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Southern Africa has been identified as one of the hotspot areas of climate extremes

increasing, at the same time many communities in the region are dependent on rain-fed

agriculture, which is vulnerable to these rainfall and temperature extremes. The aim of this

study is to understand changes in extreme indices during the agricultural season under

climate change and how that affect the modeling of maize suitability in Southern Africa.

We analyze the changes in rainfall and its extreme indices (consecutive dry days, heavy

rain events and prolonged rainfall events), and temperature and its extreme indices (hot

night temperatures, hot day temperatures and frequency of very hot days) from the past

(1986–2014) to the future (2036–2064) and integrate these into a maize suitability model.

Temperature extremes are projected to increase in both duration and intensity, particularly

in the eastern parts of the region. Also, consecutive dry days are projected to increase

over larger areas during the agricultural season, while rainfall will be less in sums, heavier

in intensity and less prolonged in duration. Including extreme climate indices in maize

suitability modeling improves the efficiency of the maize suitability model and showsmore

severe changes in maize suitability over Southern Africa than using season-long climatic

variables. We conclude that changes in climate extremes will increase and complicate

the livelihood-climate nexus in Southern Africa in the future, and therefore, a set of

comprehensive adaptation options for the agricultural sector are needed. These include

the use of heat, drought and high-intensity rainfall tolerant maize varieties, irrigation

and/or soil water conservation techniques, and in some cases switching from maize to

other crops.

Keywords: climate extremes, suitability, maize, climate–change, Southern Africa

INTRODUCTION

Maize (Zea mays L.) is one of the most important agricultural commodities globally by area under
cultivation (over 150 million hectares annually), production volume (around 1 billion metric tons)
and calorie contribution for humans (∼20%) (Nuss and Tanumihardjo, 2010; Bassu et al., 2014;
Dowswell et al., 2019). It is the most preferred food source in Southern and Eastern Africa, where
it accounts for 73% of the total food demand, in addition to its use as feed (Shiferaw et al., 2011).
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Maize contains abundant phenotypic and genotypic diversity,
which explains its wide distribution across tropical and temperate
regions (Liu et al., 2021). However, maize is highly sensitive
to weather preferring a set of conditions, outside of which
marked yield decreases occur (Holzkämper et al., 2013; Lobell
et al., 2014; Meng et al., 2016). Temperature and rainfall
variability during the growing season are therefore important for
successful maize production, especially under rainfed conditions.
Abiotic stress weakens the metabolic processes of maize by
decreasing the photosynthetic rates, which results in reduced
nutrient assimilation and biomass accumulation, resulting in
morphological, physiological and biochemical changes that
culminate in decreases in yield, and in severe cases result in
plant death (Zhang et al., 2009; Song et al., 2019). However,
it is not just the amount of water that is important for maize
but its distribution during critical phenological stages (Omoyo
et al., 2015; Krell et al., 2021). Water is the most limiting factor
to maize production in many areas (Hossain, 2020) and the
effects of water deficit are also mediated through temperature or
soil conditions.

Temperature effects on the maize plant are multi-faceted.
On one hand, increases in temperatures cause greater water
loss from the soil due to increased evapotranspiration, thus
reducing plant water supply. On the other hand, increases in
temperature increase plant transpiration and photosynthesis,
which concurrently increase plant water demand which can
be up to a point of plant desiccation (Lobell et al., 2014).
High temperatures also have the effect of reducing maize
pollen fertility, hastening grain filling, and increasing wasteful
respiration, resulting in a yield decrease of about 7% for
every degree of warming (Sánchez et al., 2014; Hatfield, 2016;
Zhao et al., 2017). The lethal temperature limits for maize are
comparatively high to be achieved in the surface air (46◦C)
but those for plant growth and reproductive processes such as
shoot development (38.9◦C), tassel initiation (39.2◦C), anthesis
(37.3◦C) and grain filling (36◦C) are much lower (Sánchez
et al., 2014). In addition, and most importantly, global change
will alter the satisfaction of the required growing degree days,
the phenoclimatic temperature conditions needed for different
phases of plant development (Grigorieva, 2020). In many tropical
areas, water deficit and temperature effects on the maize crop can
also occur at the same time with interactive effects on growth
and development of the plant. Thus, there is a risk that global
warming will push many maize growing areas outside thresholds
for the crop, with this having significant impacts on food security,
livelihoods and economies.

There is substantial evidence on crop-climate interactions and
climate change impact assessments for maize as expected for
such as important crop. This evidence is premised on countless
experimental studies on maize responses to various conditions
and perturbations [for example Song et al. (2019) and Ge et al.
(2012)]. Statistical models fitting local, regional or national yields
to weather parameters and other variables have also been used
to elucidate crop-climate responses over time and area [for
example, Lobell et al. (2011), Laudien et al. (2020)]. While
both experimental studies and statistical models provide valuable
information on crop-climate relationships and climate change

impacts, they are difficult to use for adaptation planning over
large heterogeneous countries or regions such as Southern Africa
(Silva and Giller, 2020).

Crop suitability models are used to identify where and which
crops can be grown, and in providing quantitative, spatially
explicit, large-scale and time-bound estimates of the impacts
of climate change on the agriculture sector. They are based
on the understanding that weather and climate still play a
significant role in crop production, despite the developments
in agricultural technology (Iizumi and Ramankutty, 2015; Ray
et al., 2015). As such, maize will grow within a specific climatic
envelope – with strong indications that climate change will alter
the conditions and subsequently change the geography of crop
suitability (Travis, 2016). For example, Ramirez-Villegas et al.
(2013) has shown that suitable areas for sorghum could be
reduced by 20% over Southern Africa in the next decade. Similar
suitability changes have been reported for cassava (Heumann
et al., 2011; Jarvis et al., 2012), maize (Nabout et al., 2012;
Estes et al., 2013; Holzkämper et al., 2013) and common beans
(Ramirez-Cabral et al., 2016; Taba-Morales et al., 2020). Multiple
crop suitability under climate change has also been evaluated
with these models (Jarvis et al., 2012; Chemura et al., 2020).

Crop modeling in general and suitability modeling in
particular, have rarely captured the influence of extreme
climate variables in determining crop growth, yields and other
production outcomes (Vogel et al., 2019). This is despite the
fact that climate change will further make extreme weather
more common in future periods than in the past and current
periods (Nangombe et al., 2019). Extreme weather events are
conditions that are unusual, severe, and/or infrequent and fall
at the tails of the historical distribution for a particular place or
time (Stephenson et al., 2008; Bouwer, 2019; Kusangaya et al.,
2021). The high importance of extreme weather events for crop
production requires a better consideration of these events in crop
impact studies (Lobell et al., 2012; Lesk et al., 2016; Beillouin et al.,
2020). This is especially so in regions such as Southern Africa for
which experimental data for process-based modeling is limited
while yield and other data for statistical models is not available,
inconsistent or uncertain.

Here, we analyzed changes in temperature and rainfall
extreme indicators over Southern Africa, and how these changes
in extreme climate indices affect maize suitability. We analyzed
the past and future distribution of extreme indices over the
agricultural season (October to April) and used these to
calibrate a suitability model to show their influence on maize
suitability. Adding climate extreme indices to the modeling and
using agricultural season-specific metrics rather than annual
values advances current climate crop impact studies. Such
assessments help not only in identifying impact hotspots but
also in targeted adaptation planning in the light of National
Adaptation Plans (NAPs) and investment under Nationally
Determined Contributions (NDCs). Results of these studies
are important in assessing the shifts in crop potential under
different climate scenarios, and identify the areas where and
which adaptation measures are required for building agricultural
resilience (Ramirez-Cabral et al., 2016; Jayasinghe and Kumar,
2019).
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DATA AND METHODS

Location Data for Maize Suitability
Modeling
To run suitability models, knowledge on the location of
current maize growing areas is required. This information
was obtained from the Global Biodiversity Information
Facility (GBIF, www.gbif.org) and secondary sources
(Supplementary Information 1). The GBIF was established
in 2001 to publish primary biodiversity data using community-
driven and agreed standards and tools. It facilitates open access to
biodiversity data worldwide for scientific research, conservation
and sustainable development with over one billion occurrence
records of species. In order to supplement the presence points
obtained from the databases, especially for countries where GBIF
entries were few, maize location points were also digitized from
scientific publications. These were for South Africa (Bradley
et al., 2012; Estes et al., 2013), Namibia (De Waele et al., 1998)
and for Botswana (Chipanshi et al., 2003; Chimbari et al., 2009;
Legwaila et al., 2012). The maize location points were cleaned
by removing records with incorrect geographic coordinates, and
where two points or more existed in the same grid (∼55 km),
only one was randomly retained to avoid extracting the same
pixels with multiple points. After these steps of data cleaning, a
total of 146 valid geographic points were obtained and used for
the modeling (Supplementary Informations 2, 3).

Agro-Climatic Indices for Maize Modeling
Six agro-climatic indices were used in modeling the climatic
suitability of maize over Southern Africa for the baseline and
future climatic conditions. These indices were selected as they
have a major agronomic influence on maize over Southern Africa
obtained from literature and expert knowledge (Du Plessis, 2003;
Nagy, 2006; Rivas et al., 2011; Adisa et al., 2018; Hossain, 2020).
The indices utilized are based on rainfall and temperature during
the maize sowing period, maize growing season and the whole
season. These indices are described in full in Table 1. The sowing
period ranges from October to December, growing period from
December to March and the whole season is from October to
April according to the FAO GIEWS (2020) maize crop calendars
summarized for each country in Supplementary Information 4.
Since the periods transcend the calendar year, the months were
coded according to harvest year and then processed. Although
there is an overlap in some of the indices, we considered that
the lengths of the periods are very different and therefore the
variables are independent of each other. In addition to the base
model, which is the model with the six agro-climatic indices,
further models were created by adding, for each model, the
extreme index for the sowing period and season. The climate data
used for model fitting was the W5E5 data (Lange et al., 2021).
This observational dataset was chosen due to its compatibility
with the model data for future climate (see Climate Change
Impact Assessment).

Climate Change Impact Assessment
To determine climate change impacts for the base model and
the models with extreme indices, we replaced the baseline

TABLE 1 | Indices used for maize crop suitability modeling and their descriptions

and units.

Basis Index Description in day of year (DOY)

Base indices Sowing rainfall sum

(mm)

Sum of rainfall between 1 October

(DOY = 274) and 31 December (DOY

= 365) = 92

Growing season rainfall

sum (mm)

Sum of rainfall between 1 December

(DOY = 335) and 28 February (DOY

= 59) = 90

Seasonal sum rainfall

(mm)

Sum of rainfall between 1 October

(DOY =274) and 30 April (DOY =

120) = 212

Mean temperature of

sowing period (◦C)

Mean temperature between 1

October (DOY=274) and 31

December (DOY = 365) = 92

Mean temperature of

growing season (◦C)

Mean temperature between 1

December (DOY= 335) and 28

February (DOY = 59) = 89

Mean seasonal

temperature (◦C)

Mean temperature between 1

October (DOY=274) and 30 April

(DOY = 120) = 212

Extreme

weather

indices

Consecutive Dry Days

(CDD)

Maximum length of dry spell defined

as number of consecutive days with

rainfall < 1mm.

Very heavy rain events

(R20mm)

Annual count of days when rainfall ≥

20mm.

Prolonged rainfall

amount (Rx5Day) (mm)

Maximum consecutive 5-day rainfall

Hot night temperatures

(◦C) periods (TNx)

Maximum value of daily minimum

temperature

Hot day temperatures

(TXx) (◦C)

Maximum value of daily maximum

temperature

Very hot days (TXge30) Days when average temperature is at

least 30 ◦C

climate data with climate projections and compared the results
to indicate the impact of climate change on crop suitability
(Ramirez-Cabral et al., 2016; Jayasinghe and Kumar, 2019;
Chapman et al., 2020). We chose the benchmark period around
2050 (2036–2064) in line with Paris Agreement targets for
climate action against a baseline period around 2000 (1986–
2014) climatic conditions for the impact assessment. For climate
data, we used the bias-adjusted projections from 10 General
Circulation Models (GCMs) from the Coupled Model Inter-
comparison Project Phase 6 (CMIP6). These models were used
for historical simulations and future projections: CAN-ESM5,
CNRM-CM6-1, CNRM-ESM2-1, EC-EARTH3, MIROC6,
GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1, MRI-ESM2-0, and
UKESM1-0-LL. Their bias-adjusted simulations are provided by
Inter-Sectorial Impact Model Inter-comparison Project (ISIMIP)
ensemble (Lange et al., 2021) with full names and origins of each
GCM given in Supplementary Information 5.

As the bias-adjustment is based on the W5E5 observational
dataset (see Agro-climatic Indices for Maize Modeling), the past
and future climate data of our study forms one comprehensive
dataset. The selected GCM models cover a range of model
uncertainty and are also widely used in climate change impact
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studies in Africa because they feature as reliable for the region in
model evaluation studies (Aloysius et al., 2016; Klutse et al., 2016;
Ongoma et al., 2019). For the assessment of future suitability, we
used the GCM simulations under the scenario without climate
policy, i.e., representative concentration pathway (RCP) 8.5
under shared socioeconomic pathway (SSP) 5 known as SSP5-8.5.
The SSP5-8.5 emission scenario represents no effectivemitigation
policies put in place to change the current emission trajectory,
resulting in high population but relatively slow income growth
with modest rates of technological change and energy intensity
improvements (Rao et al., 2019). Here, we chose the lowest
mitigation scenario only because previous studies have shown
that significant changes in shorter duration (3–5 day) extreme
indices such as used in this study by 2050 would occur mostly
under this scenario especially over Southern Africa (Nangombe
et al., 2018; Tebaldi and Wehner, 2018). Therefore, the results of
our study are only limited to the context of this scenario without
climate policy, while also accepting that other climate trajectories
are possible.

Maize Suitability Modeling Approach
In our study we applied the Maximum Entropy (MaxEnt)
approach to maize suitability modeling. MaxEnt is an
environmental niche modeling approach that is capable of
making reliable predictions using information from sites
where the modeled species is known to occur (Phillips et al.,
2006). MaxEnt uses crop location data and a set of predictors
(agroclimatic and extreme climate indices in our case) across
a defined landscape to compute the probability of target
distribution by finding the possibility of maximum entropy.
Unlike other modeling approaches, MaxEnt is a learning model
and data is fit using linear and non-linear functions and different
functions can be hinged together (Heumann et al., 2011). The
model is described in full by Elith et al. (2011). MaxEnt is
highly regarded due to its superlative analytical capacity, it is
more accurate when applied to “presence only” data than other
approaches and is capable of providing reliable distribution
from relatively smaller sets of data (Hernandez et al., 2006; Elith
et al., 2011; Stokland et al., 2011). Based on these characteristics,
MaxEnt was chosen as the best fitting modeling approach to
perform maize suitability assessments under past and future
climatic conditions with and without extreme indices. In
total, seven models were run as base model with only the six
agro-climatic variables without any precipitation/temperature
extreme indices, then six other models with the added season and
sowing period extreme indices (Base + CDD, Base + R20mm,
Base+ Rx5Day, Base+ TNx, Base+ TXx and Base+ TXge30).

Model Settings, Evaluation, and Data
Analysis
MaxEnt version 3.3.3k was used for the modeling (Phillips and
Dudík, 2008).We controlled the complexity of theMaxEntmodel
by selecting input parameters andmodel settings to reducemodel
overfitting. Model calibration is required to deal with issues of
geographic sampling bias, small sample sizes, model overfitting
due to bias and/or noise characteristic of input datasets. This
calibration is therefore critical where models are transferred

across space and time as in large scale climate impact studies
of this nature (Merow et al., 2013). The model calibration,
evaluation and selection was done using the “ENMeval” R
package (Muscarella et al., 2014), and the “rMaxEnt” library.
The regularization multiplier was applied to control the model
complexity by assigning a penalty for each additional term
included in the model (Anderson and Gonzalez Jr, 2011;
Warren and Seifert, 2011). The optimal model complexity was
determined from combinations of five values for the MaxEnt
regularization parameter from 0.5 to 4 at intervals of 0.5 and
six different individual and combined feature classes (L, LQ, H,
LQH, LQHP, LQHPT; where L=linear, Q=quadratic, H=hinge,
P=product and T=threshold) (Merow et al., 2013; Muscarella
et al., 2014; Cuervo et al., 2020). These. The optimal model
complexity was evaluated and together with the optimization of
regularization gain resulted in 336 models.

The best model from these was selected as the one with
statistical significance (partial Receiver Operating Characteristic
(ROC) tests), high performance (omission rate), and smaller
Akaike Information Criterion. The settings of the best model
were then used to run 10 bootstrap replicates, with no
clamping or extrapolation while retaining a random partition
of 30% of the points from each run. To evaluate the model
performance of the extreme variables against a base model
without these, we compared the area under the receiver
ROC curves (AUC) on 30% of the independent sample
data set aside for this purpose. The AUC measures overall
discrimination capacity independent of any thresholds (Allouche
et al., 2006). A perfect model would have an AUC of 1, while
a threshold of 0.75 is considered as threshold for accepting
a model (Chang and Bourque, 2020). Comparison of the
modeled maize suitability area for each country with the
reported maize average area for the period 2001 and 2019
and for each country from FAOSTAT (2021) was conducted
to evaluate the model (Supplementary Information 4). The
relative contribution of each variable to maize suitability was
calculated from median estimates across replicates of percent
contribution. The sensitivity-specificity equality approach, which
minimizes the absolute value of the difference between sensitivity
and specificity to ensure that the model performs well for both
presences and absences, was used to select the threshold for
determining suitable and unsuitable areas to calculate area. This
method was selected because it seeks to achieve a balance of
accuracy for areas modeled for presence and absence of the
species and is the recommended approach for presence only
suitability models where prevalence is usually low (Cantor et al.,
1999; Hernandez et al., 2006; Bean et al., 2012).

RESULTS

Baseline and Future Changes of
Agro-Climatic Variables and Extreme
Indices
The spatial distribution of surface air temperature averages and
related extreme indices over Southern Africa under the baseline
and changes under future conditions are shown in Figure 1.
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FIGURE 1 | The distribution of mean temperature and temperature indices under baseline and projected climate conditions for the agricultural season (October to

April) over Southern Africa. First, second, third and fourth row show assessment of mean temperatures (Tas), maximum value of daily minimum temperature (TNx),

maximum value of daily maximum temperature (TXx) and number of days when TX ≥ 30◦C (TXge30), respectively. The first and second columns present the baseline

(1986–2014) and the changes in the future (2036–2064) relative to the baseline, respectively. The third column show the area density plots to indicate the changes in

area between the two climate periods.
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These show that the greater part of the region experiences on
average warm temperatures (mean temperature above 15◦C)
within the agricultural season. Exception to this are Lesotho, due
to its elevation, and southern parts of South Africa and western
Namibia, due to elevation and coastal upwelling (Figure 1). The
Karoo region covering Botswana, Namibia, southern Angola,
south-western Zambia and western Zimbabwe experienced up to
32 hot days with temperatures above 30◦Cwithin the agricultural
season, which is over a fifth of the period (Figure 1J).

Projections show a warming trend for all pixels over the
whole region by mid-century and there are no negative changes
across the region. These changes are reflected in daily minimum
as well as maximum temperatures in many parts of Southern
Africa, especially in Botswana and Namibia. Warming of the
agricultural season over Southern Africa is also confirmed by the
area density plots that showmovement of projected temperatures
to the right (Figure 2). This also applies in terms of the
extreme temperature indices where the future values move to
the right by up to 3◦C under this scenario for the Karoo region
(Figures 1B,E,H). Themaize production regions will warm by up
to 2◦C under climate change. Maximum values of minimum and
maximum temperatures show similar trends for most regions,
except that the maximum temperatures are projected to increase
by as much as 4◦C (Figure 1H) compared to 3◦C for average
(Figure 1B) and minimum (Figure 1E) temperatures by mid-
century (Supplementary Information 5). The number of days
with temperature above 30◦C within the agricultural season will
increase by up to 16 days compared to the baseline period for
some areas in Angola, South Africa, Malawi and Zimbabwe
(Figures 1K,L). The distribution curve shows also a strong
increase for temperature above 35◦C (a much steeper tail of
the curve).

The baseline and projected future changes in rainfall and
extreme rainfall indices over the agricultural season over
Southern Africa are shown in Figure 2. Northern parts of Angola,
Zambia and eastern parts of Zimbabwe and parts of Mozambique
have received the most rainfall (more than 1,000mm) in the
agricultural season in the baseline period (Figure 2A). Areas
that receive over 1,200mm during the agricultural season in the
baseline period will largely be unchanged but those between 300
and 1,300mm are projected to have reduced rainfall amounts
by the mid-century. Over Mozambique, parts of Zimbabwe and
Angola, these decreases will be up to 150mm of rainfall in the
agricultural season.

Consecutive dry days (CDD) during the agricultural season
are projected to increase over Southern Africa particularly
in areas where they are between 20 and 60 days in the
agricultural season, with no changes above that (Figures 2E,F).
These changes in CDD are mainly projected to change over
Mozambique, Angola, parts of South Africa and Zimbabwe
(Figure 2). The number of heavy precipitation events of
days with rainfall above 20mm is projected to increase over
Southern Africa (Figures 2H,I) despite the decrease in total
seasonal rainfall (Figures 2B,C) and the increasing dry days
(Figures 2E,F, 3). This indicates that the reduced rainfall
amounts over the season will come in higher intensity than
during the baseline period especially for areas where days with

heavy rainfall are between 5 and 20 days in the baseline period
(Figure 2I). The contribution of prolonged rainfall to the total
rainfall in the season will decrease in many areas in the future.
Specifically, by the 2050s, many of the rainfall events will become
shorter (<5 days) and of high intensity (over 20mm per day)
then in the baseline period (Supplementary Informations 5, 6).
This pattern is especially clear in the northern countries
of Southern Africa like Angola, Zambia, and Mozambique
(Figure 2). Rainfall events above 20mm correlate positively with
sum rainfall and prolonged rainfall amounts over the season
but negatively with CDD and all the temperature-based indices
(Figures 2E,G,J, Supplementary information 6).

Variable Selection for Modeling
After the model optimization to determine the best parameters
for the model, ten replicates of the model for sampling training
and test data were implemented with different sets of variables.
Themean AUC values on independent 30% of the data are shown
in Table 2. In all cases rainfall and temperature extreme indices
are included, the model performance was better than the base
model with mean climatic indices only. The best model fit was
obtained from inclusion of CDD (AUC= 0.91 for tuned model)
followed by TXx (AUC = 0.88 for tuned model). In all cases,
model optimization improved the modeling accuracy compared
to the raw model across all model settings (Table 2). Overall,
the results indicate that including extreme variables improved
the modeling accuracy for maize suitability together with model
optimization routines.

The most important variable driving maize suitability over
Southern Africa for most models was the rainfall of the growing
season (Figure 3). This variable was the most important variable
across models in explainingmaize suitability except for themodel
with Txge30 (33%), where it was ranked as the second most
important variable (27%). This result underscores the importance
of rainfall distribution on maize suitability in comparison to the
rainfall sum. Growing season temperatures and rainfall during
the sowing period are also important variables while the least
important was mean temperature of the agricultural season,
which explained <2% for all models (Figure 3).

When rainfall and temperature indices were introduced to the
modeling, season CDD (23%), season TNx (20%) and sowing
period TXx (28%) were ranked second after growing season
rainfall, while season Txge30 (33%) was the most important
variable for that model explaining about a third of maize
suitability over Southern Africa (Figure 3). R20mm and Rx5day
were variables with low importance, falling below most of the
base agro-cimatic variables in explaining maize suitability. Based
on the model accuracy results and the variable importance
assessments, five maize suitability models were developed as the
Base, Base + CDD, Base + TNx, Base + TXx and TXge30, with
R20mm and Rx5Day models excluded as they are not improving
the accuracy over the base models nor contributed inexplaining
maize suitability over Southern Africa.

Baseline Distribution of Maize Suitability
The general distribution of maize suitability across Southern
Africa under baseline climatic conditions with and without
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FIGURE 2 | The distribution of precipitation and precipitation indices under baseline and projected climate conditions for the agricultural season (October to April) over

Southern Africa. First, second, third and fourth row show total precipitation, consecutive dry days (CDD), count of days when rainfall ≥ 20mm (R20mm), and

maximum consecutive 5-day precipitation (Rx5Day), respectively. The first column present the baseline period (1986–2014) and the second column show the changes

in the future period (2036–2064) relative to the baseline. The third column show the area density plots to indicate the changes in area between the two climate periods.
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FIGURE 3 | Percent contribution of variables used in maize suitability modeling from the model variable importance. The Y axis shows first the six variables used and

then the seasonal and sowing period importance values for each of the rainfall and temperature indices used, with the x showing that no other indices were used for

the base model. In all cases the column values add to 100% with the green and blue shades showing more important variables for maize suitability for each model

compared to the red shades which indicate non low importance of a variable.

TABLE 2 | Accuracy assessment of the crop suitability modeling using AUC values

obtained from base variables and extreme variables from independent test data.

Model Raw Tuned

Base 0.817 0.840

Base + CDD 0.863 0.914

Base + R20mm 0.835 0.844

Base + Rx5Day 0.859 0.876

Base + TNx 0.821 0.856

Base + TXx 0.868 0.881

Base + TXge30 0.868 0.872

(Base) extreme indices included in the modeling is shown in
Figures 4A–E. About 32% of the region is suitable for maize in
the baseline period, with Zambia and South Africa having the
largest areas (Figure 4A). Under baseline climatic conditions,
suitability is higher over Angola, Zambia and Zimbabwe, and
markedly decreases when indices are introduced to the model.
The model shows that maize is suitable extensively across
Zambia (88% with Base + CDD model), in central parts of
Angola (32% with Base + CDD model), central to northern

Zimbabwe (86% with Base + CDD model), central-eastern
South Africa (28% with Base + CDD model), central to
northern parts of Mozambique (19% with Base +CDD model)
and across Malawi (39% with Base + CDD model) under
baseline climatic conditions (Supplementary Information 7).
Marginal areas for maize are identified over the Karoo region
covering the desert areas on western to southern parts of
the region. Eastern coastal areas in Mozambique also show
lower suitability for maize under baseline climatic conditions
(Figures 4A–E).

We find that under baseline climatic conditions, higher
mean temperatures and temperature indices (Tas, TNx, TXx
and TXge30) are negatively correlated to maize suitability
over southern Africa (Supplementary Materials 8, 9). On the
other hand, maize suitability is positively correlated with
rainfall variables and indices (rainfall sum, R20mm, and
Rx5Day), except CDD, which has a strong negative correlation
(Supplementary Material 6). There is a general correlation,
however, within rainfall and temperature variables but not
between them, with the strongest correlation being between
rainfall sum and prolonged rainfall (Rx5Day). It therefore
follows that over Southern Africa, maize suitability is generally
higher over wetter and cooler areas, although no individual
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FIGURE 4 | Maps showing maize suitability under baseline (1986–2014) and future changes (2036–2064) in maize suitability for the base model (first column), and

adding CDD (second column), TNx (third column), TXx (fourth column) and TXge30 (fifth column) indices to the modeling. A suitability of 1 can be interpreted as highly

suitable, while 0 means not suitable. The changes (lower row) are calculated as future suitability minus baseline suitability with positive values showing improved

suitability and negative values showing decreases in maize suitability.

parameter has absolute individual influence over the suitability
(Figures 2, 4).

Maize Suitability Under Future Climatic
Conditions
The changes in maize suitability under projected climate change
conditions with and without indices are shown in second row
of Figure 4 and the area changes in Figure 5. Using the base
model without extreme climate indices projects a net loss in
area suitable for maize by the mid-century for most of the
countries (Botswana, Malawi, Mozambique, Namibia, South
Africa, Zambia and Zimbabwe) in the region. Although maize
suitability over the whole region is projected to remain stable
(+1.2 to+4.4% change), a northward shift inmaize suitable areas
is apparent with losses in the central parts of the regions and gains
in the northern parts under most models (Figures 4F–J). Overall,
our results show that the maize suitability changes are variable
among countries and also influenced by GCMs. Positive maize
suitability changes are projected over Angola, Lesotho (except
for Base + TNx model) and parts of Mozambique (Figure 5,
Supplementary Information 10).

The results for Malawi and Lesotho show high GCM
uncertainty by the large variance in projected changes for all
variables (Figure 5). In addition, and more importantly, the
inclusion of temperature indices to the model reduces positive
suitability changes where they were projected (Angola and
Lesotho) and increases the suitability losses (Zimbabwe and
Botswana). A positive suitability change is projected for Zambia
in the Base model but this diminishes when TXx and Txge30

are added to the model resulting in maize suitability losses. The
projected westward extension of maize suitability under climate
change in South Africa using the base model clearly diminishes
when rainfall and temperature indices are included in the
modeling, while for Lesotho the opposite is true (Figures 4F–J, 5
and Supplementary Information 10).

DISCUSSION

Climate extremes will further increase with climate change and
will have severe impacts on agricultural production. However,
these are not often captured in crop modeling studies that
rely on either continuous weather time steps or seasonal
agro-climatic indices. In this study, we therefore assessed the
changes in extreme temperature and rainfall indices and then
integrated them in modeling the suitability of maize over
the whole of Southern Africa. In addition, instead of using
the annual values, we calculated our climate input variables
over the agricultural season (October - April) and not apply
annual variables that are tangent to the growing season. For
Southern Africa, this is more relevant for agricultural production
impact assessments and associated food security studies as
the agricultural season is split between two calendar years.
Thus, restricting the analysis to the agricultural season only
produce results that are directly linked to livelihoods and the
economy compared to using the whole year. In addition, we
also provide a multi-country assessment that compares the
changes in distribution of extreme indices and maize suitability
rather than a country or sub-country assessment. Our study
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FIGURE 5 | Changes in maize suitability by around mid-century in individual

countries and overall over Southern Africa from running the base models and

including temperature and rainfall indices to the model. The base model has

six agro-climatic indices while the other models have eight variables from

adding the temperature sowing period and seasonal indices to the base

variables. Eswatini was excluded as it had <10 pixels. The error bars sow the

results according to the 10 GCMs used. The changes are calculated as future

suitability minus baseline suitability with positive values showing improved

suitability and negative values showing decreases in maize suitability as

averaged over the whole country.

therefore provides, in combination, an assessment of climate
variables in the agricultural season and their associated impacts
on agriculture, as an important sector for livelihoods of a large
part of the population.

Our analysis confirmed the projected warming trend over
Southern Africa is reaching up to 3◦C by the mid-century in
many areas. In the present-day maize production areas, the
projected increase in temperature of 1 or 2 degrees Celsius affects
crop production in general and maize in particular (Lesk et al.,
2016). In addition, our results indicate increases in the extreme
temperature indices such as hot night temperatures, hot day
temperatures and number of very hot days above 30◦C. These

results confirm reported increases in temperature and extreme
temperature indices over the whole year reported in literature
(Nangombe et al., 2019; Kusangaya et al., 2021), even though our
results are over the agricultural season, which is moremeaningful
for crop impact assessments.

The magnitudes of changes in extreme temperature indices
(TNx, TXx and TXge30) projected is higher than those projected
for extreme rainfall indices (CDD, R20mm and Rx5day). While
much climate change focus in agricultural impact studies have
focused on rainfall decreases and variability, temperature effects
seem more important and substantial in their signal than those
of rainfall. This means that even if rainfall parameters remain
the same or even increase under climate change, the changes
in temperature will still result in decreases in crop suitability
and thus lower production. Decreases in rainfall variability and
resulting changes in available soil moisture affect crop potential
(Krell et al., 2021), but temperature impacts are both direct
on the crop and also indirect through effects on water supply
and demand through altering vapor pressure deficit (Lobell
et al., 2011; Sánchez et al., 2014; Hatfield, 2016). As such,
the negative effects of future warming is expected to out-
weigh those of precipitation changes, as shown in our study.
This concurs with findings by Nangombe et al. (2019) who
reported that the magnitude of heat extreme events is projected
to be significantly more across Africa under a 2◦C global
warming world.

Our analysis of model parameterization showed that (1)
accuracy of the suitability models increases when temperature
and rainfall extreme indices are included in the modeling and
(2) the suitability of maize is affected more by most extreme
indices than by average precipitation and temperature. This
suggest that reliability of models increases with inclusion of
extreme climate indices as they are more related to observed
spatial and temporal distribution of maize, which provides more
confidence in the application of the model for climate impact
studies. Moreover, and perhaps more interestingly, we observe
that including climate extremes reduces projected positive
changes and magnifies negative impacts on climate suitability for
maize over the region. Therefore, reported suitability changes
in maize that did not incorporate extreme indices may have
over-estimated positive changes and underestimated negative
climate change impacts over Southern Africa and elsewhere.
For example, Ojara et al. (2021) projected that area highly
suitable for maize in Eastern Africa will decrease by more
than 50% under the RCP8.5 scenario by the mid-century
but if extreme indices were included, the decreases could be
worse. Many studies have projected maize suitability changes
without incorporating extreme variables (Holzkämper et al.,
2013; Adisa et al., 2018; Lopez-Blanco et al., 2018; Kogo
et al., 2019; Mumo et al., 2021; Yang et al., 2021), and
the reported changes may need to be revisited in light of
our findings.

Projected temperature impacts explain the observed changes
in maize suitability over Southern Africa through a number
of pathways. The higher magnitude effects of temperature
extreme indices during the growing season on crop suitability
correspond to the known effects of high temperatures on
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crop growth and yield. For example, high temperatures reduce
absorption and subsequent assimilation of nutrients, reduce
the shoot and root growth, and lead to under-development
of anthers and loss of viability of pollen and pollen abortion
in maize (Sánchez et al., 2014; Hatfield, 2016; Lesk et al.,
2016; Zhao et al., 2017). Further, increases in temperature
presents a double-edged sword effect on maize production. On
one hand, it is responsible for heat stress on the plants and
its associated biochemical and biophysical processes, while on
the other hand, it mediates water supply through controlling
evaporation and water demand through controlling canopy
evapotranspiration (Zhang et al., 2009; Ge et al., 2012; Meng
et al., 2016; Krell et al., 2021). It is not surprising that all the
temperature extreme indices made it to the final modeling while
for rainfall variables only CDD, which is positively correlated to
temperature, remained.

As response to the projected climate changes, we suggest
that technical (short-term), operational (medium term) and
strategic (long-term) adaptation strategies for maize production
systems should be implemented in many parts of Botswana,
Namibia, South Africa Zambia, and Zimbabwe to avert or
reduce negative climate impacts on the maize production.
Supplementary irrigation, mulching or other water conservation
techniques are recommended as technical adaptation strategies
because CDD and TNx are projected to increase in many maize-
producing areas. As our results also indicate that temperature
extreme factors and CDD are the most important determinants
of maize suitability over Southern Africa, agroforestry, with its
potential canopy cooling and micro-climate regulation effects for
maize systems, agronomic optimization and variety switching to
more heat and drought tolerant varieties can be adopted as an
operational strategies (Fisher et al., 2015; Cairns and Prasanna,
2018; Chemura et al., 2021). In addition, we project some
positive changes in maize suitability over Angola, Lesotho and
Mozambique that may provide socio-economic opportunities
not just for the country but for the entire region.

Some potential limitations of our modeling should be
considered in the interpretation of our results. The area
suitability calculations include other land that may not be
available for agricultural production because of the relatively
course horizontal resolution of the data (∼50 km) used in the
modeling. These other land areas are, for instance, urban areas,
protected areas and riparian zones, which cannot be removed at
the spatial resolution of the datasets used. The ten GCMs may
also represent a subset of climate data as more models are more
likely to capture a bigger range of climate model uncertainty.
It is suggested that these GCMs can be selected for specific
study areas based on their ability to reproduce past climate or
on range of projected means (Lutz et al., 2016; Mendlik and
Gobiet, 2016), but this analysis was beyond the scope of the
current study. Although the modeling captures the conditions
required for specific stages of the crop, it does not quantitatively
simulate transitions in growth and reproductive stages, and
therefore also misses on plant–climate relationship as influenced
by for example increased CO2 under climate change (Estes et al.,
2013).

CONCLUSIONS

The trans-national assessments of climate change impacts on
agricultural potential is needed to support vulnerable regions
in increasing their climate resilience, especially where extreme
climate events increase due to climate change. In this study,
we tested the integration of extreme climate events in assessing
future maize suitability over Southern Africa. We observe that
hot night temperatures, hot day temperatures, very hot days,
heavy rainfall events and consecutive dry days will increase
by the 2050’s while average rainfall and prolonged rainfall
will decrease over the agricultural season in Southern Africa.
Including these extremes in a maize suitability model improved
the model robustness and resulted in a higher share of areas
affected negatively by climate change. This underlines the need
for tailoring the planning of adaptation strategies for specific
areas facing losses, while also adjusting the agricultural system
in regions which may have more favorable conditions to
cultivate maize.
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