and ii) the

comparably slow growth of the capital stock due to technological development. To this end,

we write the capital stock as the product of the fraction of remaining production capacity

ξ(t) ∈ [0, 1] and a “potential capital stock” kp,

k(t) ≡ ξ(t)kp(t). (2)
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The Cobb-Douglas production function is derived from the assumption that the process of

capital accumulation is optimal and the last unit of capital added is the least productive61.

However, it appears unlikely that a disaster strikes in such a way that it “de-constructs” the

capital in the same optimal way, starting with the least productive unit, and this method is

likely to underestimate direct production losses (see discussion in62 for details). Following

previous works29;30;62, we therefore assume that a shock does not merely destroy the

least efficient capital, but equally affects all “productivity layers” of capital. For that, we may

write y as a function of ξ and kp,

y(t) ≡ y(ξ(t), kp(t)) = ξ(t)A (kp(t))
α . (3)

Noteworthy, this implies that at the time of the shock ts, y reads

y(ts) = ξ(ts) lim
t↗ts

[y(t)] = ξ(ts)A (kp(ts))
α ,

where ξ(ts) < 1, and kp(ts) represents the pre-disaster value of the capital stock. Thus,

production is reduced by the same factor 1 − ξ(t) as the capital stock, i.e. direct asset

losses equal direct production losses, and the marginal productivity of capital remains

unchanged.

To derive the dynamical equations for kp and ξ, we first decompose total investment I(t)

into the sum of two different investment channels: short-term reconstruction investments

Iξ(t), and regular investments increasing production capacity Ik (t),

I(t) ≡ sy(t) + FI(t) = Ik (t) + Iξ(t). (4)

By employing Eqs. (2), (3) and (4), we may then rewrite the dynamical equation for the

capital stock (1b) as

·(
ξ(t)kp(t)

)
= ξ̇(t)kp(t) + ξ(t)k̇p(t) (5a)

= Ik (t) + Iξ − [δ + rI ] ξ(t)kp(t). (5b)
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By comparing the right-hand sides of Eqs. (5a) and (5b), we obtain the dynamical equations

for kp and ξ as

k̇p(t) =
Ik (t)
ξ(t)

− [δ + rI ] kp(t), (6a)

ξ̇(t) =
Iξ(t)
kp(t)

. (6b)

Next, we derive an expression for Iξ(t) which then permits us to calculate Ik from Eq. (4).

To this end, we have to make four assumptions: First, we assume that reconstruction

investments yield higher returns compared to investments in the potential capital stock and

are therefore prioritised. Second, we assume that reconstruction efforts are limited by short-

term constraints such as a lack of skilled labour or reconstruction materials, which may

significantly slow down the economic recovery. In consequence, only a fraction fmax ∈ [0, 1]

of the output available for investment sy(t) can be used to finance reconstruction; the

actual value of the investment cap fmax depends upon the economy under consideration30.

Third, we assume that reconstruction efforts cease when the capital stock equals the

potential capital stock, no overshoot is possible. Fourth, we assume that the insurance

primarily finances reconstruction efforts. In the presence of insurance, the investment cap

may be temporarily exceeded since the insurance provides additional financial means, e.g.,

to compensate for scarcity driven wage increases34. This assumption is motivated by em-

pirical findings that higher insurance coverage can lead to a faster economic recovery32;33.

However, if reconstruction is completed before all of the insured capital is reimbursed, the

remaining insurance payout will be invested into the potential capital stock. With these

assumption, we may express Iξ(t) as

Iξ(t) ≡

0 ξ(t) = 1,

min [min [fmax, s] y(t) + FI(t), Ir (t)] ξ(t) < 1,

where Ir (t) ≡ (1 − ξ(t))kp(t) is the investment needed to reconstruct the capital stock in

the present time step.
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A.1.1 Insurance payout dynamics

We model insurance as a compulsory precautionary savings mechanism which may be

implemented and managed on the national level by a public institution. To our knowledge,

there are no empirical data on the payout dynamics of such an insurance scheme in the

US. This is why we use observational data of insurance payouts of commercial providers

of risk diversifying insurance by the Reinsurance Association of America (RAA)31 arguing

that the payouts dynamics of the insurance scheme discussed here and commercial

(re-) insurers may be similar as main processing steps such as the filing of insurance

claims and their eligibility assessment by the insurance provider would be identical for both

insurance schemes. According to the RAA data, the reimbursement of insured losses fI(t)

can spread over several years; 60% (90%) of the insured values are reimbursed with in

one (three) year(s). This may significantly delay the reconstruction process. We describe

the cumulative insurance payouts with a sigmoidal function,

fI(t − ts; rc∆skp(ts)) ≡ rc∆skp(ts)β

(
t−ts

τI

)β−1
(a − 1) exp

[
−

(
t−ts

τI

)β
]

τI

(
1 + (a − 1) exp

[
−

(
t−ts

τI

)β
])2 , ∀t > ts.

Here, ts denotes the time of the shock, the insured losses are given by the product of

the insurance coverage rc, the asset loss ∆s at time ts relative to the pre-shock potential

capital stock kp(ts)1. The three parameters a, τI and β31 are specified in Tbl. 1 (see

supplementary Fig. S2 for a fit of the observational data). The cumulative insurance payout

in response to multiple successive asset losses {∆si}i at times {tsi}i are then given by

the sum of the individual payouts

FI(t ; {tsi}i , {∆si}i) ≡
Ns

∑
i=1

fI(t − tsi ; rc∆si kp(tsi )),

where index i labels the shock number, and Ns denotes the total number of shocks.
1It is worthy to note, that according to Eq. (3) this is identical to expressing asset losses relative to the

output in the year before the shock as done for the calibration of the model to empirical data in Sec. A.1.2
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A.1.2 Model calibration

We assume that, in the absence of shocks, the economy evolves along its balanced growth

path (BGP), where output growth is constant and only driven by TFP growth (growth rate

Λ),

g ≡ ẏ
y
=

Ȧ
A
+ α

k̇
k
= Λ+ αg ⇔ Λ = (1 − α)g, (7)

where we have used in the second identity that if y growth constantly with rate g, k also

growth constantly with the same rate2. Since in the absence of shocks FI(t) = 0 ∀t ∈
[0, T ], where T denotes the length of the simulation, the dynamic equations for k and

kI decouple (cf. Eqs. (1)), it suffices to solve the equations of motions for the dynamic

variables A and k along the BGP. The corresponding equation for kI can then be derived

from Eq. (1c). To this end, we insert the coordinate transformation

A(t) = eΛt Ã(t) & k(t) = egt k̃(t),

into the dynamic equations for A and k yielding,

˙̃A(t) = 0, (8a)
˙̃k(t) = sỹ(t)− (δ + rI + g)k̃(t), (8b)

where we have introduced the output in BGP coordinates ỹ(t) ≡ A0k̃α(t). Equating the

right-hand-sides of Eqs. (8) to zero, yields the steady states for A and k in BGP coordinates

Ã⋆ = A0, & k̃⋆ = k0 =

(
sA0

δ + rI + g

) 1
1−α

, (9)

where (·)⋆ and k0 denote the steady state values of variables and k0 initial capital stock,

respectively. This allows to write the BGP solution of Eqs. (1) as

A(t) = eΛtA0, k(t) = egtk0, kI(t) =
rI

g

[
k(t)− k0

]
=

rI

g
k0 [egt − 1

]
. (10)

2This can be seen as follows: From the first identity in Eq. (7), it follows that the growth rate of the capital
stock k̇

k = g−Λ
α is constant when g is constant. From Eq. (2) it then follows that k and y have to grow with the

same rate g.
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To calibrate the model to the US, we set initial per-capita annual output y0 and output

growth rate g to the per-capita growth domestic product (GDP) and the GDP growth

rate of the US in 2015 according to the World Banks’ and OECD’s National Accounts

database3, whereas capital depreciation rate δ, savings rate s, and capital share of income

α are set to their standard values for developed economies60. Using the Cobb-Douglas

relation for the production function y = Akα and the steady state relation for k0 (cf. Eq. (9))

then allows to express initial TFP and initial per-capita stock as A0 = y0
(

δ+rI+g
s

)α
and

k0 = sy0(δ + rI + g)−1, respectively.

Table 1 lists all exogenous parameters used in the simulations. It is worthy to note that

Quantity Symbol Value Unit

Initial GDP per capita y0 51638.1 US$
GDP growth rate g 2.6% year−1

Savings rate s 0.2 year−1

Capital depreciation rate δ 0.1 year−1

Capital share of income α 0.7
Time step length ∆t 1

52 year

Insurance payout parameter one a 109

Insurance payout parameter two β 0.0741
Insurance payout parameter three τI 1.31 · 10−18 year
Empirical insurance premium coefficient ε 4.046 · 10−4

Simulation period T 35 year
Cumulative relative historical asset losses ∆T 3.24 %
Number of historical landfalling hurricanes Ns 88
Standard deviation of historical
log-normal asset loss distribution σ0 0.10654

Tbl. 1. Exogenous parameters used in the numerical simulations.

our model results are very robust with regard to changes of the GDP growth rate g since

we only consider changes of the perturbed economy relative to an unperturbed economy

evolving along the BGP. Even large variations of g ∈ [0.2%, 4%] result in changes of

growth losses that are small compared to the climate uncertainties (cp. lines and shaded

areas in supplementary Fig. S6)

3https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
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Modelling a non-profit insurance scheme, we have to ensure that, averaged over many

realisations, the insurance does neither make profit nor losses. However, deriving an exact

analytical formula for the corresponding insurance premium rI is challenging since – as

output losses and growth losses – it would depend upon shock heterogeneity. Instead, we

here motivate a simple heuristic formula neglecting this dependence and show that the

resulting average insurance profits or losses are negligible compared to the cumulative

payouts of the insurance. In the worst case, the total relative asset losses occur at the last

time step of the simulation. Covering this loss would require an insurance capital stock of

kI(T ) = rc∆T k(T ), where T denotes the length of the simulation. Inserting this relation

in the BGP solution for kI (cf. Eq. (10)) provides us with the following expression for the

insurance premium

rI ≡ ε
grc

1 − e−gT ,

where we have added an empirically determined factor ε ensuring that average insurance

profits (or losses) are negligible. (cf. supplementary Fig. S4 revealing that average profits

or losses of the insurance are about five magnitudes smaller than the insured capital.

A.2 Gini index as measure for shock heterogeneity

We fit the relative asset losses of the Ns = 88 historical hurricanes with landfall included in

the NatCatSERVICE database1 (cf. Tbl. S1) with a log-normal distribution (supplementary

Fig. S3) with standard deviation σ0. To change the heterogeneity of the loss events, we

vary the standard deviation σ of the log-normal distribution from σ0
100 to 4σ0. We use the Gini

index G ≡ Le−Li
Le

∈ [0, 1] as measure for the shock heterogeneity, which is derived from the

difference of the areas below the Lorenz-curves for a uniform distribution Le and the given

shock distribution Li (cf. Fig. 2). Shock heterogeneity increases from small to large values

of the Gini index. Noteworthy, the Gini index of the historical timeseries of hurricanes with

landfall equals 0.829, whereas the median Gini index of the historical shock distribution

– obtained by averaging over many synthetic realisations of asset loss time series (see

Sec. A.3 for details) – equals 0.71.
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A.3 Generation of synthetic time series of asset losses

In this section, we discuss the generation of synthetic time series of asset losses from their

historical distribution as reported by the NatCatSERVICE1 and TCE-DAT databases63. For

the study period 1980–2014 of T = 35 years, these databases list Ns = 88 hurricanes

with landfall that have caused asset losses corresponding to at least 10−4 % of the GDP in

the year of their landfall (see supplementary Tbl. S1). Over this period, relative asset losses

accumulated to ∆T = 3.24%. We generate synthetic time series of asset losses of length

T keeping Ns and ∆T at their historical values in three steps illustrated in supplementary

Fig. S5. First, following ref.35, we assume that the number of hurricanes with landfall na

in each season a is Poisson distributed, fP(na) ≡ λnae−λ

na! . Further, we assume that the

mean number of landfalls per season λ is constant over the study period T . To ensure that

each synthetic track contains exactly Ns shocks, the shock number for the last season of

the track is set to the remainder of available shocks Ns − ∑T −1
a=1 na. To avoid that the last

season always receives the remainder of available shocks, seasons are shuffled afterwards.

Second, we assume that for each day of the season the likelihood of a hurricane making

landfall is the same, but exclude the possibility that two hurricanes make landfall at the

same day. Third, following ref.36 (cf. Fig. S3 in SI), we assume that relative asset losses

∆s are log-normally distributed, fLN(∆s) ≡ 1
s∆s

√
2π

exp
[
− (ln(∆s)−m)2

2s2

]
, where we have

introduced the parameters s ≡

ln

 σ2

∆T
Ns

2 + 1

 1
2

, m ≡ ln(∆T
Ns

)− s2

2 , and the standard

deviation σ of the log-normal distribution. Similarly, to step one the size of the last shock of

each realisation is set to the difference between ∆T and cumulative relative asset losses

before the last shock in order to ensure that total cumulative relative asset losses equal

∆T ; then shock sizes are reshuffled.

A.4 Storm surge- and wind field-based climate change projections

of asset losses

Storm surge-based projections of asset losses. Grinsted et al.6 estimated the relative

increase in the return frequency of hurricanes with landfall in dependence of the severity of

their storm surge (measured by the surge index64) per degree of global mean temperature
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(GMT) warming relative to the reference period 1980–2000. We employ these findings to

project asset losses for a +2◦C increase of GMT above its pre-industrial level4. To this end,

we first map the surge indices {∫si} of the Ns = 88 historical hurricanes that made landfall

in the US between 1980–2014 to the corresponding relative asset losses {∆h
si
} reported in

the NatCatSERVICE database1 (supplementary Tbl. S1). Next, we determine the statistical

correlation between historical asset losses and surge indices, yielding the damage function

f (s) (supplementary Fig. S11). As discussed in the main text, we assume that the average

number of hurricanes with landfall will not change compared to the historical study period.

In consequence, we interpret the increases in return frequency reported by Grinsted et

al. as increases solely in storm surge intensity, and not as an increase of the average

number of hurricanes making landfall (in each season). This allows us to map the set of

historical sure indices {∫si} to a set of estimated surge indices in a +2°C world {∫ cc
si
}.

We then assume that each future relative asset loss ∆cc
si

can be written in terms of the

corresponding historical asset loss. This allows to express future relative asset losses in

terms of the historical relative asset losses as well as future and historical storm surge

indices,

∆cc
si

≡ ∆si + f (∫ cc
i )− f (∫ h

i ). (11)

Note that with this relationship historical asset losses are reproduced for ∫ cc
i = ∫i . Em-

ploying Eq. (11), we project relative asset losses ∆T accumulated over T = 35 years to

increase substantially from their historical value of 3.24% to 7.25%. We then generate

synthetic realisations of future asset loss time series by distributing the projected Ns = 88

relative asset losses over the simulation time of T = 35 years as described in Sec. A.3.

Wind field-based projections of asset losses. Knutson et al.7 analysed an ensemble

of downscaled global climate models participating in the 5th phase of the Coupled Model

Intercomparison Project (CMIP5). Based on the wind fields of the storms they estimated a

median decrease of 22% in the overall number of all hurricanes but a median increase

of the most intense Category 4 and 5 storms by 45% for an increase of GMT by +2°C

above its pre-industrial level under the Representative Concentration Pathway (RCP) 4.5.

To estimate the associated changes in asset losses, we first divide the Ns = 88 historical

4Note that one degree of global warming compared to 1980–2000 corresponds to 1.5◦C of warming
compared to the pre-industrial level65
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hurricanes that made landfall in the US in the period 1980–2014 into moderate (Category

0-3, 66 storms) and intense (Category 4-5, 22 storms) storms based on the IBTRaCS

database66. Applying then the estimates of Knutson et al., we project that in a +2°C degree

world the number of all hurricanes and the number of moderate hurricanes decrease to 69

and 37, respectively, whereas the number of intense hurricanes increase to 32. This would

lead to a minor change of relative cumulative asset losses ∆T from their historical value

of 3.24% to 3.75%. Synthetic time series of future asset losses are finally generated as

described for the surge-based estimate.

Code availability

The implementation of the InGroClIM model is openly available on github (https://github.

com/kuhla/InGroClIm or as zenodo repository 10.5281/zenodo.5017904).

Data availability

The authors thank Munich Re’s NatCatSERVICE for providing assess to their natural

catastrophes data base from which the direct asset losses of hurricanes with landfall and

the insurance coverage employed in this study are derived. These data may be made

available by the corresponding author upon request and after consultations with MunichRE.

The InGroClIM model is driven by asset losses of hurricanes with landfall relative to the

growth domestic product of the US in the year of landfall as provided by the World Banks’

and OECD’s National Accounts database (https://data.worldbank.org/indicator/NY.

GDP.PCAP.CD) (see supplementary Figs. Fig. S3 and Fig. S11 ). Intensities of the historical

hurricanes on the Saffir-Simpsons scale are taken from the IBTRaCS database66.
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Abstract

After the United Kingdom has left the European Union it remains unclear whether the two

parties can successfully negotiate and sign a trade agreement within the transition period.

Ongoing negotiations, practical obstacles and resulting uncertainties make it highly unlikely

that economic actors would be fully prepared to a “no-trade-deal” situation. Here we provide

an economic shock simulation of the immediate aftermath of such a post-Brexit no-trade-

deal scenario by computing the time evolution of more than 1.8 million interactions between

more than 6,600 economic actors in the global trade network. We find an abrupt decline in

the number of goods produced in the UK and the EU. This sudden output reduction is

caused by drops in demand as customers on the respective other side of the Channel incor-

porate the new trade restriction into their decision-making. As a response, producers reduce

prices in order to stimulate demand elsewhere. In the short term consumers benefit from

lower prices but production value decreases with potentially severe socio-economic conse-

quences in the longer term.

Introduction

If the Brexit transition periods ends without the United Kingdom and the European Union

having agreed on a trade deal and arranged an orderly transition, trade across the English

Channel is likely to undergo a sudden shock due to e.g. procedural complications at the bor-

ders [1, 2]. Although some preparation is underway, the ongoing negotiations, practical diffi-

culties and resulting uncertainties make it highly unlikely that the administration and the

private sector are prepared for the sudden implementation of required customs procedures.

Here, we provide a numerical market shock simulation for a scenario in which the UK leaves

the European single market and customs union at the end of the transition without a trade

deal (referred to as “no-trade-deal event” hereafter) to shed light on its economic effects. These

simulations are by no means a literal prediction of the full socio-economic consequences of
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Brexit as such a prediction is impossible. They can, however, serve as qualitative insights with

quantitative predictive power limited to the order of magnitude of the economic response. We

restrict our simulations to the 30 days following a no-trade-deal event.

The likely possibility of a relatively unprepared customs situation in the course of a no-

trade-deal event requires numerical simulations with agents that follow a clear economic deci-

sion rationale in which they can be ‘surprised’ in the sense that they have informed expecta-

tions but do not foresee the future [3]. This necessitates a modeling approach that can dissolve

economic dynamics at short timescales of days which is difficult to achieve with mainstream

economic models such as gravity models, Computable General Equilibrium or Input-Output

models that typically have much coarser temporal resolutions or lack dynamics. The theory of

shock models has been developed in the context of extreme events and within the sphere of

disaster impact studies; partly with focus on multi-regional spillover or short-term effects [4–

14]. Here we build on and apply this theory by combining multi-regional Input-Output

(MRIO) data with an agent-based modeling approach. MRIO data are well suited for investi-

gating economic interdependencies [15, 16] but have so far only been used for static analyses

of different Brexit scenarios [17–20]. Contrary to these works, we here provide a dynamic

shock simulation of the days to weeks following a no-trade-deal event. Our numerical model-

ing framework depicts the economic response to such an event at day-level thereby accounting

for important buffer mechanisms and market adjustments in the short-term such as stockpil-

ing, use of idle capacities, and shifting of demand to unaffected suppliers [21]. We thus com-

plement previous work that focused on longer-term adaptation to a Post-Brexit market (e.g.

new trade deals [22]), analyzed the economic effects of a specific trade agreement [23] or iden-

tified key industries in the UK-EU trade relationships [20].

We use the numerical loss-propagation model Acclimate that was specifically designed to

simulate the short-term global repercussions of unexpected local shocks [24]. It can be used to

study the direct and indirect economic effects of a local disruption of infrastructure or produc-

tive capacity. Indirect effects thereby denote the spillover of economic losses and gains to ini-

tially unaffected sectors and regions because of ripple effects in the supply chain including

price and demand changes [25]. The Acclimate model has, for example, been used for compu-

tations of future economic losses due to river flood extremes and heat-stress-induced produc-

tion failure [26, 27]. At its core is the interaction of more than 6,600 heterogeneous economic

agents, i.e. regional sectors (referred to as firms hereafter) and consumers, with more than 1.87

million flows between them, to account for the complex effects arising in trade networks [28].

In each time step, these economic agents form explicit expectations on the future. Based on

these expectations, each agent then individually decides upon its optimal production level and

upon its optimal strategy of distributing demand for input goods among suppliers by maximiz-

ing its future expected profit. Importantly, agents have only limited fore- and oversight. Their

decisions reflect the information available to them at the time of decision-making and are not

the result of an intertemporal optimization procedure. Since we assume a demand-driven

economy, agents do not produce more than has been requested. Without external perturba-

tion, the economy is assumed to be in equilibrium, i.e. supply matches demand. This baseline

situation, which serves as our counterfactual, is given by the Eora MRIO data [29] that have

been used for economic impact analysis in various other studies (e.g. [30, 31]).

Within the Acclimate modeling framework we simulate a no-trade-deal scenario by

restricting trade between the UK and the remaining 27 EU countries from one day to the next

and for the whole simulation period of 30 days. More precisely, we assume that only a certain

percentage of the amount of goods that were previously traded between the UK and the EU

can pass through in the days to weeks following a no-trade-deal event, referred to as ‘border
permeability’ hereafter. This reduced border permeability does not mean that all trade is
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completely cut off nor does it represent the introduction of specific tariffs. Instead, it is sup-

posed to mimic a relatively unprepared customs situation with e.g. administrative obstacles at

the borders and harbors that result in delays such that only a certain amount of all previously

traded goods transits in the same amount of time.

In total, we distinguish between four scenarios of border permeability and simulate the eco-

nomic consequences during the first 30 days following the end of the transition period for a

scenario in which no trade agreement has been agreed upon by the EU and the UK. We then

analyze the time evolution of production and consumption in the UK, the EU and 240 other

countries and regions around the globe during this period. Our simulation results highlight

the importance of depicting economic response dynamics to market shocks such as the UK

leaving the European single market without trade agreement on the same time scale as these

events occur. We find that the value of both, production and consumption is reduced at the

end of the simulation period and that this decrease is due to demand-side effects that occur

immediately after the end of the transition period if no trade deal is put into place. These

drops in demand and the resulting decreases in production and prices have received little

attention compared to supply-side effects of Brexit (such as shortages of goods) and could

aggravate the overall socioeconomic implications.

Materials and methods

Economic data

For the description of the global trade network, we use multi-regional Input-Output data in

basic prices for the year 2012 as provided by the Eora World MRIO simplified dataset (v199.82

[32, 33]). These data describe annual monetary flows between 26 sectors and final demand in

188 countries. We interpret them as a measure of quantitative flows. Assuming that economic

output is evenly generated throughout the year, we generate mean daily economic flow data

(in USD). Using a disaggregation algorithm [34], we obtain state-level resolution for the USA

and province-level resolution for China. Thus, the three biggest economies in the world–EU,

China and the USA–are represented in a comparably detailed manner. In addition, we disag-

gregate the UK into England, Scotland, Wales and Northern Ireland which yields a total of 271

regions across the world (Fig 1 and S1 Table in S1 File). Because small flows are more likely to

be subjected to large balancing adjustments in the data generating process [32], flows smaller

than 1 Million USD (per year) are neglected in the computation. We thus obtain a globe-span-

ning network of daily economic flows between heterogeneous economic agents, i.e. regional

sectors (firms) and final demand (consumers). This trade network serves as counterfactual in

our simulations.

The numerical shock model Acclimate

The simulations are carried out with the numerical agent-based shock model Acclimate [24].

It is an anomaly model evolving around the baseline state of the global trade network as given

by the MRIO data. Firms and consumers in this network are modeled as myopic agents with

adaptive expectations. Their decision rationales are based on local optimization principles,

e.g., firms maximize their expected profit to decide upon their production level and consumers

maximize expected consumption to decide upon their purchases.

More specifically, every model time step is divided into three subsequent decisions points

or sub-steps [24]. In the first sub-step, firms assess how much they should produce in the cur-

rent time step to maximize their profits. They take possible constraints into account such as

limits of productive capacity or limited input availability. The optimal production quantity is

derived by maximizing the difference between revenues and costs. Since we assume a demand-
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driven economy, revenues are known and reflect how much the firm’s suppliers requested in

the last time step and which prices they are willing to pay (reservation prices). Those suppliers

that ordered at the highest unit prices are most likely to receive the full amount of goods they

requested. In the second sub-step, firms form expectations for the next time step. Based on the

demand requests they received in the last time step they estimate which production quantity

might be profit-maximizing in the next time step. They then communicate corresponding

offer prices, i.e. prices that customers will likely have to offer in order to receive the same

amount of goods as before. This helps customers to correct their prices if they deviated hugely

from the overall market situation. In the last sub-step, firms assess how many inputs they will

presumably need to keep their production going at the optimal level, taking the amount of

stockpiled goods into account. They then decide on the cost-minimizing way of distributing

this demand among their suppliers under consideration of the respective offer prices that were

just communicated. Similarly to firms, consumers decide upon their optimal consumption

level, upon the optimal way of distributing their demand and upon the optimal reservation

prices.

The model explicitly accounts for the principal factors determining the short-term flexibili-

ties of production systems [21]: Idle capacities that can be activated in times of high demand,

input and transport storages to buffer supply shocks, geographically-derived transport times,

and price changes. For the simulations in this paper, sectors’ idle capacities are set to 15% of

their baseline output, and input storage sizes are set to 15 days of baseline production which

means that agents have enough goods stored to uphold their baseline production/consumption

quantity levels for 15 days without additional inflow. The model does not consider a restruc-

turing of the global trade network, i.e., agents can only interact along trade relations that are

Fig 1. Production value changes after 30 days of a no-trade-deal event and trade relations between the UK, the EU

and the rest of the world according to the underlying 2012 multi-regional Input-Output data. Maps show all

countries and administrative units covered by our analysis. Thickness of arrows indicates how much is exported from

one region to the other. Numbers above arrows state the number of trade connections between these two regions. In

our simulations, we assume that trade between the UK and the EU is restricted to a certain percentage of the baseline

values throughout the simulation period. Shading of colors is according to production value changes after 30 days of

reduced border permeability. Changes shown here refer to a scenario of 70% border permeability. Complementary

maps displaying changes in production quantities and prices after 30 days of a no-trade-deal event can be found in the

Supplementary Materials (S2 Fig in S1 File).

https://doi.org/10.1371/journal.pone.0237500.g001
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already established. Furthermore, substitution of input goods is not possible. Acclimate is a

deterministic model and also in the simulations we adhere to one set of parameters which do

not represent probability distributions. A range of likely outcomes can be examined via varia-

tion in the forcing. As detailed below, we here consider four different scenarios of border per-

meability to span a range of likely outcomes of a no-trade-deal event. Moreover, we conduct

two additional analyses, each with a slightly different interpretation of a no-trade-deal event.

As detailed in refs. [24, 35], the Acclimate model differs from related modeling approaches

such as Computable General Equilibrium (CGE) or Input-Output (IO) models in three impor-

tant respects. First, the production system in Acclimate is more flexible than what IO models

assume but more rigid than the highly flexible production systems in CGE approaches. Sec-

ond, IO and CGE models are either static in the sense that they compare two different states

or, in the case of dynamic CGEs, have coarse time steps of 5 to 10 years. Acclimate, to the con-

trary, operates on the timescale of days. Consequently, it can represent disequilibrium situa-

tions with local demand-supply mismatches that may occur in the immediate aftermath of an

economic shock. Importantly, the agents in Acclimate are myopic and cannot foresee these

shocks. This is the third major difference to dynamic CGEs with intertemporal optimization

which assume perfect foresight of rational agents.

Modeling of Brexit

We simulate a no-trade-deal event after the transition period by assuming that trade flows

between agents in the UK and agents in the 27 remaining EU member states are from one day

to the next and for the whole simulation period restricted to a certain percentage of their base-

line values. In our main modeling specification, this restriction applies to both, service and

commodity sectors but we also provide results for a scenario where solely commodity flows

are impacted by the trade restriction (see S2 Table in S1 File for an overview of service and

commodity sectors). Furthermore, we conduct an additional analysis where trade flows

between the UK and countries with which the EU has trade agreements are restricted as well.

For our main modeling specification as well as for each of the two variants, we carry out four

simulations with different values of border permeability between 70% and 85% (i.e. 70%, 75%,

80%, and 85%), meaning that only this percentage of the unperturbed trade volume can pass

through. We consider different scenarios of trade flow restriction as it is impossible to antici-

pate the exact difficulties that will arise due to the no-trade-deal situation. Furthermore, we

suppose that all economic agents have enough goods stored to uphold their baseline produc-

tion/consumption quantity levels for 15 days without additional inflow. By embodying

enhanced stockpiling of input/consumption goods, we account for some possible preparation

measures.

Production and consumption quantity, prices and values

We look at changes in production and consumption quantities, prices and values over a period

of 30 days (compared to the baseline state). The baseline production quantity of a firm is

derived from the MRIO data by summing over all its outgoing flows. Production “value”

denotes the product of the quantity that is produced and the price for which it is sold. Without

loss of generality, all prices are assumed to equal one in the baseline state. In the presence of

trade distortions, the value of a firms’ production may change due to changes in the produced

quantity or due to changes in prices. Similarly, consumption “value” denotes the product of

the quantity that is actually consumed and its price. A negative consumption value change can

hence indicate both, that consumption of goods decreases in terms of quantities (because of

supply shortages and/or higher prices), or that goods are purchased at lower prices.
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The Acclimate model accounts for one representative consumer in each region. Consumed

goods are assumed to be perfect complements and consumption changes isoelastically with the

consumer price. For each good, price elasticities are set to -0.5.

Results

For each scenario of reduced border permeability, we assess the short-term economic conse-

quences within the UK, the EU, and the rest of the world by computing the temporal evolution

of production and consumption during the first 30 days following a no-trade-deal event. We

find that the qualitative results are independent of the specific value of border permeability.

The direct economic response in the aftermath of Brexit follows a scenario-independent tem-

poral evolution which strongly supports our confidence in the qualitative insights and in the

order of magnitude of the results obtained here. For lower levels of border permeability, daily

production seems to “fidget” around a general trend. This is due to the fact that agents have

adaptive expectations, i.e. they update their supply and demand decisions at day level under

consideration of the gain in information. The magnitude of this fidgeting is more pronounced

for scenarios that deviate more strongly from the agents’ baseline and it decreases with the

aggregation level of the quantities considered (e.g. when aggregating across sectors of a coun-

try and/or across countries of a region). In case of consumption, the consumption elasticities

smoothen the consumption response curves.

Economic effects in the UK and the EU

Specifically, we find a drop in the number of goods being produced in the UK and the EU

immediately after a no-trade-deal event (Fig 2, first row). These short-term production losses

cannot be due to supply shortages because at this point in time firms still have enough input

goods in storage to keep their production going. They are, by contrast, demand-side effects.
Firms on both sides of the English Channel have to reduce their production because they

receive less demand from their customers on the respective other side of the Channel. These

customers have realized that only a certain amount of the products they requested from their

British/EU suppliers can pass through the newly established trade border. They hence decided

to demand less from their Brexit-affected suppliers and instead refer to their inventories and

other suppliers (compare S1 Fig in S1 File, first row). We find particularly high production

losses in sectors that used to export a large share of their output to trading partners that are

now on the other side of the UK-EU border (Fig 3).

Since, in relative terms, the EU is of higher importance for British exports than the other

way around (Fig 1), we find larger production losses for UK sectors than for EU sectors. Ire-

land on the other hand heavily relies on the UK as sales market for its products and is even

more affected than the UK (Fig 4, inlay and S1 Fig in S1 File). Also within the rest of the EU

production losses are highest in those countries that previously exported larger shares of their

production to the UK such as Belgium or the Netherlands (Fig 4). In response to the decline in

demand, firms decide to sell their products at lower prices with the aim of stimulating demand

for their products elsewhere (Fig 2, second row, and S1 Fig in S1 File). Consumers in the UK

and the EU react to these lower prices by consuming more (Fig 2, third row). However, this

increase in domestic consumption cannot offset the decline in demand from customer firms

on the respective other side of the EU-UK border. Even though the amount of goods being

produced starts recovering, prices do not rise accordingly and the value of production and

consumption, i.e. the product of quantities and prices, remains below baseline levels through-

out the simulation period. (S1 Fig in S1 File).
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Fig 2. Changes in production, prices and consumption in the UK and the EU during the 30 days following a no-trade-deal event. The number of goods being

produced declines in both, the UK and the EU shortly after a no-trade-deal event (first row) because customers on the respective other side of the UK-EU border demand

less. Consequently, firms reduce production prices (second row). These lower prices stimulate demand for products slightly. Consumers respond to lower prices;

consumption (quantities) rise (third row). In terms of value, i.e. the product of prices and quantities, production and consumption however remain below pre-Brexit levels

throughout the simulation period (shown in S1 Fig in S1 File). All changes are depicted as relative deviation from the respective baseline values. Different scenarios of

border permeability show similar dynamics. Reduced border permeability is assumed throughout the simulation period.

https://doi.org/10.1371/journal.pone.0237500.g002
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Economic effects on the rest of the world

In our main simulations, we take a conservative approach in assuming that trade flows

between the UK and countries with which the EU has trade agreements are not restricted.

Countries outside the EU however can be indirectly affected–through up-stream and down-

stream ripple effects in the supply chain as well as through the associated price signals. We

find that several countries benefit from a no-trade-deal event in the sense that the value of

their production increases (Fig 1 and S1 Fig in S1 File). This applies in particular to the non-

Fig 3. Sectors exporting a large share of their output to customers directly affected by a post-Brexit no-trade-deal event

are particularly prone to production losses. Transparently colored bars indicate how much of each sector’s output was

exported to the UK/EU in the baseline according to the underlying 2012 multi-regional Input-Output data. Hatched bars show

production quantity changes after two days of reduced border permeability. Sectors that heavily rely on sales market on the

other side of the UK/EU-border experience in general higher production losses. All sector abbreviations are spelled out in S2

Table in S1 File.

https://doi.org/10.1371/journal.pone.0237500.g003

Fig 4. EU countries exporting a large share of their output to the UK experience highest production losses. Transparently colored bars indicate how much of each

country’s output was exported to the UK/EU in the baseline according to the underlying 2012 multi-regional Input-Output data. Hatched bars show production

quantity changes after two days of reduced border permeability. Countries that export larger shares of their output to the UK experience in general higher production

losses. Inlay: Close-up for Ireland.

https://doi.org/10.1371/journal.pone.0237500.g004
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EU European countries Iceland, Norway and Switzerland as well as to several Commonwealth

countries, e.g. Canada, Australia, India and South Africa. These countries are all in a good

position to replace Brexit-affected suppliers due to strong existing trade relations. In most of

these countries more goods are produced at slightly lower prices (S2 Fig in S1 File). After firms

in the UK and the EU have reduced their prices, prices also fall in most of the other countries

around the world (S1 Fig in S1 File) with the notable exception, again, of Norway and Switzer-

land (S2 Fig in S1 File). Conversely, in some countries, for instance in sub-Saharan Africa, the

decline in prices is not offset by a respective increase in production quantities or production

quantities even decline resulting in reduced production values (compare Fig 1 and S2 Fig in S1

File).

In terms of consumption changes, the amount of goods being consumed increases slightly

in most of the countries (Fig 5, panel A). As firms around the world offer their goods at lower

prices, people in many countries consume more in quantitative terms (S1 and S3 Figs in S1

File). However, the value of consumption remains below the baseline level in the majority of

countries throughout the simulation period (Fig 5, panel B). Among those countries that bene-

fit from a no-trade-deal event in terms of gains in consumption values are again several Com-

monwealth countries such as Canada or India.

Fig 5. World map of consumption quantity and value changes after 30 days of a no-trade-deal event. Shading of

colors is according to consumption quantity (panel A) and consumption value (panel B) changes after 30 days of

reduced border permeability. Underlying scenario assumes 70% border permeability. Changes in consumers’ prices

are shown in S3 Fig in S1 File.

https://doi.org/10.1371/journal.pone.0237500.g005
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Results for variants of a no-trade-deal post-Brexit event

In additional analyses, we consider two variants of our main modeling specification. First, we

assume that only commodity sectors are affected by the no-trade-deal event as service sectors

typically do not have to cross a geographical border. Second, we do not only restrict trade

flows between the UK and EU member countries but also between the UK and countries with

which the EU currently has trade agreements (see S1 Table in S1 File for a list). We do not

include countries where trade agreements are only partly in place according to the European

Commission (as to November 2019) such as Canada or Ukraine. In this model set-up, we

again restrict trade flows of both, commodity and service sectors. The results for these two

additional variants of a no-trade-deal event are qualitatively similar to those of our main

modeling specification (S4 and S5 Figs in S1 File). If service sectors are not affected by the

trade restriction, we see the most notable difference in simulation results for Ireland where

production quantity is reduced less during the first days of trade restriction (S4 Fig in S1 File).

Consecutively, production and consumption prices and values decline to a lesser extent as well

whereas consumption (quantity) does not increase as much as in the main modeling specifica-

tion. In the rest of the EU, the decline in consumption prices is also more moderate than in the

main modeling specification.

In case the trade restriction also applies to all flows between the UK and countries with

which the EU currently holds trade agreements, the effects on the UK are generally stronger

(S5 Fig in S1 File). During the first days of trade restriction, production quantity, price and

value decrease more than under the main modeling specification. As a consequence, consump-

tion prices and value are more strongly reduced as well whereas consumption quantity

increases more. Ireland, to the contrary, is a little less affected in this modeling specification.

In the rest of the world, we observe less positive effects than in the main modeling specifica-

tion. Here, production quantities do not go up as much in response to the trade restriction

suggesting that producers in the rest of the world step in less for UK and EU firms. Conse-

quently, prices fall. In the main modeling specification, production value in the rest of the

world increases for all scenarios of border permeability. Here, the picture is less clear. On a

more disaggregated level, we see that in particular countries with which the EU has trade

agreements such as Norway, Switzerland, Iceland, South Africa, or Japan are now negatively

affected in terms of production value changes (S6 Fig in S1 File). These countries were among

the main beneficiaries in the main modeling specification.

Discussion

The major economic incision that a no-trade-deal event as conceptualized by our simulations

presents to the UK and Ireland is likely to impact society profoundly. The short-term adverse

effects on production we observe here can have a long-lasting impact on economic growth and

development. Even though consumers benefit at first from declining prices, the unsustainable

economic situation created by the UK leaving the European single market without a trade

agreement is likely to affect them negatively in the long-run, e.g. due to labor market effects.

The latter might also deepen intra-regional inequality. In general, an economic recession of

this magnitude impedes social, ecological and infrastructural projects and innovation. Our

simulations are restricted to a period of 30 days following a no-trade-deal event– a period, in

which stockpiling is likely to buffer major supply shortages. These supply shortages might,

however, hit the already struggling economy at a later point in time thus aggravating the over-

all situation.

Our simulations can naturally only depict certain aspects of a post-Brexit no-trade-deal sce-

nario and can hence not provide a quantitatively accurate prediction of its real-world
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consequences. For instance, in our modeling framework we assume that trade between Ireland

and the EU is not perturbed. In reality, a large amount of the goods traded between these two

partners passes through the UK. As a consequence, our simulations might underestimate the

effect of a no-trade-deal event on Ireland and some European economies. Furthermore, our

simulations are based on MRIO data for the year 2012. Since the structure of the global trade

network changes over time [16, 26] with e.g. new trade agreements being negotiated [36], this

represents a potential limitation. For example, the EU has established new or reinforced exist-

ing trade relations with several countries since 2012 via regional or bilateral trade agreements.

Even though we consider these trade agreements in the additional model variant where trade

between the UK and EU trade agreement partners is also affected, these agreements are likely

not reflected in the structure of the global trade and supply network as given by the 2012 data.

As a consequence, the countries in question might be affected to a stronger extent (positively

or negatively) by a no-trade-deal event between the UK and the EU than our simulations pre-

dict. Yet, MRIO data are published with some time delay and the 2012 Eora data have the

advantage of having already been used and tested in published work [37–39].

Finally, given the high level of complexity of modern-day economies with e.g. nested pro-

duction processes [28], there are many “unknown unknowns” related to a no-trade-deal event

that our modeling framework may or may not capture. Using a network approach that explicitly

models the sectoral and regional interlinkages in the global trade and supply network allows us

to study cascade effects that can be induced by an economic disintegration of the British econ-

omy from the EU single market. In particular, our modeling exercise illuminates an aspect of a

no-trade-deal post-Brexit scenario that has received little attention so far and that could worsen

its expected overall economic and societal implications. That is the shrinking of potential sales

market on both sides of the Channel. We find that these short-term demand-side effects

decrease the value of production and consumption and are hence likely to have a substantial

negative impact on the British, Irish and, to a lesser degree, European economies.
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Abstract

Shipping accidents and environmental disasters pose a challenge to the reliabil-

ity of maritime supply chains. With international trade intensifying without a

significant diversification of the supply routes the risk of perturbations is likely

to increase, because higher atmospheric carbon dioxide provides more energy

to tropical cyclones which tends to make them more destructive. In this study

we analyze the regional and global economic repercussions of short-term trans-

port disruptions of West Pacific trading routes during typhoon seasons. Using

a numerical agent-based shock model with myopic local optimization, we com-

pute the response of more than 7,000 regional economic sectors with more than

1.8 million trade- and supply relations. Disturbances due to typhoons observed

between 2000–2020 are found to have caused local oversupply and scarcity sit-

uations as well as the associated regional price changes. In our model eco-

nomic agents respond to these price signals and temporary supply bottlenecks

by rescheduling and increasing their demand. As a consequence we find annual

average export volume to increase in all trade blocs due to a decrease of ex-

port prices, but substantial regional differences emerge. Resilience of export to

typhoon induced perturbations is increased in China, ASEAN, East Asia, and

Europe. We trace this back to an increase of the inter-connectivity of these

trade blocs to their foreign trade partners.

Keywords: agent-based modeling, trade modeling, transport disruptions,

trade resilience
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1. Introduction

Since the end of World War II, international trade has grown immensely

[1] and even the COVID-19 pandemic has only shortly interrupted this trend

[2]. With the increase of global exports to production, the exposition of the

global economy to supply chain risks has increased. To date, up to 90% of the

national exposition to insecurities in water, energy, and land resources derive

from international trade [3].

Over 80% of the world trade volume is transported on sea [4], rendering

disruptions of maritime trade routes a substantial threat to global supply chain

security. This was impressively demonstrated by the blockage of the Suez-

Canal by the container vessel ”Evergreen” in Spring 2021. This resulted in

substantial delivery delays and associated production shortfalls, especially in

Europe and Asia [5]. Besides straits and canals [6], ports are major bottlenecks

of the maritime trade network [7]. In addition to socioeconomic factors such

as accidents [8] or congestion during loading and unloading [9, 10], storm surge

and strong winds from extreme weather is one of the main source of transport

delays through ports [11].

The increase in the concentration of carbon dioxide in the atmosphere is in-

creasing the energy that is accumulating in the ocean [12, 13]. The emergence of

tropical cyclones such as hurricanes and typhoons follows a complicated mecha-

nism that is subject to energy constraints and shear wind strength. The amount

of energy that is accumulating within a tropical cyclone that has already de-

veloped is physically constraint by the amount of energy available in the upper

ocean layers. Thus under future warming the number of tropical cyclones as a

whole is difficult to predict, but it is clear that the number of strong typhoons

and hurricanes will statistically increase under future warming [14, 15, 16]. This

combination of intensifying trade volume and increased risk of perturbations by

typhoons motivates an investigation of the economic responses of these trans-

portation interruptions.

Linking major Asian exporters such as China and Japan to their European
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and American trade partners, the West Pacific basin is of predominant impor-

tance for international maritime shipping. For instance, the maritime trade of

the world’s largest (national) exporter [17] — China — relies exclusively on

West Pacific shipping routes through the South China and East China Sea.

During June and December, maritime transport in the region is put at risk by

typhoons. Strong winds, high swells, and poor visibility of these events can

cause transport delays due to port closures and re-direction of transport vessels

[18, 19].

In this study we extend the agent-based global supply chain model Acclimate[20]

by a global network of maritime trade routes. We employ the model to study

the economic repercussions of transport disruptions of recurrent typhoons. Im-

mediate responses of trading partners to transportation perturbations caused

by typhoons are referred to as direct impacts. Further, we compute and analyze

indirect or higher-order impacts, which arise due to economic ripple propagation

along supply chains, e.g, through price fluctuation or demand shifts.

Including the shocks by the typhoons of 2000–2015 in the model, we find

average export volumes to increase in all major trade blocs due to a decrease

of export prices. However, substantial regional differences occur. In all but one

trade blocs the decrease in export prices is overcompensated by the increase in

export volume resulting in an increase of the value of exported goods; in China

as the most strongly affected trade bloc a moderate increase in export volume

is overcompensated by the decline in export prices. We also study how the

topography of the underlying trade network affects the resilience of international

trade to typhoon strikes. Using exports as a measure for international trade,

we find that that its resilience to typhoon strikes has increased over the period

2000–2015 especially in China, ASEAN, East Asia, and Europe. We explain

these gains in resilience by an increase of the inter-connectivity of these trade

bloks to foreign trade partners within the study period.

This paper is organized as follows. We first review the related literature in

Sec. 2, before presenting our modeling approach in Sec. 3. In Sec. 4 we present

our modeling and before discussing them in Sec. 5.
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2. Related literature

2.1. Supply chain risks

The modeling of supply chains is typically carried out on either on the

macroeconomic level, i.e. nations and their bilateral trade relations, or on a

microeconomic level, i.e. regional firms or the multinational corporations and

their networks (cf. Johnson [21] for a comprehensive review). Here, we fo-

cus on the macro level, where two modeling frameworks are well established:

input-output (I-O) models and computable general equilibrium (CGE) models

(see van der Veen [22] and Okuyama et al. [23] for a comprehensive introduc-

tion). Both approaches can reflect the economic dependencies in high detail [24].

However, when it comes to describing and temporally resolving the indirect eco-

nomic effects of disasters due to the cascading of losses along supply chains —

the main focus of this paper — both approaches, I-O and CGE, may not be

able to realistically describe the economic responses in the period of days to

months following a disaster [25, 26, 27]. Whereas the production system in I-O

models is fixed, rendering short-term adaptation impossible [28], that of CGEs

is highly adaptive and flexible due to price responsiveness and a high degree

of substitutability among commodities. CGEs are calibrated such that supply

and demand elasticities as well as the elasticities of substitution are suitable

to describe an economy in long-term equilibrium. Consequently, in contrast to

I-O models that tend to overestimate losses, CGEs are prone to mitigate losses

unrealistically well [25].

Attempts to represent a system’s complex dynamics from the bottom up

are undertaken by use of agent-based models (ABMs), e.g., [29, 30]. Here, the

stylized facts of macroeconomic systems emerge from the interplay of individual

heterogeneous agents [31, 32]. This may in particular include non-equilibrium

dynamics. For instance, micro-economically founded agent-based growth models

have been shown to reproduce exponential growth [33, 34] and myopic decision

rationals have been shown to induce far-sighted inter-temporal optimization [35].

In recent years, ABMs have been frequently applied to study the implications of
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specific policies [36]. Further, similar to static methods, a focus has been put on

systemic risk by studying bankrupt avalanches and their dependence on network

topology [37, 38, 39, 40, 41]. However, ABMs still struggle to gain broader recog-

nition from the mainstream neoclassical economic community [42]. Regarding

the analysis of production loss cascades along supply-chains, ABM approaches

appear promising. With their help, loss-propagation can be very naturally dis-

cussed in a setting where the economy is described by heterogeneous interacting

agents yielding a production system with well tuneable flexibilities [43]. For

example, Gualdi et al. [44] presented an ABM of an evolutionary network of

monopolistically competitive firms, which is able to reproduce important styl-

ized facts of real-world firm networks. They can allocate the scale-free topology

of firm networks to the competition among the firms. Further, as in the static

theory [45], their model permits to ascribe aggregate volatility to the fat-tailed

distribution of firm sizes.

A foray in the description of disaster-induced losses in supply networks was

undertaken by Hallegatte [25] with the introduction of an agent-based dynamic

model, the ARIO model. A more recent version of the model accounts for inven-

tories acting as buffer-stock, which are essential for the assessment of indirect

losses in the disaster aftermath [46]. This model has been successfully employed

in several empirical disaster impact studies such as Hallegatte [47], Ranger et al.

[48], and Hallegatte et al. [49]. Further, Henriet et al. [50] extended the model

to study how the robustness of a firm network to micro-shocks depends on the

structure of the network as well as the heterogeneity of direct losses. Moreover,

the authors provided an algorithm to disaggregate I-O tables such that a firm

network with realistic size distribution is obtained.

In the most recent model generation, Otto et al. [20] implemented endoge-

nous price dynamics between the economic agents. Thereby, the relevance of

inventories and idle capacities as adaptation measures to repercussions in the

economic network was elaborated. Using the Acclimate model, Willner et al.

[51] examined direct and higher-order impacts of river floods. The study reveals

that China suffer by far the highest direct flood-induced production losses, which

110



increase even further under near-future warming projections. Additionally it

highlights that the USA exhibit significantly high indirect losses compared to

their direct impact of river floods. Besides effects on regional and global produc-

tion, Kuhla et al. [52] computed the resulting impact on consumption regarding

productivity reduction caused by heat stress. Within the first four decades of

the century, the direct production losses are projected to increase by 47% while

losses for consumers double. A qualitative analysis on the repercussion of hurri-

cane Sandy revealed that local disaster impact propagates as ripples with three

phases through supply chains [53]. Further results of the study suggest that

regional higher-order economic impacts increase with higher inter-connectivity

to disaster area.

The ABM and explicit non-equilibrium dynamics approach of the model

further allowed to assess the economic repercussions of several events and how

they interact. Here, Kuhla et al. [54] showed that the interaction of indirect

economic effects of heat stress, flooding, and tropical cyclone events can lead to

an economic ripple resonance intensifying regional and globel consumption losses

. While climate-related direct losses rise, e.g. under global warming, additional

consumer losses amplify disproportional, which stresses the importance of in

more-depth assessment of consecutive disaster and global adaptation measures.

Risk for supply chains may arise from internal or external factors [55, 56]

or from operational disruptions [57, 58]. Furthermore, managing decisions of

firms like just-in-time-policy or lean production may increase risk for stable

supply chains [59]. On the demand side, uncertainties and unforeseen changes

of demand are additional potential supply chain risks [60]. Regarding a firm’s

bankruptcy and resulting supply chain effects, the analysis of Yang et al. [61]

depicted that competitors could be put under higher pressure and affected sup-

pliers could even partly benefit. Also, Giannakis et al. [62] identified and

evaluated 30 sustainability-related risks, where greenhouse gases and natural

disasters score highest. Next to firm-related supply chain risks, trading effects,

like currency fluctuations or restriction of information, can affect demand and

supply [63]. In order to mitigate trade disturbances due to (short-term) ex-
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change rate fluctuations Günay et al. [64] developed a stochastic optimization

model. With this, they find nation-depending fluctuation range thresholds for

product architecture selection. Durowoju et al. [65] used entropy theory to

depict that disrupted information flow puts more pressure on managing inven-

tories, which drives cost on producer side and may lead to interruption in the

supply chain. Regarding evaluation of manufacturing and supply information,

the review work of Ivanov et al. [66] suggests that digitalization and big data

analyses pose promising technologies helping to reduce ripple effects along sup-

ply chains.

Additional to business and trading supply risks, problems in transport pose

substantial risks on the logistics side of supply chains. Here, Morris et al.

[67] found that the last part of a transport supply chain — the delivery to

the costumer — is often impeded by congestion, theft, and availability of fast

parking facilities. Tatikonda et al. [68] found that supply via road comes with

risks of truck accidents and that improved working conditions, e.g. team-based

drivers, could reduce such risks and improve drivers health. The transition from

transport via road to sea and vice versa can further be delayed by port strikes,

which lead to additional transport costs and congestions along the whole supply

chain [69]. Similar, quitting ship crew members stresses supply chains, which

emphasizes the necessity of better working conditions for employees as shown

by Jiang et al. [70]. For goods transported via sea, potential pirate attacks can

increase transport costs and stress the affected supply chains as Mart́ınez et al.

[6] depicted.

2.2. Maritime transport at risk due to climatic conditions

Climatic extremes, like heavy winds or rainfall caused by storms, delay trans-

portation via sea [71]. For ports, and thus overall maritime trade, the most

frequent natural threats are posed by tropical storms [72]. Using a dynamic I-O

model, Thekdi et al. [73] depicted that a hurricane reduces shipping activities

which again cause economic losses in transportation and fossil fuel sectors. Cao

et al. [74] estimated that the worst-case economic losses at a port due to a single
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typhoon can add up to roughly USD0.9 bn. Examining the impact of tropical

cyclones further, Zhang et al. [75] found that four major Chinese ports exhibit

on average 0.9–2.6 disruption days per year in the most typhoon-prone months.

Further, their computations stressed the importance to include disruption time

and port throughput within the economic loss assessment.

Being aware of such disruptive maritime events, frameworks for optimally

rescheduling liner shipping are developed, e.g. by Brouer et al. [76] or Li et

al. [77]. These aim to adapt transportation plans and to reduce resulting costs.

Negative impacts on maritime transport will continue and even intensify. This

increases the necessity of deep adaptation as Monios et al. [78] elaborated.

Likewise, Lam et al. [79] concluded that there are still some research gaps to

be filled regarding disruptions in maritime transport and their consequences.

2.3. Global trade — risks and resilience

Global supply chains experience operational, logistic, and physical threats,

which puts global trade at a whole at risk. Despite these risks, international

trade has grown faster than national GDPs in the last 60 years [80] and up

to 80% of this trade is shipped via sea [4]. Inter-connectivity of global trade,

measured in different metrics like supply propagation connectivity [81] or link

density [82], has increased since the beginning of the century. Next to discus-

sions about benefits and harms of global trade [83, 84, 85], there is an ongoing

scientific debate about the adaptation and resilience capacity of the highly-

interconnected global trade network toward larger shocks. In general, work

from Fyodorov et al. [86] suggests that a coupled system of nonlinear ordinary

differential equations increases stability with complexity, which could be applied

to trade networks. Further, the information theory-based network flow analyses

of Kharrazi et al. depicted that more interconnected global trade has become

more resilient towards economic shock despite lowering overall efficiency [87].

Contrary to that, findings of Kummu et al. [88] suggest that resilience

towards trade risk has decreased over the last three decades. In particular, they

analyzed multiple indicators of international food system resilience and found
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that regional food import dependency mostly increase while number of trading

decreases. Wenz et al. [81] found that higher inter-connectivity of international

trade network increase vulnerability towards climate extremes. Similar, Moran

et al. [89] evaluated, using random matrix theory, that a complex system of

firms decreases its stability with increasing size in term of number of firms or

connectivity.

3. Modeling approach

3.1. Loss-propagation model Acclimate

In this study, we compute direct and higher-order economic impacts due to

typhoon-induced transport delays using the agent-based loss-propagation model

Acclimate. This model consists of around 7, 000 economic agents, firms and

consumers, who maximize myopically and locally their profit or consumption,

respectively. Flows of goods and services — between 27 economic sectors of 268

regions (186 nations as well as 51 US-states and 31 Chinese provinces) — connect

these agents, which form a network of around 1.8 million linkages. The sectors

and regions used in our simulation are listed in Table S1 and Table S2, respec-

tively. The 26 consumption commodities are not substitutable. The model has

endogenous price dynamics and explicitly distinguishes between quantity, price,

and value of goods and services. Due to exogenous (direct impacts) and endoge-

nous (indirect impacts) production, trading and transport anomalies, the model

computes daily economic repercussions, which are deviations from the baseline

state. As an economic baseline we use the static multi-regional input-output

data from the Eora database [90] of the year 2015. Further model assumptions

and local economic mechanisms are described in detail by Otto et al. [20].

3.2. Product transport in Acclimate

In this section we describe the transport of commodities and products in

Acclimate. In the following, we will only to transportation between firms as it

is the same for a firm and a consumer. Every firm, or ”regional sector”, ir is
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Typhoon induced transport disturbance - 2018
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Figure 1: West Pacific typhoon

seasons affects East Asian mar-

itime routes

(a) Modeled maritime entities (col-

ored areas on water) which form the

maritime trading network are con-

nected to land routes via the ports

(red dots). Names of maritime trad-

ing routes are listed in Table 2.

(b) Zoom into West Pacific regions.

Black dotted lines depict trajectory

of tropical storms (wind speed ≥ 22

kn) in the period 2000–2021.

(c) Scheme of typhoon-induced

transport disturbances in South

China Sea (red), East China Sea

(blue), Yellow Sea (orange), Sea of

Japan (green), and Gulf of Thailand

(brown) for the season 2018. Diam-

eters of circles proportional to the

number of days of disturbance.

(d) Blocs used for analyses in

this paper: China (red), Europe

(blue), NAFTA (orange), ASEAN

(brown), Latin America (light pur-

ple), SAARC (grey), East Asia (pur-

ple), Arab League (green), Post-

Soviet states (light brown), Aus-

tralia & Oceania (ochre), Sub-

Saharan Africa (light orange), and

Rest of the World (light grey).

described by its economic sector i, in which it produces, and by the region r in

which it is located. The economic linkage between firm ir (supplier) and firm
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js (purchaser) is referred to as business connection. The economic network —

the set of all business connections — lies on a geographical transport network,

which is described in detail below.

A business connection consists of one or more transport chain links. In every

time step t the product flow Z
(t)
ir→js between ir and js is transferred from one

transport chain link to the next. Thus, the number of transport chain links

of a business connection equals the transport time τrs between regions r and

s measured in time steps. Service or non-service economic sectors (Table S1)

transfer their products between supplier ir and purchaser js differently. On

the one hand, economic products, which are assigned to the service sector, are

not physical commodities and are delivered between firms within the next time

step, e.g., Financial Intermediation & Business Activities. On the other hand,

non-service products are delivered between supplier ir and purchaser js with a

finite transport time along a business connection.

In the former version of Acclimate, the length and transport time of a non-

service business connection was defined by the distance ∆c
rs between the cen-

troids cr and cs of region r and s, respectively. Using the exogenous delivery

velocity vc and the distance ∆c
rs between the regions, each business connection

had a fixed transport time τrs measured in time steps.

Here, we extend Acclimate with the geographical transportation network.

Each business connection between non-service supplier ir and purchaser js has

a transportation route Tir→js , which may include transportation via land, sea,

or aviation. Each business connection with its transport chain links lies on a

particular transportation route. This means that the length of the transport,

and thus the number of transport chain links, is based on the transportation

route. With this, an economic linkage is bound to the physical trading route it

uses. How a transportation route is set up depends on whether the commodity

is an aviation-good or non-aviation-good. In the former, the transport route

consists of the centroids of the respective regions r and s. Their distance ∆c
rs is

passed by aviation speed va. The transport by aviation can be compared with

the previous transport modeling only at higher speed. Since our sectoral reso-
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lution is rather coarse and up to 90% of the merchandise goods are transported

by ship, there are no products transported by aviation in this study.

Transportation routes of non-aviation goods are based on a geographical

entity network, which consists of land entities, maritime entities, and ports.

The former comprise the model regions and are spatially depicted via regions’

centroids cr. Each land entity has a connection to their adjacent land entity.

Transport between neighboring regions progresses at land velocity vl and takes

transport time τrs =
∆c
rs

vl
, where ∆c

rs is the distance between centroids of r and

s. If regions r and w are not directly connected but both are adjacent to region

s, the transportation route is r → s → w. For this, the distance (transport

time) between r and w is the sum of the distances (transport times) between

r and s, and s and w: ∆c
rw = ∆c

rs + ∆c
sw (τrw = τrs + τsw). As long as there

is a contiguous chain of land entities between a region r and w, there can be a

transportation route via land between those regions (even if there is more than

one region between them). The total distance and transport time is calculated

from the sum of the distances and transport times of the connected sub chain

links, as in the example above. If a set of transport routes {Tirjs} is possible

between firm ir and js , the one with the shortest distance is used for the

transportation route via land. For example, the transportation route between

a firm in Denmark and Italy consists of the land entities Denmark, Germany,

Austria and Italy and not Denmark, Germany, France and Italy, even if this

connection would be possible. Since continents are not connected to each other,

there is no transportation route for each pair of regions that uses only land

entities. For this we explicitly model sea routes using maritime entities.

For the maritime entities we split the relevant navigable seas into single

areas with unique centroids1 (Fig. 1a). Each maritime entity α is connected to

their adjacent maritime entities {β}. The transport between them via sea has

a velocity of vs and takes transport time ταβ =
∆c
αβ

vs , where ∆c
αβ is the distance

between the centroids of α and β. Analog to land entities, maritime entities

1The centroids of the maritime entities are listed in 10.5281/zenodo.5807332
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that are not directly connected are connected via neighbor or next-neighbor (or

next-next-neighbor and so on). As well as for land entities, distance or transport

time between those not-directly connected entities aggregate the distance or

transport time of the connected sub chain links between them. Likewise, if

there are multiple options, the shortest transportation via sea route is chosen.

Land and maritime entities are not directly connected. Rather, a land entity

and a maritime entity can both have a connection to a port h (Fig. 1a). Ports

are characteristic geographic points and therefore have a longitude and latitude

coordinate. At the port as the common ’interface’ between land and sea entity,

transport on land (sea) changes to transport by sea (land) and thus the velocity

changes to vs (vl). The turnaround time at a port can be set exogenously and

is fixed at one time step in this study (τh = 1). If the transportation route

Tir→js of firms ir and js consist of land and maritime entity, the total distance

∆c
rs can be calculated by

∆c
rs =

∑
{ww′}

∆c
ww′ +

∑
{αα′}

∆c
αα′ +

∑
{wh}

∆c
wh +

∑
{αh}

∆c
αh, (1)

where ww′, αα′, wh, and αh are the set of connected and used land–land con-

nections, sea–sea connections, land–port connections and sea–port connections,

respectively. Analogously, the total transport time adds up to

τrs =
∑
{ww′}

∆c
ww′

vl
+

∑
{αα′}

∆c
αα′

vs
+

∑
{wh}

∆c
wh

vl
+

∑
{αh}

∆c
αh

vs
+

∑
{h}

τh, (2)

where {h} is the set of used ports of transportation route Tir→js .

By using [91] and [92], we state that the price of one ton transported for

one mile (a ton mile) on land is 3.7 times more expensive than transporting one

ton-mile via sea. So the relative price per ton mile via sea is ps = 1 and via

land pl = 3.7. Using this, we can calculate the cost of a transport route. The

relative costs Crs of transportation route Tir→js are

Crs =
∑
{ww′}

∆c
ww′pl +

∑
{αα′}

∆c
αα′ps +

∑
{wh}

∆c
whp

l +
∑
{αh}

∆c
αhp

s, (3)

where the set notation are the same as in eq. (1). If a set of transport routes

{Tirjs} is possible between firm ir and js , the one with the lowest transportation
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costs is used for the transportation route. Using this decision rationale, there is a

unique transportation route that is autonomously chosen by the economic agents

and that closely replicates real-world trade routes. Transportation routes using

maritime entities can be longer but still are more cost efficient, i.e. cheaper.

For example, a commodity from Germany to Beijing is transported as fol-

lows. From Germany (centroid) via land to the Port of Hamburg and shipped

via North Sea, English Channel, Northern Atlantic Ocean North East, Strait

of Gibraltar, Mediterranean Sea, Suez Canal, Red Sea, Gulf of Aden, Arabian

Sea, Bay of Bengal, Strait of Malacca, Strait of Singapore, South China Sea,

East China Sea, Yellow Sea to the Port of Tianjin. The final path to Beijing

is then covered by road again. In our transport network we implement the 188

most important continental ports and islands (Table S3). Important to note is,

the transportation prices on land or sea, and the relative transportation costs

have no relevance to the further economic analysis and are only used for the

model-internal decision firms for the transportation route.

As we mentioned above, the business connection of firm ir and js is ”em-

bedded” in the transportation route of those firms. This means, the number

of transport chain links per business connection equals the total transportation

time (measured in time steps) of the transportation route. More precisely, the

transport chain links are divided among the individual sub-paths. A sub-path,

distance between two entities or an entity and a port, or a port turnaround, has

as many transport chain links as it takes transport time to complete this sub-

path. Newly introduced parameters (compared to Otto et al. [20]) are listed in

Table 1.

3.3. Transport perturbations

We assume that the transportation route between two agents is fixed and

cannot be changed within the short time scales of the model. Each geographic

entity e — land entity, maritime entity or port — has a passage flow χe(t),

which determines how much of the baseline flow can pass through this entity

per time step. The size of the baseline flow Z∗ir→js depends on the specific firms
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Name Symbol Value Unit

Time step ∆t 1 day

Land velocity vl 70 km·h−1

Sea velocity vs 40 km·h−1

Port delay τh 1 day

Relative sea transport price ps 1 –

Relative land transport price pl 3.7 –

Table 1: Transportation parameter

A list of the transportation parameter of the Acclimate extension transport module.

ir and js . We assume that without perturbation a theoretically infinite volume

of goods can flow through the land entities, maritime entities, or ports. The

volume of flow of goods in a certain route segment can be exogenously disturbed.

If an entity is disturbed, the flow of goods can be impeded by a factor [0, 1].

This means for entity e:

χe(t) =

∞ , if no perturbation

[0, 1] , if perturbation

.

Each business connection between firms ir and js determines for each time step

t the minimum passage flow mir→js(t) of all its associated geographic entities

{e′}: mir→js(t) = min χe(t)|e∈{e′}. If the minimum passage flow is below 1

(mir→js(t)< 1) it has two consequences for the business connection of firms

ir and js .

First, in such a situation the flow of goods (1−mir→js(t))Z
∗
ir→js (≡ Be(t))

is blocked at entity e. This blocked flow (Be(t) accumulates over time

Be(t) = (1−mir→js(t1))Z∗ir→js + (1−mir→js(t2))Z∗ir→js + · · · ,

as long as mir→js(t)< 1. If the blockage is lifted and mir→js(t)> 1, the blocked

flow is released with Be(t + 1) = Be(t) − (mir→js(t) − 1)Z∗ir→js per time step

(until it is zero) and is transported further along the business connections. If

mir→js(t)=∞, the blocked flow passes entirely through the entity e in one time

step.

120



Second, as long as the minimum passage flow is below 1 (mir→js(t)< 1), the

purchaser js will reduce its demand Dir→js(t) to ir by

Dir→js(t) = mir→js(t)D
∗
ir→js, if mir→js(t) < 1. (4)

Firm js does not have the foresight how long the disturbance will occur and

thus reduces its demand to supplier with a perturbed business connection. On

the one hand, supplier ir receives a lower demand if there is no compensating

increased demand from other purchasers {j′s′}. It has overproduced goods,

which results in lower production and offering prices. On the other hand, to

fulfill its demand (in order to produce the inquired products of other firms or

consumers), firm js will distribute remaining demand (1−mir→js(t))D
∗
ir→js on

its other supplier {i′r′}. Thus some suppliers {i′r′} receive increased demand,

which causes production and prices to rise. However, depending on their ability

to do so, js’s demand may not be entirely fulfilled.

Important to note is that the delayed commodities are not destroyed and

their delivering continues after the local blockage ceases. Nevertheless, reacting

to shifted demand, the economic agents change demand, production, prices,

and supply, which causes repercussions within the economic network. Even

if there is no (direct) production failures of firms (as it has been studied in

[20, 51, 52, 53, 54]) the perturbations propagate through the supply chains.

3.4. Typhoon impact on transmissibility of sea routes

We focus on transport perturbation of the most affected maritime routes:

South China Sea, East China Sea, Yellow Sea, Sea of Japan, and Gulf of Thai-

land. Tropical cyclones during a West Pacific typhoon season may restrict the

navigability of these sea routes. Therefore, we assume that for the duration of

a storm with more than 22 kn over those shipping routes, the flow of goods is

constrained to 25% compared to baseline flow. The results in this study (in Sec-

tion 4) are robust against these parameter choices as we depict in our sensitivity

analysis in Section 4.6. Non-passed goods can be transported further via this

sea route once the storm has passed or its wind speed is below the threshold of
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Sea entity Sea entity

1 Northern Atlantic North East 21 Tiger Cub Sea

2 Northern Atlantic South East 22 Strait of Malacca

3 Southern Atlantic East 23 Bay of Bengal

4 Northern Atlantic North West 24 Indian Ocean North

5 Northern Atlantic South West 25 Indian Ocean South East

6 Southern Atlantic West 26 Arabian Sea

7 Caribbean Sea 27 Indian Ocean South West

8 Gulf of Mexico 28 Persian Gulf

9 Panama Canal 29 Strait of Hormuz

10 Northern Pacific East 30 Gulf of Aden

11 Southern Pacific East 31 Red Sea

12 Northern Pacific West 32 Suez Canal

13 Southern Pacific West 33 Black Sea

14 Sea of Okhotsk 34 Bosporus

15 Sea of Japan 35 Mediterranean Sea

16 Yellow Sea 36 Baltic Sea

17 East China Sea 37 North Sea

18 South China Sea 38 English Channel

19 Gulf of Thailand 39 Strait of Gibraltar

20 Strait of Singapore 40 Gulf of Guinea

Table 2: Sea entity

Maritime trading routes implemented in Loss-propagation model Acclimate. Numbering refers

to Fig. 1a.

22 kn. That means

χe(t) =

∞, if wind speed < 22 kn in Pe

0.25, if wind speed ≥ 22 kn in Pe
, (5)

where Pe is the polygon that defines the area of maritime routes e, here, South

China Sea, East China Sea, Yellow Sea, Sea of Japan, and the Gulf of Thailand2.

From tropical storm trajectories (Fig. 1b), based on IBTrACS [93, 94], we derive

time series of commodity passage for the East Asian maritime trade routes for

the years 2000–2020. Exemplary time series for the disturbed trade routes are

depicted in Fig. 1c.

2Definition of polygons are available under 10.5281/zenodo.5807332.
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3.5. Regional and sectoral aggregation

Based on these time series of short-term transport delays the Acclimate

model computes the resulting economic repercussions. We then analyze the di-

rect and indirect impacts. In the following, the regional results are summarized

to economic blocs (Fig. 1d): China, Europe, NAFTA3 (North American Free

Trade Agreement), ASEAN (Association of Southeast Asian Nations), Latin

America (except Mexico), SAARC (South Asian Association for Regional Coop-

eration), East Asia (Japan, North Korea, South Korea, Taiwan), Arab League,

Post-Soviet states, Australia & Oceania, Sub-Saharan Africa, and Rest of the

World. The detailed grouping of the regions is listed in Table S2. We include

Mongolia among the Post-Soviet states because of its historical economic close

relationship to the Soviet Union, even though this is historically inaccurate. Fur-

thermore, we include Mauritania and Sudan to the bloc Arab League, even if

they would fit to the definition of Sub-Sahara Africa as well. The economic blocs

are economically quite large, which is why individual sectors and their flows do

not exhibit significant different patterns. Therefore, we aggregate all flows and

production of the sectors together. We list in Table 3 how many trading links

and which economic volume in bn USD per year pass the typhoon-impacted

West Pacific trading routes per the economic bloc.

In our further analyses we mainly focus on China, ASEAN, East Asia, Eu-

rope and NAFTA. For the first three blocs, several close maritime trade routes

are directly affected by West Pacific typhoon season. The last two are the

largest global economic blocs next to China. Results for other aggregated blocs

are given in the Supplementary Information.

3Our computations base on the economic network of 2015, therefore we use the economic

bloc NAFTA, despite it was replaced in 2020 by he succession agreement USMCA.
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4. Results

In the following results are presented in changes of the economic values with

respect to their unperturbed baseline. Unless otherwise stated, the economic

network and baseline refer to the year 2015. In our analysis we distinguish

between the quantity and the value of an economic variable. The former refers

to the physical amount of traded goods or hours spent on services measured

in fixed 2015-USD. The latter refers to the value of traded goods and services,

which is composed of the quantity and the price of a commodity or service

(value = price · quantity). Thereby, in the model price is the relative deviation

from the (unknown) baseline price (i.e. 1 for the baseline) and quantity as well

as value are both measured in USD. The first relies on fixed prices within the

baseline MRIO table of 2015. The second accounts for endogenous price changes

in our model. The temporal evolution of quantity, price, and thus also of the

value for each traded good, is computed by Acclimate, after which they are

aggregated to annual values in the post-computing analysis. In the following

we also distinguish between internal and external demand. The former refers

to demand which comes exclusively from firms and consumers of the economic

bloc itself, while the later corresponds to the demand from other economic

blocs. Similarly, we refer to internal and external trade as flows of commodities

and services where the receivers are inside or outside of the economic bloc,

respectively. In this study we use external trade and export as synonyms.

4.1. Transport perturbations cause demand-supply mismatch

In order to clarify the economic dynamics during and after a transport dis-

turbance due to a typhoon, we focus in this section on the typhoon seasons of

2018 and the simulated economic repercussions of the most affected bloc, China,

and the biggest profiteer, NAFTA.

Tropical storms cause transport disturbances on West Pacific shipping routes

from 1 to 8 days depending on their trajectory (Fig. 1c). Chinese maritime

trading routes may be perturbed due to one of these typhoons, which causes
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Figure 2: Typhoon-induced transport disturbance induce demand shifts and fur-

thermore production and trade changes. The external (upper panels) and internal

(middle panels) demand change (dashed line) with corresponding production change (middle

pannels) and following trade change (solid line) due to transport disturbance in maritime trade

routes for China (a,c,d) and (b,d,f) NAFTA. Changes are relative to baseline. The perturbed

trading route is marked via same color scheme, which is used in Fig. 1d. The exemplary

typhoon season shown is 2018.

short-term decrease of external demand (Fig. 2a). A decline of external demand

yields a lower Chinese production (Fig. 2c) during a typhoon. In the aftermath

of a transport disturbance external demand and therewith production in China

increases.

In contrast to China, NAFTA maritime trading routes are just partially

affected by the West Pacific typhoon season. As a result, they are used as

substitute suppliers for other blocs and thus external demand increases at the

beginning of the transport perturbation (Fig. 2b). But since production in

other blocs decrease, external demand declines after some time steps while West

Pacific transport disturbance. Thus, NAFTA’s initial rise in external demand,

trade, and production abates partly (Fig. 2b,d).
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The demand and supply shocks during a typhoon cause Chinese production

to decline, which causes that demand of the domestic market cannot be per-

fectly fulfilled as well. Thus, internal trade decreases during phases of produc-

tion reduction. Less production causes a decline in inner-Chinese trade (internal

trade), despite the fact that internal demand increased. As stated previously,

in the disaster aftermath external demand increases. The lack of supply and

a rise in production puts more pressure on the Chinese market externally and

internally. Thus, internal demand increases even further (Fig. 2e). The same

pattern occurs for every transport disturbance. However, previous economic

repercussions are reflected in the dynamics (Fig. 2e), e.g. internal demand may

rise after one typhoon and before the next. The high frequency of transport per-

turbations between June and end of August yield increased internal demand.

In other words, the frequency of transport shocks is too high compared to the

relaxation time of internal demand. For NAFTA, short-term production de-

clines causes short internal supply shortages, but internal trade increases in the

aftermath. Supply uncertainties are counteracted as well by increased demand

from the domestic market (Fig. 2f).

4.2. Exports increase despite typhoon transport perturbations

In the following, our results are given in median annual changes of 21 West

Pacific typhoon seasons (2000–2020) with corresponding likely ranges.

4.2.1. Exports increase in quantity

Despite imminent typhoon-induced maritime transport restrictions, China

is able to increase its annual exports in quantity (Fig. 3a). In contrast to

this, China depicts losses in exported value. The other economic blocs are

able to increase their exports in quantity and value facing the typhoon-induced

transport disruptions. In this regard, NAFTA is the biggest winner. Our results

hint that inter-regional trade involving NAFTA might be boosted by typhoon-

induced transport disruption (Fig. 3a). So the annual intra-regional trade of

the economic blocs depict gains — at least in the amount of exports — even
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Figure 3: Perturbed trading

routes yield price changes

which mostly intensify internal

trading losses or decreases

export gains in value.

Ensemble includes 21 typhoon

seasons (2000–2020). Colored lines,

boxes and whiskers indicate median

changes for each estimate, the

25–75 and 5–95 percentile ranges,

respectively. Changes are depicted

for one year and are relative to the

economic baseline.

(a) Typhoon disturbed inter-

regional trade increases amount

of exports (blue) but lower prices

decreases gain in value (orange).

(b) Domestic trade decreases

in quantity and value in most

economic blocs. Raised demand

increases production in NAFTA

and thus the domestic trade also

increases slightly in quantity.

(c) Prices of production (light

blue), and goods and services

traded internally (pink) or exported

(red) decrease in most economic

blocs.

if transport is disturbed. In the disaster aftermath, increased demand and

trade lead to an rise of exports of every economic bloc. We interpret this

positive feedback as resilience towards trade perturbation caused by maritime

disturbances.

4.2.2. Internal trade mostly reduces

Trade inside each economic bloc does not depict such a perturbation re-

silience; trade within the domestic market decreases in most blocs (Fig. 3b).
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Here, China has the largest losses in value and only NAFTA can strengthen its

internal trade. However, the internally highly interconnected economic blocs of

China and Europe show comparatively small impacts on the volume of internal

trade.

4.2.3. Production and trading prices mostly decrease

In our study setup no good is destroyed by typhoons, nor do firms stop pro-

duction due to direct impacts of a typhoon. Therefore, there is no direct global

scarcity of commodities but rather a dislocation and delay of goods and services.

As firms’ inventories tend to be fuller and inter-regional buyers are absent, a

regional oversupply is created, causing prices to fall (Fig. 3c). This effect occurs

mainly in China. Since China is directly affected from typhoon-induced trans-

port disruption, there is a larger oversupply of goods. Thus, production and

domestic trade prices drop as well as offering prices for exporting commodities.

However, the latter is likely to be beneficial for demand from abroad, allowing

China to increase their exports in quantity (Fig. 3a). Lower export prices are

common across the economic blocs, even for ASEAN which increases production

and internal trade prices. Since the South China Sea is within the trade routes

of the ASEAN region, internal trade between ASEAN countries is disrupted,

resulting in no intra-regional oversupply and thus no price reductions but price

increases instead (Fig. 3c).

4.3. Affected trading routes impact Chinese exports

In this study we focus on the transport obstructions through the South

China Sea, East China Sea, Yellow Sea, Sea of Japan, and the Gulf of Thai-

land. China uses, depending on its trading partner, every single one of these

five trading routes. Important trading routes are the first three ones, regarding

number of trading connection and traded economic volume (Table 3). China

depicts a different export change if only trading routes in East China Sea or

South China Sea are disturbed compared to all five West Pacific trading routes

(Fig. 4a). Transport blockages in East China Sea cause Chinese export losses in
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Figure 4: Chinese export resilience to transport disruption depend on affected

trading route.

For (a) and (c): Ensemble includes 21 typhoon seasons (2000–2020). Colored lines, boxes

and whiskers indicate median changes each estimates, the 25–75 and 5–95 percentile ranges,

respectively. Changes refer to the economic baseline.

(a) Chinese export changes if typhoon seasons cause transport perturbation on all five West

Pacific trading routes, only on South China Sea or only on East China Sea. Disruption of the

latter causes export losses in quantity and value.

(b) Regarding maritime trading route to NAFTA, China provinces are divided into those using

South China Sea (red) – ”Southern” China – or East China Sea (blue) – ”Northern” China.

(c) Regarding typhoon-induced transport perturbation on all five West Pacific trading routes,

”Southern” China can benefit (more) from typhoon-induced transport perturbation on all five

West Pacific trading routes compared to ”Northern” China.

quantity and value. In contrast to that, Chinese firms are able to increase their

exports from perturbation within the South China Sea. The reason for this is

that one important receiving economic bloc from China is NAFTA — 22% of

Chinese exports are to NAFTA (Table 4). Chinese provinces can be divided into

”Northern” China that uses East China Sea to NAFTA and ”Southern” China

that uses South China Sea to export commodities to NAFTA (Fig. 4b). The

total production of the former is about 5 times higher than the latter(Table 4).

Regarding typhoon-induced West Pacific transport route perturbations ”South-

ern” China profits, while ”Northern” China exports in value decreases (Fig. 4c).

As a result, China as a whole has more difficulties to compensate for export re-

ductions going through East China Sea, which suggest that this maritime entity

is crucial to Chinese economic well-being.
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4.4. Increased inter-connectivity supports short-term export adaptation

So far, our results and interpretations base on the trade structures of 2015.

In this section, we examine export changes for other in order to reveal factors

for the identified trade resilience. Using the same impact of 2000–2020 typhoon

seasons, we compute the export changes to different economic baselines from

2000 to 2015 (Fig. 5). Overall, the economic blocs’ exports increases with later

economic baselines. The most directly affected blocs, China, ASEAN, and East

Asia experience lower export losses or partly get net-export gains in later years.

Especially ASEAN and East Asia turn into net-export winner in quantity and

value. Next to them, Europe is able to become a net-export winner as well

within later years. The positive export response of NAFTA is robust against

different network years.

This increase in resilience to transport perturbations for most blocs cannot

be explained by the export share of each economic bloc. While China more than

doubles its export between 2000 and 2015, East Asia’s and NAFTA’s share

decreases roughly by a third (Fig. 6a). At the same time ASEAN increases

its share by 20% and Europe’s share is more or less stable at a high level.

Nevertheless, resilience increases collectively in the later economic networks.

We find that the reason that trade resilience increases for some blocs in recent

years arises from the changes of number of trade connections. From the begin-

ning of the millennium the number of connections to external purchasers per

firm within a economic bloc develops different from the export share (Fig. 6b).

We refer to the number of connections to external purchasers as the total num-

ber of trading links to the outside of each economic bloc. We normalize this

number of outside connections with the economic bloc’s number of firms to ac-

count for blocs’ different economic sizes. From 2000 to 2015 China, Europe,

East Asia, and ASEAN increased their number of outside connections per firm,

while NAFTA is at a stable high level. A higher number of connections to other

firms enables economic agents to shift supply and demand on non-disturbed

trading routes. A higher number of outside connections can be interpreted as

a more strengthened inter-connectivity of a bloc. Increasing inter-connectivity
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Figure 5: Most blocs become

over time more resilient against

perturbations to West Pacific

transport.

Annual export change per quan-

tity (blue) and value (orange) for

economic network baselines for the

years 2000–2015. The trend of

results for the most affected eco-

nomic blocs — China, ASEAN and

East Asia — changes with under-

lying economic network. Export

losses due to transport perturba-

tions convert to export quantity

gains for these blocs. Europe be-

comes a net-export value winner for

later network years. Results for

NAFTA are robust against changes

in baseline network. Ensemble in-

cludes 21 typhoon seasons (2000–

2020). Colored lines, boxes and

whiskers indicate median changes

each estimates, the 25–75 and 5–

95 percentile ranges, respectively.

Changes refer to the economic base-

line.

supports to buffer export losses and may turn export losses to export gains

(Fig. 6c). A diverse variety of links to other blocs supports export adaptation

to demand and supply fluctuations. Other economic blocs show an increase in

the number of outside connections since the beginning of the century as well

(Fig. S3a). Likewise, their trade resilience towards maritime disturbance grow

with higher trade-inter-connectivity (Fig. S3b).

4.5. Demands and supply shifts between blocs

After giving an explanation for trade resilience, we want to focus on changes

in trade between the five main economic blocs. So in this section, our analysis
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Figure 6: Inter-connectivity of

economic blocs change for

different economic baselines.

China, ASEAN, East Asia, Europe,

NAFTA, and Rest of the World

(RoW) are depicted in red, brown,

turkis, blue, orange, and lime, re-

spectively.

(a) Annual export share changes re-

gionally between 2000 and 2015.

(b) Number of foreign connections

per firm within the economic bloc

for different economic baselines.

(c) Median annual export change in

quantity per region over number of

foreign connections per firm. Ex-

port resilience tends to increase with

more foreign connections.

bases again on the economic baseline of 2015. As we present changes in trade

only for the five blocs considered so far (Fig. 7), trading results between any

two blocs are listed in Table S4 and Table S5. The blocs’ exports in the baseline

and its corresponding share of exports can be found in Table 4.
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Figure 7: Inter-connectivity in-

creases except for NAFTA.

Ensemble includes 21 typhoon sea-

sons (2000–2020). Colored lines,

boxes and whiskers indicate median

changes each estimates, the 25–75

and 5–95 percentile ranges, respec-

tively. Changes refer to the eco-

nomic baseline.

(a) Annual supply change per sup-

plier (row) and purchaser (column)

due to West Pacific typhoon season.

Export between blocs increases (de-

creases) by quantity (value). Bloc-

internal trade change is shown on

the diagonal graphs.

(b) Annual price change of traded

goods and services per supplier

(row) and purchaser (column) due

to West Pacific typhoon season.

Bloc-internal (domestic) trade price

change is shown on the diagonal

graphs. China depicts the highest

export price drop to any other eco-

nomic bloc.

4.5.1. China’s export losses and adaptation mechanism

China decreases its exports in quantity to almost any other economic bloc

(Fig. 7a). Export losses are particularly severe for the largest customer (24%) of

Chinese goods: Europe. However, the Chinese export reduction to other blocs

is probably buffered by lower trading prices compared to other export prices of

other blocs (Fig. 7b). Lower supply prices make Chinese goods more attractive

for firms and consumers from outside of China. In particular, there are strong
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Chinese export gains towards East Asia. East Asia is already a big purchaser of

Chinese exports (about 17%) and can substitute for lack in supply and demand,

especially when the trading route through South China Sea is perturbed.

4.5.2. East Asia intensifies its trade with China and NAFTA

Going the other way around, China has an even bigger share of East Asian

exports (29%). By disturbing the trading route through South China Sea, East

Asia trade relations with ASEAN and Europe are flagging. The East Asia’s

export share of these blocs add up to 32%. Demand and supply deficits are

compensated for by China and NAFTA. The latter increases its trade as well

when trading routes between East Asia and China is partly perturbed.

4.5.3. ASEAN’s trade relocates to the west

During typhoons the ASEAN states are challenged by trade interruptions

to East Asia and NAFTA. Both are significant buyers of ASEAN goods (25%

and 17%, respectively). In order to sell their commodities ASEAN increases its

exports to Europe and SAARC (Table S4). Exports to China are increasing as

well, but ensemble results fluctuate widely. This may arise from the different

connections to China. Some ASEAN states, like Vietnam or Thailand, have

some trading route on land, which (in this study) are not affected by typhoon-

induced transport disruption. Other states, like Philippines or Indonesia, are

very much cut off from China regarding transport during a typhoon. Neverthe-

less, regarding ASEAN as a whole, export gains to China prevail.

4.5.4. Europe substitutes eastern Asian purchaser

During the West Pacific typhoon seasons, the globally largest exporting bloc,

Europe, increases its exports to any other bloc (Table S4), except for China and

East Asia. However, the losses in exports to China are marginal and do not

occur for all seasons. Especially seasons with a low impact on the South China

Sea may exert less pressure on the export problems between China and Europe.

136



4.5.5. NAFTA is net-export winner

NAFTA faces the biggest export gains in quantity and in value. It increases

its export to any bloc except for ASEAN and Rest of the World (Table S4).

The diversified export rise comes from the geographic benefit of the NAFTA

countries. NAFTA can satisfy mostly increased demand from the west, east, and

south without depending on interruptions in the Western Pacific trading routes,

except for ASEAN states and some provinces of China. But even the partly

limited trade to China is compensated for. Therefore, NAFTA can increase

exports to China. As NAFTA has a negative trade balance with most other

blocs, the export rise is even more favorable for it.

4.6. Sensitivity analysis

In this study we use a novel approach model for maritime transport dis-

turbances due to typhoons. A typhoon that passes through a sea area reduces

the ability to ship goods through this area. To implement this we assume, on

the one hand, a passage limit (25%) on the amount of goods passing a route

during a disturbance. On the other hand, we set a wind speed threshold (22

kn) when a sea route is perturbed by a tropical storm. Sensitivity analyses

of those parameters depict that our results do not significantly change under

these parameters (Fig. 8a). If the passage limit during a storm is attenuated

(limit closer to 100%) more goods can be transported through the trading route.

This causes that export changes decline slightly. A higher transport throughput

yields to less economic repercussion, which changes the quantity of the results

but not their general trend. When increasing the disturbance threshold, the ex-

port changes decrease as well, but do not show a trend shift (Fig. 8b). A higher

wind speed threshold causes fewer days of transport perturbation, especially for

South China Sea (Fig. S2). But even with fewer transport disturbances and

thus less economic repercussion, the trend of export changes is preserved.
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Figure 8: Trends in result are ro-

bust against changes of distur-

bance modeling.

Annual export change per quantity

(blue) and value (orange) for differ-

ent (a) passages – possible commod-

ity flows through maritime trading

route – and (b) wind speed thresh-

olds while typhoon-induced distur-

bances. Ensemble includes 21 ty-

phoon seasons (2000–2020). Col-

ored lines, boxes and whiskers in-

dicate median changes each esti-

mates, the 25–75 and 5–95 per-

centile ranges, respectively. Results

with full percentile ranges are de-

picted in Fig. S4. Changes refer to

the economic baseline.

(a) Attenuate the passage limit

yield that more commodities can go

through sea route while disruption

time. Note, that the x-axis is not

true to scale. Since perturbations of

trade becomes smaller for softer lim-

its, export increase of each economic

bloc is weakened but the trend per-

sists.

(b) Higher thresholds of wind speed

result in fewer days of transport

perturbation. Since perturbations

of trade becomes smaller for higher

thresholds, export changes decline

as well but trend of the response of

economic blocs remains the same.

5. Discussion

In this study, we focus on transport perturbations induced by typhoons in the

West Pacific. We find that during the perturbation directly affected trade blocs
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such as China or East Asia become less attractive for the their trade partners,

who partially reschedule their demand to other non-affected trade partners, e.g.,

Europe or NAFTA. This results in a decline of production in the directly affected

blocs, which can translate into production declines in non-directly affected blocs

due to reduced demand received from outside of the region. These production

anomalies result in reductions in trade within the respective trade blocs as well.

The resulting price drops lead to a temporal increase in demand, production,

as well as internal and external trade above their pre-disaster levels once the

perturbation has ceased.

Accounting for the last 21 West Pacific typhoon seasons, we find that, in

absolute terms, annual average export volumes increase all trade blocs. This

suggests that inter-regional trade is partially resilient against typhoon-induced

transport disruptions. In relative terms, trade between Europe and East Asia,

China, and East Asia, decreases, while trading between Europe and South Asia

— SAARC and ASEAN — increases. Due to regional proximity, trade between

China and East Asia is being strengthened, although the latter is increasingly

relying on trade on the other side of the Pacific (NAFTA and Latin America).

NAFTA is the overall net-export winner, which can be explained by its geo-

graphic advantage to reach most economic actors without transport disruption.

Further, we find that the resilience of the exports of the trade blocs are

correlated with the number of outside connections per sector. Export gains

increase with the number of connections to external trade partners of the firms

within the block. Since the connectivity of firms in China, ASEAN and East

Asia to external trade partners has substantially increased between 2000–2015,

they shifted from net-export losers in the early 2000s to net-export winners in

2015.

By its very nature, economic modeling must always be understood in the

context of its limitations due to the complexity of human behavior. Nevertheless,

for reasonable assumptions, conclusions can be made within the limits drawn.

In this study, we focus on short-term transport disruptions (a few days) due to

typhoons and the resulting economic repercussions. For this, our assumption
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of myopic economic agents with no long-term investment strategy is justifiable.

Adaptation measures, such as the formation of new transport routes or trade

links, are, however, not in the scope of our study.

The modeled maritime transport network consists of ocean sub-regions (e.g.

Northern Atlantic North East or Southern Pacific East), seas (e.g. Red Sea),

coastal bodies of water (e.g. Gulf of Mexico or Bay of Bengal), and artificial or

natural sea straits (e.g. Suez Canal or Strait of Malacca). Thereby, the selection

of the trade routes is a trade-off between computational effort and required

resolution for this study. We include only possible and plausible routes that

are also navigable throughout the year. For example, maritime routes across

the partially ice-free Arctic Ocean are not taken into account. Furthermore, we

assume that theoretically an infinite amount of commodities can pass through

a land entity, maritime entity or port. This assumption is perhaps practical but

rather less realistic, especially for ports. In our model, ships pass through the

midpoints of the associated sea entities along a transport route and ships cannot

adjust their maritime routes due to preceding transport obstructions. This is a

constraint on the adaptation measures of the transportation planners, however,

reasonable for the length of our simulated shocks. The Suez canal obstruction

in early 2021 depicted that the most ships did not change transport routes for

a short-term (daily scale) transport blockage.

Additionally, we have to make simplifying assumptions for the transport

perturbation in the West Pacific sea routes. Here, the transport disruption over

a wind speed threshold is based on studies referring to storm-induced delays for

ports [11] or to container network analysis [95]. Next to this, our sensitivity

analyses reveal, that the choice of disturbance threshold and intensity does not

change the trend of our results. To tackle the problem with climate variability,

our results base on an ensemble of 21 typhoon seasons (which included measured

storm tracks).

At a first glance, our findings that exports increase in the disaster aftermath

contrast with estimated export losses of previous studies [96, 97]. However,

our analysis focuses on short-term transport delays and does not include the
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destruction of production goods or the long-term destruction of infrastructure.

Because tropical storms can cause both impacts — short-term transportation

disruption and destruction of physical capital — further research should consider

both effects in a joint setup.

While the underlying economic network evolves, the number of outside con-

nections per firm of the economic blocs changes(Fig. 6). However, although the

blocs exhibit divergent rates of change, the signs of change are uniform across

the blocs (except in the early 2000s). That means that the trading density

of the economic network increases or decreases homogeneously. In the litera-

ture, the debate [98] whether more dense and complex networks are more stable

[99, 86] or less stable [99, 89] is still open. Assuming trade resilience to mar-

itime disruptions as a measure of stability of a global trade network, our results

suggest that more complex networks (more inter-connections) are more likely

to be stable (more trade resilience). Nevertheless, this likely differs depending

on location and size of the perturbation.

The transportation extension of Acclimate presented in this study can be

used to examine economic repercussions of further short-term supply chain con-

straints. Tropical storms impede shipping even in other locations, and other

extreme events can disrupt supply chains for short periods of time. For those

regions, our analysis could be easily extended. The storm tracks used here vary

widely between seasons and our results depict clear results in trends, which

hints that we there is a more in-depth mechanism. The diversification of trading

partners enables economies to counteract transport disruptions with increased

export in the aftermath. In a world where extreme events are likely to increase,

this trade resilience can mitigate local economic perturbations.

Data and materials availability

The implementation of the Acclimate model is available as open source

on https://github.com/acclimate/acclimate with identifier 10.5281/zen-

odo.needed. The used data for categorization of the maritime entities and the
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geographic network are available at 10.5281/zenodo.5807332).
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Conclusion

5 Results
The scope of this thesis is to reveal a deep and enriched understanding of the overall
impacts of weather extremes on economic systems. This includes the computation of direct
local e�ects and resulting higher-order repercussions, and the exploration of plausible
adaptation strategies. To derive such insights, I develop and use highly regionally and
temporally resolved dynamical models during my research. In the following, I present my
research �ndings in comprehensive answers to my three research questions.

5.1 Impact
How do weather extremes impact local economic performance?

During climate-related extreme events, local production is reduced, which is referred
to as direct losses. My results depict that regional occurrence of weather extremes and
resulting impacts di�er between disaster categories. Furthermore, the amplitude of direct
losses is largely heterogeneously distributed in time and space depending on heat stress,
tropical cyclones, or river �oods. Using a temperature-productivity relation and near-
future climate projections, I �nd that global direct output losses caused by heat stress
increase by 47% between 2000–2039 [A]. This translates to a direct loss increase of about
USD127 bn per K of global warming. However, heat stress-induced economic losses vary
between regions. Across 84% of the regions, the annual economic output loss is less than
one bn USD. In contrast, some economically strong nations are frequently a�ected by
heat waves, such as Saudi Arabia, China, the USA, and India. Their estimated annual
production losses range in the two-digit billions USD. Regarding direct output losses
relative to GDP, countries of the Sahel, the Arabian Peninsula, and South Asia are a�ected
the strongest.
Using a tropical cyclone emulator of Geiger et al. [2018], I �nd that tropical cyclones cause
a short, strong peak in production losses of a�ected areas [C]. The single-case study on
Hurricane Sandy [B] depicts similar results; here, hurricane-induced initial production
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failures of 80.2% and 69.3% are estimated for US-states New York and New Jersey, re-
spectively. However, while the short-term production reduction may be substantial for
impacted regions, the annual global direct output losses due to tropical cyclones are on
average about 20 times smaller than from heat stress [C].
A region a�ected by river �oods exhibits a di�erent pattern of production decline compared
to tropical storm impacts [C]. River �oods’ resulting regional production reductions
depict a broader time distribution. This may be explained by the geographic and temporal
extent of the di�erent disaster categories. According to my calculations, annual global and
regional direct losses from river �oods vary widely. Thus, global direct production losses
are about 80 times larger in high-impact years than in low-impact years. In contrast, direct
production losses from heat stress exhibit a smaller distribution range from -28% to +33%
around average.
I compute the local economic impacts of consecutive disasters of the three disaster cate-
gories by aggregating the corresponding temporal and regional direct production losses.
It is excluded that direct output losses can exceed 100% of the initial production. The
computed annual global direct production losses due to consecutive disasters range from
USD206 bn to USD985 bn and have a median value of USD361 bn. I further discuss the
economic repercussions of extreme events within the complex trading network and their
interactions with each other in section 5.2.

Besides local productivity reduction, capital may be damaged due to weather extremes as
well. NatCatService of MunichRe reports that 88 hurricanes with landfall caused 3.24%
of cumulative normalized capital damage over 35 years in the USA. To estimate resulting
growth losses, I use a classical one-channel growth model, extended with a basic insur-
ance scheme [D]. In this growth model, impacts of individual storms and productivity
recoveries are temporally resolved. I �nd that the size and time point of a shock a�ect the
temporal evolution of production and thus impact economic growth. Furthermore, I
implement the Gini index2 as a metric of shock heterogeneity (shock size imbalance). The
more unequal shock sizes are distributed among the events, the more heterogeneous the
ensemble is and the higher the corresponding Gini index. While simulating economic
growth perturbed by shock ensembles with di�erent shock size imbalances, I �nd that
hurricane-induced growth losses increase with higher shock heterogeneity. That means
that time series with (almost) equal-sized shocks cause lower growth losses than those with
many tiny and a few huge shocks3. This arises from incomplete recovery. The probability
that an extreme event occurs during the recovery phase of a former shock increases with
the recovery time and thus with the shock size. By higher shock heterogeneity, those
incomplete recovery events become more frequent. The results suggest that the particular

2One can compute the Gini index of a set of shock sizes by creating the corresponding Lorenz curve,
calculating the area beneath this curve and compare the area to a perfect equally distributed Lorenz curve.

3The number of events and total cumulative capital damage are kept constant between simulations.
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shock timing and size caused by weather extremes should be considered while calculating
economic growth impact.

5.2 Distribution
How are repercussions of extreme events distributed in the economic network?

The main tool to answer this question is the loss-propagation model Acclimate, which
simulates a complex network of economic agents (nodes) and their trading �ows (linkages).
The network can be perturbed by direct output losses of �rms [A, B, C] or restrictions of
product �ows [E, F]. Locally optimizing economic agents react myopically to �uctuations
in demand, supply, and prices, resulting in local market responses to direct losses and
resulting indirect impacts at each time step (days). The responses are aggregated, analyzed,
and interpreted at the level of �rms, regions (e.g. Chinese provinces), nations (e.g. the
USA), economic blocs (e.g. the EU), or globally.

Economic repercussions, caused by extreme weather-induced production reduction, prop-
agate as ripples upstream and downstream along the supply chain [A, B, C]. During a
disaster, the demand of a�ected �rms declines due to direct production reduction. This
virtually immediate demand reduction is a �rst-order upstream e�ect and causes a short-
term decrease in trading and consumer prices, resulting in a brief higher consumption
level. Subsequently, my computations show a signi�cantly longer period of price in�ation
due to two identi�ed network e�ects. On the one hand, production losses of directly
a�ected �rms downstream the supply chain, causing supply shortages and rising prices.
On the other hand, �rms with impaired supply try to substitute their failing suppliers,
thus shifting their demand to less perturbed �rms. This higher-order upstream e�ect
causes local price in�ation. As a result, substituting �rms may increase their production
in quantity and value (quantity to current prices). I �nd that even some countries with
notable direct extreme weather impacts (e.g. Spain or Greece experiencing heat waves)
are able to increase their production value due to higher prices [A]. Furthermore, my
calculations depict that while the global temperature rises, heat stress-induced changes in
global production value increase by 56% between 2000–2039.
Although there is a possible positive e�ect on the (regional) output value, the regions’ wel-
fare mostly declines [A, B, C]. Consumers, which are at the end of the supply chain, face
shortages of goods and services, and in�ation in prices. They can only adapt with certain
�exibility to those changes4 and thus decrease consumption. Economic repercussions
due to heat stress are transferred through the economic network, causing (almost) every
country’s welfare to decline, even if some national production values increase [A]. I �nd
that one K of additional global warming corresponds to an increase of heat stress-induced

4To re�ect di�erences in regional and sectoral consumer price response, I use country and sector-speci�c
consumption price elasticities.
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consumption reduction by 0.18 percentage points (pp). That translates to a doubling in
global consumption losses within the �rst four decades of this century, which is a dispro-
portionate increase compared to +47% higher direct output losses. My results suggest that
the ratio between direct production reduction and higher-order consumption losses is
neither constant nor straightforward to assess. This applies globally as well as on a regional
level. While the USA experiences four times higher direct output reductions per year
than the EU, US consumers su�er fewer subsequent losses than consumers in the EU [C].
This is because prices in the EU increase particularly due to supply scarcity (downstream
e�ect) and raised demand (upstream e�ect) and thus excessively a�ecting EU consumers.
A region’s cumulative loss (or gain) in consumption due to weather extremes depends on
its trading connectivity to the a�ected �rms [B]. A higher link strength tends to correlate
with more losses.

Ripples of repercussions of di�erent weather extremes may interact with each other
in the economic network and enhance economic responses super-linear. In article C, I
identify this e�ect and introduce the notion of economic ripple resonance to climate impact
research. The e�ect arises, for example, if demand ripples, caused by two or more extreme
events, coincide at a �rm. The resulting demand for the �rm adds up. But the additional
costs for over-production to ful�ll this demand increase non-linearly, making these extra
costs disproportionately larger than the aggregated additional production costs of sep-
arate demands. Thereby, prices rise higher by overlapping ripples than by aggregation
of separated ripples. Such economic ripple resonance mainly occurs by repercussions of
consecutive disasters. Regarding regional and global consumption, my �ndings reveal
that economic ripple resonance causes an enhancement in total consumption losses. That
means that annual consumption losses caused by repercussions of consecutive disasters
(total losses) are larger than the sum of annual consumption losses by the repercussions
of individual disaster categories (aggregated losses)5 . Further, the enhancement ampli�es
disproportionately with higher direct output losses respective consumption losses. That
means that the discrepancy between total losses and aggregated losses increases with higher
losses. The widening of this gap is de�ned by the loss ampli�cation factor A. Globally
I �nd that Aglobal = 21%, i.e. an increase of 0.5 pp of aggregated consumption losses
converts to a rise of ~0.6 pp in total consumption losses. While the intensity of economic
ripple resonance is regionally heterogeneously distributed, every country depicts a loss en-
hancement and 82% of global production lies in regions with a positive ampli�cation factor.
The USA and the EU exhibit a similar loss ampli�cation (AUSA = 17%, AEU = 16%).
China’s economy responses intensely to overlapping ripples. On the one hand, China
depicts a loss ampli�cation of ACHN = 27%. On the other hand, in some simulation
runs, China has negative aggregated losses (i.e. consumption gains), which turn into total
consumption losses for consecutive disasters. That means economic ripple resonance may

5Important to note that the annual direct output losses of the corresponding simulation pairs are equal.
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even trigger a shift in regional coping reactions to economic repercussions due to weather
extremes.

Next to local production reduction, perturbed transport of products and commodi-
ties may cause repercussions in the economic network. To analyze resulting higher-order
e�ects from those events, I extend Acclimate with a geographical transportation network,
which enables me to perturb trading routes or connections. Using this, I focus on regional
consequences of sudden transportation blockages caused by a no-deal Brexit scenario [E].
Further, I analyze transport disturbances by observed West Paci�c typhoons6 and resulting
regional and inter-regional economic responses [F]. Transport perturbation causes a�ected
trading partners to reduce and redistribute their mutual demand. Firms with a substantial
share of their supply chains using the perturbed trading route receive a sharp drop in
demand. This results in an immediate production reduction in particularly a�ected areas:
UK and Ireland during a no-deal Brexit [E], and China during a West Paci�c typhoon [F].
Due to the absence of purchasers, a�ected �rms lower o�ering prices. Thus, domestic
market prices decline and macroeconomic output value decreases. Another result is that
less directly a�ected regions receive a higher demand, e.g. non-EU European countries [E]
or NAFTA7 [F], and therefore increase production in the short run.
After this initial increase, there is a decrease in demand due to two e�ects. First, directly
a�ected �rms reduce their production due to lower demand and thus reduce demand
to other �rms as well. Second, due to perturbed transport, �rms globally expect less
manufacturing supply and therefor lower production and demand. In the aftermath of
a transport disturbance, I �nd that demand of inter-regional trading partners increases,
followed by production to rise globally [F]. Economic blocs go through this trading pattern
multiple times within a typhoon season, where economic repercussions may add up. In the
following section, I examine inferred coping mechanisms of economic blocs and regions.

5.3 Adaptation
How do and could societies adapt to weather extreme-induced repercussions?

In my research, I �nd evidence that economic trade networks exhibit an intrinsic adapta-
tion strategy to trade disruptions caused by storms [F]. While typhoons disturb East Asian
maritime trading routes, causing initial prices in domestic markets to fall and international
trade to decrease, medium-term responses of economic blocs depict a positive trend. De-
spite typhoon-induced impairment of inter-regional trade, all economic blocs are able to

6Using real typhoon trajectories of IBTrACS, I compute time series of transport disturbances for West
Paci�c typhoon seasons 2000–2020.

7Computations base on the economic network of 2015. At that time, the economic bloc of Canada,
Mexico, and the USA was referred to as North American Free Trade Agreement (NAFTA). The agreement
was replaced by the United States-Mexico-Canada Agreement (USMCA) in 2020.
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increase their exports in volume to other blocs over the year, compared to the economic
baseline of 2015. Even China, whose maritime transportation routes are strongly a�ected
by West Paci�c typhoon seasons, exhibits an increase in export quantity. This coping
mechanism indicates a degree of trade resilience to weather-related transport disruptions.
Since the adaptation emerges from the network of locally optimizing economic agents
itself, it appears to be an intrinsic characteristic of the network. A network analysis reveals
that trade resilience has tended to strengthen over the years (regarding 2000–2015). Further
it depicts that this arises from a higher node inter-connectivity and not from changed
shares of network �ow. Most economic blocs increase their node inter-connectivity, i.e.
number of trade connections to other blocs per �rm. Thus, the set on possible substitutes
for supply and demand grew. Asian regions like China, Association of Southeast Asian
Nations (ASEAN), or South Asian Association for Regional Cooperation (SAARC) turn
from net-export losers to gainers by expanding and diversifying their trading connections.
However, trade resilience has its limitations. On the one hand, the export gain does not
convert to export value gain (export at current prices) everywhere. For example, China
and the Arab League have slight export value losses due to falling trade prices. Neverthe-
less, losses decrease as node inter-connectivity increases. On the other hand, there are
too important trading links whose perturbation is too severe to adapt to. For example,
Chinese �rms use two sea routes to export to NAFTA: the East China Sea and the South
China Sea. Most Chinese �rms use the former maritime route to export to NAFTA. As
a result, if the East China Sea is blocked, China will exhibit export losses that cannot be
compensated. However, my research indicates that increasing network-connectivity by
diversifying trading partners and trading routes is a potent measure to adapt to extreme
weather-induced trade repercussions [E, F].

Regarding economic development, I �nd that long-term growth losses caused by hurricane-
induced capital damage can be reduced by a macroeconomic insurance scheme [D]. Using
a closed economy growth model, which I extend with insurance dynamics, I compare
economies that face the same time series of weather extremes, with and without insurance
coverage. My results depict that the former has signi�cant growth bene�ts towards the
latter. For example, for historical hurricane distribution in the USA (1980–2014), annual
growth is reduced by 0.048 pp in the uninsured scenario, according to my calculations.
Compared to this, insured damaged capital could decrease annual growth losses by factor
two (half-insured) or even factor ten (fully insured). Even when the adverse pay-in e�ects
on growth are considered, insurance coverage remains a macroeconomic reasonable adap-
tation measure. Within observed parameter sets8, consumption losses due to hurricanes
can be mitigated as well.

8For hypothetical, unobserved parameter sets, consumption disadvantages are possible which arise
from non-linear growth response to shock heterogeneity.
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Depending on the climate change projection approach and degree of warming, growth
losses could increase by 10%, 146%, or even 522% compared to growth losses in historical
settings. In order to cope with those additional losses, insurance coverage needs to increase
by about 8 pp, 34 pp, or 49 pp, respectively. It is important to emphasize that growth
losses do not vanish, but rather they are reduced to historical levels. The results point
out that an insurance scheme may be an e�ective adaptation measure, although it cannot
counteract all the perturbations.

In addition to intrinsic resilience within the trade network and potential coping strategies
by insurance schemes, further adaptations mechanism to weather extremes can be drawn
from my research. My derived conclusions, based on results of articles A, B, and C, should
not been seen as strict advice for any economic or political actor but rather encourage to
see adaptation e�orts in a connected-world framework.
An economically tightly linked bloc, e.g. US states or Chinese provinces, can mitigate
losses by using non or less a�ected �rms as substitutes for perturbed �rms within the bloc.
This mechanism could be implemented by regions with returning disaster seasons and
their trading partners, which creates a win-win situation. The una�ected trading partner
increases production to substitute for de�cits in the a�ected region. As a result, those
su�er less from supply shortages. A stronger economic relationship where both partners
are exposed to weather extremes, which occur at di�erent times of the year, could be a
possible adaptation strategy as well. This would ensure that one could provide economic
substitution during local disasters to the other and vice versa.
A highly interlinked region (e.g. the EU) that is exposed to small direct output losses can
be disproportionately a�ected by disasters elsewhere through upstream and downstream
e�ects. In particular, substantial price increases cause higher consumption losses. On
the surface, it could be presumed that a signi�cant reduction in node connections, i.e.
compartmentalization, would be an appropriate adaptation strategy for this. However,
three of my insights argue against this possible assessment. First, if economically isolated
regions su�er from a disaster, short-term supply substitution to ensure production and
consumer supply is missing, probably leading to more devastating disaster aftermath.
Second, in a strongly interconnected trading network, ripples can reach (almost) any point
in the economic network via neighbor or super-neighbor nodes. Thus, complete secure
isolation is not possible nor is it practical. Third, my results suggest that broader trading
diversi�cation could more e�ectively distribute repercussions among economic agents
globally. However, diversifying purchasers and suppliers is not a panacea. While an extreme
weather event with local and time-limited direct output losses (e.g. tropical cyclone) can
be bu�ered in the trading network, longer-lasting and cross-regional direct production
losses (e.g. due to consecutive disasters) cannot be mitigated in highly interconnected
networks and rather amplify consumption losses.
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Discussion of costs of adaptation measures must consider the loss enhancement and am-
pli�cation by consecutive disasters caused by economic ripple resonance. Adaptation costs
due to extreme events could be strongly underestimated if only considered by itself and by
neglecting repercussions within the global economic network. Economic ripple resonance
could in�uence cost-bene�t analyses between mitigation and adaptation measures.
As mentioned, economic repercussions (and their interaction) may cause a variety of
responses along the supply chain. Thus, explicit regional consequences are often hard to
predict. Another option to mitigate network-related losses is to minimize the extent of
repercussion entering the supply chain. Increased adaptation to local extreme events, such
as dams against �oods or storm-resistant infrastructure, can minimize local production
damage. The less local production is perturbed, the lower resulting ripple e�ects along
supply chains and impact on consumption elsewhere. In addition, a fast reconstruction
contributes to a shorter persistence of ripples in the economic network. The current
dense trading network makes the reduction of local impacts of weather extremes a global
challenge. Hence, it appears to make economic sense that adaptation and rebuilding costs
are borne at a global level.

6 Discussion
Weather extremes, isolated or as consecutive disasters, cause locally direct output losses
that are regionally and temporally broadly spread and propagate as ripples along supply
chains. Using weather-productivity relations, I compute resulting regional direct and
indirect deviations of production, consumption, trade, and prices, which can reach the
magnitude of some percent relative to the baseline. During economic ripple resonance,
repercussions in the supply chain overlap and intensify consumption losses. From my
�ndings, I conclude that preventing ripples in the supply chain (local disaster adaptation)
and risk-aware and diversi�ed trading have the potential to reduce welfare losses.
Disruptions of trade routes initially lead to demand and supply insecurities. However, I
�nd that regions exhibit increased annual exports in the perturbation aftermath, which is
interpreted as trade resilience and arises from a high diversi�cation of network connections.
Regarding economic development, I show that hurricane-damaged capital hinders long-
term growth. Further, I reveal that a higher heterogeneity of a shock ensemble increases
economic growth losses. Precautionary saving funds (e.g. insurance) can be a possible
adaptation strategy against growth losses, although it does not compensate for all losses.

Limitations

Modeling processes, whether physical, socio-economic, or others, are always constrained by
limitations. My model-based research is no exception; hence, I outline the main limitations
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in the following. Boundaries of individual studies are discussed in detail in the respective
articles.
The relations of sectoral and regional production and physical perturbation drivers are
still a subject of research. Here, my approaches on weather extremes and economic per-
formances enable me to estimate direct impacts, but they are bound to uncertainties of
ongoing research topics. I generalize a temperature-productivity correlation only found
for Caribbean countries [Hsiang, 2010] to every region [A, C]. Related studies depict as
well that heat stress has an e�ect on productivity which is regionally bounded [Burke et al.,
2015; Gra� Zivin et al., 2018; Orlov et al., 2019]. Further, I derive the direct productivity
impacts of weather extremes from a�ected areas and their corresponding population share
[A, C]. Potentially required local recovery depends on the severity of the extremes, e.g.
�ood depth or wind speed. Therefore, damages to local infrastructure or workers’ health
are not explicitly considered. That means that the used conservative approach produces
lower bounds for direct output losses. In article B, the production perturbation applies
for every regional sector equally. This is justi�able since an at least once-in-a-century
event like Hurricane Sandy will have an impact on all areas of work, even if it is just the
interrupted trip to work. I show that destroyed capital and their rebuilding process a�ect
the economy’s evolution [D]. While neglecting the impact on potential other channels,
e.g. labor, my results could underestimate growth losses. My novel approach to model
typhoon-induced transport perturbation is based on reported experiences [F]. However,
sensitivity analyses of perturbation parameters, wind speed threshold and passage �ow, do
not show signi�cant changes in results.
Using the economic network model Acclimate, I examine short-term impacts due to
weather extremes. Thereby, medium to long-term socio-economic processes, e.g. large-
scale production allocation or social development, are not considered in the model design.
This should be taken into account when assessing the elaborated adaptation measures.
Further, two production assumptions in Acclimate are subject to discussion for my results.
First, without perturbation, any �rm produces its goods or services at the same rate for
every time step (day). While this is quite reasonably valid for some producing industries,
it is a simpli�cation for the agricultural sector. Harvests are regionally distributed and
take place at speci�c times of the year. Therefore, the timing of a local weather extreme
determines the vulnerability of the regional agricultural sector. Due to this fact, the
approach for Acclimate is a more conservative approach regarding the impact on the food
sectors. Second, it is assumed that the daily changes of demand, products allocation, and
supplies are done with very little logistical cost. Switching large production orders can
imply price increases and medium to long-term supply shortages, e.g. 2020/21 global chip
shortage [Wu et al., 2021]. Since microeconomic agents in Acclimate are very �exible, the
network may respond to transportation perturbation with decreased instead of increased
local prices. In my thesis, the complex economic networks I focus on should be understood
as “reactive and �exible networks of well-functioning economies”. This conservative
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approach tends to underestimate the losses developed in the network. Hence, it points
out the importance of adaptation measures to weather extremes and mitigation of climate
change.
The main goal of my thesis is to derive an enriched understanding of the impacts of
weather extremes in economic networks. For this, I focus on qualitative trends and deeper
dynamical mechanisms. Hence my results shall not be seen as quantitative predictions. In
this respect, the indicated limits of the physical-socio-economic relations and modeling
are reasonable.

Further research

As discussed above, constraints on my conclusions arise from uncertain or insu�cient
correlations between physical drivers and short-term socio-economic impacts. While
econometric studies have improved on such correlations in recent years, it still lacks com-
prehensive regional and sectoral coverage. Improvements in this research �eld could yield
a more in-depth and precise analysis of weather extreme-induced impacts on the complex
trading network.
The research presented in this thesis focuses mainly on ensembles of time series of weather
extremes (except articles B and E). Thereby, general responses of the economic network
to realistic sequences of natural disasters are evaluated. Network nodes, i.e. �rms and
consumers, are unequally embedded within the trade network. For example, while half of
the �rms have 59 or fewer purchasers, 1% of �rms supply at least 2,000 other economic
agents. Following complex network studies [Ravasz and Barabási, 2003; Park and Barabási,
2007], it can be assumed that the di�erent inter-connectivity of nodes can lead to di�erent
response patterns and ripple propagation. Systematic studies on network nodes could
illuminate this topic and de�ne important node characteristics. Building on a single case
event, like Hurricane Sandy in article B, and alternating the a�ected nodes could be a
possible study design.
Regarding the economic network as a complex system, results of article F indicate that
the more complex the network (higher node inter-connectivity), the more stable it is
(trade resilience). This statement is still debated in recent complexity research [Landi et al.,
2018; Fyodorov and Khoruzhenko, 2016; Moran and Bouchaud, 2019]. Further network
analyses of Acclimate may �nd more parameters to (de-) stabilize the complex economic
system. Additionally, studies could identify critical tipping points [Krönke et al., 2020;
Kostanjčar et al., 2016; Guleva, 2020] for resilience or vulnerability with respect to direct
output losses, trade disruptions, or other factors.
Qualitative analyses on regional heterogeneity of direct output losses or indirect network
responses are main subjects of my research. A quantitative study of the disparity in
vulnerability to weather extremes and their distribution in the network could lead to
regionally di�erentiated adaptation measures. Further, every society consists of di�erent
income groups [Kuznets, 1955], which should be considered in forthcoming research.
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Building on article C, the intensity of the economic ripple resonance e�ect on diverse
consumer groups can be discussed. Research on possible ampli�cation or mitigation of
intra-regional and inter-regional inequality due to weather extremes gives insights on more
e�ective and necessary adaptation measures.
My studies mostly address direct impacts of weather extremes on production or trade. In
addition, the energy supply of �rms and consumers can be directly a�ected as well [Turner
et al., 2019; Byers et al., 2020]. The economic and energy networks can be modeled as two
coupled complex networks. Thus, it could be examined how ripples transfer between these
networks and whether there are energy-economic ripple resonance e�ects. Further, critical
junctions and adaptation measures for the energy-economy system may be evaluated.
Regarding direct impacts, I focus in this thesis on the three separated economic quantities:
regional production, capital, and transportation. However, an extreme event can a�ect
more than one channel. Therefore, including more direct impact channels may enhance
the comprehension of socio-economic responses to weather extremes. As a measure for
those responses, I focus mainly on production, consumption, and trade. Thereby, other
human needs or essential economic developments may be missed. Respecting this, further
studies focusing on complementary socio-economic aspects are relevant to obtain a broader
understanding of extreme weather impacts.

Final remarks

Although the body of studies on impacts of weather extremes grew in recent years, global
but regionally disaggregated results on economic performances due to extreme events are
still rare. In this thesis, I compute regional direct output losses caused by heat stress, river
�oods, and tropical cyclones. Further, I study the temporal and spatial distribution as
well as the magnitudes of the resulting losses. By overlapping the three mentioned disaster
categories, analyses on repercussions of consecutive disasters add newest insights to recent
climate impact research. Using Acclimate, a complex network of myopically deciding
economic agents with endogenous price dynamics, I simulate the resulting economic
ripple propagation along supply chains. Regional net-winners and net-losers arise from
resulting higher-order e�ects in production and consumption. Further, I reveal that the
economic responses may change over time and depend on ripple amplitudes. This is in
line with former studies that show that ripple e�ects in the trading network cause sectoral
and regional loss spillovers [Hewings and Mahidhara, 2019; Kunimitsu et al., 2013]. Here, I
give a qualitative description and explanation of the three phases of such economic ripples.
The understanding of ripple dynamics is urgently needed as it seems that the economic
ripple e�ect will increase under climate change [Zhang et al., 2018]. While examining
consecutive disasters, I �nd that economic ripples may interact in the global trade network,
causing an overall intensi�ed economic response, like an enhancement of regional and
global consumption losses. Further, my analysis reveals that additional direct losses, e.g.
due to climate change, amplify consumption losses over-proportionally. My results suggest
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that additional costs caused by economic ripple resonance should be priced into further
adaptation cost calculations.
Political and economic actors rely their decisions on measures to combat the climate crisis
partly on �ndings of IAMs [Rose et al., 2017]. However, these models lack proper extreme
weather resolution and thus probably underestimate their e�ects [Hallegatte et al., 2007;
Otto et al., 2020]. I implement a method that explicitly resolves the temporal dimension
of hurricane impacts and aftermaths on capital, production, and growth. I point out that
weather extremes’ timing and shock severity have a non-linear impact on growth. Next
to this, I introduce the Gini index as a characteristic of damage ensemble to explain how
shock heterogeneity hinders economic development. My macroeconomic research implies
that insurance is bene�cial to consumers and can mitigate long-term growth losses to
some extent, with which it contributes to adaptation research (e.g. particular on insurance
e�ects [Charpentier, 2008; Krieger and Demeritt, 2015]).
Even though a no-deal Brexit was politically prevented [European Commission, 2020],
UK leaving the EU causes severe damage to its economy in medium-term [OBR, 2021]. In
my study on a hypothetical no-deal Brexit, I compute cascading e�ects caused by trade
restrictions, resulting in economic disadvantages for the UK and the EU in the longer run.
This adds onto other short to long-term scienti�c predictions, e.g. of Dhingra et al. [2016],
Chang [2018], and Kierzenkowski et al. [2016].
Studies on perturbations of maritime transport often focus on port disruption [Thekdi
and Santos, 2016; Zhang et al., 2020] and liner shipping scheduling [Brouer et al., 2013;
Li et al., 2016]. However, Lam and Lassa [2017] argue that the research �eld still exhibits
some gaps. My research partly �lls these gaps by adding an analysis of typhoon-induced
transportation disturbances and resulting repercussions along supply chains. In addition,
computed inter-regional trade responses reveal coping mechanisms to overcome supply
and demand shortfalls.
In summary, my dissertation focuses on regionally heterogeneous direct losses in produc-
tion, capital, or transportation caused by weather extremes and their resulting higher-order
impacts. On the one hand, those losses can add up in time and produce longer-term eco-
nomic disadvantages. On the other hand, demand and supply ripples propagate along
the economic network, causing deviations in consumption and trade. Network-intrinsic
resilience mechanisms, lowering direct vulnerability towards extreme events, and coping
mechanisms at the end of the supply chain may diminish losses but not completely com-
pensate for them. My �ndings advocates that the dynamically and temporally resolution
of processes is relevant for understanding and evaluating complex socio-economic systems.
Further evolution of dynamic models in physical, socio-economic, and interdisciplinary
areas and their coupling will be a key element in comprehending and improving societies
within a highly interconnected world.
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Acronyms

Acronym Meaning

ABM agent-based model
ASEAN Association of Southeast Asian Nations

bn billion (109)
°C degree Celsius

CGE computable general equilibrium
CMIP5 Coupled Model Intercomparison Project Phase 5

EU European Union
GCM general circulation model
GDP gross domestic product

GHG greenhouse gas
IAM integrated assessment model

IO input-output
K Kelvin

NAFTA North American Free Trade Agreement
pp percent points

RCP representative concentration pathway
SAARC South Asian Association for Regional Cooperation

SSC social cost of carbon
SSHWS Sa�r-Simpson hurricane wind scale

UK United Kingdom
USA United States of America
USD United States dollar
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Fig. S1. Heat stress-induced median annual direct output losses for the historic
time period 2000–2019. Regional maps of A absolute and B relative annual direct
output loss due to heat stress based on the respective regional bias-corrected median
for 2000–2019. Regions with an absolute or relative direct annual output loss below
USD 1bn or 0.2% of baseline (unperturbed) production are depicted in light purple,
respectively.
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Fig. S2. Projected increase of heat stress-induced annual direct output losses
between historic (2000–2019) and future (2020–2039) period. A Absolute annual
increase of regional direct output losses of period 2020–2039 compared to 2000–2019.
B Increase of direct output losses in the future period in terms of losses in the historic
period.
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Fig. S3. Consumption and total production change per country for the historic
period 2000–2019. The area of each dot is proportional to the corresponding country’s
baseline (unperturbed) production. The dot colors denote the geographic regions (see
Tbl. S2). Quantities are given relative to the baseline (unperturbed) production and
consumption, respectively.
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Fig. S4. Total production, consumption, and expenditure change for the historic
period 2000–2019. Median annual change of A total production, B consumption and C
expenditure relative to the unperturbed baseline.
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Tbl. S1. Sectors used in the simulations. For sectors prone to heat stress-induced
productivity loss the respective reduction factor (see Methods) is given in the last column.

Code Name Category Production
reduction

factor

AGRI Agriculture vital -0.8 p.p./°C
FISH Fishing vital -0.8 p.p./°C
MINQ Mining and quarrying other -4.2 p.p./°C
GAST Hotels and restaurants other -6.1 p.p./°C
WHOT Wholesale trade relevant -6.1 p.p./°C
OTHE Others other -2.2 p.p./°C

REPA Maintenance and Repair other /
RETT Retail Trade relevant /
FOOD Food and Beverages vital /
TEXL Textiles and Wearing Apparel relevant /
TRAN Transport relevant /
WOOD Wood and Paper relevant /
OILC Petroleum, Chemical & Non-Metallic Mineral Products relevant /
FINC Financial Intermediation and Business Activities other /
METL Metal Products relevant /
MACH Electrical and Machinery relevant /
TREQ Transport Equipment relevant /
MANU Other Manufacturing relevant /
REXI Re-export and Re-import other /
CONS Construction relevant /
ADMI Public Administration other /
EDHE Education, Health and Other Services vital /
HOUS Private Households other /
COMM Post and Telecommunications relevant /
RECY Recycling other /
ELWA Electricity, Gas and Water vital /
FCON Final consumption relevant /
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Tbl. S2. Regions used in the simulations. Income level corresponds to Gross
National Income per capita (GNIpc) of 2012.
Income level 1: GNIpc < 1, 305 USD
Income level 2: 1, 036 USD < GNIpc < 4, 085 USD
Income level 3: 4, 086 USD < GNIpc < 12, 615 USD
Income level 4: 12, 616 USD < GNIpc

ISO code Name Income level Geographic region

AFG Afghanistan 1 Asia
ALB Albania 3 Europe
DZA Algeria 3 Africa
AND Andorra 4 Europe
AGO Angola 3 Africa
ATG Antigua and Barbuda 4 North America
ARG Argentina 3 South America
ARM Armenia 2 Asia
ABW Aruba 4 South America
AUS Australia 4 Oceania
AUT Austria 4 Europe
AZE Azerbaijan 3 Asia
BHS Bahamas 4 North America
BHR Bahrain 4 Asia
BGD Bangladesh 1 Asia
BRB Barbados 4 North America
BLR Belarus 3 Europe
BEL Belgium 4 Europe
BLZ Belize 3 North America
BEN Benin 1 Africa
BMU Bermuda 4 North America
BTN Bhutan 2 Asia
BOL Bolivia 2 South America
BIH Bosnia and Herzegovina 3 Europe
BWA Botswana 3 Africa
BRA Brazil 3 South America
VGB British Virgin Islands 4 South America
BRN Brunei Darussalam 4 Asia
BGR Bulgaria 3 Europe
BFA Burkina Faso 1 Africa
BDI Burundi 1 Africa
KHM Cambodia 1 Asia
CMR Cameroon 2 Africa
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ISO code Name Income level Geographic region

CAN Canada 4 North America
CPV Cabo Verde 2 Africa
CYM Cayman Islands 4 South America
CAF Central African Republic 1 Africa
TCD Chad 1 Africa
CHL Chile 4 South America
CN.AH Anhui 3 China, Asia
CN.BJ Beijing 3 China, Asia
CN.CQ Chongqing 3 China, Asia
CN.FJ Fujian 3 China, Asia
CN.GS Gansu 3 China, Asia
CN.GD Guangdong 3 China, Asia
CN.GX Guangxi 3 China, Asia
CN.GZ Guizhou 3 China, Asia
CN.HA Hainan 3 China, Asia
CN.HB Hebei 3 China, Asia
CN.HL Heilongjiang 3 China, Asia
CN.HE Henan 3 China, Asia
CN.HU Hubei 3 China, Asia
CN.HN Hunan 3 China, Asia
CN.JS Jiangsu 3 China, Asia
CN.JX Jiangxi 3 China, Asia
CN.JL Jilin 3 China, Asia
CN.LN Liaoning 3 China, Asia
CN.NM Nei Mongol 3 China, Asia
CN.NX Ningxia Hui 3 China, Asia
CN.QH Qinghai 3 China, Asia
CN.SA Shaanxi 3 China, Asia
CN.SD Shandong 3 China, Asia
CN.SH Shanghai 3 China, Asia
CN.SX Shanxi 3 China, Asia
CN.SC Sichuan 3 China, Asia
CN.TJ Tianjin 3 China, Asia
CN.XJ Xinjiang Uygur 3 China, Asia
CN.XZ Xizang 3 China, Asia
CN.YN Yunnan 3 China, Asia
CN.ZJ Zhejiang 3 China, Asia
COL Colombia 3 South America
COG Republic Congo 2 Africa
CRI Costa Rica 3 North America
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ISO code Name Income level Geographic region

HRV Croatia 4 Europe
CUB Cuba 3 North America
CYP Cyprus 4 Europe
CZE Czech Republic 4 Europe
CIV Côte d’Ivoire 2 Africa
PRK North Korea 1 Asia
COD Democratic Republic Congo 1 Africa
DNK Denmark 4 Europe
DJI Djibouti 2 Africa
DOM Dominican Republic 3 North America
ECU Ecuador 3 South America
EGY Egypt 2 Africa
SLV El Salvador 2 North America
ERI Eritrea 1 Africa
EST Estonia 4 Europe
ETH Ethiopia 1 Africa
FJI Fiji 3 Oceania
FIN Finland 4 Europe
FRA France 4 Europe
PYF French Polynesia 4 Oceania
GAB Gabon 3 Africa
GMB Gambia 1 Africa
GEO Georgia 2 Asia
DEU Germany 4 Europe
GHA Ghana 2 Africa
GRC Greece 4 Europe
GRL Greenland 4 North America
GTM Guatemala 2 North America
GIN Guinea 1 Africa
GUY Guyana 2 South America
HTI Haiti 1 North America
HND Honduras 2 North America
HKG Hong Kong 4 Asia
HUN Hungary 3 Europe
ISL Iceland 4 Europe
IND India 2 Asia
IDN Indonesia 2 Asia
IRN Iran 3 Asia
IRQ Iraq 3 Asia
IRL Ireland 4 Europe
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ISO code Name Income level Geographic region

ISR Israel 4 Asia
ITA Italy 4 Europe
JAM Jamaica 3 North America
JPN Japan 4 Asia
JOR Jordan 3 Asia
KAZ Kazakhstan 3 Asia
KEN Kenya 1 Africa
KWT Kuwait 4 Asia
KGZ Kyrgyz Republic 1 Asia
LAO Lao PDR 2 Asia
LVA Latvia 4 Europe
LBN Lebanon 3 Asia
LSO Lesotho 2 Africa
LBR Liberia 1 Africa
LBY Libya 3 Africa
LIE Liechtenstein 4 Europe
LTU Lithuania 4 Europe
LUX Luxembourg 4 Europe
MAC Macao 4 Asia
MDG Madagascar 1 Africa
MWI Malawi 1 Africa
MYS Malaysia 3 Asia
MDV Maldives 3 Asia
MLI Mali 1 Africa
MLT Malta 4 Europe
MRT Mauritania 2 Africa
MUS Mauritius 3 Africa
MEX Mexico 3 North America
MCO Monaco 4 Europe
MNG Mongolia 2 Asia
MNE Montenegro 3 Europe
MAR Morocco 2 Africa
MOZ Mozambique 1 Africa
MMR Myanmar 1 Asia
NAM Namibia 3 Africa
NPL Nepal 1 Asia
NLD Netherlands 4 Europe
ANT Netherlands Antilles 4 Sout America
NCL New Caledonia 4 Oceania
NZL New Zealand 4 Oceania
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ISO code Name Income level Geographic region

NIC Nicaragua 2 North America
NER Niger 1 Africa
NGA Nigeria 2 Africa
NOR Norway 4 Europe
PSE West Bank and Gaza 2 Asia
OMN Oman 4 Asia
PAK Pakistan 2 Asia
PAN Panama 3 South America
PNG Papua New Guinea 2 Asia
PRY Paraguay 2 South America
PER Peru 3 South America
PHL Philippines 2 Asia
POL Poland 4 Europe
PRT Portugal 4 Europe
QAT Qatar 4 Asia
KOR South Korea 4 Asia
MDA Moldova 2 Europe
ROU Romania 3 Europe
RUS Russian Federation 4 Asia
RWA Rwanda 1 Africa
WSM Samoa 2 Oceania
SMR San Marino 4 Europe
STP São Tomé and Principe 2 Africa
SAU Saudi Arabia 4 Asia
SEN Senegal 2 Africa
SRB Serbia 3 Europe
SYC Seychelles 3 Africa
SLE Sierra Leone 1 Africa
SGP Singapore 4 Asia
SVK Slovak Republic 4 Europe
SVN Slovenia 4 Europe
SOM Somalia 1 Africa
ZAF South Africa 3 Africa
SSD South Sudan 1 Africa
ESP Spain 4 Europe
LKA Sri Lanka 2 Asia
SDN Sudan 2 Africa
SUR Suriname 3 South America
SWZ Swaziland 2 Africa
SWE Sweden 4 Europe
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ISO code Name Income level Geographic region

CHE Switzerland 4 Europe
SYR Syrian Arab Republic 2 Asia
TWN Taiwan 4 Asia
TJK Tajikistan 1 Asia
THA Thailand 3 Asia
MKD Macedonia 3 Europe
TGO Togo 1 Africa
TTO Trinidad and Tobago 4 South America
TUN Tunisia 3 Africa
TUR Turkey 3 Asia
TKM Turkmenistan 3 Asia
UGA Uganda 1 Africa
UKR Ukraine 2 Europe
ARE United Arab Emirates 4 Asia
GBR United Kingdom 4 Europe
TZA Tanzania 1 Africa
US.AL Alabama 4 USA, North America
US.AK Alaska 4 USA, North America
US.AZ Arizona 4 USA, North America
US.AR Arkansas 4 USA, North America
US.CA California 4 USA, North America
US.CO Colorado 4 USA, North America
US.CT Connecticut 4 USA, North America
US.DE Delaware 4 USA, North America
US.DC District of Columbia 4 USA, North America
US.FL Florida 4 USA, North America
US.GA Georgia 4 USA, North America
US.HI Hawaii 4 USA, North America
US.ID Idaho 4 USA, North America
US.IL Illinois 4 USA, North America
US.IN Indiana 4 USA, North America
US.IA Iowa 4 USA, North America
US.KS Kansas 4 USA, North America
US.KY Kentucky 4 USA, North America
US.LA Louisiana 4 USA, North America
US.ME Maine 4 USA, North America
US.MD Maryland 4 USA, North America
US.MA Massachusetts 4 USA, North America
US.MI Michigan 4 USA, North America
US.MN Minnesota 4 USA, North America
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ISO code Name Income level Geographic region

US.MS Mississippi 4 USA, North America
US.MO Missouri 4 USA, North America
US.MT Montana 4 USA, North America
US.NE Nebraska 4 USA, North America
US.NV Nevada 4 USA, North America
US.NH New Hampshire 4 USA, North America
US.NJ New Jersey 4 USA, North America
US.NM New Mexico 4 USA, North America
US.NY New York 4 USA, North America
US.NC North Carolina 4 USA, North America
US.ND North Dakota 4 USA, North America
US.OH Ohio 4 USA, North America
US.OK Oklahoma 4 USA, North America
US.OR Oregon 4 USA, North America
US.PA Pennsylvania 4 USA, North America
US.RI Rhode Island 4 USA, North America
US.SC South Carolina 4 USA, North America
US.SD South Dakota 4 USA, North America
US.TN Tennessee 4 USA, North America
US.TX Texas 4 USA, North America
US.UT Utah 4 USA, North America
US.VT Vermont 4 USA, North America
US.VA Virginia 4 USA, North America
US.WA Washington 4 USA, North America
US.WV West Virginia 4 USA, North America
US.WI Wisconsin 4 USA, North America
US.WY Wyoming 4 USA, North America
URY Uruguay 4 South America
UZB Uzbekistan 2 Asia
VUT Vanuatu 2 Oceania
VEN Venezuela 3 South America
VNM Vietnam 2 Asia
YEM Yemen 2 Asia
ZMB Zambia 2 Africa
ZWE Zimbabwe 1 Africa
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Tbl. S3. Consumption price elasticities per income level and sector category.
Values are based on GTAP.

Income level
Sector category 1 2 3 4

vital -0.15 -0.2 -0.3 -0.45
relevant -0.2 -0.3 -0.4 -0.65

other -0.3 -0.4 -0.5 -0.75
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Wave-like global economic ripple response to Hurricane Sandy

Appendix A: Methods

Business interruption recovery

We assume the business interruption (BI) to be very strong but short, representing the

short-term disruptions after the storm that can be quickly recovered from to an extent that

most business processes are again functional, e.g. interruptions due to power outages,

flooding, transportation disruption, and disturbance in communication. We set the initial

intensity of this BI for NY and NJ to the GDP share of the respective state that is physically

exposed to the hurricane. As damage from Sandy was primarily due to precipitation and

flooding, we focus on this physical factor. For that, we calculate GDP exposure on a county

level. We consider those counties as exposed for which the U.S. Geological Survey (USGS)

reported at least one high water mark1.

We then assume exponential recovery from the BI as is commonly done with disaster

recovery2;3, assuming a rather efficient recovery of the local economy4 which we esteem

realistic for the economically strong regions of NY and NJ. The intuitive reason for using

exponential recovery in this case is that most effective measures of recovery can be

believed to take place first. Subsequent measures may be less effective in comparison

to their effort, resulting in an exponential path of recovery. As an example, power supply

was restored exponentially after Hurricane Sandy5. We can also observe exponential

recovery after Hurricane Katrina as measured by the Louisiana Coincident Economic

Activity Index6 (the index is based on non-farm payroll employment, the unemployment

rate, average hours worked in manufacturing, and wages and salaries). However, this is a

long-term recovery over about one year and therefore presumably cannot be explained by

BI alone but potentially also reflects losses due to reconstruction efforts and capital stock

losses. To estimate a time scale for the exponential decay of the BI shock, we similarly use

unemployment as a proxy. The Federal Reserve Bank of New York found unemployment

claims in NY and NJ to rise due to Sandy with the number of initial claims showing a

roughly exponential decay (see Fig. 1 in Abel et al. (2013)7) after an initial peak. According

to this report, “both states saw employment rebound to above October (pre-Sandy) levels
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by the end of the year” 2012. We therefore fit our BI recovery to end after 60 days (see

Appendix A: Methods for details). This time scale is also in accordance with a Downtown

Alliance report8 which finds that over 95% of Manhattan office space was available again

after Sandy by the end of the year 2012.

Note that our notion of recovery does not include any concept of growth, i.e. we consider

recovery as completed once output quantities equal those before the disaster. Generally,

disasters can have long-term or even permanent effects9 and it has been shown that

tropical cyclones have long-term impacts on economic growth10 with effects lasting as

long as 20 years11. Unlike for fluvial floods, countries with higher development are not well

prepared against the impact of tropical cyclones and their associated long-term growth

losses12. Since we focus here on the short-term impacts, we do not model growth and

assume a constant baseline economy, resulting in much shorter recovery times.

We assume an initial production capacity reduction factor λ0 in the direct aftermath of

the disaster as the share of state GDP that is exposed to the disaster. We use reported high

water marks associated with the disaster to determine how severely individual states are

affected. We retrieve high water marks from the USGS Flood Event Viewer1. We consider

each county within a state as affected by the disaster if it has at least one reported high

water mark. We then calculate the relative GDP exposure, i.e. the initial production capacity

reduction λ0, of the entire state from

λ0 =
∑c∈C GDPc

GDPs
(1)

where GDPc is the GDP of an affected county from the set of all affected counties C and

GDPs is the overall state’s GDP.

While this approach to determine the initial production capacity reduction of a directly

affected state is a rather simple one, we believe that it is still sufficiently good to achieve a

realistic scenario of direct economic losses. Given that this initial reduction of production

capacity level only prevails for a very short time and then is gradually relieved by the

exponential recovery curve, we esteem variations in this value as less crucial for the

outcome of the simulations than the direct economic loss which determines how long the

production capacity reduction persists. For NY and NJ, we obtain initial production shock

of ∼ 80.2% and ∼ 69.3%, respectively. This matches observations rather well. According

to the Empire State Manufacturing Survey13 by the Federal Reserve Bank of New York,
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more than 90% of all businesses in the New York City area were shut down for at least

one day due to Hurricane Sandy. For example, the New York stock exchange was shut

down for two days after the hurricane1. The New York-Newark-Jersey City Metropolitan

Statistical Area (NYMSA) accounts for a 2012 GDP of about $1.4bn and counts mostly

to the GDP of New York and New Jersey (and a negligible fraction for Pennsylvania with

only one county). NY and NJ have a combined 2012 GDP of about $1.8bn. Using GDP as

a proxy for economic activity, we thus may assume that a 90% one-day shut down in the

NYMSA is equivalent to a 68.4% one-day shutdown for both states combined. However,

this number does not include businesses that were only partly disrupted and must hence

be considered a lower bound for economic disruption. Our estimates for New York and

New Jersey with 80.2% and 69.3% therefore seem reasonable for the day immediately

following the hurricane.

After the disaster, we assume exponential recovery of the economy back to 100% from

the initial production shock given by eq. (1). Reduction in productive capacity is then given

by

f (t) := 1 − λ0e−t/τ (2)

with initial shock λ0 and characteristic time scale τ. We assume that full recovery is given

at time tr once the shock has decayed to 0.1% or less, i.e. fr = f (tr ) ≥ 0.999. With a

prescribed recovery time tr , we thus can derive τ:

f (tr ) = fr = 1 − λ0e−tr/τ

⇒ τ = − tr
ln(1−fr

λ0
)

(3)

The fully parametrised curve for the reduction of production capacity is then given by

fλ0,fr (t) :=





1 − λ0e−t/τλ0,fr ,tr for t ≤ tr

1 for t > tr .
(4)

For the US states NY and NJ with recovery time tr = 60, this yields the production

capacity reduction curves shown in Supplementary Fig. 1. The initial production capacity

reduction values λ0 are listed in Supplementary Tbl. 1.

1https://www.theguardian.com/world/2012/oct/31/new-york-stock-exchange-opens-sandy
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Indirect and consumption losses

To simulate indirect and consumption losses, we use the dynamic agent-based model

Acclimate14. This model has been presented in different versions previously15;16;14 and

was used in studies regarding the higher-order economic losses from extreme weather

events17;18;19. We here use the latest model presented in Otto et al. (2017)14. In this model,

regional economic sectors are represented by individual agents that are interconnected

through trade flows. The resolution of these regions is on a state-level in case of the

United States, province-level in case of China and national level for all other regions of the

world, resulting in a total of 268 individual regions. The economy is split into 27 sectors,

including the final consumer as one sector without production output. All sectors of a region

that is directly affected by the hurricane are subjected to the same production reduction

curves as per eq. (4). Trade flows between the resulting total of 7,263 agents are taken

from a disaggregated20 version of the EORA multi-regional input-output dataset21. This

data set contains annual monetary flows between the agents from the year 2012. We

break this down to a monetary daily baseline flow by distributing equally over 365 days

which we refer to as baseline equilibrium flow. This is the state around which Acclimate

simulates deviations resulting from an externally enforced reduction of production capacity.

This production shock results in perturbations of demand, supply and prices within the

model, globally. The dynamics is a result from the profit maximisation that each individual

agent performs by optimising production levels, demand distribution to suppliers and

upstream demand to other agents. In this, increased demand from other agents can be

addressed by activation of idle production capacities, resulting in elevated production

prices. A comprehensive description of the model can be found in the original publication

by Otto et al. (2017)14.

For the present study, we look into the output variables of production, final consumption,

and communicated demands along the supply chains as well as associated prices. Using

the 2012 EORA dataset, the baseline flows must be considered influenced by the economic

shock of Hurricane Sandy. However, this influence is small compared to the total volume of

trade flows such that the introduced bias is negligible. For example, the impact of Hurricane

Sandy on GDP in remote regions cannot be found in historic data.
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While included in the simulations, for all calculations and analyses in this study, we

exclude the EORA regions of Belarus, Moldova, Sudan, and South Sudan since the data

quality for these regions is not reliable, especially with regards to final consumption.

Aggregate relative consumption changes ¯ΔCr in each simulated region r for the direct

aftermath of the hurricane are calculated from the simulated consumption levels as follows:

¯ΔCr = −1 +
1

(T − t0)c∗
r

T

∑
t=t0

c(t)
r (5)

where c(t)
r is the final consumption in region r at time step t , c∗r is the baseline consumption

and (T − t0) is the time of aggregation after the disaster.

Consumption prices

Consumers in the model, like other agents, purchase at a price which they propose to

producers together with their demand request. This reservation price is oriented towards

offer prices that producers advertise to their trade partners. The entirety of reservation

prices and the production quantity resulting from a producer’s optimization process deter-

mine the final production price. The latter in turn influences the offer price that producers

advertise. Therefore, in case of rising production prices, consumers also need to pay

higher prices to ensure that their demand will be fulfilled. Production prices and consumer

purchasing prices are therefore related. However, the measured consumption price is

buffered by storage inventories that fill up and thus smooth production prices. Hence, the

consumption price is an average of the goods’ prices currently in storage and therefore

averages production prices over a certain amount of time.

Capacity utilisation and demand exceedance

Capacity utilization that is defined as the ratio of actual output to the output that would

minimise production costs22. In the Acclimate model, the production output that would

minimise production costs is given by the baseline production level. Beyond this production

level, production costs increase super-linearly. However, for the directly affected regions of

NY and NJ, the production capacity is diminished due to the hurricane. We therefore need

to adjust the capacity utilization to the applied production capacity reduction. We calculate
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the change in capacity utilization u for region r at time step t from the applied production

shock (i.e., the reduction in production capacity) f , the production level X and the baseline

production level X ∗ as

u(t)
r =

X (t)
r

f (t)
r X ∗

r

− 1. (6)

Hence, this measure quantifies if and by how much a region is in a state of overpro-

duction, relative to the actual production capacity. In this, we need to adjust the baseline

production level X ∗ with the production capacity reduction factor fr in case of directly

affected regions. A positive value means that the region is in a state of overproduction,

causing production costs to increase super-linearly with the production quantity. Negative

values indicate proportionality between production quantities and production prices.

Similarly, we define the demand exceedance e for region r at time step t as

e(t)
r =

d (t)
r

f (t)
r X ∗

r

− 1, (7)

using the incoming demand d that the agent receives. Demand exceedance indicates

if fulfilling the entire incoming demand at a given time step would drive the agent into

overproduction (for positive values) or not (zero and negative values).

Sectorial and regional aggregation

Sectors in regions are represented by individual agents in the Acclimate model. Thus we

obtain simulated time series for each sector in every simulated region, individually. A time

series of quantity variable qir of agent ir is classified by its pair of sector i and region

r . However, to present comprehensive results, we aggregate time series for variables of

interest over sectors or regions. For this we aggregate the quantity variables over the

agents ensemble {ir}:

q{ir} = ∑
ir∈{ir}

qir (8)

to obtain the sum of quantity values q{ir}. Quantity variables are, for example, demand

quantities or production quantities.
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Aggregated price variables �p{ir}�, on the other hand, are calculated as the weighted

average over all prices pir of the individual agents ir :

�p{ir}� =
∑ir∈{ir} pir qir

∑ir∈{ir} qir
. (9)

We note that this aggregation can lead to apparent contradictions when considering,

for example, demand exceedance and capacity utilization of aggregated agents. For

example, in Fig. 5 the pooled region USA-OTH shows positive demand exceedance and

simultaneous low capacity utilization during the first days after the disaster. This is simply

a result of the aggregation that we perform over the US regions and their individual

sectors. Some agents receive less demand due to the upstream network effect and others

experience higher demand to compensate for NY and NJ production outages. While

production levels react proportionally to demand changes if the demand exceedance

is below zero, they are bound by supply or costs and potential revenue if the demand

exceedance is positive. Therefore, the average production for all non-affected US regions

is below baseline despite a positive average demand exceedance. However, the longer the

scarcity situation prevails, the more agents in the non-affected US receive elevated demand

and switch to overproduction, eventually resulting in an increased capacity utilization of

USA-OTH as well.

Consumer flexibility to price changes

Consumers with different income tend to have a diverse flexibility if prices change for

different commodities and services. This flexibility is integrated into our model by the

regionally and sectorally dependent parameter of consumption price elasticity. We divide

the regions used in our simulation into four income level groups: low, lower-middle, upper-

middle, high income level (Supplementary Tbl. 2). The classification of the income level

groups is based on the gross national income (GNI) per capita (GNIpc) of each country. We

use the annual, inflation-adjusted definition and classification of income level groups of the

World Bank for the year 201223. For this calibration, we only focus on average consumer

income and do not consider other socio-economic structures (education, regional wealth

distribution, etc.).
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To obtain empirical parameters, we use the target income elasticities of demand for

140 regions and 10 commodity classes24 of the Global Trade Analysis Project (GTAP)25.

The regional resolutions of EORA and GTAP are not identical. To address this, we set

the consumption price elasticities for non-GTAP-countries to the respective income level

group parameter. Similarly, the sectoral resolutions of EORA and GTAP are not identical

either. To handle this, we map EORA’s economic sectors to the GTAP commodity classes

and group them into three categories: vital, relevant and other (Supplementary Tbl. 3).

Using these two classification parameters — income level groups of regions and economic

relevance categories of sectors — we assign a specific consumption price elasticity from

the GTAP data sets26 for any tuple of income level and sector category (Supplementary

Tbl. 4).

With these price elasticities, flexibility to price changes increases with rising income.

Therefore, wealthier countries are more resilient against price fluctuations. At the same

time, consumers adapt less flexibly to price changes of more life essential goods and

services. Since there is little or no substitutability for EORA’s large and clearly distinguished

sectors (Supplementary Tbl. 3), we do not consider cross-sector elasticities.
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Appendix B: Supplementary figures and tables

Table of contents

Supplementary Figure 1: Production capacity reduction for Hurricane Sandy.

Supplementary Figure 2: Consumption change for all simulated regions over their import

and export volume with the US.

Supplementary Figure 3: Changes of consumption relative to baseline values with recovery

time variation.

Supplementary Figure 4: Changes of consumption relative to baseline values with initial

shock intensity variation.

Supplementary Figure 5: Global consumption changes after the hurricane with different

shock durations.

Supplementary Table 1: Recovery curve parameters.

Supplementary Table 2: Regions used in the simulations.

Supplementary Table 3: Sectors used in the simulations.

Supplementary Table 4: Consumption price elasticities per income level and sector cate-

gory.
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Supplementary Figure 1: Production capacity reduction for Hurricane Sandy. Time-

dependent factor with which the prduction capacity is multiplied, representing the economic

shock that results from the hurricane.
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Supplementary Figure 2: Consumption change for all simulated regions over their

import and export volume with the US. Consumption changes are cumulated for the

first 100 days after the hurricane. Size of the scatters indicates the consumption change

relative to what regions would consume under baseline conditions during this time. Green

and red colors indicate consumption gains and losses, respectively. a consumption change

over import volume from the US. b like panel a for export volume to the US. c absolute

consumption change over import volume from the US on a log-log scale. Dashed line is

the linear fit in the log-log space. d like panel c for export volume to the US.
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Supplementary Figure 3: Changes of consumption relative to baseline values with

recovery time variation. Same as Fig. 3 with longer recovery durations.
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Supplementary Figure 4: Changes of consumption relative to baseline values with

initial shock intensity variation. Same as Fig. 3 with slightly weaker and stronger initial

shock intensity.
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Supplementary Figure 5: Global consumption changes after the hurricane with dif-

ferent shock durations. Like Fig. 2 with longer BI recovery times. left column Global

map. right column Detailed zoom on the United States. a, b 60 days, c, d 80 days, e, f

100 days, g, h 120 days. Region shapefiles retrieved from GADM27.
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Supplementary Table 1: Recovery curve parameters.

State λ0 tr

New York 0.802032 60

New Jersey 0.693088 60
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Supplementary Table 2: Regions used in the simulations. Income level corresponds

to Gross National Income per capita (GNIpc) of 201223.

Income level 1: GNIpc < $ 1, 305

Income level 2: $ 1, 036 < GNIpc < $ 4, 085

Income level 3: $ 4, 086 < GNIpc < $ 12, 615

Income level 4: $ 12, 616 < GNIpc

ISO code Name Income level Geographic region Consumption change [%]

AFG Afghanistan 1 Asia 0.004

ALB Albania 3 Europe 0.010

DZA Algeria 3 Africa 0.013

AND Andorra 4 Europe 0.017

AGO Angola 3 Africa 0.018

ATG Antigua and Barbuda 4 North America 0.017

ARG Argentina 3 South America 0.008

ARM Armenia 2 Asia 0.009

ABW Aruba 4 South America 0.047

AUS Australia 4 Oceania 0.008

AUT Austria 4 Europe 0.014

AZE Azerbaijan 3 Asia 0.010

BHS Bahamas 4 North America 0.053

BHR Bahrain 4 Asia 0.029

BGD Bangladesh 1 Asia 0.005

BRB Barbados 4 North America 0.028

BLR Belarus 3 Europe 0.115

BEL Belgium 4 Europe 0.015

BLZ Belize 3 North America 0.016

BEN Benin 1 Africa 0.004

BMU Bermuda 4 North America 0.017

BTN Bhutan 2 Asia 0.008

BOL Bolivia 2 South America 0.015

BIH Bosnia and Herzegovina 3 Europe 0.013

BWA Botswana 3 Africa 0.008

BRA Brazil 3 South America 0.004

VGB British Virgin Islands 4 South America 0.026
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ISO code Name Income level Geographic region Consumption change [%]

BRN Brunei Darussalam 4 Asia 0.029

BGR Bulgaria 3 Europe 0.017

BFA Burkina Faso 1 Africa 0.005

BDI Burundi 1 Africa 0.001

KHM Cambodia 1 Asia 0.013

CMR Cameroon 2 Africa 0.006

CAN Canada 4 North America −0.053

CPV Cabo Verde 2 Africa 0.005

CYM Cayman Islands 4 South America 0.019

CAF Central African Republic 1 Africa 0.002

TCD Chad 1 Africa 0.005

CHL Chile 4 South America 0.010

CN.AH Anhui 3 China, Asia 0.019

CN.BJ Beijing 3 China, Asia 0.025

CN.CQ Chongqing 3 China, Asia 0.021

CN.FJ Fujian 3 China, Asia 0.024

CN.GS Gansu 3 China, Asia 0.025

CN.GD Guangdong 3 China, Asia 0.019

CN.GX Guangxi 3 China, Asia 0.020

CN.GZ Guizhou 3 China, Asia 0.024

CN.HA Hainan 3 China, Asia 0.031

CN.HB Hebei 3 China, Asia 0.017

CN.HL Heilongjiang 3 China, Asia 0.019

CN.HE Henan 3 China, Asia 0.017

CN.HU Hubei 3 China, Asia 0.018

CN.HN Hunan 3 China, Asia 0.018

CN.JS Jiangsu 3 China, Asia 0.020

CN.JX Jiangxi 3 China, Asia 0.020

CN.JL Jilin 3 China, Asia 0.020

CN.LN Liaoning 3 China, Asia 0.023

CN.NM Nei Mongol 3 China, Asia 0.025

CN.NX Ningxia Hui 3 China, Asia 0.034

CN.QH Qinghai 3 China, Asia 0.036

CN.SA Shaanxi 3 China, Asia 0.020

CN.SD Shandong 3 China, Asia 0.020
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ISO code Name Income level Geographic region Consumption change [%]

CN.SH Shanghai 3 China, Asia 0.024

CN.SX Shanxi 3 China, Asia 0.020

CN.SC Sichuan 3 China, Asia 0.017

CN.TJ Tianjin 3 China, Asia 0.027

CN.XJ Xinjiang Uygur 3 China, Asia 0.023

CN.XZ Xizang 3 China, Asia 0.046

CN.YN Yunnan 3 China, Asia 0.021

CN.ZJ Zhejiang 3 China, Asia 0.021

COL Colombia 3 South America 0.009

COG Republic Congo 2 Africa 0.009

CRI Costa Rica 3 North America 0.022

HRV Croatia 4 Europe 0.023

CUB Cuba 3 North America 0.007

CYP Cyprus 4 Europe 0.026

CZE Czech Republic 4 Europe 0.024

CIV Côte d’Ivoire 2 Africa 0.008

PRK North Korea 1 Asia 0.003

COD Democratic Republic Congo 1 Africa 0.008

DNK Denmark 4 Europe 0.014

DJI Djibouti 2 Africa 0.004

DOM Dominican Republic 3 North America 0.016

ECU Ecuador 3 South America 0.016

EGY Egypt 2 Africa 0.005

SLV El Salvador 2 North America 0.015

ERI Eritrea 1 Africa 0.002

EST Estonia 4 Europe 0.032

ETH Ethiopia 1 Africa 0.042

FJI Fiji 3 Oceania 0.025

FIN Finland 4 Europe 0.018

FRA France 4 Europe 0.007

PYF French Polynesia 4 Oceania 0.019

GAB Gabon 3 Africa 0.017

GMB Gambia 1 Africa 0.003

GEO Georgia 2 Asia 0.012

DEU Germany 4 Europe 0.006
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ISO code Name Income level Geographic region Consumption change [%]

GHA Ghana 2 Africa 0.012

GRC Greece 4 Europe 0.015

GRL Greenland 4 North America 0.014

GTM Guatemala 2 North America 0.011

GIN Guinea 1 Africa 0.007

GUY Guyana 2 South America 0.010

HTI Haiti 1 North America 0.007

HND Honduras 2 North America 0.017

HKG Hong Kong 4 Asia 0.017

HUN Hungary 3 Europe 0.015

ISL Iceland 4 Europe 0.039

IND India 2 Asia 0.005

IDN Indonesia 2 Asia 0.005

IRN Iran 3 Asia 0.005

IRQ Iraq 3 Asia 0.006

IRL Ireland 4 Europe 0.004

ISR Israel 4 Asia 0.016

ITA Italy 4 Europe 0.005

JAM Jamaica 3 North America 0.022

JPN Japan 4 Asia 0.004

JOR Jordan 3 Asia 0.022

KAZ Kazakhstan 3 Asia 0.006

KEN Kenya 1 Africa 0.008

KWT Kuwait 4 Asia 0.021

KGZ Kyrgyz Republic 1 Asia 0.010

LAO Lao PDR 2 Asia 0.005

LVA Latvia 4 Europe 0.029

LBN Lebanon 3 Asia 0.016

LSO Lesotho 2 Africa 0.014

LBR Liberia 1 Africa 0.004

LBY Libya 3 Africa 0.004

LIE Liechtenstein 4 Europe 0.000

LTU Lithuania 4 Europe 0.027

LUX Luxembourg 4 Europe 0.031

MAC Macao 4 Asia 0.045
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ISO code Name Income level Geographic region Consumption change [%]

MDG Madagascar 1 Africa 0.008

MWI Malawi 1 Africa 0.007

MYS Malaysia 3 Asia 0.009

MDV Maldives 3 Asia 0.025

MLI Mali 1 Africa 0.004

MLT Malta 4 Europe 0.040

MRT Mauritania 2 Africa 0.016

MUS Mauritius 3 Africa 0.018

MEX Mexico 3 North America −0.065

MCO Monaco 4 Europe 0.000

MNG Mongolia 2 Asia 0.019

MNE Montenegro 3 Europe 0.003

MAR Morocco 2 Africa 0.009

MOZ Mozambique 1 Africa 0.002

MMR Myanmar 1 Asia 0.001

NAM Namibia 3 Africa 0.010

NPL Nepal 1 Asia 0.010

NLD Netherlands 4 Europe 0.014

ANT Netherlands Antilles 4 Sout America 0.044

NCL New Caledonia 4 Oceania 0.022

NZL New Zealand 4 Oceania 0.017

NIC Nicaragua 2 North America 0.015

NER Niger 1 Africa 0.004

NGA Nigeria 2 Africa 0.009

NOR Norway 4 Europe 0.017

PSE West Bank and Gaza 2 Asia 0.008

OMN Oman 4 Asia 0.019

PAK Pakistan 2 Asia 0.005

PAN Panama 3 South America 0.023

PNG Papua New Guinea 2 Asia 0.010

PRY Paraguay 2 South America 0.012

PER Peru 3 South America 0.012

PHL Philippines 2 Asia −0.003

POL Poland 4 Europe 0.014

PRT Portugal 4 Europe 0.013
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ISO code Name Income level Geographic region Consumption change [%]

QAT Qatar 4 Asia 0.011

KOR South Korea 4 Asia 0.019

MDA Moldova 2 Europe 0.083

ROU Romania 3 Europe 0.009

RUS Russian Federation 4 Asia 0.008

RWA Rwanda 1 Africa 0.003

WSM Samoa 2 Oceania 0.005

SMR San Marino 4 Europe 0.015

STP São Tomé and Principe 2 Africa 0.002

SAU Saudi Arabia 4 Asia 0.020

SEN Senegal 2 Africa 0.006

SRB Serbia 3 Europe 0.007

SYC Seychelles 3 Africa 0.021

SLE Sierra Leone 1 Africa 0.005

SGP Singapore 4 Asia 0.007

SVK Slovak Republic 4 Europe 0.021

SVN Slovenia 4 Europe 0.024

SOM Somalia 1 Africa 0.000

ZAF South Africa 3 Africa 0.011

SDS South Sudan 1 Africa 0.000

ESP Spain 4 Europe 0.007

LKA Sri Lanka 2 Asia 0.008

SDN Sudan 2 Africa 0.000

SUR Suriname 3 South America 0.014

SWZ Swaziland 2 Africa 0.009

SWE Sweden 4 Europe 0.013

CHE Switzerland 4 Europe 0.012

SYR Syrian Arab Republic 2 Asia 0.007

TWN Taiwan 4 Asia 0.028

TJK Tajikistan 1 Asia 0.001

THA Thailand 3 Asia 0.008

MKD Macedonia 3 Europe 0.018

TGO Togo 1 Africa 0.008

TTO Trinidad and Tobago 4 South America 0.049

TUN Tunisia 3 Africa 0.011
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ISO code Name Income level Geographic region Consumption change [%]

TUR Turkey 3 Asia 0.008

TKM Turkmenistan 3 Asia 0.019

UGA Uganda 1 Africa 0.005

UKR Ukraine 2 Europe 0.009

ARE United Arab Emirates 4 Asia 0.020

GBR United Kingdom 4 Europe 0.009

TZA Tanzania 1 Africa 0.014

US.AL Alabama 4 USA, North America −0.078

US.AK Alaska 4 USA, North America 0.017

US.AZ Arizona 4 USA, North America −0.106

US.AR Arkansas 4 USA, North America −0.028

US.CA California 4 USA, North America −0.219

US.CO Colorado 4 USA, North America −0.108

US.CT Connecticut 4 USA, North America −0.099

US.DE Delaware 4 USA, North America 0.032

US.DC District of Columbia 4 USA, North America −0.031

US.FL Florida 4 USA, North America −0.172

US.GA Georgia 4 USA, North America −0.139

US.HI Hawaii 4 USA, North America −0.007

US.ID Idaho 4 USA, North America 0.035

US.IL Illinois 4 USA, North America −0.166

US.IN Indiana 4 USA, North America −0.115

US.IA Iowa 4 USA, North America −0.062

US.KS Kansas 4 USA, North America −0.054

US.KY Kentucky 4 USA, North America −0.074

US.LA Louisiana 4 USA, North America −0.097

US.ME Maine 4 USA, North America 0.047

US.MD Maryland 4 USA, North America −0.121

US.MA Massachusetts 4 USA, North America −0.139

US.MI Michigan 4 USA, North America −0.135

US.MN Minnesota 4 USA, North America −0.112

US.MS Mississippi 4 USA, North America −0.021

US.MO Missouri 4 USA, North America −0.105

US.MT Montana 4 USA, North America 0.073

US.NE Nebraska 4 USA, North America −0.022
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ISO code Name Income level Geographic region Consumption change [%]

US.NV Nevada 4 USA, North America −0.045

US.NH New Hampshire 4 USA, North America 0.021

US.NJ New Jersey 4 USA, North America −0.150

US.NM New Mexico 4 USA, North America −0.010

US.NY New York 4 USA, North America −0.196

US.NC North Carolina 4 USA, North America −0.139

US.ND North Dakota 4 USA, North America 0.050

US.OH Ohio 4 USA, North America −0.154

US.OK Oklahoma 4 USA, North America −0.071

US.OR Oregon 4 USA, North America −0.085

US.PA Pennsylvania 4 USA, North America −0.162

US.RI Rhode Island 4 USA, North America 0.051

US.SC South Carolina 4 USA, North America −0.073

US.SD South Dakota 4 USA, North America 0.073

US.TN Tennessee 4 USA, North America −0.108

US.TX Texas 4 USA, North America −0.200

US.UT Utah 4 USA, North America −0.046

US.VT Vermont 4 USA, North America 0.120

US.VA Virginia 4 USA, North America −0.140

US.WA Washington 4 USA, North America −0.133

US.WV West Virginia 4 USA, North America 0.016

US.WI Wisconsin 4 USA, North America −0.107

US.WY Wyoming 4 USA, North America 0.080

URY Uruguay 4 South America 0.018

UZB Uzbekistan 2 Asia 0.003

VUT Vanuatu 2 Oceania 0.007

VEN Venezuela 3 South America 0.006

VNM Vietnam 2 Asia 0.013

YEM Yemen 2 Asia 0.010

ZMB Zambia 2 Africa 0.007

ZWE Zimbabwe 1 Africa 0.026
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Supplementary Table 3: Sectors used in the simulations.

Code Name Category

AGRI Agriculture vital

FISH Fishing vital

MINQ Mining and quarrying other

GAST Hotels and restaurants other

WHOT Wholesale trade relevant

OTHE Others other

REPA Maintenance and repair other

RETT Retail trade relevant

FOOD Food and beverages vital

TEXL Textiles and wearing apparel relevant

TRAN Transport relevant

WOOD Wood and paper relevant

OILC Petroleum, chemical & non-metallic mineral products relevant

FINC Financial intermediation and business activities other

METL Metal products relevant

MACH Electrical and machinery relevant

TREQ Transport equipment relevant

MANU Other manufacturing relevant

REXI Re-export and re-import other

CONS Construction relevant

ADMI Public administration other

EDHE Education, health and other services vital

HOUS Private households other

COMM Post and telecommunications relevant

RECY Recycling other

ELWA Electricity, gas and water vital

FCON Final consumption relevant
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Supplementary Table 4: Consumption price elasticities per income level and sector

category. Values are based on GTAP26.

Income level

Sector category 1 2 3 4

vital -0.15 -0.2 -0.3 -0.45

relevant -0.2 -0.3 -0.4 -0.65

other -0.3 -0.4 -0.5 -0.75
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Appendix A.

The loss-propagation model Acclimate has also been used and described in previous
studies [1, 2, 3].

Appendix A.1. Population data for distribution of production

The population data to the corresponding disaster category heat stress, river floods and
tropical cyclones bases on the Population Count v4.11 of the GPW data [4] for the year
2015 and are aggregated to the resolution 1800′′ × 1800′′, 150′′ × 150′′ and 360′′ × 360′′,
respectively. These population data are used as proxies for the gridded production
distribution of a region. That means that the population share of a cell within a region
equals to the production share of these cell for this region. Thus, a disaster over a more
dense populated site results in a higher direct production losses than over a less dense
populated area. We use GADM data [5] to rasterize the same resolutions advanced in
coastal areas to deal with inaccuracies at shape boundaries.

Appendix A.2. Global climate models and representative concentration pathways

For projected climate scenarios we use data from four global climate models (GCMs)
from the CMIP5 [6] ensemble (HadGEM2-ES [7], IPSL-CM5A-LR [8], MIROC5 [9],
GFDL-ESM2M [10]), which are driven by the representative concentration pathways
(RCPs) 2.6 and 6.0. The results of the GCMs have been bias-corrected within ISIMIP
(project phase 2b) [11] using an observation-based data set basing on a trend-preserving
method [12]. As a result, extreme weather events are taken more into account in the time
series, which otherwise tends to be averaged out by GCMs. Thus, the daily weather data
are represented in the statistics over the ensemble, despite the fact, that there are not
historical values. For the next decades, the temporal evolution of the RCPs are mainly
determined due to the inertia of the climate system. We use two emissions pathways in
order to obtain a larger simulation ensemble.

Appendix A.3. Direct output losses due to heat stress

We use the empirical relationship of daily mean temperature and production derived
by Hsiang[13] to build a regional and sectoral production reduction function based on
heat stress. This enables us to generate direct output production losses within a regional
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sector from daily local mean temperatures. The productivity ps,r(t) of a grid cell r and
sector s exhibits a linear reduction αs (per ◦C) if the daily mean temperature Tr(t) at
day t surpasses 27◦ C. The affected sectors {s} are

• hotels and restaurants (−6.1 p.p./◦C),
• wholesale trade (−6.1 p.p./◦C),
• mining and quarrying (−4.2 p.p./◦C),
• and others (−2.2 p.p./◦C).

The unit p.p./◦C of the linear reduction αs is percent points per additional degree Celsius.
The empirical relations found [13] are only statistically significant for these sectors. The
perturbed productivity per cell and sector states as

ps,r(t) = 1− αs(Tr(t)− 27 ◦C) for Tr(t) ≥ 27 ◦C.

The perturbed productivity ps,R(t) per sector s of a region R is derived by aggregating
perturbed productivity of every cell r in this region R weighted by the corresponding
population distribution of Pr:

ps,R(t) =
∑

r∈R ps,r(t)Pr∑
r∈R Pr

.

We calculate the absolute output losses per region by multiplying the perturbed
productivity with the baseline production of the corresponding region.

Appendix A.4. Direct output losses due to river floods

For flood projections, we follow the method of Willner et al 2018 [14] for five hydrological
models, CLM45 [15], H08 [16], LPJmL [17], PCR-GLOBWB [18], and WaterGAP2 [19],
each of which is driven by the four GCMs for both RCPs (see above) resulting in an
ensemble of 40 model/RCP combinations. Their total daily runoff (on a 0.5° resolution)
is then further distributed along the river networks by the CaMa-Flood river routing
model (v3.4.4) [20] with a spatial resolution of 0.005°. This improves the accuracy of
peak river discharge compared to the direct use of the output from the hydrological
models [21]. To correct for regional biases in the models, we fit a Generalized Extreme
Value distribution to the time series of annual maximum discharge for the available
historic period (1971–2004) using L-moment estimators. This yields the return period
(in historic terms) for each event allowing to incorporate current, regionally distributed
flood protection level data given in that spatial unit. Here, we rasterize the “Merged
Layer” of the FLOPROS database [22], which incorporates physical infrastructure, policy
requirements, and model results to derive protection level data on a sub-national scale.
This threshold procedure implies that, when the protection level is exceeded, the flood
happens as if there was no protection in the first place, e.g. dams break. We then lookup
the return level, i.e. flood depth, corresponding to the return period in a MATSIRO [23]
model run driven by observed climate forcing [24]. Cells with a mean daily discharge

227



Ripple resonance amplifies economic welfare loss from weather extremes

of less than 0.1mm/d in 1971–2004 are excluded. After downscaling flood depth and
flooded area fraction to a 0.005° resolution, we re-aggregate to a 2.5′ resolution.

In order to derive local production outages from direct flood events (e.g. flooded
manufacture), we assume that production capacity is locally reduced by the same extend
as the corresponding cell is flooded, regardless of flood depth — the latter, of course,
has an effect on a flood’s destructive potential. To consider this, we assume that after
a flood event the direct production in the affected cells is exponentially (80% per day)
recovered if the flood depth was at least 0.5 m, i. e. after roughly 21 days 99% of baseline
production capacity of the cell is regained. Flooded regions with lower flood depth are
assumed to return to pre-flood production capacity immediately. As a proxy for the
distribution of production, we use the distribution of population. Accordingly, the flood
fraction of each cell times the population count on the same resolution [4] (constant at
2015 population count) yields daily time series of flood-affected people. For mapping
grid cells to regions, we use the GADM database [5] rasterized to 2.5′ and advanced
on coastal cells to incorporate coastal population. We use these numbers relative to
the total population per region as the production capacity reduction for a non-service
sector subset of all sectors given by the input-output data (17 out of 26 economic sectors,
given in Tbl. S1). All of these sectors are affected in equal measure with an 80% per day
recovery of the production.

Appendix A.5. Direct output losses due to tropical cyclones

Tropical cyclones impacts are based on a probabilistic tool to access regionally-calibrated,
high-resolution tropical cyclones landfall activity and associated societal risks as a
function of global warming [25]. It is based on novel tropical cyclone simulations using an
established dynamical downscaling method [26] in combination with a wind field model
[27] and conducted under the protocol of the latest round of the Intersectoral Impact
Model Intercomparison Project (ISIMIP2b) [11]. The dynamical downscaling method
is driven by CMIP5 climate input data based on four different GCMs (HadGEM2-ES,
MIROC5, IPSL-CM5A-LR, GFDL-ESM2M) and two RCPs (RCP2.6 and RCP6.0).
For each simulated year and GCM a total of 300 tropical cyclone tracks have been
produced. The number of simulated years varies depending on the GCM due to available
climate variables in the CMIP5 archive and constraints of the ISIMIP simulation protocol
(HadGEM2-ES: 1950-2100 (RCP2.6 & RCP6.0), MIROC5: 1861-2299 (RCP2.6), 1861-
2100 (RCP6.0), IPSL-CM5A-LR: 1861-2299 (RCP2.6), 1861-2100 (RCP6.0), GFDL-
ESM2M: 1861-2100 (RCP2.6 & RCP6.0)), where the corresponding RCP scenarios extend
the historical scenario after 2005, jointly referred to as warming scenarios below. Note
that ISIMIP provides access to the tropical cyclone simulations for research purposes
only and upon a reasonable request.

Raw tropical cyclone track data (historical observations based on the International
Best Track Archive for Climate Stewardship (IBTrACS v03r10) [28] and simulations)
are processed with a wind field model in order to equip tropical cyclone tracks with
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realistic size and intensity distribution according to the methodology used to produce the
Tropical Cyclone Exposure Database (TCE-DAT) [29, 30] on a global spatial grid with
360′′ × 360′′ resolution. This allows for a globally and historically consistent comparison
of tropical cyclone exposure across observations and simulations. Next, the full sample of
observed and simulated tropical cyclone wind field data is reduced to contain landfalling
events only, where we define landfall by exposure, i.e. if a given tropical cyclone produces
a minimum wind speed of above 33 knots above land. For each of the considered eight
world regions (East Pacific (EP), North Atlantic (NP), North Indian (NI), South Indian
East (SIE), South Indian West (SIW), West Pacific North (WPN), West Pacific South
(WPS), South Pacific (SP)) we then produce annual landfall time series for tropical
cyclone frequency (i.e. annual number of landfalls) and intensity (i.e. mean annual
maximum wind speed at landfall). For the southern hemisphere, where tropical cyclone
seasons range across two years, effective annual time series are created by shifting the
time stamp to cover a complete season, and dropping incomplete seasons from the
analysis. For calibration purposes of the probabilistic tool, a tropical cyclone landfall
is only counted once per region, i.e. multiple landfalls in different countries within a
region are accounted for, but are only recorded where the neglected, and recorded where
wind speed at landfall is maximum. The observational landfall time series are used to
calibrate simulated landfall time series as the provided tropical cyclone simulations are
not calibrated for this purpose. To do so, the total number of simulated landfalls as well
as the mean annual wind speed at landfall per region between 1950 and 2015 (1980-2015
for NI, SIE, SIW, SP due to limited reliability of observations prior to the satellite era)
are matched with observations. This provides a long-term average calibration of the
hazard in physical terms (not in terms of exposure) that conserves fluctuations around
the long-term mean caused by natural variability and stochasticity of landfall occurrence.
Let us iterate again, that the assumption of counting only single landfalls is only used for
calibration purposes and to avoid double-counting. The underlying simulated tropical
cyclone tracks are accounted for their full extend and may observe landfalls in different
countries.

To deduce how frequency and intensity of the simulated regional GCM- and RCP-
specific tropical cyclone landfall time series vary with global mean temperature (GMT)
change and large scale patterns of internal variability such as the El Nino Southern
Oscillation (ENSO), we regress the respective time series with time series for GMT
and ENSO, that are extracted from the respective variables (‘tas’ and ‘psl’) from the
underlying GCMs. Correlation between GMT and ENSO time series are avoided by
using a 21-year (3-month) running mean for GMT (ENSO) to capture long-term trends
(seasonal/annual variability). Frequency is regressed using Poisson regression; intensity
is regressed using ordinary least squares (OLS). We use a hierarchy of regressions to
eliminate insignificant contributions, whose presence might alter the significance of the
remaining climate indices. Depending on the region-GCM combination a substantial
fraction of landfall variability can be explained by GMT and ENSO, in particular
for landfall frequency. However, for some region-GCM combinations no or very little
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explained variance is associated with GMT and ENSO, in particular for landfall intensity.
This residual (or unexplained) variance is explicitly taken into account by the probabilistic
tropical cyclone tool in the following step, as the stochasticity of landfall remains an
essential characteristic of tropical cyclone activity.

Based on the functional dependence of simulated tropical cyclone landfall time
series and GMT and ENSO retrieved above, the probabilistic tool allows to draw an
arbitrary number of random tropical cyclone samples that mimic the number of tropical
cyclone landfalls and mean landfall intensity in a given region and year (with given
GMT and ENSO state). These samples are drawn from all available simulated tropical
cyclones with landfall for a given GCM and warming scenario in two steps: First, a
random sample without replacement of tropical cyclones by region is drawn according to
a Poisson distribution with expected number of landfalls prescribed by the functional
GMT and ENSO dependence. Second, the mean landfall intensity of this random sample
is compared to the expected mean landfall intensity, which is rooted in the tropical
cyclone track data analysis and the GMT and ENSO dependency considered above. If the
mean landfall intensity does not fall into the interval given by the expected mean landfall
intensity and the residual variation obtained from the intensity regression mentioned
above, the random sample is rejected and a new sample is drawn in step 1. If repeatedly
no representative sample can be drawn, the set of all landfalling tropical cyclones is
iteratively and randomly reduced by an increasing fraction of events with landfall speed
above (below) the expected mean landfall speed until the desired number of random
tropical cyclone samples for a given year, i.e. a given GMT and ENSO state, are obtained.
For the present work, we generated five tropical cyclone realizations for each year, basin,
GCM, and warming scenario.

Using the diagonal extension of the individual static temporally fixed tropical
cyclones wind footprints and assuming that the average translational speed of a tropical
storm is 15 km/h, we assigned each storm a landfall life span in days (usually between
3-5 days) to obtain a time resolved tropical cyclone evolution. Afterwards, these time-
resolved tropical cyclones are distributed randomly along the basin specific duration of
the tropical cyclone season within the season usual for the basin . Finally, all basins with
associated tropical cyclones are mapped onto a unified grid, resulting in daily global
wind maps of tropical cyclones on an 360′′ × 360′′ resolved grid for 20 years.

Using this gridded tropical cyclones time series we calculated the regional and
sectoral production outage. A wind speed higher than 64 kn results in a total production
outage of non-service sectors for the production within this cell (see above). We assume
that the direct production of a tropical cyclone affected cell recovers exponentially (80%
per day) if the maximum wind speed exceeds 96 kn (major tropical cyclones). Thus, those
affected production sites need about 21 days to recover 99% of their production capacity.
Cells impacted by tropical cyclones with a lower wind speed are assumed to return to
pre-disaster production capacity immediately. All non-service sectors are affected equally,
whereas we do not make additional assumptions about the service sectors, which fulfill a
broad and complex spectrum of operations, and leave them unaffected during the disaster.

230



Ripple resonance amplifies economic welfare loss from weather extremes

The total production reduction of a firm is proportional to the failed cells in a region
weighted by their total production share. Regional direct output losses are generated
from the absolute production reduction with respect to the baseline production.

Appendix A.6. Simulation ensemble

In our study we use four global climate models, two representative concentration pathways,
five hydrological models and five tropical cyclones realizations for our direct output loss
time series and subsequent comprehensive economic damage via Acclimate. Tbl. A1
shows which models are used for which disaster scenario and how many simulation runs
resulted.

Table A1. Simulation ensemble Table of disaster scenario with its corresponding
physical models and resulting ensemble number.

Scenarios of
Heat River Tropical Consecutive
stress floods cyclones disasters

Global climate models × × × ×
Representative concentration pathways × × × ×
Hydrological models × ×
Tropical cyclones realizations × ×

Resulting ensemble number 8 40 40 200

Each simulation run consists of 20 years (2020–2039). The accumulated absolute
direct output losses of single disaster scenarios can exceed the direct output losses of
consecutive disaster scenarios. This is due to the fact that production losses are capped
at the lower end: a firm cannot produce less than 0% of its baseline production. But it
may happen that the sum of the single production reductions of each disaster category
yield to a negative production. In consecutive disaster scenarios, such production remains
at 0% with respect to baseline. In the single disaster scenarios, the individual production
does not fall below this value, but rather accumulate to negative production after the
analysis. As a result, the sum of the single direct output losses and the direct losses of
consecutive disasters may differ. To ensure that the quantities of the simulated years are
as comparable as possible, we define a tolerance range (1.8%) within which the deviation
of annual direct losses must fall and exclude those that do not pass this threshold. For
this threshold none of the 4000 simulated years have to be excluded. A sensitivity
analysis depicts that economic ripple effects do not significantly change for different
thresholds of the tolerance range or rather fewer included simulated years (Fig. S6). It
is important to note that the direct losses of consecutive disaster events may be rather
smaller than those of aggregated single disaster scenarios. Nevertheless, we see the ripple
resonance effects, loss offset and amplification, for the former compared to the latter.
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Appendix A.7. Indirect production losses

With the agent-based loss-propagation model Acclimate [1] we calculate the dynamics of
the global trade and overall production and consumption changes due to extreme events.
The economic baseline network is thereby given by multi-regional input-output data
(see below). Acclimate calculates the behavior of regional sectors and consumers if the
baseline network is perturbed by direct production losses, which cause demand, supply,
or price shocks. Each regional sector – an economic agent at a node of the network –
tries to maximize its profit by choosing the optimal production level, distribution of
demand among its suppliers and upstream demand to others. Within the network,
storage inventories and transport delays may buffer supply shocks. If a regional sectors
faces higher demand, it can activate idle capacities in acceptance of additional production
costs, thus shifting prices. Important to note is that local prices change endogenously,
and mismatches of supply and demand resolve explicitly over time. In the disaster
aftermath, supply, demand, and production relax back to the unperturbed baseline.
The relaxation time is thereby determined by the market dynamics. The computed
production and consumption losses arise from price effects, demand surge as well as
supply shortages. A comprehensive model description of Acclimate is provided in Otto
et al 2017 [1].

Appendix A.8. Consumer price elasticity

The reactions of consumers to price shifts depend on the corresponding commodity or
service and on the economic background network. Thus, we implement a regional and
sectoral resolved consumer price elasticity in our model. We group the regions into four
income levels – low, lower-middle, upper-middle, high income level – depending on their
gross national income (GNI) per capita (GNIpc) (Tbl. S2). The flexibility to price rises
increases with increasing income. Therefore ,countries with a higher GNIpc are able
to react more resiliently to price changes. In this study we use the inflation-adjusted
income level classification provided by World Bank [31] for the year 2012.

The Global Trade Analysis Project (GTAP) [32] provides income elasticities of
demand for 140 regions and 10 commodity classes [33]. We map the economic sectors
used in Acclimate to the GTAP commodity classes in GTAP and group them into three
categories: vital, relevant, and other (see Tbl. S1). The consumer is less flexible to price
fluctuations for more life essential commodities than for luxury goods or services. Using
GTAP data set, we assign a specific consumer price elasticity to every pair of income
level and sector category (Tbl. A2). We assume low to no substitutability between the
large sector classes (Tbl. S1), thus we can neglect cross-sector elasticity.
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Table A2. Consumption price elasticities per income level and sector
category. Values are based on GTAP [34] for income levels low (1), lower-middle (2),
upper-middle (3), and high (4) income level.

Income level
Sector category 1 2 3 4

vital -0.15 -0.2 -0.3 -0.45
relevant -0.2 -0.3 -0.4 -0.65

other -0.3 -0.4 -0.5 -0.75

Appendix A.9. Economic network

We use the multi-regional input-output (MRIO) tables of the EORA simplified data
set of the year 2015 (v199.82) [35] as baseline trading network. Flows of commodities
or services between regional sectors are given as monetary flows in USD per year. We
remove flows smaller than 1 million USD/year and regional sectors with negative value
added from the network as well. We neglect a few regions (Belarus, Sudan, Moldova,
Zimbabwe) in our analyses, since the inaccurate data basis for this regions causes partially
unrealistic time series. Further, we disaggregate the United States of America and China
into 51 states and 32 provinces, respectively, due to their immense economic power.
For this we use the gross regional product data and a disaggregation algorithm [36].
In this study, we refer to a nation, US state or Chinese province as a ”region”. Every
economic sector in a region or ”regional sector” constitutes an individual economic agent,
a representative firm, in the loss-propagation model Acclimate. We use the EORA MRIO
table to calculate the baseline production of each regional sector. Overall, this baseline
economic network consists of 27 sectors (including one consumer sector) and 268 regions,
which results in 7, 236 agents (see Tbls. S1 and S2).
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Appendix B.

Appendix B.1. Table of contents

Fig. S1: Ensemble ranges of production and consumption changes for China, the EU,
and the USA.

Fig. S2: Annual consumption losses for the total impact over those for the (aggregated)
sum of independent impacts for countries with negative resonance amplification factor.

Fig. S3: Resonance amplification factors tend to fall with increasing direct output losses
relative to baseline production output.

Fig. S4: Countries with higher income tend to have positive resonance amplification
factors, whereas lower income countries tend to have a negative one.

Fig. S5: Economic ripple resonance for economic network of 2012 — consumption losses of
consecutive disasters are increased in comparison to losses of aggregated single disasters.

Fig. S6: Decreasing direct losses tolerance range yields to more constrained database
but no qualitative changes in economic ripple resonance effects.

Tbl. S1: Sectors used in the simulations.

Tbl. S2: Regions used in the simulations.

Tbl. S3: Resonance amplification factor and offset for regions of FUND.

Tbl. S4: Resonance amplification factor and offset for regions of GCAM.

Tbl. S5: Resonance amplification factor and offset for regions of IMAGE.

Tbl. S6: Resonance amplification factor and offset for regions of REMIND.

Tbl. S7: Resonance amplification factor and offset for regions of RICE.

Tbl. S8: Resonance amplification factor and offset for regions of WITCH.
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Appendix B.2. Supplement figures
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Fig. S1. Ensemble ranges of production and consumption changes for
China, the EU, and the USA. The EU which is less exposed increases production
to compensate for supply shortages which causes prices for consumers to rise. Orange
lines, boxes and whiskers indicate median changes estimates, the 25–75 and 5–95
percentile ranges, respectively. Data sets rely on consecutive disaster scenarios.
(A): Annual production change relative to baseline production for China, the EU, and
the USA. Changes are caused by direct output losses due to extreme events and by
indirect market effects, such as shifted demand. The EU is able to increase production,
while China has to reduce production.
(B): Annual consumption change relative to baseline consumption for China, the EU,
and the USA.
(C): Annual production price change for China, the EU, and the USA. Due to increased
demand the EU’s production price rise. China’s production price increases because of
strong production outages due to extreme events.
(D): Annual consumption price change relative to initial condition for China, the EU,
and the USA. Shifted demand leads to local price fluctuations. The loss of consumption
goods due to local production failure caused by weather extremes lead to supply
shortages and therefore price increases. The EU’s increased production, caused by
additional demand, further intensifies the price pressure on EU consumers.
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Fig. S2. Annual consumption losses for the total impact over those for
the (aggregated) sum of independent impacts for countries with negative
resonance amplification factor. Values for different countries are given in different
colors; Brazil (yellow), Canada (red), India (blue), Mexico (green), Russia (orange),
and Sweden (brown). Each data point represents the one year within ensemble. Losses
are relative to the (unperturbed) baseline consumption.
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Fig. S3. Resonance amplification factors tend to fall with increasing direct
output losses relative to baseline production output. Resonance amplification
factor (upper panels – (A), (B)) and offset (lower panels – (C), (D)) per relative (left
panels – (A), (C)) and absolute (right panels – (B), (D)) direct production loss per
national share of world production. Colors depict the national income level.
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Fig. S4. Countries with higher income tend to have positive resonance
amplification factors, whereas lower income countries tend to have a
negative one. Resonance amplification factor (upper panel – (A)) and offset (lower
panel – (B)) per national share of world production. Colors depict the national income
level.
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Fig. S5. Economic
ripple resonance for
economic network of
2012 — consumption
losses of consecutive
disasters are in-
creased in comparison
to losses of aggregated
single disasters.
(A), (B): Annual con-
sumption losses for the
total impact over those
for the (aggregated) sum
of independent impacts,
globally (A), grey dots)
as well as for China,
EU, and the USA (B),
coloured dots). Each
data point represents one
year within the ensemble.
Losses are relative to the
(unperturbed) baseline
consumption. The solid
lines depict the resonance
analysis with resonance
amplification factor A

and resonance offset C0.
(C): Resonance amplifi-
cation factor and offset
per country. The area
of each circle represents
the country’s share of the
world production, its color
depicts the geographic
region. A few extreme
outliers (of economically
small countries) are not
in the visual range.
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Fig. S6. Lowering the direct output loss tolerance range decreases the
number of used simulation years but does not change the amplification
factor and loss offset significantly. Annual total direct output losses have to lay
in the tolerance range of corresponding aggregated direct output losses, if they are to
be used in the consecutive analysis (cf. methods).
(A): Used data points to compare total and aggregated economic losses. Decreasing
tolerance range leads to fewer suitable annual data pairs. Maximum possible number
of annual data points is 4000 (≡ 100%). The exclusion of data pairs starts below a
tolerance range of 1.8%.
(B): Amplification factor due to economic ripple resonance of global economy (black),
China (red), the EU (blue) and the USA (orange) for fixed tolerance ranges of direct
output losses. Shadow area corresponds to the likely range (16.7 to 83.3 percentiles).
(C): Loss offset due to economic ripple resonance of global economy (black), China (red),
the EU (blue) and the USA (orange) for fixed tolerance ranges of direct production
losses. Shadow area corresponds to the likely range (16.7 to 83.3 percentiles).
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Appendix B.3. Supplement table
Table S1. Sectors used in the simulations.

Affected by
Code Name Category Heat stress River floods Trop. cycl.

AGRI Agriculture vital × ×
FISH Fishing vital × ×
MINQ Mining and quarrying other × × ×
GAST Hotels and restaurants other ×
WHOT Wholesale trade relevant × × ×
OTHE Others other ×
REPA Maintenance and Repair other × ×
RETT Retail Trade relevant × ×
FOOD Food and Beverages vital × ×
TEXL Textiles and Wearing Apparel relevant × ×
TRAN Transport relevant × ×
WOOD Wood and Paper relevant × ×
OILC Petroleum, Chemical & Non-

Metallic Mineral Products
relevant × ×

FINC Financial Intermediation & Busi-
ness Activities

other

METL Metal Products relevant × ×
MACH Electrical and Machinery relevant × ×
TREQ Transport Equipment relevant × ×
MANU Other Manufacturing relevant × ×
REXI Re-export and Re-import other
CONS Construction relevant × ×
ADMI Public Administration other
EDHE Education, Health and Other

Services
vital

HOUS Private Households other
COMM Post and Telecommunications relevant
RECY Recycling other
ELWA Electricity, Gas and Water vital × ×
FCON Final consumption relevant
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Table S2. Regions used in the simulations. Income level corresponds to Gross
National Income per capita (GNIpc) of 2012.
Income level 1 (”low income”): GNIpc < 1, 305 USD
Income level 2 (”lower-middle income”): 1, 036 USD < GNIpc < 4, 085 USD
Income level 3 (”upper-middle income”): 4, 086 USD < GNIpc < 12, 615 USD
Income level 4 (”high income”): 12, 616 USD < GNIpc
Ripple resonance is expressed by resonance offset C0 and resonance amplification factor
A.

ISO3 Name Income Continent Amplification Resonance
code of region level factor A offset C0

AFG Afghanistan 1 Asia −20.5 (±0.2)% 0.029 (±0.001)%
ALB Albania 3 Europe 12.8 (±0.6)% 0.022 (±0.001)%
DZA Algeria 3 Africa 14.0 (±0.8)% 0.011 (±0.001)%
AND Andorra 4 Europe 1.1 (±1.4)% 0.041 (±0.001)%
AGO Angola 3 Africa 2.7 (±0.6)% 0.025 (±0.001)%
ATG Antigua and Barbuda 4 N. America −11.0 (±0.8)% 0.063 (±0.001)%
ARG Argentina 3 S. America −7.9 (±0.3)% 0.035 (±0.001)%
ARM Armenia 2 Asia 18.4 (±0.9)% 0.028 (±0.001)%
ABW Aruba 4 S. America 2.7 (±1.4)% 0.091 (±0.001)%
AUS Australia 4 Oceania 5.1 (±1.0)% 0.032 (±0.002)%
AUT Austria 4 Europe 16.7 (±0.7)% 0.011 (±0.001)%
AZE Azerbaijan 3 Asia −1.4 (±0.5)% 0.028 (±0.001)%
BHS Bahamas 4 N. America 0.7 (±0.5)% 0.058 (±0.001)%
BHR Bahrain 4 Asia 18.4 (±1.3)% 0.069 (±0.001)%
BGD Bangladesh 1 Asia −3.4 (±0.3)% 0.018 (±0.001)%
BRB Barbados 4 N. America −20.0 (±1.0)% 0.111 (±0.001)%
BLR Belarus 3 Europe —- —-
BEL Belgium 4 Europe 21.4 (±0.8)% 0.019 (±0.001)%
BLZ Belize 3 N. America −0.1 (±0.2)% 0.036 (±0.001)%
BEN Benin 1 Africa −3.2 (±0.4)% 0.037 (±0.002)%
BMU Bermuda 4 N. America −9.4 (±1.4)% 0.038 (±0.001)%
BTN Bhutan 2 Asia −0.3 (±0.8)% 0.032 (±0.001)%
BOL Bolivia 2 S. America −10.5 (±0.7)% 0.081 (±0.003)%
BIH Bosnia and Herzegovina 3 Europe 9.5 (±0.9)% 0.024 (±0.001)%
BWA Botswana 3 Africa 25.1 (±1.1)% 0.010 (±0.001)%
BRA Brazil 3 S. America −9.5 (±0.7)% 0.055 (±0.003)%
VGB British Virgin Islands 0 S. America −77.6 (±0.6)% 0.024 (±0.001)%
BRN Brunei Darussalam 4 Asia −31.6 (±1.3)% 0.063 (±0.001)%
BGR Bulgaria 3 Europe 26.7 (±1.2)% 0.037 (±0.001)%
BFA Burkina Faso 1 Africa −29.7 (±0.5)% 0.082 (±0.001)%
BDI Burundi 1 Africa −0.6 (±0.1)% 0.007 (±0.001)%
KHM Cambodia 1 Asia −4.8 (±0.3)% 0.048 (±0.001)%
CMR Cameroon 2 Africa −25.9 (±0.4)% 0.076 (±0.001)%
CAN Canada 4 N. America −9.4 (±0.6)% 0.065 (±0.002)%
CPV Cabo Verde 2 Africa −2.7 (±1.0)% 0.022 (±0.001)%
CYM Cayman Islands 4 S. America 1.1 (±0.4)% 0.039 (±0.001)%
CAF Central African Republic 1 Africa −2.6 (±0.1)% 0.018 (±0.001)%
TCD Chad 1 Africa −21.9 (±0.6)% 0.266 (±0.009)%
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CHL Chile 4 S. America 18.0 (±0.8)% 0.029 (±0.001)%
CN.AH Anhui 3 China 27.5 (±1.2)% 0.073 (±0.001)%
CN.BJ Beijing 3 China 28.3 (±1.2)% 0.100 (±0.001)%
CN.CQ Chongqing 3 China 28.2 (±1.4)% 0.083 (±0.001)%
CN.FJ Fujian 3 China 27.5 (±1.1)% 0.096 (±0.001)%
CN.GS Gansu 3 China 13.1 (±2.1)% 0.106 (±0.001)%
CN.GD Guangdong 3 China 21.3 (±0.8)% 0.074 (±0.001)%
CN.GX Guangxi 3 China 28.2 (±1.3)% 0.081 (±0.001)%
CN.GZ Guizhou 3 China 24.9 (±1.7)% 0.096 (±0.001)%
CN.HA Hainan 3 China −17.8 (±2.4)% 0.094 (±0.003)%
CN.HB Hebei 3 China 25.8 (±1.0)% 0.066 (±0.001)%
CN.HL Heilongjiang 3 China 28.1 (±1.4)% 0.084 (±0.001)%
CN.HE Henan 3 China 24.4 (±1.0)% 0.062 (±0.001)%
CN.HU Hubei 3 China 25.9 (±1.0)% 0.067 (±0.001)%
CN.HN Hunan 3 China 26.0 (±1.1)% 0.067 (±0.001)%
CN.JS Jiangsu 3 China 21.4 (±0.8)% 0.075 (±0.001)%
CN.JX Jiangxi 3 China 28.2 (±1.3)% 0.081 (±0.001)%
CN.JL Jilin 3 China 27.9 (±1.5)% 0.087 (±0.001)%
CN.LN Liaoning 3 China 27.0 (±1.1)% 0.093 (±0.001)%
CN.NM Nei Mongol 3 China 29.3 (±1.3)% 0.109 (±0.001)%
CN.NX Ningxia Hui 3 China −31.4 (±2.4)% 0.079 (±0.004)%
CN.QH Qinghai 3 China −40.7 (±2.4)% 0.066 (±0.004)%
CN.SA Shaanxi 3 China 28.1 (±1.3)% 0.079 (±0.001)%
CN.SD Shandong 3 China 22.0 (±0.8)% 0.076 (±0.001)%
CN.SH Shanghai 3 China 27.7 (±1.1)% 0.097 (±0.001)%
CN.SX Shanxi 3 China 27.2 (±1.5)% 0.090 (±0.001)%
CN.SC Sichuan 3 China 25.7 (±1.0)% 0.066 (±0.001)%
CN.TJ Tianjin 3 China 29.4 (±1.4)% 0.113 (±0.001)%
CN.XJ Xinjiang Uygur 3 China 22.3 (±1.8)% 0.099 (±0.001)%
CN.XZ Xizang 3 China −68.7 (±2.2)% −0.004 (±0.006)%
CN.YN Yunnan 3 China 27.7 (±1.5)% 0.088 (±0.001)%
CN.ZJ Zhejiang 3 China 24.2 (±0.9)% 0.083 (±0.001)%
COL Colombia 3 S. America 0.6 (±0.3)% 0.024 (±0.001)%
COG Republic Congo 2 Africa 1.2 (±0.6)% 0.038 (±0.001)%
CRI Costa Rica 3 N. America 9.1 (±0.6)% 0.033 (±0.001)%
HRV Croatia 4 Europe 17.3 (±1.1)% 0.047 (±0.001)%
CUB Cuba 3 N. America 4.7 (±0.4)% 0.022 (±0.001)%
CYP Cyprus 4 Europe 10.8 (±0.9)% 0.057 (±0.001)%
CZE Czech Republic 4 Europe 25.0 (±1.1)% 0.040 (±0.001)%
CIV Côte d’Ivoire 2 Africa −4.1 (±0.5)% 0.030 (±0.001)%
PRK North Korea 1 Asia −7.6 (±1.2)% 0.063 (±0.001)%
COD Democratic Republic Congo 1 Africa −15.0 (±0.5)% 0.047 (±0.001)%
DNK Denmark 4 Europe 18.4 (±0.8)% 0.021 (±0.001)%
DJI Djibouti 2 Africa −4.9 (±0.8)% 0.101 (±0.010)%
DOM Dominican Republic 3 N. America 6.0 (±0.4)% 0.029 (±0.001)%
ECU Ecuador 3 S. America 9.4 (±0.5)% 0.027 (±0.001)%
EGY Egypt 2 Africa −25.6 (±0.4)% 0.067 (±0.001)%

243



Ripple resonance amplifies economic welfare loss from weather extremes

ISO3 Name Income Continent Amplification Resonance
code of region level factor A offset C0

SLV El Salvador 2 N. America 2.2 (±0.3)% 0.034 (±0.001)%
ERI Eritrea 1 Africa −6.8 (±0.5)% 0.042 (±0.003)%
EST Estonia 4 Europe 11.4 (±0.4)% 0.076 (±0.001)%
ETH Ethiopia 1 Africa 42.2 (±3.5)% 0.158 (±0.005)%
FJI Fiji 3 Oceania −32.0 (±1.4)% 0.058 (±0.001)%
FIN Finland 4 Europe −9.8 (±0.1)% 0.062 (±0.001)%
FRA France 4 Europe 4.3 (±0.4)% 0.022 (±0.001)%
PYF French Polynesia 4 Oceania 8.4 (±1.2)% 0.056 (±0.001)%
GAB Gabon 3 Africa 3.2 (±0.3)% 0.020 (±0.001)%
GMB Gambia 1 Africa −9.7 (±0.3)% 0.074 (±0.003)%
GEO Georgia 2 Asia 10.4 (±1.0)% 0.032 (±0.001)%
DEU Germany 4 Europe 17.2 (±0.6)% 0.001 (±0.001)%
GHA Ghana 2 Africa −8.4 (±0.4)% 0.052 (±0.001)%
GRC Greece 4 Europe 5.3 (±0.4)% 0.030 (±0.001)%
GRL Greenland 4 N. America −42.1 (±1.2)% 0.017 (±0.001)%
GTM Guatemala 2 N. America 5.0 (±0.4)% 0.020 (±0.001)%
GIN Guinea 1 Africa −2.9 (±0.2)% 0.023 (±0.001)%
GUY Guyana 2 S. America −1.8 (±0.4)% 0.033 (±0.001)%
HTI Haiti 1 N. America −6.2 (±0.2)% 0.020 (±0.001)%
HND Honduras 2 N. America −0.1 (±0.3)% 0.037 (±0.001)%
HKG Hong Kong 4 Asia 26.5 (±0.9)% 0.098 (±0.001)%
HUN Hungary 3 Europe −11.3 (±0.3)% 0.051 (±0.001)%
ISL Iceland 4 Europe 25.5 (±1.6)% 0.058 (±0.001)%
IND India 2 Asia −17.9 (±0.4)% 0.073 (±0.001)%
IDN Indonesia 2 Asia 0.2 (±0.5)% 0.018 (±0.001)%
IRN Iran 3 Asia −3.1 (±0.5)% 0.033 (±0.001)%
IRQ Iraq 3 Asia −35.7 (±0.5)% 0.102 (±0.001)%
IRL Ireland 4 Europe 10.0 (±0.6)% 0.039 (±0.001)%
ISR Israel 4 Asia 22.1 (±0.9)% 0.010 (±0.001)%
ITA Italy 4 Europe 12.2 (±0.5)% 0.002 (±0.001)%
JAM Jamaica 3 N. America 4.4 (±0.8)% 0.049 (±0.001)%
JPN Japan 4 Asia 2.7 (±0.3)% 0.010 (±0.001)%
JOR Jordan 3 Asia 28.0 (±1.0)% 0.056 (±0.001)%
KAZ Kazakhstan 3 Asia −12.5 (±0.3)% 0.031 (±0.001)%
KEN Kenya 1 Africa −13.0 (±0.2)% 0.030 (±0.001)%
KWT Kuwait 4 Asia −18.8 (±1.1)% 0.264 (±0.010)%
KGZ Kyrgyz Republic 1 Asia 3.7 (±0.9)% 0.034 (±0.001)%
LAO Lao PDR 2 Asia 2.4 (±0.3)% 0.037 (±0.001)%
LVA Latvia 4 Europe 12.2 (±0.5)% 0.053 (±0.001)%
LBN Lebanon 3 Asia 26.3 (±1.2)% 0.042 (±0.001)%
LSO Lesotho 2 Africa −19.3 (±2.1)% 0.056 (±0.001)%
LBR Liberia 1 Africa −0.4 (±0.2)% 0.011 (±0.001)%
LBY Libya 3 Africa 7.5 (±0.6)% 0.022 (±0.001)%
LIE Liechtenstein 4 Europe 0.2 (±0.1)% 0.001 (±0.001)%
LTU Lithuania 4 Europe −6.9 (±1.3)% 0.072 (±0.001)%
LUX Luxembourg 4 Europe 37.2 (±1.5)% 0.049 (±0.001)%
MAC Macao 4 Asia 25.4 (±1.8)% 0.098 (±0.001)%
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MDG Madagascar 1 Africa 12.9 (±0.4)% 0.023 (±0.001)%
MWI Malawi 1 Africa −0.8 (±0.3)% 0.024 (±0.001)%
MYS Malaysia 3 Asia 9.5 (±0.5)% 0.022 (±0.002)%
MDV Maldives 3 Asia 2.3 (±0.5)% 0.064 (±0.001)%
MLI Mali 1 Africa −22.4 (±0.5)% 0.244 (±0.006)%
MLT Malta 4 Europe 29.2 (±1.9)% 0.092 (±0.001)%
MRT Mauritania 2 Africa −100.1 (±0.4)% 0.713 (±0.010)%
MUS Mauritius 3 Africa 9.8 (±1.1)% 0.069 (±0.001)%
MEX Mexico 3 N. America −0.2 (±0.5)% 0.024 (±0.001)%
MCO Monaco 4 Europe 15.3 (±0.6)% 0.000 (±0.001)%
MNG Mongolia 2 Asia −13.4 (±0.7)% 0.053 (±0.001)%
MNE Montenegro 3 Europe 4.2 (±0.4)% 0.015 (±0.001)%
MAR Morocco 2 Africa 23.0 (±0.8)% 0.004 (±0.001)%
MOZ Mozambique 1 Africa 10.1 (±0.3)% 0.004 (±0.001)%
MMR Myanmar 1 Asia −7.4 (±0.1)% 0.070 (±0.002)%
NAM Namibia 3 Africa 16.6 (±1.1)% 0.025 (±0.001)%
NPL Nepal 1 Asia −11.5 (±0.9)% 0.039 (±0.001)%
NLD Netherlands 4 Europe 23.2 (±0.8)% 0.014 (±0.001)%
ANT Netherlands Antilles 0 Europe −7.9 (±2.0)% 0.119 (±0.004)%
NCL New Caledonia 4 Oceania −6.7 (±1.2)% 0.057 (±0.001)%
NZL New Zealand 4 Oceania 20.5 (±1.2)% 0.044 (±0.001)%
NIC Nicaragua 2 N. America −0.1 (±0.2)% 0.036 (±0.001)%
NER Niger 1 Africa −13.2 (±0.9)% 0.185 (±0.013)%
NGA Nigeria 2 Africa −34.4 (±0.4)% 0.056 (±0.001)%
NOR Norway 4 Europe 15.3 (±0.7)% 0.009 (±0.002)%
PSE West Bank and Gaza 2 Asia 10.3 (±0.6)% 0.023 (±0.001)%
OMN Oman 4 Asia −10.2 (±1.0)% 0.117 (±0.004)%
PAK Pakistan 2 Asia −20.0 (±0.3)% 0.066 (±0.001)%
PAN Panama 3 S. America 3.7 (±0.5)% 0.049 (±0.001)%
PNG Papua New Guinea 2 Asia −14.7 (±1.0)% 0.046 (±0.001)%
PRY Paraguay 2 S. America −7.9 (±0.5)% 0.068 (±0.002)%
PER Peru 3 S. America 12.5 (±0.6)% 0.018 (±0.001)%
PHL Philippines 2 Asia −1.2 (±0.3)% 0.019 (±0.001)%
POL Poland 4 Europe 3.3 (±0.6)% 0.047 (±0.001)%
PRT Portugal 4 Europe 21.5 (±0.9)% 0.010 (±0.001)%
QAT Qatar 4 Asia −24.4 (±1.1)% 0.294 (±0.011)%
KOR South Korea 4 Asia 23.0 (±0.6)% −0.016 (±0.002)%
MDA Moldova 2 Europe —- —-
ROU Romania 3 Europe −8.8 (±0.4)% 0.048 (±0.001)%
RUS Russian Federation 4 Asia −6.3 (±0.5)% 0.047 (±0.001)%
RWA Rwanda 1 Africa −3.6 (±0.1)% 0.015 (±0.001)%
WSM Samoa 2 Oceania −2.2 (±0.4)% 0.019 (±0.001)%
SMR San Marino 4 Europe −4.3 (±0.8)% 0.037 (±0.001)%
STP São Tomé and Principe 2 Africa 10.4 (±0.6)% 0.010 (±0.001)%
SAU Saudi Arabia 4 Asia −19.6 (±1.2)% 0.115 (±0.004)%
SEN Senegal 2 Africa −3.4 (±0.3)% 0.043 (±0.002)%
SRB Serbia 3 Europe −7.9 (±0.2)% 0.035 (±0.001)%
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SYC Seychelles 3 Africa 6.0 (±0.6)% 0.055 (±0.001)%
SLE Sierra Leone 1 Africa −3.8 (±0.2)% 0.027 (±0.001)%
SGP Singapore 4 Asia 22.1 (±0.7)% 0.020 (±0.002)%
SVK Slovak Republic 4 Europe 14.3 (±0.8)% 0.036 (±0.002)%
SVN Slovenia 4 Europe 18.8 (±1.0)% 0.047 (±0.001)%
SOM Somalia 1 Africa −3.7 (±0.3)% 0.035 (±0.005)%
ZAF South Africa 3 Africa 31.3 (±1.1)% 0.012 (±0.001)%
SSD South Sudan 1 Africa −0.4 (±0.1)% 0.009 (±0.001)%
ESP Spain 4 Europe 8.3 (±0.4)% 0.006 (±0.002)%
LKA Sri Lanka 2 Asia 5.7 (±0.5)% 0.019 (±0.001)%
SDN Sudan 2 Africa —- —-
SUR Suriname 3 S. America 1.6 (±0.1)% 0.051 (±0.001)%
SWZ Swaziland 2 Africa −88.5 (±1.0)% 0.066 (±0.001)%
SWE Sweden 4 Europe 12.3 (±0.7)% 0.030 (±0.001)%
CHE Switzerland 4 Europe 22.6 (±0.9)% 0.018 (±0.001)%
SYR Syrian Arab Republic 2 Asia 5.0 (±0.6)% 0.022 (±0.001)%
TWN Taiwan 4 Asia 24.7 (±0.9)% 0.021 (±0.001)%
TJK Tajikistan 1 Asia 1.5 (±0.9)% 0.034 (±0.001)%
THA Thailand 3 Asia 4.8 (±0.4)% 0.015 (±0.002)%
MKD Macedonia 3 Europe 13.3 (±0.8)% 0.041 (±0.001)%
TGO Togo 1 Africa −7.1 (±0.3)% 0.063 (±0.002)%
TTO Trinidad and Tobago 4 S. America −22.0 (±1.5)% 0.094 (±0.001)%
TUN Tunisia 3 Africa 26.6 (±1.0)% 0.019 (±0.001)%
TUR Turkey 3 Asia 11.5 (±0.6)% 0.007 (±0.001)%
TKM Turkmenistan 3 Asia −27.5 (±0.5)% 0.053 (±0.001)%
UGA Uganda 1 Africa −6.7 (±0.1)% 0.032 (±0.001)%
UKR Ukraine 2 Europe −9.2 (±0.2)% 0.041 (±0.001)%
ARE United Arab Emirates 4 Asia 5.4 (±0.9)% 0.058 (±0.003)%
GBR United Kingdom 4 Europe 10.0 (±0.5)% 0.014 (±0.001)%
TZA Tanzania 1 Africa −5.5 (±0.3)% 0.048 (±0.001)%
US.AL Alabama 4 USA 16.2 (±1.3)% 0.056 (±0.001)%
US.AK Alaska 4 USA −12.6 (±1.5)% 0.063 (±0.001)%
US.AZ Arizona 4 USA 17.5 (±1.2)% 0.050 (±0.001)%
US.AR Arkansas 4 USA 10.7 (±1.4)% 0.066 (±0.001)%
US.CA California 4 USA 14.2 (±0.9)% 0.030 (±0.001)%
US.CO Colorado 4 USA 17.7 (±1.2)% 0.048 (±0.001)%
US.CT Connecticut 4 USA 17.3 (±1.3)% 0.052 (±0.001)%
US.DE Delaware 4 USA −3.0 (±1.5)% 0.068 (±0.001)%
US.DC District of Columbia 4 USA 11.0 (±1.4)% 0.065 (±0.001)%
US.FL Florida 4 USA 16.5 (±1.0)% 0.036 (±0.001)%
US.GA Georgia 4 USA 17.6 (±1.1)% 0.042 (±0.001)%
US.HI Hawaii 4 USA 2.2 (±1.5)% 0.069 (±0.001)%
US.ID Idaho 4 USA −4.7 (±1.5)% 0.068 (±0.001)%
US.IL Illinois 4 USA 16.8 (±1.0)% 0.037 (±0.001)%
US.IN Indiana 4 USA 17.8 (±1.2)% 0.047 (±0.001)%
US.IA Iowa 4 USA 15.4 (±1.3)% 0.059 (±0.001)%
US.KS Kansas 4 USA 13.9 (±1.4)% 0.062 (±0.001)%
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US.KY Kentucky 4 USA 15.9 (±1.3)% 0.057 (±0.001)%
US.LA Louisiana 4 USA 17.1 (±1.3)% 0.053 (±0.001)%
US.ME Maine 4 USA −9.9 (±1.5)% 0.065 (±0.001)%
US.MD Maryland 4 USA 17.8 (±1.2)% 0.046 (±0.001)%
US.MA Massachusetts 4 USA 17.6 (±1.1)% 0.042 (±0.001)%
US.MI Michigan 4 USA 17.6 (±1.1)% 0.042 (±0.001)%
US.MN Minnesota 4 USA 17.7 (±1.2)% 0.048 (±0.001)%
US.MS Mississippi 4 USA 8.6 (±1.5)% 0.067 (±0.001)%
US.MO Missouri 4 USA 17.6 (±1.2)% 0.049 (±0.001)%
US.MT Montana 4 USA −19.8 (±1.5)% 0.057 (±0.001)%
US.NE Nebraska 4 USA 9.9 (±1.4)% 0.066 (±0.001)%
US.NV Nevada 4 USA 13.2 (±1.4)% 0.063 (±0.001)%
US.NH New Hampshire 4 USA −0.5 (±1.5)% 0.069 (±0.001)%
US.NJ New Jersey 4 USA 17.4 (±1.1)% 0.040 (±0.001)%
US.NM New Mexico 4 USA 5.8 (±1.5)% 0.069 (±0.001)%
US.NY New York 4 USA 15.3 (±0.9)% 0.033 (±0.001)%
US.NC North Carolina 4 USA 17.5 (±1.1)% 0.042 (±0.001)%
US.ND North Dakota 4 USA −11.0 (±1.5)% 0.065 (±0.001)%
US.OH Ohio 4 USA 17.3 (±1.1)% 0.039 (±0.001)%
US.OK Oklahoma 4 USA 15.8 (±1.3)% 0.058 (±0.001)%
US.OR Oregon 4 USA 16.6 (±1.3)% 0.055 (±0.001)%
US.PA Pennsylvania 4 USA 17.0 (±1.0)% 0.038 (±0.001)%
US.RI Rhode Island 4 USA −11.1 (±1.5)% 0.064 (±0.001)%
US.SC South Carolina 4 USA 16.2 (±1.3)% 0.056 (±0.001)%
US.SD South Dakota 4 USA −18.5 (±1.5)% 0.058 (±0.001)%
US.TN Tennessee 4 USA 17.7 (±1.2)% 0.048 (±0.001)%
US.TX Texas 4 USA 15.0 (±0.9)% 0.032 (±0.001)%
US.UT Utah 4 USA 13.8 (±1.4)% 0.062 (±0.001)%
US.VT Vermont 4 USA −40.2 (±1.4)% 0.029 (±0.002)%
US.VA Virginia 4 USA 17.6 (±1.1)% 0.042 (±0.001)%
US.WA Washington 4 USA 17.7 (±1.1)% 0.043 (±0.001)%
US.WV West Virginia 4 USA −0.9 (±1.5)% 0.069 (±0.001)%
US.WI Wisconsin 4 USA 17.6 (±1.2)% 0.049 (±0.001)%
US.WY Wyoming 4 USA −27.0 (±1.5)% 0.049 (±0.002)%
URY Uruguay 4 S. America 20.2 (±0.6)% 0.049 (±0.001)%
UZB Uzbekistan 2 Asia −10.7 (±0.3)% 0.027 (±0.001)%
VUT Vanuatu 2 Oceania 0.3 (±0.5)% 0.036 (±0.001)%
VEN Venezuela 3 S. America −10.1 (±0.3)% 0.057 (±0.001)%
VNM Vietnam 2 Asia −12.0 (±0.2)% 0.087 (±0.001)%
YEM Yemen 2 Asia 8.4 (±0.6)% 0.016 (±0.001)%
ZMB Zambia 2 Africa 7.9 (±0.5)% 0.019 (±0.001)%
ZWE Zimbabwe 1 Africa —- —-
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Table S3. Resonance amplification factor and offset for regions of FUND.

Region code Amplification factor A Resonance offset C0

WEU 15.4 (±0.5)% 0.004 (±0.001)%
JPK 6.1 (±0.3)% 0.002 (±0.001)%
ANZ 8.5 (±1.0)% 0.028 (±0.002)%
CEE 7.2 (±0.7)% 0.042 (±0.001)%
FSU −2.8 (±0.5)% 0.039 (±0.001)%

MDE 7.7 (±0.8)% 0.021 (±0.002)%
CAM 1.2 (±0.5)% 0.023 (±0.001)%
SAM 0.9 (±0.5)% 0.021 (±0.001)%
SAS −16.1 (±0.4)% 0.062 (±0.001)%
SEA 9.1 (±0.4)% 0.008 (±0.001)%
CHI 27.9 (±1.0)% 0.081 (±0.001)%

NAF −20.6 (±0.5)% 0.049 (±0.001)%
SSA −4.6 (±0.6)% 0.029 (±0.001)%
SIS 10.8 (±0.6)% 0.038 (±0.001)%
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Table S4. Resonance amplification factor and offset for regions of GCAM.

Region code Amplification factor A Resonance offset C0

Africa Eastern −6.5 (±0.2)% 0.034 (±0.001)%
Africa Northern −20.6 (±0.5)% 0.049 (±0.001)%
Africa Southern 8.9 (±0.6)% 0.021 (±0.001)%
Africa Western −23.2 (±0.6)% 0.069 (±0.002)%

Australia NZ 8.5 (±1.0)% 0.028 (±0.002)%
Central America and the Caribbean 9.7 (±0.4)% 0.032 (±0.001)%

Central Asia −6.8 (±0.4)% 0.029 (±0.001)%
EU-12 8.9 (±0.7)% 0.042 (±0.001)%
EU-15 14.9 (±0.5)% 0.004 (±0.001)%

Europe Eastern −9.2 (±0.2)% 0.042 (±0.001)%
European Free Trade Association 20.5 (±0.8)% 0.012 (±0.001)%

Europe Non EU 13.3 (±0.6)% 0.010 (±0.001)%
Middle East 4.9 (±0.8)% 0.032 (±0.003)%

South America Northern −7.2 (±0.3)% 0.043 (±0.001)%
South America Southern 18.9 (±0.7)% 0.018 (±0.001)%

South Asia 2.5 (±0.4)% 0.018 (±0.001)%
Southeast Asia 14.2 (±0.5)% −0.001 (±0.002)%
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Table S5. Resonance amplification factor and offset for regions of IMAGE.

Region code Amplification factor A Resonance offset C0

CAM 9.0 (±0.4)% 0.036 (±0.001)%
RSAM 2.6 (±0.3)% 0.026 (±0.001)%

NAF −20.6 (±0.5)% 0.049 (±0.001)%
WAF −23.2 (±0.6)% 0.069 (±0.002)%
EAF −6.5 (±0.2)% 0.035 (±0.001)%

WEU 15.4 (±0.5)% 0.004 (±0.001)%
CEU 8.7 (±0.7)% 0.042 (±0.001)%
UKR −9.2 (±0.2)% 0.042 (±0.001)%
CAS −9.7 (±0.3)% 0.030 (±0.001)%
RUR −5.8 (±0.5)% 0.045 (±0.001)%
MDE 4.8 (±0.8)% 0.032 (±0.003)%
KOR 23.0 (±0.6)% −0.015 (±0.002)%
CHI 28.4 (±1.0)% 0.080 (±0.001)%
SEA 7.8 (±0.4)% 0.016 (±0.002)%
IDR 0.4 (±0.5)% 0.018 (±0.001)%

OCE 8.9 (±1.0)% 0.028 (±0.002)%
RSAS −15.3 (±0.3)% 0.043 (±0.001)%
RSAF 8.9 (±0.6)% 0.021 (±0.001)%
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Table S6. Resonance amplification factor and offset for regions of REMIND.

Region code Amplification factor A Resonance offset C0

LAM 3.3 (±0.4)% 0.017 (±0.001)%
OAS 13.0 (±0.4)% 0.001 (±0.001)%
AFR −12.2 (±0.5)% 0.041 (±0.001)%
EUR 15.5 (±0.6)% 0.005 (±0.001)%

ROW 9.0 (±0.7)% 0.023 (±0.001)%
MEA 4.1 (±0.7)% 0.028 (±0.002)%
CHN 27.9 (±1.0)% 0.082 (±0.001)%
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Table S7. Resonance amplification factor and offset for regions of RICE.

Region code Amplification factor A Resonance offset C0

AFR −8.3 (±0.5)% 0.034 (±0.001)%
OTHASIA 5.1 (±0.3)% 0.010 (±0.001)%
EURASIA 3.3 (±0.5)% 0.033 (±0.001)%

LATAM 3.3 (±0.4)% 0.017 (±0.001)%
OHI 14.9 (±0.7)% 0.021 (±0.002)%

MIDEAST 5.1 (±0.8)% 0.032 (±0.003)%
FSU −0.4 (±0.4)% 0.031 (±0.001)%
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Table S8. Resonance amplification factor and offset for regions of WITCH.

Region code Amplification factor A Resonance offset C0

CAJAZ 5.8 (±0.4)% 0.006 (±0.001)%
CHINA 27.2 (±1.1)% 0.079 (±0.001)%
EASIA 6.5 (±0.4)% 0.019 (±0.001)%

KOSAU 21.6 (±0.8)% −0.002 (±0.002)%
LACA 3.3 (±0.4)% 0.017 (±0.001)%

NEWEURO 14.9 (±0.5)% 0.004 (±0.001)%
OLDEURO 15.7 (±0.8)% 0.027 (±0.001)%

SASIA −15.9 (±0.3)% 0.044 (±0.001)%
MENA 0.4 (±0.7)% 0.041 (±0.002)%

SSA −4.7 (±0.6)% 0.030 (±0.001)%
TE −7.1 (±0.3)% 0.037 (±0.001)%
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R. Reinecke, C. Riedel, Q. Song, J. Zhang, P. Döll, Variations of global and continental water
balance components as impacted by climate forcing uncertainty and human water use. Hydrol.
Earth Syst. Sci. 20, 2877–2898 (2016).

[20] D. Yamazaki, S. Kanae, H. Kim, T. Oki, A physically based description of floodplain inundation
dynamics in a global river routing model. Water Resour. Res. 47 (2011).

[21] F. Zhao, T. I. E. Veldkamp, K. Frieler, J. Schewe, S. Ostberg, S. Willner, B. Schauberger, S. N.
Gosling, H. M. Schmied, F. T. Portmann, G. Leng, M. Huang, X. Liu, Q. Tang, N. Hanasaki,
H. Biemans, D. Gerten, Y. Satoh, Y. Pokhrel, T. Stacke, P. Ciais, J. Chang, A. Ducharne,
M. Guimberteau, Y. Wada, H. Kim, D. Yamazaki, The critical role of the routing scheme in
simulating peak river discharge in global hydrological models. Environ. Res. Lett. 12, 075003
(2017).

[22] P. Scussolini, J. Aerts, B. Jongman, L. Bouwer, H. Winsemius, H. de Moel, P. Ward, FLOPROS:
An evolving global database of flood protection standards. Nat. Hazards Earth Syst. Sci. 3,
7275–7309 (2015).

[23] K. Takata, S. Emori, T. Watanabe, Development of the minimal advanced treatments of surface
interaction and runoff. Glob. Planet Change 38, 209–222 (2003).

[24] H. Kim, P. J.-F. Yeh, T. Oki, S. Kanae, Role of rivers in the seasonal variations of terrestrial
water storage over global basins. Geophys. Res. Lett. 36 (2009).

[25] M. Bertrand, P. Pfleiderer, M. Kretschmer, T. Geiger, C.-F. Schleussner, Using discovery algorithms
to forecast seasonal tropical cyclone genesis in the Atlantic. In Geophysical Research Abstracts,
vol. 21 (2019).

[26] K. Emanuel, Downscaling CMIP5 climate models shows increased tropical cyclone activity over
the 21st century. Proc. Nat. Acad. Sci. USA 110, 12219–12224 (2013).

[27] G. Holland, A revised hurricane Pressure–Wind model. Mon. Weather Rev. 136, 3432–3445
(2008).

[28] K. R. Knapp, M. C. Kruk, D. H. Levinson, H. J. Diamond, C. J. Neumann, The international best
track archive for climate stewardship (IBTrACS). Bull. Amer. Meteor. Soc. 91, 363–376 (2010).

[29] T. Geiger, K. Frieler, D. N. Bresch, A global historical data set of tropical cyclone exposure
(TCE-DAT). Earth Syst. Sci. Data 10, 185–194 (2018).
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B Supplementary information

B.1 Supplementary tables and figures for the US

Tbl. S1. Historical hurricanes that made landfall in the US between 1980 and 2014.
1st through 4th columns list names and years of landfall of the storms as reported by the IB-
TRaCS database66, storm severity (category 4-5 hurricanes according to Saffir-Simpsons
scale8), and storm surge index according to ref.64, respectively. The 5th column reports
categorized asset losses based on reported asset losses by Munich Re’s NatCatSERVICE
database1: small (> 10−4%), moderate (> 10−3%), strong (> 10−2%), severe (> 10−1%).
The asset losses are measured relative to the growth domestic product of the US (accord-
ing to World Banks’ and OECD’s National Accounts database5) in the year of landfall.

Name Year Cat. 4-5 Surge Asset losses

hurricane index category

Alberto 1994 9.2 strong

Alicia 1983 52.7 strong

Allen 1980 x 36.4 strong

Allison 1989 20.8 moderate

Allison 2001 24.1 strong

Andrew 1992 x 23.4 severe

Arlene 1993 11.5 small

Barry 2001 9.8 small

Bertha 1996 16.4 moderate

Beryl 1994 4.6 moderate

Bill 2003 9.4 small

Bob 1985 6.8 small

Bob 1991 3.4 strong

Bonnie 1986 14.6 small

Bonnie 1998 22.7 strong

Bonnie 2004 5.8 small

Bret 1999 x 4.7 moderate

Chantal 1989 11.9 moderate

Charley 2004 x 3.2 severe

Charley 1986 7.8 small

Charley 1998 12.7 moderate

Cindy 2005 1.9 moderate

Claudette 2003 55.1 moderate
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Name Year Cat. 4-5 Surge Asset losses

hurricane index category

Danielle 1980 2.6 small

Danny 1985 14.5 moderate

Danny 1997 19.1 moderate

Debby 2012 8.1 moderate

Dennis 2005 x 108.1 strong

Dennis 1981 5.6 small

Dennis 1999 5.3 moderate

Diana 1984 x 9.6 moderate

Dolly 2008 7.9 moderate

Earl 1998 22.7 small

Edouard 1996 x 2.6 small

Elena 1985 33 strong

Emily 1993 7.3 small

Erin 1995 30.3 moderate

Erin 2007 7.9 small

Ernesto 2006 7.2 moderate

Fay 2008 6.9 moderate

Florence 1988 9.2 small

Floyd 1999 x 17.6 strong

Fran 1996 4.4 strong

Frances 2004 x 9.4 strong

Frances 1998 25.8 moderate

Gabrielle 2001 5.4 moderate

Gaston 2004 5 small

Georges 1998 x 85.4 strong

Gilbert 1988 x 9.5 moderate

Gloria 1985 15.7 strong

Gordon 1994 6.1 moderate

Gordon 2000 7 small

Gustav 2008 x 71 strong

Hanna 2008 2.3 small

Hermine 2010 8.5 moderate

Hugo 1989 x 25.9 severe

Humberto 2007 7.9 small
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Name Year Cat. 4-5 Surge Asset losses

hurricane index category

Ida 2009 16.3 moderate

Ike 2008 x 105.1 severe

Iniki 1992 3.9 strong

Irene 1999 10.8 moderate

Irene 2011 55.6 strong

Isaac 2012 80.3 strong

Isabel 2003 x 8.1 strong

Iselle 2014 3.5 small

Isidore 1984 5.5 small

Isidore 2002 47.4 moderate

Ivan 2004 x 53 severe

Iwa 1982 2.5 moderate

Jeanne 2004 14 strong

Jerry 1989 6.8 small

Josephine 1996 10.1 moderate

Juan 1985 34.1 strong

Kate 1985 8.4 moderate

Katrina 2005 x 114.4 severe

Keith 1988 9.4 small

Lee 2011 14.9 strong

Lili 2002 x 5.6 strong

Marco 1990 6.7 small

Mitch 1998 x 5.1 moderate

Opal 1995 x 59.3 strong

Ophelia 2005 6.1 small

Paul 2006 13.7 small

Rita 2005 x 35.6 severe

Sandy 2012 15.7 severe

Tammy 2005 5.6 small

Wilma 2005 x 55.1 severe

? 1987 – small
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Fig. S1. Recovery dynamics of production capacity in dependence of shock het-
erogeneity for 1% reconstruction investment limit. Same as Fig. 2 but for a 1%
reconstruction investment cap.

Fig. S2. Insurance payout dynamics.
Cumulative (brown) and monthly (vio-
let) insurance payouts in the aftermath
of an individual shock to the physical
capital stock. The sigmoidal function
for the cumulative payouts is calibrated
such that 60% (90%) of the insured val-
ues are reimbursed within one (three)
year(s) according to insurance data of
the Reinsurance Association of Amer-
ica31. The monthly payouts are then
obtained by deriving this function with
respect to time.
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Fig. S5. Sketch of construction of synthetic asset loss time series caused by hurri-
canes with landfall. Synthetic time series of asset losses are generated in three steps:
First, the number of hurricane shocks in each US hurricane season (June–November)
is drawn from a Poisson distribution fP . Second, the times of landfalls are determines
assuming the same probability of landfall within each season, excluding the possibility of
two landfalls on the same day. Third, the relative asset loss of each landfall is drawn from
the log-normal distribution of Fig. S3.
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Fig. S6. Robustness of relative
growth losses with regard to choice
of baseline growth rate. Dependence
of relative annual growth losses upon
the growth rate of corresponding un-
perturbed baseline scenario for an
insurance coverage of 50% without
reconstruction investment limit (blue)
as well as for for reconstruction in-
vestment caps of 0.2% (red) and 1%
(green) of weekly output. Lines indi-
cate median growth rate reductions
and shaded areas the corresponding
16.7–88.3 percentile confidence inter-
vals.
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Fig. S7. Impact of insurance coverage
on economic growth.
A: Change of median growth rate for
half (green lines) and fully (blue lines) in-
sured economies with regard to an econ-
omy without insurance in dependence of
shock heterogeneity for reconstruction in-
vestments capped to 0.2% (solid), 1%
(dashed) of weekly output and without in-
vestment cap (dotted). The vertical gray
solid line denotes the median Gini index
of the historical shock distribution. Param-
eters as in Tbl. 1.
B: GDP time series for an unperturbed
and uninsured economy (blue solid line)
and an unperturbed but half insured econ-
omy (red solid line) for the historical period
of 35 years. Parameters as in Tbl. 1.
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erogeneity and insurance coverage.
A: Absolute per-capita insurance premium
in US$. B: Insurance premium relative to
average consumption. Parameters: invest-
ment cap: 0.2% of weekly output; other
parameters as in Tbl. 1.
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Fig. S11. Dependence of asset losses on surge index. Log-log plot of asset losses
(grey dots) of the 88 historical hurricane that made landfall in the US between 1980 and
2014 according to NatCatSERVICE database1 relative to the growth domestic output the
year of landfall (according to the World Banks’ and OECD’s National Accounts databasea)
as function of their surge index64. The red line denotes a non-linear fit of the data (damage
function f (∫ )). The Pearson’s chi-squared criteria for the goodness-of-fit is χ2 = 0.59).

ahttps://data.worldbank.org/indicator/NY.GDP.PCAP.CD
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B.2 The case of the Small Island Developing State of Haiti

In this section, we repeat the modeling exercise described in the main text to the tropical

cyclone prone Small Island Developing State of Haiti. According to MunichRe’s NatCat-

SERVICE1 database, Haiti experienced 18 tropical cyclones with landfalls in the study

period 1980–2014 (Tbl. S3). The direct asset losses (relative to the growth domestic

product of the years the hurricanes made landfall) accumulate to 11.86%. After fitting them

with a log-normal distribution, we obtain a median Gini index of 0.58. Driving the model

with the parameters of Tbls. 1 and S2, we find that, as for the US, growth losses increase

non-linearly with shock heterogeneity but decrease with insurance coverage (cf. Fig. 3

with Fig. S12. Noteworthy, according to NatCatSERVICE none of the tropical cyclone

damages were insured in the historical study period, compared to 50% in the US. Further,

we assume the same insurance payout dynamics as for the US since there are no data

available for Haiti.

B.2.1 Future projections of damages

Due to the lack of better data and to use the same method, we assume for the storm

surge-based estimate that the scaling of the return frequencies of tropical cyclone induces

storm surges with global warming is the same as in the US. Further, assuming that the

number of events remains unchanged compared to the historical study period, we find

an increase of cumulative relative asset losses of 13.89% and 17.60% for the +2°C and

+2.7°C degree scenarios, respectively. Growth losses more than double and tripple for

the +2°C and +2.7°C degree scenarios, respectively (appendix B.2.1). According to the

wind-speed based estimate, the total number of events declines to 14 landfalls for both,

the +2°C and +2.7°C degree scenarios which results in moderate decreases of cumulative

relative asset losses to 11.82% and 11.76%, respectively. In consequence, median growth

losses also slightly decrease compared to the historical period (appendix B.2.1. As for

the US, increasing insurance coverage allows mitigating the additional climate change

induced growth losses arising for the storm surge-based estimate. However, it is important

to note that already in the historical period Haiti suffered growth losses which may be

unsustainably high.
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Quantity Symbol Value Unit

Initial GDP per capita y0 1402.1 US$
GDP growth rate g 1.95% year−1

Cumulative relative historical asset losses ∆T 11.86 %
Number of historical landfalling hurricanes Ns 18
Standard deviation of historical
log-normal asset loss distribution σ0 1.3909

Tbl. S2. Exogenous parameters used in the numerical simulations for Haiti that differ from
the parameters used for the US in Tbl. 1

Tbl. S3. Historical tropical cyclones that made landfall in Haiti between 1980 and
2014. 1st through 4th columns list names and years of landfall of the storms as reported
by the IBTRaCS database66, storm severity (category 4-5 hurricanes according to Saffir-
Simpsons scale8), and storm surge index according to ref.64, respectively. The 5th column
reports categorized asset losses based on reported asset losses by Munich Re’s NatCat-
SERVICE database1: small (> 10−4%), moderate (> 10−3%), strong (> 10−2%), severe
(> 10−1%), devastating (> 1%). The asset losses are measured relative to the growth
domestic product of the US (according to World Banks’ and OECD’s National Accounts
database6) in the year of landfall.

Name Year Cat. 4-5 Surge Asset losses

hurricane index category

Allen 1980 x 36.4 devastating

Alpha 2005 - moderate

Dean 2007 x - moderate

Dennis 2005 x 108.1 severe

Ernesto 2006 7.2 moderate

Georges 1998 x 6.9 devastating

Gilbert 1988 x 85.4 moderate

Gordon 1994 9.5 severe

Gustav 2008 x 6.1 moderate

Hanna 2008 71.0 moderate

Ike 2008 2.3 moderate

Irene 2011 105.1 moderate

Isaac 2012 55.6 strong

Jeanne 2004 80.3 severe

Noel 2007 14.0 strong

270



Name Year Cat. 4-5 Surge Asset losses

hurricane index category

Olga 2007 - moderate

Sandy 2012 15.7 devastating

Sandy 2008 - small
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Growth changes for Haiti Fig. S12. Impact of hurricane shock
heterogeneity on annual output growth
rate of Haiti. Median annual growth rate
change of the Haitian economy under hur-
ricane shocks relative to the growth rate
of the corresponding unperturbed econ-
omy, as a function of shock heterogeneity
– measured by the Gini index – for no (A),
half (B), and full (C) insurance coverage.
Blue, green, and red lines depict median
growth rate changes for scenarios where
reconstruction investment is not limited,
limited to 0.2%, and 1% of weekly out-
put, respectively; shaded areas mark the
corresponding 16.7-83.3 percentile confi-
dence intervals. The grey vertical line in-
dicates the median Gini index of the his-
torical distribution of relative direct asset
losses. In each simulation run, the Haitian
GDP per capita (1402.1 USD) grows ini-
tially with 1.95% per year and is threat-
ened by 18 landfalling hurricane within
33 years, which add up to 11.86% cap-
ital damage.
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Fig. S13. Projected impacts of hurricanes on economic growth in 2°C and 2.7°C worlds and
the effectiveness of insurance as coping strategy for Haiti. Annual growth losses (relative to
the corresponding unperturbed economies evolving on the balanced growth paths) as obtained
for the historical shock distribution (0% insurance coverage, period 1980-2012; 1st column), for
Paris-compatible +2°C warming above pre-industrial levels (2nd , 3rd , 6th and 7th column) and
+2.7°C (4th , 5th , 8th and 9th column) warming in compliance with current policies for reconstruction
investment caps of 0.2% (A, standard scenario), 1% (B) and without reconstruction investment
cap (C). Climate change projections of growth losses are derived from two different methods to
estimate climate change-induced changes in the return frequencies of hurricanes by Grinsted et
al.6 and Knutson et al.7 (0% insurance coverage, 2nd and 4th column, respectively). Additionally, for
both estimates and warming levels the insurance coverages that would be necessary to reduce
growth losses to the historical level are shown (3rd , 5th , 7th and 9th column). Orange lines, boxes,
and whiskers indicate median loss estimates as well as the 25th-75th and 5th-95th percentile ranges,
respectively.
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Figure S1: Chinese exports

to NAFTA are split into two

spheres: Depending on South

China Sea or Depending on

East China Sea

(a) Affected exports for Jiangsu –

CN.JS (”Northern” China) if South

China Sea – SCNS is perturbed.

(b) Affected exports for Jiangsu –

CN.JS (”Northern” China) if East

China Sea – ECNS is perturbed.

(c) Affected exports for Guandong

– CN.GD (”Southern” China) if

South China Sea – SCNS is per-

turbed.

(d) Affected exports for Guandong –

CN.GD (”Southern” China) if East

China Sea – ECNS is perturbed.
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Figure S3: Trade-inter-

connectivity increases except

for economic blocs and builds

resilience towards transport

disruptions.

(a) Number of foreign connections

per firm within the economic bloc

connections.

(b) Median annual export change

in quantity per region over number

of foreign connections per firm.

Export resilience tends to increase

with more foreign connections.
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Figure S4: Trends in result are

robust against changes of dis-

turbance modeling.

Same results and description as 8

but entire 5–95 percentile ranges is

shown.
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Table S1: Sectors used in the simulations. Non-service sectors are affected by typhoon-

induced transport perturbation, whereas service sectors are not.

Code Name

Affected by

typhoon-induced

transport perturbation

AGRI Agriculture ×

FISH Fishing ×

MINQ Mining and quarrying ×

GAST Hotels and restaurants ×

WHOT Wholesale trade ×

OTHE Others ×

REPA Maintenance and Repair ×

RETT Retail Trade ×

FOOD Food and Beverages ×

TEXL Textiles and Wearing Apparel ×

TRAN Transport ×

WOOD Wood and Paper ×

OILC
Petroleum, Chemical

×
& Non-Metallic Mineral Products

METL Metal Products ×

MACH Electrical and Machinery ×

TREQ Transport Equipment ×

MANU Other Manufacturing ×

REXI Re-export and Re-import ×

CONS Construction ×

RECY Recycling ×

ELWA Electricity, Gas & Water ×

ADMI Public Administration

EDHE Education, Health & Other Services

HOUS Private Households

COMM Post and Telecommunications

FINC
Financial Intermediation

& Business Activities

FCON Final consumption
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Table S2: Regions used in the simulations.

ISO3 code and corresponding economic bloc of used simulations.

ISO3 code Name of region Economic bloc

AFG Afghanistan SAARC

ALB Albania Europe

DZA Algeria Arab League

AND Andorra Europe

AGO Angola Sub-Saharan Africa

ATG Antigua and Barbuda Latin America

ARG Argentina Latin America

ARM Armenia Post-Soviet states

ABW Aruba Latin America

AUS Australia Australia & Oceania

AUT Austria Europe

AZE Azerbaijan Post-Soviet states

BHS Bahamas Latin America

BHR Bahrain Arab League

BGD Bangladesh SAARC

BRB Barbados Latin America

BLR Belarus Europe

BEL Belgium Europe

BLZ Belize Latin America

BEN Benin Sub-Saharan Africa

BMU Bermuda Rest of World

BTN Bhutan SAARC

BOL Bolivia Latin America

BIH Bosnia and Herzegovina Europe

BWA Botswana Sub-Saharan Africa

BRA Brazil Latin America

VGB British Virgin Islands Latin America

BRN Brunei Darussalam ASEAN

BGR Bulgaria Europe

BFA Burkina Faso Sub-Saharan Africa

BDI Burundi Sub-Saharan Africa

KHM Cambodia ASEAN
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ISO3 code Name of region Economic bloc

CMR Cameroon Sub-Saharan Africa

CAN Canada NAFTA

CPV Cabo Verde Sub-Saharan Africa

CYM Cayman Islands Latin America

CAF Central African Republic Sub-Saharan Africa

TCD Chad Sub-Saharan Africa

CHL Chile Latin America

CN.AH Anhui China

CN.BJ Beijing China

CN.CQ Chongqing China

CN.FJ Fujian China

CN.GS Gansu China

CN.GD Guangdong China

CN.GX Guangxi China

CN.GZ Guizhou China

CN.HA Hainan China

CN.HB Hebei China

CN.HL Heilongjiang China

CN.HE Henan China

CN.HU Hubei China

CN.HN Hunan China

CN.JS Jiangsu China

CN.JX Jiangxi China

CN.JL Jilin China

CN.LN Liaoning China

CN.NM Nei Mongol China

CN.NX Ningxia Hui China

CN.QH Qinghai China

CN.SA Shaanxi China

CN.SD Shandong China

CN.SH Shanghai China

CN.SX Shanxi China

CN.SC Sichuan China

CN.TJ Tianjin China

CN.XJ Xinjiang Uygur China
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ISO3 code Name of region Economic bloc

CN.XZ Xizang China

CN.YN Yunnan China

CN.ZJ Zhejiang China

COL Colombia Latin America

COG Republic Congo Sub-Saharan Africa

CRI Costa Rica Latin America

HRV Croatia Europe

CUB Cuba Latin America

CYP Cyprus Europe

CZE Czech Republic Europe

CIV Côte d’Ivoire Sub-Saharan Africa

PRK North Korea East Asia

COD Democratic Republic Congo Sub-Saharan Africa

DNK Denmark Europe

DJI Djibouti Sub-Saharan Africa

DOM Dominican Republic Latin America

ECU Ecuador Latin America

EGY Egypt Arab League

SLV El Salvador Latin America

ERI Eritrea Sub-Saharan Africa

EST Estonia Europe

ETH Ethiopia Sub-Saharan Africa

FJI Fiji Australia & Oceania

FIN Finland Europe

FRA France Europe

PYF French Polynesia Australia & Oceania

GAB Gabon Sub-Saharan Africa

GMB Gambia Sub-Saharan Africa

GEO Georgia Post-Soviet states

DEU Germany Europe

GHA Ghana Sub-Saharan Africa

GRC Greece Europe

GRL Greenland Rest of World

GTM Guatemala Latin America

GIN Guinea Sub-Saharan Africa
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ISO3 code Name of region Economic bloc

GUY Guyana Latin America

HTI Haiti Latin America

HND Honduras Latin America

HKG Hong Kong Rest of World

HUN Hungary Europe

ISL Iceland Europe

IND India SAARC

IDN Indonesia ASEAN

IRN Iran Rest of World

IRQ Iraq Arab League

IRL Ireland Europe

ISR Israel Rest of World

ITA Italy Europe

JAM Jamaica Latin America

JPN Japan East Asia

JOR Jordan Arab League

KAZ Kazakhstan Post-Soviet states

KEN Kenya Sub-Saharan Africa

KWT Kuwait Arab League

KGZ Kyrgyz Republic Post-Soviet states

LAO Lao PDR ASEAN

LVA Latvia Europe

LBN Lebanon Arab League

LSO Lesotho Sub-Saharan Africa

LBR Liberia Sub-Saharan Africa

LBY Libya Arab League

LIE Liechtenstein Europe

LTU Lithuania Europe

LUX Luxembourg Europe

MAC Macao Rest of World

MDG Madagascar Sub-Saharan Africa

MWI Malawi Sub-Saharan Africa

MYS Malaysia ASEAN

MDV Maldives SAARC

MLI Mali Sub-Saharan Africa
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ISO3 code Name of region Economic bloc

MLT Malta Europe

MRT Mauritania Arab League

MUS Mauritius Sub-Saharan Africa

MEX Mexico NAFTA

MCO Monaco Europe

MNG Mongolia Post-Soviet states

MNE Montenegro Europe

MAR Morocco Arab League

MOZ Mozambique Sub-Saharan Africa

MMR Myanmar ASEAN

NAM Namibia Sub-Saharan Africa

NPL Nepal SAARC

NLD Netherlands Europe

ANT Netherlands Antilles Europe

NCL New Caledonia Australia & Oceania

NZL New Zealand Australia & Oceania

NIC Nicaragua Latin America

NER Niger Sub-Saharan Africa

NGA Nigeria Sub-Saharan Africa

NOR Norway Europe

PSE West Bank and Gaza Rest of World

OMN Oman Arab League

PAK Pakistan SAARC

PAN Panama Latin America

PNG Papua New Guinea Australia & Oceania

PRY Paraguay Latin America

PER Peru Latin America

PHL Philippines ASEAN

POL Poland Europe

PRT Portugal Europe

QAT Qatar Arab League

KOR South Korea East Asia

MDA Moldova Europe

ROU Romania Europe

RUS Russian Federation Post-Soviet states
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ISO3 code Name of region Economic bloc

RWA Rwanda Sub-Saharan Africa

WSM Samoa Australia & Oceania

SMR San Marino Europe

STP São Tomé and Principe Sub-Saharan Africa

SAU Saudi Arabia Arab League

SEN Senegal Sub-Saharan Africa

SRB Serbia Europe

SYC Seychelles Sub-Saharan Africa

SLE Sierra Leone Sub-Saharan Africa

SGP Singapore ASEAN

SVK Slovak Republic Europe

SVN Slovenia Europe

SOM Somalia Sub-Saharan Africa

ZAF South Africa Sub-Saharan Africa

SSD South Sudan Sub-Saharan Africa

ESP Spain Europe

LKA Sri Lanka SAARC

SDN Sudan Arab League

SUR Suriname Latin America

SWZ Swaziland Sub-Saharan Africa

SWE Sweden Europe

CHE Switzerland Europe

SYR Syrian Arab Republic Arab League

TWN Taiwan East Asia

TJK Tajikistan Post-Soviet states

THA Thailand ASEAN

MKD Macedonia Europe

TGO Togo Sub-Saharan Africa

TTO Trinidad and Tobago Latin America

TUN Tunisia Arab League

TUR Turkey Rest of World

TKM Turkmenistan Post-Soviet states

UGA Uganda Sub-Saharan Africa

UKR Ukraine Europe

ARE United Arab Emirates Arab League
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ISO3 code Name of region Economic bloc

GBR United Kingdom Europe

TZA Tanzania Sub-Saharan Africa

US.AL Alabama NAFTA

US.AK Alaska NAFTA

US.AZ Arizona NAFTA

US.AR Arkansas NAFTA

US.CA California NAFTA

US.CO Colorado NAFTA

US.CT Connecticut NAFTA

US.DE Delaware NAFTA

US.DC District of Columbia NAFTA

US.FL Florida NAFTA

US.GA Georgia NAFTA

US.HI Hawaii NAFTA

US.ID Idaho NAFTA

US.IL Illinois NAFTA

US.IN Indiana NAFTA

US.IA Iowa NAFTA

US.KS Kansas NAFTA

US.KY Kentucky NAFTA

US.LA Louisiana NAFTA

US.ME Maine NAFTA

US.MD Maryland NAFTA

US.MA Massachusetts NAFTA

US.MI Michigan NAFTA

US.MN Minnesota NAFTA

US.MS Mississippi NAFTA

US.MO Missouri NAFTA

US.MT Montana NAFTA

US.NE Nebraska NAFTA

US.NV Nevada NAFTA

US.NH New Hampshire NAFTA

US.NJ New Jersey NAFTA

US.NM New Mexico NAFTA

US.NY New York NAFTA
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ISO3 code Name of region Economic bloc

US.NC North Carolina NAFTA

US.ND North Dakota NAFTA

US.OH Ohio NAFTA

US.OK Oklahoma NAFTA

US.OR Oregon NAFTA

US.PA Pennsylvania NAFTA

US.RI Rhode Island NAFTA

US.SC South Carolina NAFTA

US.SD South Dakota NAFTA

US.TN Tennessee NAFTA

US.TX Texas NAFTA

US.UT Utah NAFTA

US.VT Vermont NAFTA

US.VA Virginia NAFTA

US.WA Washington NAFTA

US.WV West Virginia NAFTA

US.WI Wisconsin NAFTA

US.WY Wyoming NAFTA

URY Uruguay Latin America

UZB Uzbekistan Post-Soviet states

VUT Vanuatu Australia & Oceania

VEN Venezuela Latin America

VNM Vietnam ASEAN

YEM Yemen Arab League

ZMB Zambia Sub-Saharan Africa

ZWE Zimbabwe Sub-Saharan Africa

Table S3: Ports implemented in loss-propagation model Acclimate.

Name and code corresponding latitude and longitude coordinates of implemented ports. The

usage of ports depend on economic baseline and spatial resolution.

Name code Latitude [°] Longitude [°]

Abidjan CIABJ 5.299 -4.026

Adelaide AUADL -34.802 138.498

Algeciras ESALG 36.137 -5.437
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Name code Latitude [°] Longitude [°]

Ambarli TRAMR 40.967 28.690

Antwerp BEANR 51.298 4.307

Auckland NZAKL -36.837 174.772

Balboa PABLB 8.980 -79.581

Bandar Abbas IRBND 27.102 56.077

Beira MZBEW -19.813 34.832

Bergen NOBGO 60.386 5.237

Bordeaux FRBOD 44.899 -0.538

Bremerhaven DEBRV 53.551 8.562

Brisbane AUBNE -27.374 153.172

Buenaventura COBUN 3.892 -77.072

Buenos Aires ARBUE -34.613 -58.362

Busan KRPUS 35.105 129.071

Callao PECLL -12.045 -77.148

Cartagena COCTG 10.351 -75.516

Caucdeo DOCAU 18.434 -69.628

Charleston USCHS 32.809 -79.891

Chennai INMAA 13.099 80.302

Chittagong BDCGP 22.448 91.725

Colombo LKCMB 6.951 79.850

Colon PAONX 9.357 -79.909

Constanta ROCND 44.152 28.662

Cork IEORK 51.900 -8.440

Dalian CNDLC 38.967 121.751

Darwin AUDRW -12.519 130.861

Djibouti DJJIB 11.601 43.117

Durban ZADUR -29.890 31.030

Felixstowe GBFXT 51.960 1.345

Freeport BSFPO 26.529 -78.763

Gdansk PLGDN 54.382 18.695

Genova ITGOA 44.408 8.857

Gioia Tauro ITGIT 38.457 15.907

Gothenburg SEGOT 57.698 11.895

Guayaquil ECGYE -2.262 -79.926

Hamburg DEHAM 53.519 9.939
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Name code Latitude [°] Longitude [°]

Havanna CUHAV 23.130 -82.340

Ho Chi Minh VNSGN 10.713 106.769

Hobart AUHBA -42.880 147.336

Honolulu USHNL 21.317 -157.893

Houston USHOU 29.636 -95.071

Jebel Ali AEJEA 25.018 55.010

Jeddah SAJED 21.488 39.157

Kaohsiung TWKHH 22.574 120.307

Karachi PKKHI 24.826 66.980

Kingston JMKIN 17.967 -76.797

Laem Chabang THLCH 13.111 100.900

Lagos NGLOS 6.445 3.358

Lazaro Cardenas MXLZC 17.959 -102.211

Le Havre FRLEH 49.450 0.318

Limassol CYLMS 34.680 33.040

Limon-Moin CRMOB 10.007 -83.077

Long Beach USLGB 33.755 -118.214

Los Angeles USLAX 33.745 -118.198

Luanda AOLAD -8.789 13.265

Manila PHMNL 14.606 120.965

Manzanillo MXZLO 19.069 -104.303

Marseille FRMRS 43.332 5.340

Miami USMIA 25.770 -80.204

Mombasa KEMBA -4.059 39.644

Montevideo UYMVD -34.892 -56.224

Montreal CAMTR 45.426 -73.769

Moresby PGPOM -9.447 147.119

New York & New Jersey USNYC 40.664 -74.090

Nhava Sheva INNSA 18.953 72.945

Norfolk USORF 36.895 -76.216

Novorossiysk RUNVS 44.721 37.810

Oakland USOAK 37.798 -122.286

Osaka JPOSA 34.582 135.427

Paranagua BRPNG -25.502 -48.469

Perth AUFRE -32.056 115.744
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Name code Latitude [°] Longitude [°]

Piraeus GRPIR 37.937 23.654

Port Klang MYPKG 2.978 101.337

Port Said EGPSD 31.233 32.335

Primorsk RUPRI 60.346 28.665

Qingdao CNTAO 36.053 120.273

Reykjavik ISREY 64.150 -21.870

Richards Bay ZARCB -28.812 32.062

Rotterdam NLRTM 51.888 4.386

Saldanha ZASDB -33.018 17.980

San Antonio CLSAI -33.589 -71.619

San Juan PRSJU 18.444 -66.093

Santos BRSSZ -23.925 -46.337

Savannah USSAV 31.997 -80.959

Seattle USSEA 47.670 -122.567

Shangai CNSHA 31.321 121.434

Shenzhen CNSZX 22.494 113.936

Sines PTSIE 37.938 -8.847

Sinpapore SGSIN 1.310 103.710

Southampton GBSOU 50.898 -1.424

Suzhou CNSZH 31.225 120.468

Sydney AUSYD -33.912 151.183

Tanger-Med MAPTM 35.894 -5.496

Tanjung Priok IDJKT -6.099 106.895

Teluk Bayur IDPDG -1.001 100.375

Tianjin CNTXG 38.991 117.715

Tokyo JPTYO 35.618 139.916

Valencia ESVLC 39.440 -0.318

Valparaiso CLVAP -33.035 -71.618

Vancouver CAVAN 49.194 -122.982

Veracruz MXVER 19.207 -96.137

Walvis Bay NAWVB -22.970 14.487

Wellington NZWLG -41.277 174.786

Xiamen CNXMN 24.486 118.030

Åland ALA 60.221 19.974

American Samoa ASM -14.300 -170.718
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Name code Latitude [°] Longitude [°]

Anguilla AIA 18.215 -63.054

Antarctica ATA -80.562 20.814

Antigua & Barbuda ATG 17.077 -61.798

Aruba ABW 12.509 -69.970

Barbados BRB 13.172 -59.556

Bermuda BMU 32.298 -64.782

Bonaire BES 12.185 -68.290

Bouvet Island BVT -54.428 3.382

British Indian Ocean Territory IOT -7.340 72.434

British Virgin Islands VGB 18.424 -64.620

Cape Verde CPV 15.084 -23.625

Cayman Islands CYM 19.318 -81.244

Christmas Island CXR -10.485 105.637

Clipperton Island XCL 10.303 -109.217

Cocos Islands CCK -12.168 96.909

Comoros COM -11.663 43.354

Cook Islands COK -21.235 -159.778

Cuba CUB 21.617 -78.936

Curaçao CUW 12.194 -68.973

Cyprus CYP 34.850 32.700

Dominica DMA 15.435 -61.350

Dominican Republic DOM 18.490 -69.940

Falkland Islands FLK -51.740 -58.753

Faroe Islands FRO 62.169 -6.953

Fiji FJI -17.836 177.965

French Polynesia PYF -17.730 -149.410

French Southern Territories ATF -49.315 69.487

Grenada GRD 12.114 -61.684

Guadeloupe GLP 16.228 -61.576

Guam GUM 13.444 144.777

Guernsey GGY 49.456 -2.579

Haiti HTI 18.570 -72.310

Heard Island & McDonald Islands HMD -53.093 73.517

Iceland ISL 64.983 -18.579

Isle of Man IMN 54.228 -4.538
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Name code Latitude [°] Longitude [°]

Jamaica JAM 18.157 -77.310

Jersey JEY 49.214 -2.133

Madagascar MDG -19.382 46.697

Maldives MDV 1.906 73.538

Malta MLT 35.888 14.440

Marshall Islands MHL 7.096 171.222

Martinique MTQ 14.653 -61.018

Mauritius MUS -20.284 57.572

Mayotte MYT -12.824 45.144

Micronesia FSM 6.880 158.227

Montserrat MSR 16.739 -62.190

Nauru NRU -0.528 166.934

Netherlands Antilles ANT 17.640 -63.230

New Caledonia NCL -21.326 165.489

Niue NIU -19.052 -169.859

Norfolk Island NFK -29.033 167.952

Northern Mariana Islands MNP 15.189 145.754

Palau PLW 7.499 134.565

Paracel Islands PIS 16.067 112.545

Pitcairn Islands PCN -24.377 -128.323

Puerto Rico PRI 18.224 -66.480

Reunion REU -21.133 55.533

Saint-Barthélemy BLM 17.902 -62.830

Saint Helena SHN -15.965 -5.707

Saint Kitts & Nevis KNA 17.339 -62.765

Saint Lucia LCA 13.898 -60.967

Saint Pierre & Miquelon SPM 46.951 -56.322

Saint Vincent & the Grenadines VCT 13.251 -61.189

Samoa WSM -13.621 -172.447

Sao Tome & Principe STP 0.239 6.602

Seychelles SYC -4.677 55.468

Solomon Islands SLB -9.623 160.160

South Georgia & the South Sandwich Islands SGS -54.375 -36.688

Spratly islands SP- 11.053 114.284

Svalbard & Jan Mayen SJM 78.608 15.828
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Name code Latitude [°] Longitude [°]

Taiwan TWN 23.751 120.974

Tokelau TKL -9.178 -171.779

Tonga TON -21.174 -175.192

Trinidad & Tobago TTO 10.424 -61.296

Turks & Caicos Islands TCA 21.775 -71.758

Tuvalu TUV -7.480 178.680

United States Minor Outlying Islands UMI 19.289 166.636

Vanuatu VUT -15.241 166.873

Virgin Islands VIR 17.733 -64.768

Wallis and Futuna WLF -13.285 -176.205
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