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ABSTRACT

Correctly identifying interaction patterns from multivariate time series presents an important step in functional network construction. In this
context, the widespread use of bivariate statistical association measures often results in a false identification of links because strong similarity
between two time series can also emerge without the presence of a direct interaction due to intermediate mediators or common drivers. In
order to properly distinguish such direct and indirect links for the special case of event-like data, we present here a new generalization of
event coincidence analysis to a partial version thereof, which is aimed at excluding possible transitive effects of indirect couplings. Using
coupled chaotic systems and stochastic processes on two generic coupling topologies (star and chain configuration), we demonstrate that
the proposed methodology allows for the correct identification of indirect interactions. Subsequently, we apply our partial event coincidence
analysis to multi-channel EEG recordings to investigate possible differences in coordinated alpha band activity among macroscopic brain
regions in resting states with eyes open (EO) and closed (EC) conditions. Specifically, we find that direct connections typically correspond
to close spatial neighbors while indirect ones often reflect longer-distance connections mediated via other brain regions. In the EC state,
connections in the frontal parts of the brain are enhanced as compared to the EO state, while the opposite applies to the posterior regions. In
general, our approach leads to a significant reduction in the number of indirect connections and thereby contributes to a better understanding
of the alpha band desynchronization phenomenon in the EO state.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087607

Functional network representations have recently gained con-
siderable interest in the study of real-world spatially extended
dynamical systems like the Earth’s climate or the human brain.
In a vast fraction of cases, the existence of network links has been
established by resorting to the presence of strong bivariate statis-
tical associations as suggested by symmetric association measures
like classical linear (Pearson) correlations. This methodology,
however, disregards two relevant aspects: the directionality of
dynamical interactions between pairs of actors and the com-
plexity of mutual (synergistic or antagonistic) inter-dependencies

that can lead to the spurious identification of connections in
case of, for example, common drivers or directed chain-like cou-
pling configurations. In order to address both aspects, various
approaches based on nonlinear time series analysis have been
developed in the last few years, most of which assume the pres-
ence of a continuous temporal variability pattern. However, in
the context of event-like data like spikes in neural activity or
climate extremes, there still exists a considerable gap in suit-
able methodologies for unravelling the complex web of directed
interactions from multivariate time series. The present work
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introduces partial event coincidence analysis as a new approach
and studies its applicability to different types of model systems as
well as real-world EEG data.

I. INTRODUCTION

Over the last few decades, complex networks1–3 have emerged
as a powerful concept for describing structural or dynamical link-
ages among mutually interacting units across a broad range of sci-
entific disciplines, including diverse fields like sociology, transporta-
tion systems, computer sciences, or ecology. Particularly important
applications of complex network theory can be found in the con-
text of functional network analysis, for example, of functional brain
networks.4 Other than the microscopic anatomic connectivity pat-
terns of the brain (at the level of individual neurons or groups
thereof), such functional networks are exclusively based on statisti-
cal linkages among multivariate neurophysiological recordings like
multi-channel electroencephalography (EEG), magnetoencephalog-
raphy (MEG), or functional Magnetic Resonance Imaging (fMRI),
where the individual time series represent the macroscopic activity
patterns in distant brain regions as reflected by electrical, mag-
netic, or blood oxygen level dependent signals, respectively. In such
cases, the respective strengths of bivariate statistical associations
between all pairs of series are taken as proxies for the likelihood of
the existence of functional linkages between the two brain regions
represented by the two series, which in their entirety describe a
network structure. Similar functional network approaches are also
utilized for identifying long distance interaction patterns in the
global climate system.5–9 Here, the motivation of this functional cli-
mate network analysis is to better understand and describe climate
phenomena of interest. Besides various primarily diagnostic stud-
ies, recent applications of functional climate networks also include
complex network based algorithms to predict the emergence and
properties of specific climate phenomena like El Niño events, the
Indian summer monsoon, or drought episodes in South America,10

opening a new door for further development of statistical forecasting
methods.

The critical step in functional network analysis of an arbi-
trary given multivariate data set is to infer the connection topology
among the represented entities, which is essential for understand-
ing the characteristic properties of the underlying complex system
as a whole. For this purpose, previous works have proposed a vast
suite of concepts to quantify statistical interrelationships between
different time series (associated with, e.g., different brain regions),
ranging from linear to nonlinear methods and including symmet-
ric measures like linear Pearson correlation,5,11 mutual information,6

or event synchronization strength12 as well as directed characteris-
tics like Granger causality or transfer entropy.13 However, exploiting
conventional bivariate measures for coupling inference bears a high
risk of associating strong statistical associations with links that are
not present in reality. Indeed, beyond direct connections complex
coupling configurations can easily lead to strong statistical associ-
ations even when two units are not directly interconnected. Take,
for example, the two paradigmatic topologies of a star and a chain
shown in Fig. 1, both of which exhibit both direct and indirect
coupling between the network’s nodes. For the star configuration

FIG. 1. Two exemplary coupling configurations with both direct and indirect
interactions: (a) star and (b) chain.

[Fig. 1(a)], all connections among pairs of leaf nodes (ξ2, ξ3, ξ4, and
ξ5) are indirect, while all connections between the hub ξ1 and any of
the leaves are direct. Similar observations apply to non-adjacent vs
adjacent pairs of nodes in the chain [Fig. 1(b)].

In both exemplary configurations, indirect coupling between
two nodes can result in strong dynamical similarity and, conse-
quently, the false identification of a direct link based on traditional
bivariate similarity measures. Therefore, it is important to empiri-
cally distinguish indirect from direct couplings. The task becomes
particularly challenging and relevant in situations where the net-
work structure to be inferred is spatially embedded, in which case
short geodesic distances between units are commonly accompanied
by a higher degree of dynamical similarity.

In order to eliminate the effect of possible pseudo-connections,
several approaches have been developed in the last few years.14,15

The probably most sophisticated one is the causal effect net-
work analysis based on the Peter and Clark momentary condi-
tional independence algorithm, which draws upon the concept of
graphical models of time series to iteratively exclude indirect cou-
plings from the set of possible “causal” (time-lagged) connections
by exploiting partial correlations or conditional mutual informa-
tion with systematically varying sets of conditioning variables.16–18

Other recent works have taken simplified conditioning approaches
while replacing the aforementioned more traditional conditional
association measures by conditional ordinal pattern co-occurrence
frequencies.19,20 In the context of the present work, we particularly
emphasize the exploitation of partial spectral coherence and par-
tial phase synchronization/coherence,7,21–23 both aiming at revealing
direct connections by correcting bivariate association measures for
the influence of other processes. The latter approach has been
shown to distinguish direct from indirect coupling provided that the
coupled systems show proper oscillatory behavior such that phase
variables can be defined in a meaningful manner. However, there
may be practically relevant cases where coupling is to be identified
based exclusively on the timing of distinct events (e.g., for spike-like
neuronal activity, climate extremes, or discrete spreading processes
leading to cascading events).8,24

This paper introduces an advanced methodology for inferring
network topology exclusively from the timing of events at differ-
ent units (i.e., in different time series) by exploiting an analog of
partial coherence analysis for event time series. In general, it is not
straightforward to apply the nonlinear methods of phase synchro-
nization analysis to the particular case of event time series, since the
necessary definition of a phase variable is not unique and involves
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a specific choice of temporal interpolation.25 As potential alterna-
tives specifically tailored to event time series, concepts like event
synchronization (ES)12 and event coincidence analysis (ECA)26 have
been proposed to uncover the nonlinear inter-dependency between
two interacting complex systems exclusively based on the timing
of distinct events. Both ES and ECA have found various appli-
cations to diverse fields of research, including EEG recordings,12

human interaction patterns,27 and climate extreme events.9,28 Recent
comparisons between ES and ECA have revealed typical situa-
tions in which the functional network structures derived using both
methods can differ significantly,24,29,30 particularly depending on the
degree of temporal clustering of events. Here, we draw upon the
approach underlying partial phase synchronization analysis to gen-
eralize the traditional bivariate ECA to a partial version thereof,
aiming to distinguish direct from indirect interactions among event
time series.

In order to demonstrate the potentials of the proposed method-
ology, we first discuss its utility by studying two types of numerically
generated event time series on different generic coupling configura-
tions without and with consideration of a two-dimensional spatial
embedding. Subsequently, we disclose the distinct roles of direct
and indirect connections in functional brain networks reconstructed
from healthy human resting state alpha band EEG recordings under
eyes open (EO) and eyes closed (EC) conditions.31 In both cases,
direct connections are found to exist primarily between neighbour-
ing brain areas while indirect ones are mainly identified between
brain regions that are separated by larger spatial distances. Taking
only the direct connections into account, we find enhanced con-
nection strengths in the frontal areas under EC as compared to EO
conditions, while the connectivity under EO conditions becomes
stronger in the posterior regions relative to the values in the EC
state. The corresponding redistribution process could be relevant for
better understanding the previously reported alpha band desynchro-
nization in EO state.32

The remainder of this paper is organized as follows: in Sec. II,
we present a generalization of ECA from classical bivariate to partial
analysis. In Sec. III, we compare the results of this partial event coin-
cidence analysis (PECA) with those of partial phase synchronization
analysis for three noisy Rössler systems exhibiting both direct and
indirect links. Subsequently, numerical results of PECA for coupled
chaotic and stochastic models without and with two-dimensional
spatial embedding are presented for the two coupling configurations
shown in Fig. 1, which allow us to correctly distinguish direct from
indirect coupling. Finally, we evaluate the coupling identification
in functional brain network representations obtained from rest-
ing state multi-channel alpha-band EEG measurements in Sec. IV.
Additional consistent results obtained from other independent EEG
data sets are further detailed in the supplementary material.

II. METHODS

Event coincidence analysis (ECA) is a statistical method to
measure similarities between event time series incorporating a pre-
defined coincidence interval.26 An event series is defined as an
ordered set of N event timings {t1, . . . , tN}. For example, in the case
of a single-channel EEG time series xi(t) measured by one electrode
i, an event takes place when xi(t) becomes larger than a threshold,

e.g., xe = x̄ + 1.8σx, where x̄ and σx are the mean and standard
deviation of the signal x, respectively. The choice of the threshold
depends on the particular time series under study, e.g., it may even
not be necessary at all in some practical cases where spiking times
are directly recorded. For instance, abrupt spiking events are gen-
uine properties of tasked based or epileptic brain EEG recordings.
In case of successive time steps for which x exceeds the predefined
threshold value, the first one is commonly associated with the event
of interest. Accordingly, a pair of event time series associated with
two variables or units i and j is defined as two ordered event sets of
size Ni and Nj, respectively, and we denote as ti

l the time of event l

in time series i and as t
j
m the time of event m in time series j with

l = 1, 2, . . . , Ni and m = 1, 2, . . . , Nj.29

A. Bivariate event coincidence analysis

ECA is based on the computation of event coincidence rates
between two given event time series, i.e., the rates with which
events in one variable occur in temporal proximity with those in
the other. In order to define this proximity and, hence, mutual syn-
chrony between events, a coincidence window needs to be specified
first, which is evaluated relative to each individual event in one
of the series that acts as the reference for the definition of event
coincidence rates. This implies that these rates are not necessarily
symmetric quantities and commonly change their values when the
role of the reference series is exchanged among the two time series
under study. Under general conditions, the coincidence window can
be described by its start and end time relative to an event in the
reference series, i.e., [T(−), T(+)], while the most common choices
consider coincidence windows that are either completely in the past
of an event (i.e., [−1T, 0]), completely in its future (i.e., [0, 1T]),
or combine both in a symmetric fashion with respect to the timing
of an event (i.e., [−1T, 1T]). In addition, we may further consider
a systematic time shift of one series relative to the other by a time
lag τ in the same fashion as, e.g., used in standard cross-correlation
functions.

Disregarding the symmetric definition of a coincidence win-
dow, we consider here two versions of event coincidence rates.
Specifically, we are interested in the fraction of cases where events
in j precede (follow) events in i, which could be indicative of a possi-
ble causal influence from j to i (i to j). (The other direction from i to
j is obtained by simply exchanging i and j in all formulas below.)

In this case, two events at ti
l and t

j
m are considered to coincide if

0 ≤ ti
l − t

j
m ≤ 1T. In addition, a proper time lag τ ≥ 0 between i

and j can be incorporated by the condition 0 ≤ (ti
l − τ) − t

j
m ≤ 1T.

To quantify the strength of statistical interrelationships
between two event time series, we compute their precursor event
coincidence rate that quantifies the fraction of events in i that are
preceded by events in j as26,29

rp(i|j; 1T, τ) =
1

Ni

Ni
∑

l=1

2





Nj
∑

m=1

1[0,1T]((t
i
l − τ) − tj

m)



 , (1)
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and the trigger event coincidence rate measuring the fraction of
events in j that are followed by events in i as

rt(i|j; 1T, τ) =
1

Nj

Nj
∑

m=1

2

[

Ni
∑

l=1

1[0,1T]((t
i
l − τ) − tj

m)

]

, (2)

where 1[0,1T](•) is the indicator function of the coincidence window
defined by the maximum temporal event distance 1T. As suggested
by Odenweller and Donner,29 in what follows we will use a single sta-
tistical association measure Qij that we will refer to as the event coin-
cidence strength to characterize the degree of event synchrony, which
is given by the mean of the two (directed) trigger event coincidence
rates rt(i|j; 1T, τ) and rt(j|i; 1T, τ). We note that an analogous con-
struction could be performed based on the two (directed) precursor
event coincidence rates rp(i|j; 1T, τ) and rp(j|i; 1T, τ), which can be
expected to result in somewhat different values, especially if the con-
sidered coupling is not bi-directional. Exploiting the corresponding
asymmetries for extending the approach proposed in the following
to the problem of differentiating between uni- and bidirectional cou-
pling may provide an interesting research avenue for future research,
but is beyond the scope of the present work. Therefore, we focus in
the following on the event coincidence strength defined based on the
symmetrization of pairs of trigger event coincidence rates.

Furthermore, it is notable that the definition of the underly-
ing event coincidence rates features two parameters. In the present
work, we exclusively utilize 1T, which allows for events that do
not exactly coincide in time between a pair of considered time
series due to non-identical event definitions, sampling coarseness,
or uncertainty due to stochastic components in the time series. By
contrast, the second parameter τ , which allows addressing system-
atic delays between events in two series, will be kept zero throughout
the remainder of this paper, since we will not be specifically inter-
ested in exploring time-delayed interactions between the variables
of interest.

B. Partial event coincidence analysis

The analysis of bivariate event coincidence strengths Qij can
be extended to n simultaneously observed event time series in a
straightforward manner, which results in a symmetric bivariate
event coincidence strength matrix,

Q =











1 Q1,2 · · · Q1,n

Q1,2 1 · · · Q2,n

...
...

. . .
...

Q1,n Q2,n · · · 1











. (3)

In full analogy with the established partial phase synchroniza-
tion/coherence, we employ the matrix inversion of Q in order to
define the partial event coincidence strength QP

i,j between i and j as

QP
i,j = Qi,j|{k} = |Q−1

i,j |
/

√

Q−1
ii Q−1

jj . (4)

This property can be interpreted as the residual probability of pair-
wise coincidences between events in two variables i and j when
accounting for the probabilities of pairwise coincidences between
events in i (j) and any of the remaining processes k 6= i, j, which is

not equivalent to the concept of conditional probabilities of event
occurrences in the different variables. Accordingly, an indirect sta-
tistical association between i and j is indicated if the partial index
QP

i,j = Qi,j|{k} approaches zero while the bivariate value Qij remains

considerably different from zero, following the same rationale as for
partial phase coherence analysis.22

We emphasize that the concept of partial event coincidence
analysis (PECA) defined as above differs from the recently proposed
extension of joint and conditional event coincidence analysis,33

which accounts for a specified (sub)set of conditioning variables
in the computation of bivariate event coincidence rates and gener-
ally comes with additional choices regarding the relative timings of
events in the contributing time series. The latter approach, which
explicitly draws on conditional probabilities of event occurrences
in more than two variables, appears unfeasible in the presence of
a larger number of interacting units or variables.

C. Effects of spatial embedding

Indirect connections appear frequently in spatially embedded
topologies that are common in, e.g., brain networks. In order to
account for this effect, we suggest to define a wiring cost by addi-
tionally considering the effect of spatial distance. Specifically, the
proposed wiring cost Wi,j between two time series representing two
brain regions is defined as the product between the spatial dis-
tance and functional association strength, i.e., combining a physical
Euclidean distance Di,j and the functional connectivity as expressed
by Qi,j, as

Wi,j = Di,j · Qi,j. (5)

For the case of the generic coupling structures shown in Fig. 1, we
consider a two-dimensional embedding of the graphs. Assuming
links with unit length, we then have three distinct distance values

(1,
√

2, 2) for the star and four (1, 2, 3, 4) for the chain. It is straight-
forward to see that two brain regions with high event coincidence
strength and large mutual separation yield a particularly large wiring
cost.

As we will demonstrate below, using the classical bivariate mea-
sure Qi,j can result in false positive connections between two regions
due to the presence of indirect interactions. To account for this, we
further compute the partial wiring cost

WP
i,j = Di,j · QP

i,j, (6)

which takes small values for indirect connections because QP
i,j is

about zero.

D. Significance test

We justify the statistical significance of the results by surrogate
data approaches. In particular, we test the null hypothesis that the
event time series i is independent of j. For this purpose, we draw
upon the concept of surrogate data. One corresponding possibil-
ity is to directly construct surrogate event series by randomizing
the timings of events while keeping the waiting time distribution
between subsequent events unchanged. For the numerical exam-
ples discussed in Sec. III, these resampling based surrogate event
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sequences may, however, not appropriately represent the intrin-
sic dynamics of the coupled subsystems, which is why we take a
different approach of generating independent realizations of twin
surrogates with different initial conditions34 and subsequently apply
the same event definition as for the original data to the accordingly
generated surrogate time series.

For each series under study, we accordingly generate 1000
surrogates event time series denoted by js (s = 1, . . . , 1000) and
compute the event coincidence strength Qs

ij between each pair of i

and js. The original Qij is considered significant at a 99% confidence
level if it exceeds the empirical 99th percentile of the values obtained
from the surrogate ensemble.

III. NUMERICAL EXAMPLES

A. Coupling identification based on partial event

coincidence and partial phase synchronization

As a minimal example, we first study a simple three-node
network (Fig. 2) of coupled nonlinear oscillators, which has been
used as an example in similar previous studies.21,22 Following the
same numerical settings as in Schelter et al.,21 we consider chaotic
Rössler systems with additional independent white noises in their
x components, which are diffusively coupled via their respective x
components, described by the following governing equations:

ξi :















ẋi = −ωiyi − zi +
∑

j6=i

κi,j(xj − xi) + σiηi,

ẏi = ωixi + 0.15yi,

żi = 0.2 + zi(xi − 10.0),

(7)

where i, j = 1, 2, 3, ω1 = 1.03, and ω2,3 = 1.01 are the natural fre-
quencies of the individual systems, and ηi are independent Gaussian
distributed noise terms with zero mean and a standard deviation of
σi = 1.5. The reason for choosing noisy chaotic oscillators is that
without additional noise, the coupled Rössler oscillators would expe-
rience phase synchronization already at relatively small coupling
strengths, while the additional noise terms elevate this synchroniza-
tion threshold and, therefore, result in a larger interval of coupling
strengths in which we can expect to be able to properly distinguish
direct from indirect coupling. In addition, we note that since the
considered noise only acts on the x components of the coupled oscil-
lators, we do not use the standard notation of stochastic differential

FIG. 2. Illustrative example for direct and indirect interactions in a simplistic
three-node network.21 (a) Correct topology and (b) additional false positive con-
nection as denoted by the dashed line which would be revealed by most bivariate
statistical association measures.

equations, but stick to the above formulation as also used in previous
works.21

We consider a bidirectional symmetric coupling with coupling
strength κ1,3 = κ3,1 between oscillators ξ1 and ξ3 and κ1,2 = κ2,1

between ξ1 and ξ2. By contrast, the oscillators ξ2 and ξ3 are only
indirectly coupled as realized by setting κ2,3 = κ3,2 = 0. We numeri-
cally integrate the system using a fourth-order Runge-Kutta method
with random initial conditions and an integration step of h = 0.01.
The first 10 000 data points are discarded as possible transients, and
time series consisting of the subsequent N = 100 000 data points are
taken for our analysis.

To compare the results of our partial event coincidence analysis
with an established benchmark, we consider partial phase synchro-
nization analysis.21 In this case, the bivariate event coincidence
strength Qij is replaced by a phase coherence index Rij, which
is based on continuous phase variables for the different Rössler
systems that can be defined in different ways.

1. Benchmark 1—Phase coherence based on x and y

variables

Given that we have access to all three components of each
Rössler system, Rij is traditionally estimated in the following way.25,35

We first define phase variables from the nonlinear oscillations
of the individual systems based on their x and y variables, i.e.,
φi(t) = arg(xi(t) + iyi(t)) with i denoting the imaginary unit and
arg(•) the phase angle of the complex argument, which is feasi-
ble since the individual Rössler systems are in their phase coherent
regimes at the considered parameter values. These phase variables
are then unwrapped to obtain continuous phase time series by
taking the associated 2π periodicity into account. Based on these
phase time series, the phase coherence index Rij is estimated as

Rij = | 1
T

∑T
t=1 exp (i(φi(t) − φj(t)))|, where T is the integration time

(i.e., the number of time steps).

2. Benchmark 2—Phase coherence based on z

variables

While the x and y variables of the considered Rössler oscilla-
tors exhibit well defined oscillations around a unique center (i.e.,
phase coherent dynamics), the z components display large spike-
like excursions separating longer periods with z(t) ≈ 0. This spiky
and not quite oscillatory behavior renders it difficult to infer rele-
vant information on the nonlinear dynamics of the Rössler system
from its z component only, which lacks proper observability36 lim-
iting the identification of synchronization phenomena from the
perspective of a time-continuous phase dynamics.37 Despite these
conceptual limitations, we can still perform phase synchronization
analysis based on this variable when introducing a proper Poincaré
section, i.e., identifying two consecutive crossings of a given thresh-
old value as one cycle corresponding to a phase increment of 2π , and
defining a continuous phase variable by linear interpolation in time,

i.e., φ(t) = 2πk + 2π
t−tk

tk+1−tk
for tk ≤ t < tk+1, where tk and tk+1 are

the timings of two consecutive threshold crossings. This method is
based on a uniform phase interpolation for each cycle between two
consecutive crossings, which is feasible if the crossings appear rel-
atively regularly in time like for the z component of the Rössler
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system. However, it remains problematic to assign 2π increments
for two consecutive spikes if the crossings are more heterogeneously
distributed in time, e.g., in case of long quiescent intervals followed
by a few non-uniform spikes.

Event based similarity concepts like event synchronization38

and event coincidence analysis provide solutions to tackle the chal-
lenge of studying synchrony between Rössler systems based on their
z variables only by characterizing the statistical interdependence
between two spike trains, making the explicit definition of a contin-
uous phase variable unnecessary. Here, we obtain event time series
defined by threshold crossings when the z component becomes
larger than ze = z̄ + 1.8σz, where z̄ and σz are the empirical mean
value and standard deviation of the z variable, respectively.

For the three noisy Rössler systems coupled as shown in
Fig. 2(a), we independently vary the symmetric coupling strengths
between ξ1 and ξ2 as well as between ξ1 and ξ3 in a range between
0 and 0.3, in which transitions to phase synchronization can be
observed. For each pair of coupling strengths κ1,2 and κ1,3, we
compute both the bivariate [Figs. 3(a)–3(c)] and the partial event
coincidence strengths [Figs. 3(d)–3(f)]. The results agree remark-
ably well with those reported by Schelter et al.21 for (partial) phase
coherence. In particular, the bivariate analysis indicates significant
coupling between ξ1 and ξ2 as well as between ξ1 and ξ3, but also
shows substantial non-zero values of the event coincidence strength
Q2,3 between ξ2 and ξ3 [Fig. 3(c)], which corresponds to a false
positive connection since ξ2 and ξ3 are only indirectly connected

FIG. 3. Values of pairwise event coincidence strengths Qi,j and partial event coincidence strengths Q
P
i,j in dependence on the two coupling strengths for the three noisy

chaotic Rössler oscillators in the symmetric bidirectional coupling configuration shown in Fig. 2.
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[Fig. 2(a)]. The bivariate analysis, hence, yields a spurious pseudo-
connection between ξ2 and ξ3 [as highlighted in Fig. 2(b)], which
originates from the common influence exerted by ξ1 on the two
other oscillators. By contrast, the partial event coincidence strengths
QP

1,2 = Q1,2|3 and QP
1,3 = Q1,3|2 display essentially the same behavior

as their direct bivariate counterparts, while QP
2,3 = Q2,3|1 takes far

smaller values in the area of spurious synchronization. Therefore,
this behavior strongly suggests that there is only an indirect coupling
between ξ2 and ξ3, thereby excluding the false positive connection
indicated by the dashed line in Fig. 2(b).

We further contrast the performance of PECA to distinguish
the indirect coupling between ξ2 and ξ3 from the two direct connec-
tions with the respective results for the two partial phase synchro-
nization based benchmark methods in the same range of coupling
strengths. In Fig. 4, we show the empirical distributions of the
three partial association measures evaluated over the whole range
of considered coupling strengths [corresponding to Figs. 3(d)–3(f)
and their respective counterparts]. For the direct connections, all
three partial measures exhibit a significant frequency of non-zero
values mainly associated with larger coupling strengths [Figs. 4(a)
and 4(b)]. The observed differences among the three measures result
from the spiking behavior of the z component of the chaotic Rössler
systems. Notably, for the indirect coupling between ξ2 and ξ3, we
find that the distribution of partial event coincidence strengths is
concentrated more closely to zero than the values of the two par-
tial phase coherence indicators [Fig. 4(c)]. However, performing
a systematic quantitative inter-comparison between the respective
performances of the different measures as discriminators between
direct and indirect links would require a much more elaborate anal-
ysis strategy and is beyond the scope of the present work. To this
end, we conclude that our approach based on the timing of specific
events alone yields results that are greatly consistent with those of
the classical methods requiring a continuous phase variable.

Finally, we show the dependence of the obtained results on the
time series length N for an illustrative example of coupling strengths
κ1,2 = κ1,3 = 0.2. As shown in Figs. 5(a) and 5(b), we find that both
the direct bivariate and partial event coincidence strengths are sig-
nificantly different from zero for the directly coupled oscillators. By
contrast, the partial event coincidence strengths are close to zero for
the indirectly interacting oscillators [Fig. 5(c)]. All those results con-
verge as the time series length N is increased. Based on Fig. 5(c),
we notice that the indirect coupling has been correctly identified
for N & 1000 (i.e., ≈5–6 oscillations of the Rössler systems). The
same conclusion can be obtained for the (partial) phase coherence
benchmark case 1 [Figs. 5(d)–5(f)]. However, for the correspond-
ing benchmark case 2, we find that even longer series are required
to obtain a clear distinction between direct and indirect coupling
[Figs. 5(g)–5(i)].

B. Five coupled noisy Rössler systems

Next, we study the same type of coupled noisy Rössler oscilla-
tors as before (with independent Gaussian distributed white noise
terms ηi with zero mean and a standard deviation of σi = 1.5), but
considering five of such systems coupled as shown in Fig. 1. For
the star configuration [Fig. 1(a)], we take the natural frequencies
of the individual systems as ω1 = 1.03 and ω2, . . . , ω5 = 1.01 and
a bidirectional coupling of the same strength κ1,j = κj,1 = κ between
the hub ξ1 and each leaf node ξj, j = 2, . . . , 5. Note again that the
oscillators on the leaf nodes ξ2,...,5 are indirectly coupled with each
other, with a mutual flow of information mediated via the hub node
ξ1. When the five oscillators are coupled as a chain [Fig. 1(b)], we
choose ω = 1.03 for all nodes, while κ = κ1,2 = κ2,1 = κ1,3 = κ3,1

= κ2,4 = κ4,2 = κ3,5 = κ5,3. Numerical integration and definition of
events follow exactly the same procedure as described above. In

FIG. 4. Histograms of partial association strengths Ri,j|k and Qi,j|k among the three coupled noisy Rössler oscillators for the direct connections between (a) ξ1 and ξ2 and
(b) ξ1 and ξ3 and (c) the indirect connection between ξ2 and ξ3. Three different definitions of statistical associations are included: partial phase coherence index based
on φ = arctan y(t)/x(t) (∗, blue) and phase increments of 2π between times at which the z(t) variable shows crossings over a threshold (4, black), and partial event
coincidence strength (�, red).
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FIG. 5. Convergence of pairwise and partial association strengths Qi,j and Qi,j|k for the three coupled noisy Rössler systems. Values are based on event coincidence (a–c),
and phase coherence of benchmark case 1 (d–f) , and benchmark case 2 (g–i). The shown error bars indicate the mean values and standard deviations obtained from 100
random realizations. Note that due to the strongly skewed distributions of the measures, some of the error bars reach out to negative values that are outside the admissible
range of the considered measures.

the main text, we report the average results from 100 realiza-
tions with random initial conditions, while the corresponding stan-
dard deviations can be obtained from Figs. S1 and S2 in the
supplementary material.

1. Star configuration

When applying direct bivariate event coincidence strengths Qij

for functional network construction under the star configuration,
the 99% significance level of the surrogate data test discussed in
Sec. II D is exceeded for all pairs of nodes [Fig. 6(a)]. This means
that in addition to the direct links between the hub and each of the
leaves, additional indirect couplings among the leaf nodes are falsely
identified as links. Specifically, the indirect connections between leaf
nodes are identified if the coupling strength κ is larger than 0.1 [as
shown in Fig. 6(a)]. Since all leaf nodes are identical except for their
different initial conditions, the curves revealing the dependence on
κ for bivariate analysis split into two groups: one group corresponds
to the connections of any of the leaf nodes with the hub while the
other group consists of pairs of leaf nodes.

When replacing the direct bivariate associations by partial
event coincidence strengths (QP

i,j = Qi,j|k), all false positive connec-

tions among the leaves are eliminated since they all fall below the
corresponding significance level [Fig. 6(b)]. Note that, for small cou-
pling κ < 0.01, neither bivariate nor partial ECA can reveal any
connections between nodes simply because the interactions are not
strong enough to be identified based on the available amount of
events.

When the star network is additionally embedded in a
two-dimensional Euclidean space, we use the wiring cost functions
Wi,j and WP

i,j to reflect the effect of this spatial embedding [Figs. 6(c)

and 6(d)]. In this case, the bivariate analysis based on Wi,j yields
three groups corresponding to the three different Euclidean dis-
tances among nodes (Sec. II C), all of which exhibit partial event
coincidence strengths above the considered significance threshold.
By contrast, the partial wiring cost WP

i,j again successfully distin-

guishes indirect from direct couplings when κ > 0.1 (as highlighted
by the background color in Fig. 6).

We note that while the above results correspond to the mean
values of 100 realizations, there is a considerable spread between
the individual values of (partial) event coincidence strengths among
the realizations, leading to a few cases of overlapping error bars as
shown in Fig. S1 in the supplementary material.

2. Chain configuration

For the chain configuration, the ten combinations of bivari-
ate event coincidence strengths are divided into six groups because
of the symmetry in the connections [Fig. 1(b); note that the oscil-
lators are not numbered in consecutive order along the chain].
In particular, the six groups of bivariate curves are the following:
(Q1,2, Q1,3), (Q2,4, Q3,5), (Q1,4, Q1,5), (Q2,5, Q3,4), Q2,3, and Q4,5. Among
all pairwise connections, the weakest pseudo link between ξ4 and
ξ5 is established when κ > 0.2 [Fig. 7(a)]. Again, all false positive
connections are eliminated by considering partial event coincidence
strengths whose values always remain clearly below the significance
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FIG. 6. Event based coupling inference for five coupled noisy Rössler oscillators on a star network without (a) and (b) and with two-dimensional spatial embedding (c) and (d)
as the coupling strength κ is increased. (a) Bivariate event coincidence strength Qi,j , (b) partial event coincidence strength Q

P
i,j , (c) direct wiring costWi,j , and (d) partial wiring

costWP
i,j . Dotted lines indicate the 99% significance levels obtained from surrogate event time series with conserved waiting time distributions. The shaded gray backgrounds

in panels (a) and (c) highlight cases with false positive connections being observed, which correspond to indirect connections between nodes. By contrast, the shaded green
backgrounds in panels (b) and (d) indicate the range of coupling strengths for which the network topology is correctly identified.

level, while the direct connections of ξ1 − ξ2, ξ1 − ξ3, ξ2 − ξ4, and
ξ3 − ξ5 differ significantly from zero [Fig. 7(b)]. In full analogy,
the partial wiring cost WP

i,j correctly eliminates the indirect linkages

falsely identified by the direct bivariate wiring cost Wi,j when the
two-dimensional spatial embedding is taken into account [Figs. 7(c)
and 7(d)].

C. Coupled stochastic processes

As a second numerical example, we use a simple first-order
vector auto-regressive (VAR(1)) process consisting of five coupled
AR(1) components as29

ξi : xi,t = ϕixi,t−1 +
∑

j6=i

κi,jxj,t−1 + εi,t, (8)

where κi,j are again coupling parameters modeling cross-correlations
among the components and ϕi are the lag-one auto-regressive
parameters modeling serial correlations for the respective variables

xi. The error terms εi,t are standard normally distributed with
zero mean and unit variance. In the case of a star configura-
tion [Fig. 1(a)], we choose ϕ1 = 0.2, ϕi = 0.4 (i = 2, 3, 4, 5) and
κ1,j = κj,1 = κ , j = 2, . . . , 5 and κi,j = 0, i 6= 1. For the chain model
[Fig. 1(b)], we choose ϕi = 0.45 and the same symmetric coupling
strength κ for each prescribed existing connection.

We emphasize that this second numerical example is drawn on
purpose from a very different type of dynamical system as compared
to the coupled noisy Rössler oscillators in order to demonstrate the
general applicability of our event coincidence based framework to
a great variety of different types of systems. It shall be noted that
the correct coupling of the VAR model can be inferred from the
explicit time series data by means of direct parameter estimation
or other standard statistical inference techniques, while we are here
interested in how well the same problem can be addressed based
solely on the timing of specific events in each component, a problem
addressed so far to our best knowledge only for a simple bivariate
case.29
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FIG. 7. Same caption as in Fig. 6, but for five coupled noisy chaotic Rössler oscillators on a chain.

By numerically simulating the model described above, we
obtain five event time series when the simulated process values
become larger than a given percentile of the underlying empirical
distribution of the process. Specifically, we simulate the model to
create 10 000 time points and use the empirical 90th percentile as a
threshold, which yields about 1000 events for each series. Then, we
calculate the bivariate coincidence strength Qi,j for ξ1, . . . , ξ5

29 and
the partial coincidence strength QP

i,j while the coupling strength κ is

systematically increased from 0 to 0.3.

We note that further numerical results (not shown) have
demonstrated that we approach almost perfectly synchronized
events (i.e., very high bivariate event coincidence strengths) among
all coupled variables if the VAR(1) process is characterized by
very strong coupling (κ > 0.35). In such a situation, the matrix of
pairwise event coincidence strengths becomes gradually less well-
conditioned so that the matrix inversion required for computing the
partial event coincidence strengths becomes numerically challeng-
ing. It can be expected that other coupling inference approaches,
like such based on linear correlations and/or regression models,
will suffer from the same problem. As a result, similar as for
chaotic oscillators experiencing (phase) synchronization, at high
coupling strengths, we are not able to correctly identify the directly

coupled links anymore. Therefore, we restrict our analysis to cou-
pling strengths κ ∈ (0, 0.3) in Figs. 8 and 9. Again, we report the
average results from 100 random realizations in the main text, while
the corresponding standard deviations can be obtained from the
error bars shown in Figs. S3 and S4 in the supplementary material.

1. Star configuration

Due to the stochastic nature of the processes, a narrow win-
dow of the coupling strength [κ ∈ (0.23, 0.29)] is identified based
on bivariate event coincidence strength Qi,j within which we may
observe qualitatively different significance results for different pairs
of nodes [Fig. 8(a)]. By contrast, the partial event coincidence anal-
ysis QP

i,j reveals a much larger interval of values of the coupling

strength that allows excluding the effect of indirect connections
among leaf nodes [κ ∈ (0.18, 0.3) in Fig. 8(b)]. When additional spa-
tial constraints are considered, the direct bivariate and partial wiring
costs lead to rather similar results [Figs. 8(c) and 8(d)].

2. Chain configuration

For the chain topology, the direct bivariate analysis faces con-
siderable challenges in establishing the connections unambiguously
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FIG. 8. Event based coupling inference for five coupled AR(1) processes on a star configuration without [(a) and (b)] and with two-dimensional spatial embedding [(c) and
(d)]. (a) Bivariate event coincidence strength Qi,j , (b) partial event coincidence strength Q

P
i,j , (c) direct wiring costWi,j , and (d) partial wiring costW

P
i,j . Dotted lines correspond

to the 99% significance level.

throughout the entire coupling interval, since most of the pairwise
values remain below the significance level for a considerable range of
coupling strengths. Moreover, the individual curves of Qi,j and Wi,j

exhibit a relatively wide spread without a clear gap between differ-
ent groups of node pairs [Figs. 9(a) and 9(c)], which makes it hard
to find a clear difference between direct and indirect couplings. By
contrast, the partial measures QP

i,j and WP
i,j indeed distinguish direct

from indirect couplings; in particular, the directly interacting pairs
ξ1 − ξ2, ξ1 − ξ3, ξ2 − ξ4, and ξ3 − ξ5 are well above the dashed lines
indicating the significance level of the surrogate data based test while
all other groups of indirect pairs clearly remain below these critical
values [Figs. 9(b) and 9(d)].

IV. APPLICATION: ALPHA BAND FUNCTIONAL BRAIN

CONNECTIVITY DURING DIFFERENT RESTING STATES

The numerical results discussed in Sec. III indicate that the
partial event coincidence strength QP

i,j and partial wiring cost WP
i,j

are able to successfully distinguish direct from indirect connections.
Specifically, we have demonstrated that the proposed method works
in situations without and with explicit consideration of a spatial

embedding of the nodes. As a real-world neurophysiological exam-
ple, we finally report our corresponding results of an analysis of
multi-channel human EEG recordings that unveils the functional
connectivity patterns of the human brain during the two resting
states with eyes closed (EC) and eyes open (EO) conditions. We
specifically chose this application because it appears a non-typical
case for the application of our methodology, since resting state EEG
recordings are characterized by an absence of well distinguished
activity spikes as commonly observed in task based EEG recordings
or epileptic brain activity. We, therefore, consider the latter cases
as examples our analysis methodology would be specifically tailored
to, while it appears important to demonstrate that it can also pro-
vide useful results in a neurophysiological situation that would be
typically investigated by other more established analysis approaches
based on the full time series data.

A. Description of the data

We consider a set of publicly available 64-channel EEG
recordings of 109 subjects (dataset 1) originally studied by
Goldberger et al.31 During the recordings, all subjects remained
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FIG. 9. Same as in Fig. 8, but for five coupled AR(1) processes on a chain without [(a) and (b)] and with two-dimensional spatial embedding [(c) and (d)]. Note that the
curves obtained based on direct bivariate analysis exhibit a wide spread, which makes it hard to identify connections properly [(a) and (c)]. By contrast, QP

i,j and W
P
i,j reveal

groups of nodes with partial statistical associations clearly above the significance level (indicating direct coupling) that are well separated from the others remaining below
the significance level (indicating indirect coupling) [(b) and (d)].

at rest with one minute eyes closed and one minute eyes open
condition. As necessary pre-processing steps, we removed artifacts
related to eye blinks and eye movements following the standard
procedure of Independent Component Analysis.39,40 Complemen-
tary results for two other similar datasets (referred to as dataset
2 and dataset 3, respectively) are provided in the supplementary
material.

It is well known that the alpha band is a predominant rhythm
in the human brain, which has been investigated in studies of vari-
ous cognitive processes.32 Therefore, we apply bandpass filtering to
the recordings at each individual EEG channel corresponding to the
alpha band activity in the frequency band of (8, 13] Hz. Following
the existing literature,39,41 the considered EEG data are subsequently
averaged over nine cerebral regions: left frontal (I), midline frontal
(II), right frontal (III), left central (IV), midline central (V), right
central (VI), left posterior (VII), midline posterior (VIII), and right
posterior (IX), which are schematically shown in Fig. 10. Consis-
tent results are obtained when the following steps are performed

on the 64 individual EEG channels as shown in the supplementary
material.

Starting from the resulting nine time series xi(t) representing
each of these brain regions, events are defined as the times when
xi(t) crosses a threshold of xe = x̄ + 1.8σx from below, where x̄ and
σx are again the mean and standard deviation of the signal x. In case
of consecutive time steps for which the signal exceeds this thresh-
old, the first one is associated with the event. Next, we compute
the matrix of event coincidence strengths Q. For defining wiring
cost functions, normalized Euclidean distances (original distances
divided by the overall maximum value) between the centers of the
different brain areas are used, where for convenience a center has
been defined as the mean of the three-dimensional positions of all
electrodes associated with a given region on the scalp (and, hence, is
generally located within the brain). Finally, we test the obtained val-
ues against the null hypothesis of statistical independence for each
pair of event time series by using our surrogate data method on 99%
significance level.

Chaos 32, 063134 (2022); doi: 10.1063/5.0087607 32, 063134-12

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha
https://www.scitation.org/doi/suppl/10.1063/5.0087607
https://www.scitation.org/doi/suppl/10.1063/5.0087607


Chaos ARTICLE scitation.org/journal/cha

FIG. 10. Positions of electrodes and nine brain regions.

B. Functional connectivity estimation using ECA and

PECA

When drawing upon the direct bivariate analysis, we find that
different pairs of brain regions show different levels of generally
strong (significant) mutual event synchrony. Specifically, all pairs
among the nine brain regions exhibit statistically significant event
coincidence strengths in the vast majority of cases for both types
of conditions, indicating a fully coupled functional brain network
[Figs. 11(a) and 12(a)]. Only in the EC state, we observe insignifi-
cant values of event coincidence strengths in more than 25% (but
less than 50%) of all cases for just three pairs of regions: LF-RP,
MF-RP, and RF-RP. Comparing both types of conditions [Fig. 11(a)
vs Fig. 12(a)], we find that the magnitudes of pairwise event coin-
cidence strengths in the EC state differ systematically from those
during the EO state, which will be further analyzed below.

We next replace the classical bivariate measure by our new par-
tial event coincidence strength. Indeed, accounting for the effect
of any third brain regions on the statistical associations between
functional activity in pairs of regions completely changes the over-
all picture as the majority of pairs now falls below the considered
significance threshold. This indicates that many pairs of regions
have been falsely identified by the direct bivariate approach but
are actually only indirectly coupled. For EC conditions [Fig. 11(b)],
this particularly applies to LF-MC, LF-RC, LF-LP, LF-MP, LF-RP,
MF-LC, MF-RC, MF-LP, MF-MP, MF-RP, RF-LC, RF-LP, RF-MP,
RF-RP, LC-MP, LC-RP, MC-LP, MC-RP, and RC-LP, while only the
remaining pairs of regions appear as directly connected according to
our partial event coincidence analysis (more than 50% but less than

70% of all subjects below the dashed line). Studying EO conditions
leads to very similar results [Fig. 12(b)].

While Figs. 11 and 12 summarize the significance of pairwise
statistical associations (as measured by both Qi,j and QP

i,j) among

all subjects, it may be more convenient to further aggregate this
information and project the mean behavior on the surface of the
human brain. The corresponding spatial representation of the mean
statistical associations further underlines that direct bivariate event
coincidence strengths would indicate an almost fully connected net-
work (including connections between both neighboring and distant
brain regions), as shown in Figs. 13(a) and 13(b). By contrast, the
partial event coincidence strengths identify direct connections to
exist mainly between neighboring brain regions, but also (yet com-
monly weaker) between the left and right regions in the frontal,
central, and posterior parts of the brain [Figs. 13(c) and 13(d)]. This
implies that especially the apparent connections between frontal and
posterior regions that are revealed by the direct bivariate associa-
tions are most likely of indirect nature and rather mediated via the
central brain regions.

C. Connectivity strength under EO and EC conditions

Since the general functional brain connectivity patterns identi-
fied using our methodology do not differ qualitatively between EO
and EC conditions, we next turn to the question whether or not
there exist systematic quantitative differences between both states.
As a first step of this analysis, we are primarily interested in the
gross effect of experimental conditions on the synchrony of activity
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FIG. 11. Comparison between (a) direct bivariate (Qi,j ) and (b) partial event coincidence strengths (QP
i,j ) for eyes closed condition. The dotted line indicates the 99%

significance level of the surrogate data test. The bottom and top edges of each box indicate the 25th and 75th percentiles among the results for all studied patients,
respectively, while the marker “+” symbolizes outliers.

between pairs of brain regions, irrespective of whether it originates
from direct functional connections or collective effects mediated
by other regions. In order to visualize the quantitative differences
between the functional connection strengths under EC and EO
conditions, we compute the event coincidence strength difference

DQi,j = QEC
i,j − QEO

i,j , (9)

where the superscripts correspond to the EC and EO conditions,
respectively, between all pairs of brain regions and plot them in
the same way as before on a two-dimensional projection of the

FIG. 12. Same caption as in Fig. 11 but for eyes open condition.
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FIG. 13. Summary of the spatial placement (two-dimensional brain projections as in Fig. 10) of significant statistical associations (colors indicating the mean values taken
over all patients in the sample) among the nine macroscopic brain regions as identified by, respectively, [(a) and (b)] direct bivariate event coincidence strengths Qi,j and [(c)

and (d)] partial event coincidence strengths QP
i,j under [(a) and (c)] eyes closed and [(b) and (d)] eyes open condition.

human brain as shown in Fig. 14. Our definition implies that
stronger total interdependencies under EC than under EO con-
ditions are indicated by positive values of DQi,j, while negative
DQi,j values indicate stronger connections under EO than under EC
conditions. As a result, we find a notable amount of consistently
positive differences concentrated in the frontal brain regions (i.e.,
stronger connections during EC conditions) as shown in Fig. 14(a).
By contrast, negative differences (i.e., stronger connections dur-
ing EO conditions) are primarily found in the posterior regions
[Fig. 14(b)].

For the sake of completeness, we also compute the corre-
sponding partial event coincidence strength differences DQP

i,j by

replacing the direct bivariate associations in Eq. (9) by their partial

counterparts. The corresponding results are shown in Figs. 14(c)
and 14(d). We find that under EC conditions, especially the con-
nections of the middle frontal and central regions with their left

and right counterparts are strengthened relative to EO conditions.
The same also applies to the RC-MP connection, while the partial
event coincidence strength differences for RP-LP and RF-MP are
generally close to zero. By contrast, stronger connections under EO
conditions are found (i) between the central regions and the frontal
and posterior ones in the right, middle, and central parts of the
brain, (ii) for the direct connections between left and right regions
in the frontal and central parts of the brain, and (iii) between the
middle posterior region and its left and right counterparts. In sum-
mary, we still find that stronger connections under EC conditions
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FIG. 14. Differences of [(a) and (b)] event coincidence strengths and [(c) and (d)] partial event coincidence strengths between EC and EO conditions: positive values of
(a) DQi,j and (c) DQ

P
i,j indicating stronger associations under EC conditions; negative values of (b) DQi,j and (d) DQ

P
i,j , indicating stronger associations during EO conditions.

are mainly concentrated in the frontal and central parts of the brain,
while EO conditions are characterized by stronger connectivity in
the posterior regions and between the frontal, central, and posterior
parts.

D. Effect of spatial embedding

Finally, we discuss the effects of spatial embedding on the cou-
pling identification by computing the wiring costs between all pairs
of brain regions for the EC and EO conditions, respectively.42 As
before, the wiring cost Wi,j is defined as the direct product between
the spatial distance and functional association, i.e., Wi,j = Di,jQi,j

(see Sec. II C). This is motivated by an analogy with technologi-
cal transportation system, where the construction cost of a physical
link increases proportional to the covered distance and the accom-
modated traffic volume. Similar approaches can also be found in

the previous literature.42 With our corresponding definition, it is
straightforward to see that two further separated brain regions with
stronger event coincidence strength yield a larger wiring cost for the
information transfer. The overall global wiring cost W of a subject
is simply defined as the average over all pairs of brain regions. We
associate a larger wiring cost W with a more synchronous activity
of the brain, which is captured by larger values in the connectivity
matrix Q.

As shown in Fig. 14, there exist notable, yet mainly quantitative
connectivity differences between EC and EO conditions. Specifi-
cally, for EC conditions stronger connections (as compared to EO
conditions) are clustered in the frontal brain regions, leading to
larger wiring costs. By contrast, for the EO state, stronger con-
nectivity than for EC conditions is mainly found in the posterior
regions. Figure 15(a) summarizes the resulting wiring cost differ-
ences WEC − WEO between EC and EO conditions, demonstrating
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FIG. 15. Wiring cost differences between EC and EO conditions in the frontal and posterior brain regions, which are computed by (a) bivariate and (b) partial event coincidence
strength.

that the frontal regions are highlighted by large positive cost
differences while negative cost differences are mainly observed in
the posterior regions. A qualitatively equivalent result is obtained
for partial wiring cost differences based on partial event coincidence
strengths [Fig. 15(b)].

V. CONCLUSIONS

We have generalized the concept of event coincidence analysis
from a direct bivariate to a partial analysis method, which allows
distinguishing direct from indirect coupling configurations based
on the timing of events at mutually interacting dynamical units.
Our method works both without and with explicit consideration of
a possible spatial embedding of the network to be inferred, which
has been demonstrated by simulating coupled noisy chaotic oscil-
lators and stochastic processes on different paradigmatic network
configurations. Specifically, our partial event coincidence analysis
yields statistical association values that are narrowly distributed
close to zero for the case of indirect connectivity, which suggests a
very good discrimination between directly and indirectly connected
units. Yet, the latter observation still has to be further supported
by additional more systematic investigations with other established
methods, which have been beyond the scope of the present work.
To this end, we would like to express our confidence that, although
we have focused in the present work on networks of small size, our
method has great potential for identifying functional connectivity
also in larger networks (see also some of the results shown in the
supplementary material), since the computation of bivariate statisti-
cal associations and the subsequent matrix inversion operation can
also be performed at reasonable computational costs for a larger
number of interacting units.

From the application perspective, we have studied differences
in the connectivity structures in the resting state human brain
alpha band activity by the statistical measures of event coincidence
strength and wiring cost computed for both eyes open (EO) and eyes
closed (EC) conditions. In both brain states, we find that direct con-
nections primarily exist between neighboring brain regions, while
indirect links typically connect brain regions that are separated

by larger spatial distances. Compared to the connectivity pattern
under EC conditions, we have demonstrated that EO conditions
support stronger connections in the posterior brain areas, while
EC conditions strengthen especially connections among the frontal
areas. Both direct and indirect connectivity between the posterior
and frontal areas are markedly enhanced in the presence of exter-
nal visual stimuli processing during EO conditions. Therefore, our
results comply with the alpha band desynchronization hypothesis in
the posterior regions,43 while providing a complementary perspec-
tive on the underlying processes that may be further exploited in
future works to further improve our understanding of the underly-
ing neurophysiological mechanisms.

In addition to the aforementioned neurophysiological perspec-
tives of our proposed approach, there are also several method-
ological aspects that appear worth to be addressed in future work.
While the need for a further thorough method inter-comparison
has already been stressed, we particularly emphasize some possi-
ble modifications and extensions of our PECA. First, we have only
considered instantaneous (lag-zero) coupling in our present study,
which could be extended in a straightforward manner to an analysis
of time-delayed coupling configurations. Second, we have defined
event coincidence strengths based on pairs of trigger event coin-
cidence rates. In the same spirit, we may also use precursor event
coincidence rates or event coincidence rates based on symmetric
coincidence windows. Understanding the advantages and disadvan-
tages of either approach could help further optimizing the proposed
methodology. Third, one may further consider exploiting the asym-
metric nature of event coincidence rates for defining indicators of
uni- vs bi-directional coupling. Ultimately, in the same spirit as
for ECA, we may also generalize other related concepts like event
synchronization, which has been widely used in neuroscience appli-
cations, to partial analysis methods. We are confident that these
and further related methodological perspectives will also stimulate
ample future work, for instance, a systematic comparative analysis
with established methods like Granger causality, partial correlation
analysis, and direct model inference (in the case of VAR model), but
also model-free methods like time-delayed mutual information or
transfer entropy.
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SUPPLEMENTARY MATERIAL

See the supplementary material for additional error bar plots
expanding Figs. 6–9 of the main text, which additionally indicate the
standard deviations among the 100 considered random realizations.
We further show that all the results reported in Sec. IV are qual-
itatively reproduced when considering two independent data sets
of multi-channel EEG recordings. Moreover, the same sequence of
analysis steps have also been performed based on the 64 individual
EEG channels instead of their spatially aggregated versions, lead-
ing again to qualitatively consistent results as compared with those
reported for the nine macroscopic brain regions.
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