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Abstract
Countries’ reliance on global food trade networks implies that regionally different climate change
impacts on crop yields will be transmitted across borders. This redistribution constitutes a
significant challenge for climate adaptation planning and may affect how countries engage in
cooperative action. This paper investigates the long-term (2070–2099) potential impacts of climate
change on global food trade networks of three key crops: wheat, rice and maize. We propose a
simple network model to project how climate change impacts on crop yields may be translated into
changes in trade. Combining trade and climate impact data, our analysis proceeds in three steps.
First, we use network community detection to analyse how the concentration of global production
in present-day trade communities may become disrupted with climate change impacts. Second, we
study how countries may change their network position following climate change impacts. Third,
we study the total climate-induced change in production plus import within trade communities.
Results indicate that the stability of food trade network structures compared to today differs
between crops, and that countries’ maize trade is least stable under climate change impacts. Results
also project that threats to global food security may depend on production change in a few major
global producers, and whether trade communities can balance production and import loss in some
vulnerable countries. Overall, our model contributes a baseline analysis of cross-border climate
impacts on food trade networks.

1. Introduction

Higher temperatures will significantly modify the
production of crops (Parry et al 2004, Wheeler and
Braun 2013, Challinor et al 2016, Bezner Kerr et al
2022). This impact constitutes a threat not only to
individual producing countries but, because of an
acceleration in countries’ dependence on overseas
trade for food supply, also to global food security
(D’Odorico et al 2014, Janssens et al 2020). Dis-
rupted production in one or a few countries can
induce changes in the food trade network as a whole
(Puma et al 2015), which is a primary example

of cross-border impacts of climate change (Bren
D’Amour et al 2016, Hedlund et al 2018, Adams et al
2021, Carter et al 2021, Lager and Benzie 2022). Such
redistribution of global climate risk constitutes a sig-
nificant challenge for climate adaptation with regards
to international cooperation (Challinor et al 2017).

Global food trade networks consist of densely
connected trade communities (Torreggiani et al 2018,
Gutiérrez-Moya et al 2021), in which countries (i.e.
nodes) have a higher number of within-community
trade relationships (i.e. links) than they have rela-
tions with countries outside their community. Net-
works with clearly distinguishable, but only loosely
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connected, communities can have stabilising effects
on certain changes within networks, such as limiting
‘domino effects’ of risks (May et al 2008, Scheffer et al
2012). However, the extent to which climate change
impacts may change the structure of trade networks
remains unknown.

This paper investigates how trade patterns
between countries may be disrupted and reori-
ented under potential long-term (2070–2099) climate
change impacts on food production. Using trade data
for three key staple crops (wheat, rice and maize),
we propose a baseline model for analysing potential
structural redistributions of global food trade net-
works as a consequence of climate-induced produc-
tion changes. We test the model for the three crops
and develop projections by linking data on future cli-
mate impacts and current trade. Projected results are
compared to present-day trade in order to assess the
relative levels of disruption. For this, we use network
community detection and functional cartography to
analyse how trade community structures and coun-
tries’ network roles change following adjustments
to countries’ trade patterns. The analysis is espe-
cially focused on identifying differences in structural
changes across the selected key staple crops, and how
trade might be concentrated differently compared
to present-day. Our analysis is not a prediction of
future trade. Rather, it is a baseline approach that—
ceteris paribus—can generate knowledge on and how
the trade system may need to reconfigure to man-
age future climate impacts. Our approach is useful to
provide insights about the level to which the current
food trade system is prepared for climate risks.

2. Methods andmaterials

2.1. Underlying model considerations
We study structural disruptions of global food trade
networks by applying climate change impacts on pro-
duction of wheat, rice and maize, and proportionally
on trade.We hypothesise that climate change impacts
on productionmight force a structural change in food
trade networks, indirectly leading to cross-border dis-
ruptions in imports to other countries. To isolate the
effect of climate change impacts on production and
trade we develop a simplistic model. In our model,
impacts on yields equal impacts on production and
export–import flows. Everything else is assumed to
not change and no other mechanisms increase sup-
ply. We are, for example, not considering behavi-
oural changes and market effects or climate change
impacts on transport routes, such as changes in the
distribution or capacities of harbours and airports,
nor on storage (Bailey and Wellesley 2017). Further,
we are not considering second-order effects or more

‘dynamic’ responses that might occur as an adapta-
tion to climate change, for example the effect of trade
policies. The result is a model that highlights the isol-
ated climate-induced cause-and-effect without intro-
ducing numerous detailed assumptions. Our model
is therefore deliberately simple to allow for transpar-
ent and descriptive analyses of potential disruptions
to the food trade networks. Themodel is not designed
for predictions.

Figure 1 shows a schematic overview of themodel.
In this illustrative example, the production in three
countries is affected by a climate-induced change of
−40%, −33% and +10%, respectively, which is pro-
portionally translated into changes in exports (and
hence, imports).

The model has two equilibrium states: The
present-day sum of production (Pi) and a climate-
projected sum of production (P′

i). Each of these
two sums are distributed among all countries, i.e.∑

Pi =
∑

Si and
∑

P′
i =

∑
S′i. Hence, a global pro-

duction increase of one crop would, in this model,
imply increased consumption.

We develop a present-day and a climate-projected
network for each crop (figure 2). Climate change
impacts increase or decrease production, which
changes export–import flows by the same percent-
age. Climate-projected trade networks are determ-
ined from multiplying climate change impact data
(%) with current export data (tonnes). Changed
export–import flows may modify the trade network
structure, since a higher quantity of export–import
determines if two countries have more concentrated
trade. The trade concentration gives rise to structural
differences in the trade system as a whole.

Our analysis consists of three steps. First, we ana-
lyse the stability (or lack thereof) of trade communit-
ies under climate change-affected crop production
of wheat, rice and maize. We are investigating sta-
bility as the trade system’s ability to maintain its
structure when subjected to climate change impacts,
yet considering the trade structure as formed only
by export–import flows. To identify how exposed
trade communities are to climate change impacts,
we study changes in link strengths between countries
in present-day and climate-projected trade and how
these affect the community structures. Second, we
study potential changes in countries’ network posi-
tions, or ‘roles’, in the food trade networks.

Third, we identify how exposed individual coun-
tries are to changes in yield production and imports
and the potential role of trade communities in balan-
cing production loss. We use present-day production
and trade data to analyse how a change in produc-
tion is distributed among the countries within trade
communities.
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Figure 1.Minimal network model of how climate change impacts on crops yields may be translated into changes in trade. Circles
represent three countries and their production (Pi), exports (Ei), and domestic supply (Si) of a commodity. The arrows represent
import and export. The climate-projected production, domestic supply and the trade figures are indicated by prime (′).

Figure 2. Conceptual illustration of how network structure might change because of climate change. Nodes represent countries
and links represent trade between countries. The width of links is proportional to trade and arrows represent import and export.
The countries within light blue ovals belong to the same trade community due to intense trade (represented by thick links).
Figure (a) shows the present-day network structure, and figure (b) shows the climate-projected network structure resulting from
climate-induced changes in production that are proportionally translated to changes in trade according to the model in figure 1.
Compared to (a), some links are unchanged, some links are thicker (more trade), some thinner (less trade), and some trade
volumes fall under the defined breakpoint (see 2.2) and hence are not included in the analysis (dashed links). Due to weakened
trade relations, one country (orange node) is no longer part of the trade community.
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2.2. Production and trade data
The Food and Agriculture Organization of the
United Nations provides annual crop production
and bilateral trade data for agricultural commodit-
ies (FAOSTAT 2021). We used crop production and
detailed trade matrix data in tonnes for the most
recently available data (2018) that were corrected for
re-exports to represent point-of-origin-to-point-of-
destination trade movements (Kastner et al 2011,
Croft et al 2018). While trade may fluctuate across
years, recent research shows that there is a high degree
of ‘stickiness’ that makes the trade system less volatile
and more stable than often assumed (Reis et al 2020,
Adams et al 2021). We use primary commodity data
for wheat and maize, but since the raw form of rice
(paddy) is mainly traded in processed forms, we used
the milled equivalent of paddy rice (FAO 1972).

To focus the analysis on relatively larger trade
flows, bilateral trade flows below a certain threshold
were excluded. We defined breakpoints for each crop
at the 75th percentile (165.4 tonnes for wheat trade,
28.6 tonnes for rice trade, 26.6 tonnes for maize
trade), which reduced noise but still maintained a rel-
atively high number of countries (wheat 108, rice 108,
maize 143) in the dataset.

2.3. Incorporating climate impacts
To consider climate impacts on crop production,
we used data from the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP) (Jägermeyr et al
2021). ISIMIP offers intersectoral simulations that
allow for the specification of risk factors for com-
bined analysis, such as global climate models and
impact models; global gridded crop models in our
case.

We calculated a mean across relative changes pro-
jected by individual climate-crop model combina-
tions compared to the reference period 1983–2013.
We used ensemble data from the Global Gridded
Crop Model Intercomparison Phase 3 simulations
within ISIMIP, including five climate models (GFDL-
ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-
ESM2-0, UKESM1-0-LL) and twelve crop models
(ACEA, CROVER, CYGMA1p74, DSSAT-Pythia,
EPIC-IIASA, ISAM, LandscapeDNDC, LPJmL,
pDSSAT, PEPIC, PROMET, SIMPLACE-LINTUL5)
covering all three crops (Jägermeyr et al 2021), and
include an CO2 fertilisation effect (without this, the
impacts of climate change may be more severe). For
an overview of the climate models and crop models,
see tables S1 and S3 respectively in (Jägermeyr et al
2021). Relative crop yield projections per grid were
aggregated to country level through an area weighted
mean. Grid cells were masked for currently cultiv-
ated areas and bias-corrected with observational yield
levels. Areas not covered in cropland input and refer-
ence yield leave some countries reported as NA’s (see
supplementary material A).

Atmospheric concentration levels are given by the
Representative Concentration Pathways (RCPs; van
Vuuren et al 2011). We selected crop yield projec-
tions driven by climate scenarios for RCP 8.5, since
this most closely agree with historical total cumulat-
ive CO2 emissions (Schwalm et al 2020). Regarding
time-perspective, we selected long term projections
(the mean of the period 2070–2099) to generate more
‘extreme’ scenarios of trade impacts marking poten-
tial redistributions in trade communities.

2.4. Analysing network structures
We use the Louvain algorithm (Blondel et al 2008)
to detect communities in the trade networks for the
three selected crops. The Louvain algorithm defines
a modularity function Q, which equals the fraction
of links within communities minus the expected
fraction of such weighted (i.e. non-binary) links
(assuming a randomised network with the same
numbers of nodes and links). The Louvain algorithm
maximisesQ over (optimally all) divisions of the net-
work into communities. For the quality of the process
of identifying trade communities, see supplementary
material B.

We used two measures to evaluate changes
between present-day and climate-projected network
structures. First, we compared the similarity of
network communities in present-day and climate-
projected food trade networks using the Adjusted
Rand Index (Hubert and Arabie 1985). The Rand
Index is a measure for comparing similarity of two
different partitions based on pair-wise comparison
of included elements. Any two data points in one
network can be in the same or in different com-
munities and for each combination the Rand Index
measures if these two points are in the same com-
munity, in one but not the other or in different
communities in both networks. The result is the
fraction between the agreement of two different par-
titions and the total number of pairs of elements.
The Adjusted Rand Index (R) corrects for random
assignments and the risk of overlap. R goes from 0 to
1, with 1 indicating an exact match between a pair of
communities.

Second, to analyse how certain countries may
change their network position before and after
climate change, we used the method of functional
cartography (Guimerà and Amaral 2005)7. This
method assumes that nodes in a network fulfil cer-
tain roles based on how they are connected within, or
across, communities. The role of a node is determined
from two indices capturing how well a node is con-
nected to other nodes in its community (z), and how

7 Note that while the full method also calculates modularity based
on simulated annealing, we instead use Louvain community identi-
fication and subsequently apply the within-community degree and
participation coefficient.
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the node’s links are distributed among other com-
munities (P). The first index, the within-community
degree, is defined as

zi =
Ki − K̄si

σKsi
,

where Ki is the number of links of node i to other
nodes in its trade community si, K̄si is the average of
K over all the nodes in si, and σKsi is the standard
deviation ofK in si. The second index, the participant
coefficient, is defined as

Pi = 1−
N∑
s=1

(
Kis

ki

)2

,

where Kis is the number of links of node i to nodes in
community s, ki is the total number of links of node i
and N is the number of communities.

These measures define a parameter space where
different regions represent roles based on threshold
values. Guimerà and Amaral distinguished seven
roles for nodes. First, nodes are categorised along
the z-dimension as hubs if z ⩾ 2.5, and non-hubs
if z < 2.5. Second, nodes are categorised along
the P-dimension. Non-hubs are divided into ultra-
peripheral (all or almost all links within own com-
munity, P⩽ 0.05), peripheral (most links within own
community, 0.05 < P ⩽ 0.62), connectors (many
links across communities, 0.62< P ⩽ 0.80), and kin-
less (homogenously distributed links across all trade
communities, P > 0.80). The latter two roles bridge
communities and are thereby important for network
cohesion. Hubs are categorised as provincial (a vast
majority of links within own community, P ⩽ 0.30),
connector hubs (many links tomost of the other com-
munities, 0.30 < P ⩽ 0.75) and kinless hubs (homo-
genously distributed links across all communities,
P > 0.75). Hubs represent major traders; provincial
hubs being of most importance for trade community
cohesion, kinless hubs for global trade network cohe-
sion, and connector hubs for both. The behaviour of
z and P was further explored by changing threshold
values (see supplementary material C).

3. Results

3.1. Climate change impacts on global trade
patterns
Figures 3–5 show the community detection results for
present-day and climate-projected trade (see supple-
mentary material D for detailed lists of trade com-
munities). Overall, these results suggest strong sta-
bility of trade communities under climate change
impacts on production, and proportionally on trade.
Forwheat (figure 3), the trade community structure is
identical between present-day and climate-projected
trade, hence R = 1. For rice (figures 4(a) and (b);
R = 0.89), one major producer, Vietnam, changes
trade community from a community with four of the

major global producers, to a community with only
two major producers, albeit the biggest one, China,
and Cambodia. Zimbabwe, with a very small rice pro-
duction, also changes trade community. For maize
(figures 5(a) and (b); R= 0.86) the trade community
structure between present-day and climate projected
trade differs more, although the major maize produ-
cers remain in the same communities. Russia, Turkey
and Sudan leave the trade community dominated by
China and join the community with the five central
Asian states.

Generally, the structure of the trade communit-
ies shows relatively strong patterns of geographical
proximity: for all three crops, North and South Amer-
ica form two trade communities. Western and cent-
ral Europe form a trade community, also for all
three crops (note however small production of rice).
Also, for Africa there are relatively strong patterns of
food trade between neighbouring countries. The pic-
ture is slightly more scattered for Asia. For example,
for rice there is a strong trade community in South
Asia with important trade links tomany Sub-Saharan
African states, but weak links to North and South
America.

3.2. Climate change impacts on network roles
Figures 6–8 illustrate network roles for countries in
each present-day and climate-projected food trade
network (see supplementary material E for full coun-
try lists). Figure 6 indicates that many major global
wheat producers act as connector hubs, i.e. have
many links within and across trade communities, and
that this remains unchanged with projected climate
change impacts. Thereby, results project that major
global wheat producers are as important for the cohe-
sion of the global wheat network as for their respective
trade community.

For rice, the majority of countries remain in the
same role (figures 7(a) and (b)). Of major global pro-
ducers, only Cambodia shifts towards trading more
across communities with projected climate change
impacts (from non-hub to hub). Pakistan, with a
mid-level sized production, increasingly distributes
its rice trade bymoving from connector to kinless hub
with climate change impacts.

The largest changes in network roles are projected
for maize trade, where major maize producers India,
United States and Brazil increasingly distribute their
trade across communities and are thus character-
ised as kinless hubs (figures 8(a) and (b)). Mid-level
global producers such as Ethiopia, Egypt and Turkey
shift to connector hubs, thereby becoming increas-
ingly important as network brokers across trade com-
munities.

3.3. Climate change impacts on production
In this section we study climate change impacts on
production and how these affect trade communit-
ies. The trade communities studied here are based
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Figure 3. Present-day (2018) trade communities for wheat, which are identical to climate-projected future ones (R= 1). Major
global producers are represented by country names (for 2018; FAOSTAT 2021). Countries in grey fall out of communities since
either (i) their trade data are below the breakpoint, (ii) they are not represented in the FAO or ISIMIP data or (iii) their trade role
is solely as an intermediary (they export what they import) and is therefore not a point of origin or final destination.

on present-day climate conditions (cf figures 3, 4(a)
and 5(a)), i.e. we do not consider climate-projected
trade communities in this section. Subsequently, we
study disruptions to communities’ domestic sup-
ply resulting from both projected climate-induced
yield change and the share of countries’ imports that
originates from trade partners that face production
changes (table 1; see supplementary material F for
detailed lists of change for individual countries).

The global wheat production is dominated by
four large trade communities. The production of
wheat is projected to increase by 20% until 2099,
and all six trade communities are projected to
see increased production (column 3). As a res-
ult of the stability of the trade community struc-
ture, the import dependency for each community is
almost unchanged under climate change impacts (cf
columns 3 and 5).

The production of rice is dominated by three large
trade communities of similar size, and two smal-
ler ones in the Americas; the two latter are almost
completely isolated from the rest of the world. The
overall small increase in rice production and imports
(4%; column 6) is not concentrated to one trade
community, but distributed across the three major
trade communities with community 3 showing a
small overall increase (1%) and community 5 a larger
increase (11%), whereas trade community 4 is projec-
ted to decrease with 6%. Trade community 1 increases
its available amount of rice with 27% (note that this is
a very small community). For all communities except

no. 4, production increases (column 3) while imports
decrease (column 5). As a result, import depend-
ency decreases. The situation for trade community 4
is especially problematic since both production and
import decrease.

Lastly, the global maize production loss (−20%)
hits all trade communities. Themain producing com-
munity (2) is most exposed by combined climate-
induced changes of −25% in total production and
imports. For all trade communities except com-
munity 5, the production loss is roughly similar to
decreased import.

4. Discussion

Our study identifies potential disruptions in food
trade networks taking point-of-origin-to-point-of-
destination trade movements into account. The
strength of our method is to, through a transpar-
ent and tractablemodelling approach, provide insight
into how current trade patterns may be reoriented as
a result of projected climate change impacts.

Our model projects high stability of trade com-
munity structures under climate change. Only for
maize a more substantial change can be observed.
Our results, however, also show that the yield level
for a few major producers ultimately determines
how vulnerable food trade networks may become
under future climate change impacts. The movement
of major global producers between communities, as
exemplified by Vietnam and rice, indicates that trade

6
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Figure 4. Present-day (2018) and climate-projected trade communities for rice (R= 0.89).

relationships may change despite overall stability of
global trade structures.

These results show that a country’s future trade-
linked climate vulnerability will be a combined effect
of yield change and the balance of production loss or
gain among trade partners. According to our model,
few countries may be able to buffer their production
loss with imports from existing, close trade partners
if maintaining current consumption levels, especially
for maize. Rather, cross-border climate impacts are
likely to cause disruptions to the available supply. Our
model also illustrates how the distribution of cross-
border production change in a community may be a

determinant of vulnerability for individual countries.
For example, Mali and Saudi Arabia face wheat pro-
duction loss, but imports from existing trade partners
may maintain available supply. Contrastingly, lar-
ger production losses than gained imports will make
balancing supply by imports impossible, as in the
case of maize trade. Such conditions would intro-
duce adaptation options beyond substituting trade
partners. Our results do not support interpretation
of such dynamic responses impacting future trade,
yet indicate that trade as an adaptation mechanism
may be more viable for wheat and rice than it is for
maize.

7
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Figure 5. Present-day (2018) and climate-projected trade communities for maize (R= 0.86).

5. Limitations and potential developments

Our model is inherently limited by its simplicity. For
example, it only allows for considering first-order
cross-border impacts. Reduced food production
resulting in increased market prices will likely how-
ever lead to higher-order direct and/or indirect
effects, with a substantial impact on trade patterns
(Middelanis et al 2021). While model simplicity is
required here for isolating the cause-and-effect rela-
tionship between climate change impacts and trade
disruptions, future research could include economic

modelling or the application of ‘discount factors’ to
particular nodes to make them more likely to secure
continued supply. Future analysis could also factor
in the size and population of each country; in our
analysis, each country (node) is treated the same way.
Capturing these dynamics would entail the devel-
opment of more complex models and associated
assumptions, which whilst beyond the scope of this
paper, offer a rich stream for future research activity
focused on cross-border climate impacts.

Another limitation in our approach is that we
utilise a future scenario with regards to atmospheric

8
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Figure 6. Present-day (2018) and climate-projected network roles for wheat trade (identical, R= 1). Each node can be
characterised by its within-community degree z and participant coefficient P (see 2.4), defining their network roles in present-day
and climate-projected food trade networks. Major global producers are labelled.

concentrations of greenhouse gases, and from
this take projected future climate conditions and
projected future impacts on crop yields, and apply
it to a representation of today’s trade patterns. There
is—in general—a need for combining impact scen-
arios with scenarios of how the future society might
evolve (O’Neill et al 2014, 2020). For example, future
societies might see significant crop expansion, land
use change and behavioural change, which could
imply new conditions for today’s production systems
(Nelson et al 2014, Stevanovic et al 2016).

This analysis has been conducted using a single
year’s trade data, which may contain fluctuations or
deviations from the average trade situation. As such,
our baseline communitiesmay not precisely represent

the current reality. One option to account for this
would be to average the trade data over a temporal
window, but this introduces assumptions about how
the averaging relates to where and when trade is re-
exported. Averaging multiple climate and crop mod-
els could also have reduced the extremes of climate
change impact projections, and averaging over mul-
tiple years may hide the more extreme years. More
useful would be to test out a variety of years of trade
data, along with amore exhaustive range of commod-
ities, should this work be developed into more com-
plex assessments.

Finally, our analysis does not capture substitu-
tion of products or the relative importance of the
trade of secondary or derived commodities, and

9
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Figure 7. Present-day (2018) and climate-projected network roles for rice trade.

10
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Figure 8. Present-day (2018) and climate-projected network roles for maize trade.
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Table 1. Change in total production and imports per trade community for each crop. Colours correspond to present-day trade
communities in figures 3, 4(a) and 5(a).

Wheat 1 2 3 4 5 6

Trade
community

Community
production—
present-day
climate
conditions
(tonnes)

Community
production
as % of world
production

Climate-
projected
community
production
(tonnes)
and change
compared to
present-day

Total import
(tonnes)
and share of
production—
present-day
climate
conditions

Climate-
projected
total import
(tonnes)
and change
compared to
present-day

Total climate-
induced
change in
production
plus import

1 26 869 848 4% 29 425 491
(10%)

8149 390
(30%)

9100 081
(12%)

10%

2 243 155 832 33% 304 516 255
(25%)

30 983 682
(13%)

38 242 929
(23%)

25%

3 133 234 315 18% 167 025 958
(25%)

43 620 994
(33%)

54 075 061
(24%)

25%

4 170 078 129 23% 197 181 129
(16%)

53 419 138
(31%)

62 246 560
(17%)

16%

5 33 612 230 5% 42 964 456
(28%)

7473 730
(22%)

8772 934
(17%)

26%

6 127 012 081 17% 140 853 917
(11%)

10 373 935
(8%)

12 645 044
(22%)

12%

TOTAL 733 962 435 100% 881 967 206
(20%)

154 020 868
(21%)

185 082 610
(20%)

20%

Rice 1 2 3 4 5 6

Trade
community

Community
production—
present-day
climate
conditions
(tonnes)

Community
production
as % of world
production

Climate-
projected
community
production
(tonnes)
and change
compared to
present-day

Total import
(tonnes)
and share of
production—
present-day
climate
conditions

Climate-
projected
total import
(tonnes)
and change
compared to
present-day

Total climate-
induced
change in
production
plus import

1 25 792 030 3% 33 585 808
(30%)

2622 792
(10%)

2367 407
(−10%)

27%

2 22 430 895 3% 24 602 262
(10%)

2422 332
(11%)

2164 986
(−11%)

8%

3 247 549 930 32% 250 751 903
(1%)

7784 525
(3%)

7780 355
(<1%)

1%

4 221 428 449 28% 207 892 155
(−6%)

8507 224
(4%)

7693 166
(−10%)

−6%

5 262 800 106 34% 293 214 047
(12%)

6667 171
(3%)

6385 300
(−4%)

11%

TOTAL 780 001 410 100.0% 810 046 176
(4%)

28 004 044
(4%)

26 391 214
(−6%)

4%

(Continued.)

therefore potentially lacks significant trade rela-
tionships associated with the utilisation of primary
commodities. However, while initial processing
steps are quite simple to follow, derived products
included in different processing streams become

more complex to handle. Nonetheless, the extension
of network models to include derived products
would offer additional insight into these depend-
encies and their implications for climate change
resilience.
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Table 1. (Continued.)

Maize 1 2 3 4 5 6

Trade com-
munity

Community
production—
present-day
climate condi-
tions (tonnes)

Community
production
as % of world
production

Climate-
projected
community
production
(tonnes)
and change
compared to
present-day

Total import
(tonnes)
and share of
production—
present-day
climate
conditions

Climate-
projected
total import
(tonnes)
and change
compared to
present-day

Total climate-
induced
change in pro-
duction plus
import

1 83 554 440 7% 64 155 333
(−23%)

2072 181
(3%)

1582 681
(−24%)

−23%

2 453 883 616 40% 340 857 118
(−25%)

61 495 385
(14%)

46 564 236
(−24%)

−25%

3 192 959 809 17% 163 405 845
(−15%)

47 328 308
(25%)

39 980 756
(−16%)

−15%

4 394 390 952 34% 330 618 348
(−16%)

40 392 955
(10%)

34 084 162
(−16%)

−16%

5 19 757 003 2% 19 364 669
(−2%)

824 322
(4%)

731 770
(−11%)

−2%

6 2245 491 <1% 1877 669
(−16%)

55 790
(3%)

45 698
(−18%)

−16%

TOTAL 1146 791 311 100.0% 920 278 982
(−20%)

152 168 941
(13%)

122 943 606
(−19%)

−20%

6. Conclusion

This study develops a simple network modelling
approach to explore how current food trade between
countries may be disrupted under long-term cli-
mate change impacts. Our study complements pre-
vious work by focusing on climate change impacts
on production and bilateral trade in global network
structures. We find that, for wheat and rice, the
trade community structure is either stable (wheat) or
only slightly changed (rice). According to our model,
countries with relatively large disruptions in both
their domestic and trading partners’ production face
the largest challenges in meeting their demand for
all three crops, but particularly so for maize. The
degree to which the food trade system can with-
stand climate risks may thus largely depend on coun-
tries’ abilities to balance production losses domestic-
ally and among vulnerable partners, relative reliance
on specific crops, and relative levels of impacts dif-
fering between different producers and communit-
ies. Taken together, this analysis of climate-induced
changes of current food trade networks provides
a baseline framework for more detailed study of
potential threats to global food security, and—most
importantly—highlights the need for international
cooperation on adaptation.
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