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Natural ecosystems are severely threatened by climate change 
and biodiversity loss; the Amazon, African and southeast 
Asian rainforests are key examples that have attracted sub-

stantial recent attention1–3. These tropical vegetation systems have 
been inferred to exhibit multistability for broad ranges of mean 
annual precipitation4,5; within the same precipitation ranges, both 
the rainforest state and an alternative savannah state are simultane-
ously stable. This implies that, even absent long-term changes in 
local or regional precipitation, transitions from the current rainfor-
est state to the savannah state are possible and may be triggered by 
external perturbations such as droughts, forest fires and deforesta-
tion6. Although ecosystem transitions in tropical rainforests have 
received widespread attention, the risk of transitions to alternative 
ecosystem states appears to be a global characteristic that extends 
to high-latitude7,8 and dryland ecosystems9. Given that ecosystem 
transitions could turn net carbon sinks into carbon sources3 and the 
tremendous potential of vegetation to reduce atmospheric carbon 
dioxide concentrations10, the mitigation of anthropogenic climate 
change and the maintenance of global biodiversity are strongly 
dependent on the resilience of vegetation systems worldwide.

Ecosystem resilience is typically defined as the capacity to resist 
and recover from external disturbances11–13. Unfortunately, this 
definition only allows for the empirical measurement of resilience 
either in controlled experiments (by applying an artificial distur-
bance) or by waiting for occurrences of large external disturbances 
to natural vegetation systems. Due to the scarcity of suitably strong 
external perturbations, it is difficult to quantify the resilience of 
natural ecosystems at a global scale, and in particular to investigate 
resilience changes over time.

Theoretically, the fluctuation–dissipation theorem (FDT) from 
statistical mechanics14–17 suggests that for specific classes of systems, 
the response to external perturbations can be expressed in terms of 
the characteristics of natural fluctuations around the equilibrium 
state. In other words, the FDT states that the rate at which a system 
will return to equilibrium following an external disturbance can be 
determined from its internal natural fluctuations. The tremendous 

practical value of the FDT comes from the fact that, if it can be 
shown to hold for a given system, the response to external perturba-
tions can be predicted on the basis of the internal variability of the 
system in question. Evidence that the FDT holds has been revealed 
in several real-world systems17, ranging from financial market 
data18,19 to atmospheric and climate dynamics20,21.

Several studies have suggested that the lag-one autocorrelation 
(AC1)—a measure of how strongly correlated neighbouring time 
spans of a given time series are—and variance of a system can be 
used as measures of vegetation resilience1,22–27. The variability of 
natural fluctuations can be estimated in terms of the variance22,27,28, 
while the strength of the system’s memory can be measured using 
the AC11,23–25,28. Low-dimensional dynamical system frameworks 
and designed experiments justify this choice by showing that vari-
ance and AC1 increase as the system approaches a critical thresh-
old beyond which a bifurcation-induced transition—a jump to an 
alternative stable state—occurs, which is interpreted as a loss of 
resilience29,30. The increase in AC1 together with a corresponding 
increase in variance have been termed early-warning signals for 
critical transitions; the underlying change in dynamics is referred to 
as ‘critical slowing down’22,28. It has been shown that early-warning 
signals can be identified before abrupt climate transitions evidenced 
in palaeoclimate records31–33 as well as in ecosystem28 and climate34,35 
model simulations. However, although the AC1 and variance have 
been used to quantify the stability or resilience of different systems, 
their actual suitability as measures of ecosystem, and in particular 
vegetation, resilience has not been confirmed outside of controlled 
and model-based experiments36,37, and in particular not based on 
empirical evidence.

In this article, we use empirical remotely sensed vegetation data 
to test for the correspondence between theoretical vegetation resil-
ience—AC1 and variance—and the rates of recovery from perturba-
tions. We first use large perturbations to derive empirical recovery 
rates for diverse landscapes, vegetation types and climate zones using 
two independent vegetation datasets based on optical (advanced 
very-high-resolution radiometer (AVHRR) normalized difference 
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vegetation index (NDVI), 1981–201538) and passive microwave 
(vegetation optical depth (VOD), 1992–201739) data; these data mea-
sure changes in vegetation with different methods and thus provide 
complementary information for our analysis. We then show that for 
VOD, the empirically estimated recovery rates from large external 
perturbations are indeed closely related to the continuously measur-
able response to small natural fluctuations, quantified here by AC1 
and variance. We further show that the AC1 and variance of NDVI 
are not well matched to empirically estimated recovery rates from 
large disturbances and conclude that VOD is a more suitable basis 
for measuring vegetation resilience. We emphasize that while both 
AC1 and variance have previously been used to estimate vegetation 
resilience1, their theoretically expected relationships with recovery 
rates from perturbations, and thus with resilience, have yet to be 
confirmed empirically for vegetation systems. Moreover, temporal 
changes in AC1 and variance of remotely sensed vegetation indices, 
as we investigate here, have rarely been studied40,41.

By comparing with the empirical rates of recovery from external 
perturbations, we demonstrate using VOD that both AC1 and vari-
ance provide robust, empirically verified global resilience measures. 
On the basis of this relationship, we further quantify global-scale 
changes in vegetation resilience since 1992 and find coherent resil-
ience loss across land-cover types that has accelerated in the past 
two decades.

Quantifying vegetation recovery from external 
perturbations
Vegetation in the natural world is constantly subject to disturbances 
that vary greatly in frequency and intensity. Many of these signals 
are subtle, and identifying minor and short-term disturbances is 
difficult. Large excursions from the typical vegetation state of an 
ecosystem can, however, be identified by abrupt transitions in time 
series of vegetation indices. The empirical local recovery rate can 
then be estimated after each abrupt negative transition by fitting an 
exponential function to the time series as it recovers towards its pre-
vious state (Fig. 1, see Methods for details).

Both VOD (Fig. 1) and NDVI (Extended Data Fig. 1) are sub-
ject to the same types of major external disturbances (for example, 
droughts or fires) that can rapidly reduce both vegetation density 
(VOD) and vegetation productivity or greenness (NDVI). It is 
important to note that while both datasets measure vegetation, the 
data do not describe the same vegetation parameters and hence do 
not respond identically to external shocks; this can in some cases 
mean that the number of detected transitions differs between the 
two vegetation datasets over the same period. In addition, while 
vegetation recovery is measurable in both data, the time frame of 
those recoveries, and hence the fitted exponential function, can 
be dramatically different for the same perturbation (Fig. 1 and 
Extended Data Fig. 1). Further discussion of the limitations of the 
disturbance detection procedure can be found in Methods.

Estimating resilience from intrinsic variability
We find globally well-distributed recovery rates from diverse exter-
nal shocks (Fig. 2 and Extended Data Fig. 2). Not all landscapes 
have experienced rapid and drastic changes in vegetation over the 
satellite measurement period; for such regions, it is impossible to 
directly measure vegetation resilience in terms of recovery from an 
external shock. Even in regions where perturbations are relatively 
frequent, they are too sparsely distributed to allow for an estimation 
of changes in the recovery rate, and thus resilience changes, through 
time (Fig. 2a).

The FDT suggests that the rate of a system’s recovery from large 
external perturbations is related to the variability (quantified by 
variance22,27,28) and memory timescale (quantified by AC11,23–25,28) of 
natural fluctuations around the equilibrium16. Theory predicts an 
exponential relationship between the AC1 and the negative recovery  

rate r, that is, AC1 = erΔt, and a power-law relationship between 
the variance of the VOD time series x and the recovery rate r, that 
is, 〈x2〉 = −σ2/2rΔt, where σ is the standard deviation of the driv-
ing noise, r < 0, and we set the time steps to Δt = 1 (see Methods 
for details). For the set of locations where empirical recovery rates 
can be estimated (Fig. 2a), both AC1 and variance can be derived 
directly from the corresponding time series. For areas where it was 
possible to empirically estimate the recovery rate from large per-
turbations (Fig. 2a), there is broad spatial agreement with the AC1 
(Fig. 2b) and variance (Fig. 2c) estimates (see also zoomed-in maps, 
Supplementary Figs. 1 and 2). Moreover, the two theoretical recov-
ery rate estimates themselves, which are available for all vegetated 
grid cells, exhibit similar spatial distributions (compare Fig. 2b,c), 
especially if the relative order of values is considered (see the rank 
comparison in Supplementary Fig. 3). Note that the AC1-based esti-
mate for the recovery rate r mostly underestimates the recovery rate 
(Fig. 2d), especially in parts of North America, central Europe and 
Southern Africa, while the variance-based estimate for the recovery 
rate mostly overestimates the recovery rate (Fig. 2e).

To more concisely compare the empirical (Fig. 2a) with the two 
theoretical recovery estimates (Fig. 2b,c), we compare them on a 
point-by-point basis (Fig. 3). For the VOD, the expected relation-
ships hold remarkably well; for NDVI, the link between empirical 
and theoretical resilience metrics is much weaker (see Extended 
Data Fig. 3).

When considering the AC1 and variance values directly as func-
tions of the recovery rates for all available grid cells together, the 
theoretically expected relationships are overall corroborated by 
the observational data, although differences between geographical 
regions are neglected when investigating the relationship in this 
way. As expected, some differences are therefore visible (compare 
Fig. 2). We note that the correspondence between theoretical and 
empirical estimates becomes substantially better if only recovery 
rates from exponential fits with R2 > 0.5 are considered, compared 
with recovery rates from all fits with R2 > 0.1 (Fig. 3). This indicates 
that the poor exponential fits to the recovering time series after 
transitions are a key reason for the differences between measure-
ment and theory and suggests in turn that the more reliable the 
recovery rate estimate, the closer is the match between empirical 
and theoretical estimates of the recovery rates. We also note that for 
the variance, uncertainties in estimating the standard deviation of 
the driving noise σ also probably play a role. Estimating the variance 
from the empirically determined recovery rate via 〈x2〉 = −σ2/2rΔt 
requires an estimate of σ. We calculate each individual σi and then 
bin the resulting data points to obtain the orange curve in Fig. 3b, 
while we use the globally averaged σ to obtain the black curve.

Global shifts in vegetation resilience
Rapid large-scale perturbations are not evenly distributed in space 
and time (compare Fig. 2), which renders a reliable estimation of 
temporal resilience changes in terms of empirical recovery rates 
impossible. As justified by the relationship between recovery rates 
and theoretical resilience metrics (compare Fig. 3), we instead cal-
culate resilience in terms of both the AC1 and variance in rolling 
five-year windows over all vegetated areas (Fig. 4). In the follow-
ing, we define resilience loss (gain) if at least one of the two indica-
tors (AC1 or variance) shows a statistically significantly increasing 
(decreasing) trend while the other indicator does not exhibit a sig-
nificant trend in the other direction (Fig. 4).

Over the period 1992–2017, the spatial pattern of resilience trends 
in terms of AC1 and variance is complex (Fig. 4a and Extended Data 
Fig. 5) but follows consistent latitudinal patterns where equatorial 
(for example, Amazon and Congo basins) and monsoon-driven (for 
example, southeast Asia) areas show generally increasing resilience 
(negative trends in both indicators), and high-latitude areas typi-
cally show decreasing resilience trends, especially for the Northern 

Nature Climate Change | VOL 12 | May 2022 | 477–484 | www.nature.com/natureclimatechange478

http://www.nature.com/natureclimatechange


ArticlesNaTurE CLimaTE CHangE

Hemisphere. The global picture for long-term resilience trends is 
thus mixed; there is only a slight majority of grid cells with resil-
ience losses (54.2%) compared with the number of grid cells with 
resilience gains (41.6%) over the whole period 1992–2017. The 
given percentages refer to the set of grid cells that have at least one 
statistically significant trend in either of the two indicators; the 
unconfined class with significant yet opposing trends contributes 
the remaining ~4%. When we restrict the analysis to the first half of 
our study period (1992–2004), trends are again mixed, with increas-
ing resilience in the tropics and decreasing resilience at higher lati-
tudes (Fig. 4b); these trends are stronger for variance than for AC1 
(Extended Data Fig. 5).

From the early 2000s onward, however, we observe a marked 
increase in resilience loss in terms of both indicators (that is, 
significantly positive trends in AC1 and variance; Fig. 4c and 
Extended Data Figs. 5–7). We observe an increase from 28.2% 
to 59.4% of pixels with resilience loss between the periods 1992–
2004 and 2004–2017; the percentage of pixels showing resilience 
gains decreased from 37.9% to 33.8%. Areas with significant yet 
opposing trends contribute the remaining 33.8% and 6.8%, respec-
tively; many regions with opposing significant trends until 2004 

show coherent resilience loss in both indicators for the period 
since 2000, 2002 or 2004 (Fig. 4c and Extended Data Fig. 7). Some 
regions, such as the high northern latitudes, southern Africa and 
parts of Australia, show consistent resilience losses throughout the 
study period, which broadly agrees with previous findings based 
on alternative resilience metrics and AVHRR NDVI data41. Many 
regions, in particular the equatorial rainforest belt, have reversed 
from gaining resilience (blue regions, 1992–2004) to losing resil-
ience (orange and red regions, 2000s onwards). Long-term (1992–
2017) trends thus conceal a strong reversal from gains to losses in 
resilience in many regions.

When changes in AC1 and variance are aggregated by land 
cover42, we infer that evergreen broadleaf forests show overall 
lower AC1 and variance (higher resilience) than other land-cover 
types (Extended Data Fig. 6); nevertheless, the global tendency is 
towards aggregate decreases in resilience (in terms of AC1) across 
all land-cover classes. These trends maintain a similar form if a 
three-year or seven-year rolling window is used to calculate con-
tinuous changes in resilience (Extended Data Fig. 6). It should 
be noted, however, that this approach conceals considerable spa-
tial trend variability (Extended Data Fig. 5) and will (although  
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confined to single land-cover types) smooth over vast differences 
in biomes worldwide; hence, these aggregated time series should be 
carefully interpreted in the context of the global trend maps (Fig. 4 
and Extended Data Fig. 5). Variance presents a more mixed picture 
when aggregated by land-cover class, with losses of resilience being 
expressed more strongly since the early 2000s (Extended Data Fig. 6).  

Previous work proposed that AC1 will always increase towards a 
critical transition, but variance can in some cases decrease27; the 
two metrics are also not guaranteed to change at the same rate. This 
is also to some degree expressed in our global trends (Extended 
Data Fig. 5), where variance trends, particularly for the tropics, are 
more strongly negative than for AC1 over both the whole period 
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1992–2017 and the early period 1992–2004. Both AC1 and variance 
trends, however, are majority positive for the recent period ~2000–
2017 (Fig. 4c and Extended Data Figs. 5–7).

Note that many regions where we observe strong vegetation 
resilience loss are also fire prone (for example, Siberia, Canada and 
western North America); increasing fire frequencies due to drier 
conditions in these regions could explain some of the observed 
recent vegetation resilience loss43. Increases in temperature, along-
side changes in precipitation and weather extremes, could also be 
a potential driver of changing vegetation resilience; we emphasize, 
however, that a detailed analysis of the different potential causes for 
the inferred resilience loss (and in particular its acceleration during 
the past two decades) is still lacking and is an important topic for 
future research.

Discussion
Our results provide empirical evidence that both AC1 and variance 
are directly related to vegetation resilience, defined as the recovery 
rate from external perturbations. The AC1 and variance can hence 
be used to estimate resilience in situations where controlled experi-
ments are not possible and external perturbations are rare. Our 
findings, therefore, justify the usage of AC1 and variance as vegeta-
tion resilience metrics1,41,44 and provide an empirical basis for future 
studies based on these theoretical resilience metrics. However, our 

results also show that the resilience estimates derived from the com-
mon AC1 and variance metrics directly using theoretical relation-
ships may be slightly biased, and instead the modified empirical 
relationships revealed in Fig. 3 should be used to translate AC1 and 
variance into the recovery rate as a measure of resilience. On the 
basis of the thus empirically confirmed relationship between AC1/
variance and vegetation resilience, we infer a heterogeneous spatial 
pattern of resilience gains and losses; resilience losses in the high 
northern latitudes are consistent since the early 1990s, but in the 
tropics, we detect gains during the 1990s and pronounced resilience 
losses since around the year 2000. While the directions of AC1 and 
variance trends broadly agree (Fig. 4 and Extended Data Figs. 5–7), 
there remains considerable spatial heterogeneity.

We find marked differences in our results when using the NDVI 
instead of the VOD data. While we cannot say with complete cer-
tainty what drives this disparity, it is likely that differences in the 
parameters measured by the satellites play a critical role. VOD is 
primarily sensitive to vegetation density and, thus, will respond to 
changes in both leafy and woody biomass39. NDVI, however, is sen-
sitive to ‘greenness’, which is often interpreted as vegetation produc-
tivity or chlorophyll content; it is well known that NDVI is a poor 
estimator of biomass45. Recovery in NDVI after a disturbance can 
thus be rapid, even if a completely new species mix accounts for the 
post-disturbance vegetation growth (for example, forest replaced by 
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Fig. 3 | Empirical confirmation of recovery rates. Comparison between empirically measured recovery rates and theoretical resilience metrics calculated 
over the five years preceding each transition, for VOD data39. a, AC1 versus recovery rates r from exponential fits to recovering time series with R2 > 0.3; 
the magenta (blue) line shows binned medians (means), which are close to the exponential fit of the empirical relationship between recovery rate and 
AC1 values (red line). Grey shading shows data interquartile range. The AC1 thus shows the expected exponential relationship with the recovery rate, 
but quantitatively, some deviations from the theoretically expected AC1 = er (black line) are apparent. b, Same as a but for the variance. The variance 
indeed shows the expected power-law relationship with the recovery rate, but as for the AC1, there are some deviations from the theoretically expected 
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r /2r relationship (black line), where we use the spatial mean of the driving noise σr. The mean variance and corresponding interquartile range 
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with VOD. See Supplementary Fig. 4 for alternative measures of theoretical variance based on different σ estimates.
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grass). VOD, however, will remain suppressed until vegetation den-
sity (for example, leaves and stems) returns. It is thus likely that the 
empirically derived recovery rates for NDVI contain much higher 
levels of noise and that some recoveries to previous NDVI values 
represent a transition to a new vegetation mix rather than a return 
to the actual previous vegetation state. The relatively poor con-
straint on vegetation type provided by NDVI is a major barrier to its 
use in assessing ecosystem state and stability; we therefore propose 
to rather employ VOD data for such purposes.

A few potential caveats should be kept in mind when inter-
preting our results. (1) We do not have a strong constraint on the 
type and cause of the vegetation perturbations used to calculate 
recovery rates. Sufficient data on all types of disturbances, their 
spatial extent and their magnitude do not exist; we thus rely on a 
data-driven approach to estimate the timing and magnitude of a 
given disturbance. We note, however, that since we determine the 
empirical recovery rates using only parts of the time series follow-
ing an abrupt transition, we can estimate a recovery rate without 
knowing what kind of event (for example, fire, drought) caused the 
abrupt transition. (2) Possible spurious or missed time-series transi-
tions are carried forward into our analysis of the global relationship 
between empirical and theoretical vegetation resilience; this prob-
ably accounts for some of the scatter seen in Fig. 3 (see Methods 
for further details). (3) Some changes in variance and autocorrela-
tion are not necessarily related directly to vegetation resilience, for 
example, in the case of time-lagged vegetation response to water 
deficits46 that could modify the measured AC1. At the global scale 
of our analysis, however, we posit that our empirical confirmation 
of resilience metrics and long-term trends remain robust. (4) We are 
limited by the mathematical framework to studying only systems 
that return to the previous state and therefore probably miss many 
important ecosystem transitions from which there has been no 
recovery to the original state. Finally, (5) it is important to note that 
we cannot say for certain whether the acceleration of resilience loss 
observed in the past decades (Fig. 4) will continue into the future; 
indeed, it is possible that global vegetation resilience is responding 
to a (multi-)decadal climate variability mode (compare Extended 
Data Fig. 6), which could in principle drive a global-scale reversal 
towards renewed resilience gains. Theoretically, a critical transition 
will occur when the AC1 reaches a value of one, corresponding to 
a vanishing recovery rate; in practice, however, extrapolating AC1 
trends into the future is not feasible. Our results are based on empir-
ical data and are thus not predictive; they show only how vegetation 
resilience has changed in recent decades. We have also not assessed 
changes in the magnitude or frequency of external disturbances (for 
example, droughts47), which also play a key role in controlling global 
vegetation health; a comparison between vegetation resilience and 
contemporaneous changes in external disturbances would provide 
key context for the attribution of observed resilience changes to 
explicit drivers. Despite these caveats, our work represents the first 
empirical confirmation of previously proposed vegetation resilience 
metrics in terms of variance and AC1 and thus provides the basis for 
further investigations.

Our study shows that the satellite-derived VOD data can be used 
to establish a global empirical manifestation of the FDT for vegetated 
ecosystems. Vegetation resilience, defined as the capacity to recover 
from external perturbations, can hence be approximated from the 
characteristics of natural internal variability in terms of AC1 and 
variance. On the basis of this correspondence, we identify a global 
loss in vegetation resilience over the course of the past decades, 
although the spatial pattern is heterogeneous and the inferred 
resilience changes depend on climate zones. The spatial pattern is 
complex for the full period for which reliable VOD data are avail-
able (1992–2017), with overall resilience gains in the tropical belts 
and losses in the higher northern and southern latitudes. From the 
2000s onwards, however, we find globally almost coherent resilience 

loss; further work is required to constrain the causes of this loss and 
especially to investigate whether the observed resilience losses can 
be attributed to anthropogenic climate and land-use change. Our 
results establish a firm basis for a global, satellite-driven monitoring 
system of ecosystem resilience.
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Methods
Data preparation. We use two vegetation datasets in our analysis to provide a 
holistic view of vegetation response to shocks and stresses. (1) VOD at 0.25° spatial 
resolution; specifically, we employ the Ku-band and use daily values for the  
period 1992–201739. Note that we do not use the entire VOD data record (1987–) 
as some pixels exhibit extreme discontinuities before 1992 (Extended Data  
Fig. 6). We posit that this is due to the change from Special Sensor Microwave/
Imager satellite F08 to F11 in the VOD dataset39. While we observe these 
discontinuities only in the tropics, we choose to discard all data before 1992 for 
consistency; it should be noted, however, that our global-scale results are robust 
whether we use 1987 or 1992 as our first year of data (Extended Data Fig. 6). 
(2) NDVI (from AVHRR) at 1/12° spatial and 15-day temporal resolution for 
the period 1981–2015; specifically, we use GIMMSv3g38. We further use the 
moderate-resolution imaging spectroradiometer (MODIS) MCD12C1 land-cover 
database (2014 annual composite, resampled via the mode of land covers in each 
VOD/NDVI pixel)42 to break our analyses into distinct land-cover types (for 
example, Extended Data Fig. 6).

To limit the impact of anthropogenic land use on our results, we further use 
MODIS MCD12Q1 (500 m, annually 2001–2017) land-cover data to identify any 
pixels that were at any point during the period 2001–2017 subject to human land 
use (for example, urban, cropland). We then remove any NDVI/VOD pixels that 
had one or more anthropogenic land-cover pixels (at least one 500 m pixel) in at 
least one year between 2001 and 2017. This step helps to remove pixels that, for 
example, were once logged and then returned to grasslands; those pixels would 
not be classified as ‘anthropogenic’ for the entire period following the logging and 
thus might introduce spurious results. While this does not completely eliminate 
anthropogenic influence from our results (we do not have sufficient land-cover 
data before the MODIS sensing period), it conservatively removes all 0.25° 
(~25 × 25 km) regions where human use occurred. We thus cannot completely 
rule out the influence of human-driven land-cover change on our results at the 
global scale but have endeavoured to remove it to the furthest extent possible given 
data limitations. As a final robustness check, we have also used the ref. 48 global 
deforestation dataset to remove any pixels from our long-term trend data (Fig. 4) 
that suffered forest loss (Supplementary Figs. 6 and 7); as this dataset also includes 
non-anthropogenic forest loss—for example, due to natural fires—it serves as an 
even more conservative land-cover removal step. Removing these additional  
pixels does not substantially impact our reported long-term trend results or our 
inferred conclusions.

Cloud cover and other data artefacts are removed from the NDVI data using 
an upward-smoothing approach to gap filling49. VOD data are resampled to a 
twice-monthly time step to match the temporal resolution of the NDVI data by 
taking the median of each time window; this step ensures that divergent results 
between the two vegetation datasets are not due to spatial or temporal sampling 
differences. Using these cleaned and evenly sampled time series, we then deseason 
and detrend the data using seasonal trend decomposition by loess (STL50–52). We 
decompose the full-year signal using a period of 24 (one year at bi-monthly time 
sampling) and an adaptive loess filter. We use a value of 47 for the trend smoother 
(one point less than two years) and 25 for the low-pass filter (one point more than 
one year), according to the rules of thumb originally presented by ref. 50 (see code 
archive53 for details). We then maintain the residual (deseasoned and detrended) 
time-series term for analysis.

Note that the VOD dataset is a multi-satellite composite, with variable overlap 
between different input Ku-band datasets39. As multiple datasets are averaged in 
different configurations throughout the VOD period, there is the potential for 
changes in noise levels that could influence the computed AC1 and variance values 
if the underlying signal (for example, vegetation) changes on a slower timescale 
than the measurement noise. Stronger averaging associated with an increasing 
number of satellites would lead to step-wise increases in AC1 and step-wise 
decreases in variance.

For the period we consider, we do not see step changes in AC1 or variance as 
would be expected if the noise level or character changed with the introduction  
or removal of a new satellite; indeed, we see consistent resilience loss during  
long periods of constant satellite configurations (for example, 2002–2009, 
Extended Data Fig. 6). Furthermore, there are no contemporaneous jumps in the 
variance, which would also be expected to change with shifts in data averaging. We 
posit that the changes in AC1 and variance that we observe are highly unlikely to 
be driven by data aggregation and are instead representative of a global change in 
vegetation resilience.

Perturbation detection and recovery analysis. We use two methods to detect 
perturbations in our residual time series: (1) a moving-average54 and (2) a linear-fit 
approach55. For both methods, we use an 18-point (9 month) moving window 
over our residual time series and calculate either the simple mean difference 
between the first and second halves of our moving window (method 1) or a linear 
trend over the moving window (method 2). We then smooth these resultant 
derivative time series with a Savitzky–Golay filter (7 points, first order) to remove 
high-frequency noise56. Finally, we isolate any derivative values above the 99th 
percentile and label consecutive time steps as individual disturbance periods. We 
then use the highest peak within each disturbance as the perturbation date. Note 

that the results of our analysis are nearly identical whether we use method (1) 
or method (2) to detect perturbations; thus, we present here only data based on 
method (1). In our tests, a comparable set of disturbances was found using 12-,  
24-, 36- and 72-point moving windows, which resulted in similar spatial (for 
example, Fig. 2) and global (for example, Fig. 3) patterns; for simplicity, we present 
only results using the 18-point moving window here.

As we use a percentile approach to delineate large perturbations, we will not 
always capture each perturbation for a given time series; our detected perturbations 
will be biased towards the largest excursion within each individual time series. We 
acknowledge that not all events will be equally represented in both the VOD and 
NDVI datasets; in the case where a much stronger response is engendered in one 
dataset than the other, the percentile threshold may not identify the same event in 
both time series. Furthermore, we will by construction detect some non-significant 
perturbations, in particular for the case where a given time series does not experience 
a strong disturbance. We thus impose the condition that the raw time series must 
descend more than 0.01 to be considered a valid perturbation. While we do not 
identify every perturbation over the entirety of both datasets, we generate a large and 
diverse set of recovery rates that are well distributed in space and time. To ensure 
that our estimated recovery rates represent a return to the previous state, and not a 
transition to a new vegetation regime, we further apply the condition that the five 
years of data before and after the disturbance must pass a two-sample Kolmogorov–
Smirnov test (P < 0.05). We choose five years as our baseline to minimize the impact 
of long-term (for example, decadal) changes in vegetation state while maintaining 
enough data on both sides of the transition for a robust comparison.

For each detected time-series perturbation, we then find the local minimum 
of the residual time series with a two-month constraint to account for the fact 
that disturbances are often detected before the residual time series reaches its 
lowest point. We then take a period of five years after the local minimum and 
fit an exponential function, capturing both the exponent r and the coefficient of 
determination R2. To create the map for Fig. 2, if there is more than one transition 
at a given pixel location, we use the average recovery rate of all transitions. For  
Fig. 3, we maintain all recovery rates (for example, a single time series could 
contribute more than one recovery rate). We note that most locations studied have 
only one significant transition during the study period, and it is a relatively small 
number that have two or more. The computed transition points and recovery rates 
can be found in our data repository53.

Resilience estimation. Resilience is defined as the capacity to recover from 
external perturbations11,12. Quantitatively, it can be determined in terms of the 
recovery rate r after a perturbation to some value x0:

x(t) ≈ x0ert

where x(t) is the state of the system at time t after the perturbation. If r is negative, 
the system will recover to its equilibrium state at rate ∣r∣. The characteristic 
recovery time is given by ∣r∣−1. Note that for positive r, the initial perturbation 
would instead be amplified, indicating that the system is not resilient. Empirically, 
we estimate r for each perturbation in each residual NDVI and VOD time series as 
described in the previous section.

The AC1, a measure of how strongly correlated neighbouring time spans of 
a time series are, has been suggested as a measure for resilience1,23–25,57 and more 
generally as an early-warning indicator for forthcoming critical transitions28,31. 
Theoretically, this can be motivated from a linearization of the stochastic dynamics 
around a given equilibrium point x*. For the fluctuations x̄ = x − x∗

dx̄
dt

= κx̄ + ση ,

which defines an Ornstein–Uhlenbeck process with linear damping rate κ < 0 and 
white-noise forcing with standard deviation σ > 0. It can be shown that the variance 
⟨x̄2⟩ and lag-n autocorrelation α(n) of the stochastic process obtained from a 
discretization of the Ornstein–Uhlenbeck process into time steps Δt are given by58

⟨x̄2⟩ =
σ2

1 − e2κΔt ≈ −
σ2

2κΔt

and

α(n) = enκΔt .

If the stability of an equilibrium state gradually decreases, κ will approach zero 
from below, and correspondingly, the variance ⟨x̄2⟩ will diverge to positive infinity 
and the AC1 α(1) will increase towards + 1. These increases in the damping rate 
κ, as well as the variance of the fluctuations ⟨x̄2⟩ and the AC1 α(1) can thus serve 
as precursor signals for a forthcoming critical transition and, in relative terms, as 
measures for stability or resilience changes.

The theoretical estimates for the recovery rates shown in Fig. 2b for AC1 and 
in Fig. 2c for the variance are given in terms of the damping rate κ, obtained by 
inverting the preceding equations. For the variance, an estimate of the driving 
noise σr is also needed, which we obtain from
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dx̄
dt

= rx̄ + σrη ,

where we used the empirically estimated recovery rate r rather than the damping 
rate κ on the right-hand side. Practically, we obtain very similar theoretical 
expressions for the variance when computed using the σκ obtained when putting κ 
instead of r into the preceding equation (Supplementary Fig. 4).

For an empirical confirmation of the FDT, we thus have to show that for the 
observed vegetation data, an exponential relationship between the AC1 and the 
recovery rate r, as well as a power-law (1/r) relationship between the variance and 
the recovery rate r, hold. It is important to note that for the comparison between 
empirical recovery rates and AC1 or variance, we consider only time series that 
eventually return to their pre-disturbance state, implying that the residual time series 
under study are, apart from infrequent large perturbations, approximately stationary.

Long-term trend estimation. To better understand temporal changes in vegetation 
resilience, we calculate the AC1 and variance on moving windows (with a size of 
3, 5 and 7 years) over each entire residual time series. Using these windowed AC1 
and variance measurements, we calculate Kendall–Tau59 statistics to check for 
increasing or decreasing trends. As our rolling-window data are by construction 
serially correlated, we test for statistical significance based on a set of 10,000 
phase-shuffled surrogates, which preserve the variance and autocorrelation function 
of the original time series31–33. These phase surrogates are obtained by computing 
the Fourier transform of the original time series, uniformly randomly shuffling their 
phases and then applying an inverse Fourier transform to each of them. We then 
calculate the probability that our measured AC1 Kendall–Tau trends are significant 
using a threshold of P < 0.05. Finally, we discard six months of data at either end 
of each time series before calculating trends, as the variance and autocorrelation of 
the residual produced by the STL procedure are less reliable within one half of the 
length of the seasonal decomposition window. The python codes to replicate our 
trend estimation procedure can be found in our code repository53.

Data availability
The satellite data used in this study are publicly available38,39,42. The data used for 
Figs. 2 and 3 are available via Zenodo: https://doi.org/10.5281/zenodo.5816934.

Code availability
The Python codes used in this study are available via Zenodo: https://doi.
org/10.5281/zenodo.5816934.
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Extended Data Fig. 1 | Global vegetation data. (a) Global long-term mean of normalized difference vegetation index (NDVI, 1981-2015). (b) Time series 
for a given location (8.375∘ S, 50.875∘ W). Raw time series in black, with deseasoned and detrended time series residual in blue (see Methods for details). 
(c) Recovery of the exemplary time series to the previous mean state after a rapid transition, with commensurate exponential fit. Rare large disturbances 
can be used to track the recovery of vegetation and assign a recovery rate using an exponential fit.
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(a)

(b) (c)

Extended Data Fig. 2 | Global distribution of recovery rates. (a) Recovery rate (for well-determined exponential fits, R2 > 0.2) for Normalized Difference 
Vegetatation Index (NDVI, n=256,807 perturbations for 227,079 unique locations). (b) Theoretical estimate of the recovery rate computed from the 
AC1 of the detrended and deseasoned NDVI time series at each location (c) Theoretical estimate of the recovery rate computed from the variance of 
the detrended and deseasoned NDVI time series at each location. Bare earth, snow, and anthropogenic landcovers have been excluded from the analysis 
using MODIS landcover data. Note the sparsity of grid cells where there have been abrupt shocks that can be exploited to estimate the recovery rate (a), 
as opposed to theoretical measures (b,c) which can be computed for all grid cells with vegetation. Also note the similarity of the spatial patterns in (b) 
and (c), and their resemblance to the spatial pattern shown in (a) as far as there are values for the recovery rate available. Relative deviation of theoretical 
recovery rate estimated from (d) AC1 and (e) variance.
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Extended Data Fig. 3 | Empirical confirmation of recovery rates. Comparison between measured recovery rates and theoretical resilience metrics for 
NDVI data. (a) AC1 versus recovery rates r from exponential fits to recovering time series with R2 > 0.3; the magenta (blue) line shows binned medians 
(means), which are close to the exponential fit of the empirical relationship between recovery rate and AC1 values (black line). Gray shading shows data 
interquartile range. (b) Same as (a) but for the variance. The variance does not show the expected power-law relationship with the recovery rate; there are 
substantial deviations from the theoretically expected ⟨x2⟩ = −σ2

r /2r relationship (black line), where we use the spatial mean of the driving noise σr. The 
mean variance and corresponding interquartile range is also shown for the case where the individual σr values for each grid cell are used to compute the 
variance (orange line, with shaded interquartile range). (c) Binned medians of AC1 as a function of the empirically measured recovery rate r, for increasing 
thresholds on R2 of the exponential fit to the recovering time series after abrupt transitions, as indicated in the legend. (d) Same as (c) but for the variance. 
Low R2 variance medians in (d) plot on top of each other until R2 > 0.3.
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Extended Data Fig. 4 | Empirical confirmation of recovery rates. Comparison between measured recovery rates and theoretical resilience metrics for 
VOD data when using the entire time series to calculate theoretical resilience. (a) AC1 versus recovery rates r from exponential fits to recovering time 
series with R2 > 0.3; the magenta (blue) line shows binned medians (means), which are close to the exponential fit of the empirical relationship between 
recovery rate and AC1 values (black line). Gray shading shows data interquartile range. (b) Same as (a) but for the variance. The variance indeed shows 
the expected power-law relationship with the recovery rate; there remain deviations from the theoretically expected ⟨x2⟩ = −σ2

r /2r relationship (black 
line), where we use the spatial mean of the driving noise σr. The mean variance and corresponding interquartile range is also shown for the case where 
the individual σr values for each grid cell are used to compute the variance (orange line, with shaded interquartile range). (c) Binned medians of AC1 as 
a function of the empirically measured recovery rate r, for increasing thresholds on R2 of the exponential fit to the recovering time series after abrupt 
transitions, as indicated in the legend. (d) Same as (c) but for the variance. Low R2 variance medians in (d) plot on top of each other until R2 > 0.3.
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Extended Data Fig. 5 | Global resilience trends by metric. Statistically significant (p < 0.05) trends in vegetation optical depth (VOD) (a,c,e) AC1 and 
(b,d,f) variance for the time periods (a,b) 1992–2017, (c,d) 1992–2004, and (e,f) 2004–2017.
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Extended Data Fig. 6 | Global resilience time series by land-cover. Rolling-window AC1 for different land cover types in vegetation optical depth (VOD) 
data. Top row: three-year window, middle row: five-year window, bottom row: seven-year window. AC1 in left column and variance in right column. 
Each line covers one land-cover type. 1992 shown as black dashed line, with light colors representing data potentially contaminated by discontinuities 
before 1992. Note that only the broadleaf evergreen class shows a distinct drop before 1992. Globally coherent changes in resilience are visible across all 
land-cover types and with different moving window sizes.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Global resilience trends. Direction (+/-) of global resilience trends (a: 2000-2017, b: 2002-2017, c: 2004-2017) for AC1 and 
variance, using vegetation optical depth (VOD) data. Bare earth, snow, and anthropogenic land covers are excluded from the analysis (white areas, see 
Methods). Linear trends are calculated based on five-year rolling window AC1 and variance estimates; only trends with p <0.05 in either AC1 or variance 
are shown in color (see Methods for details on significance testing). Pixels with mixed significant trends (for example, AC1 positive, variance negative) are 
shown in gray.
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