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Abstract
The El Niño-Southern Oscillation (ENSO) is a climate phenomenon that profoundly impacts
weather patterns and extreme events worldwide. Here we develop a method based on a recurrent
neural network, called echo state network (ESN), which can be trained efficiently to predict
different ENSO indices despite their relatively high noise levels. To achieve this, we train the ESN
model on the low-frequency variability of ENSO indices and estimate the potential future
high-frequency variability from specific samples of its past history. Our method reveals the
importance of cross-scale interactions in the mechanisms underlying ENSO and skilfully predicts
its variability and especially El Niño events at lead times up to 21months. This study considers
forecasts skillful if the correlation coefficients are above 0.5. Our results show that the
low-frequency component of ENSO carries substantial predictive power, which can be exploited by
training our model on single scalar time series. The proposed machine learning method for
data-driven modeling can be readily applied to other time series, e.g. finance and physiology.
However, it should be noted that our approach cannot straightforwardly be turned into a real-time
operational forecast because of the decomposition of the original time series into the slow and fast
components using low-pass filter techniques.

1. Introduction

The El Niño-Southern Oscillation (ENSO) is the dominant variability mode of the global climate system at
interannual time scales [1]. It is related to interannual temperature and pressure anomalies in the tropical
Pacific Ocean. ENSO can be classified into three main variability phases, namely the warm (i.e. El Niño) and
cool (i.e. La Niña) phases with sea-surface temperature (SST) anomalies substantially above and below
average, respectively, as well as the remaining neutral phases [2]. The warm ENSO phases have typical yet
irregular return periods between 3 and 7 years, rendering them challenging to predict [3]. In the neutral
phase, trade winds blow east to west resulting in a pile-up of warm water masses at the western boundary of
the tropical Pacific Ocean. The resulting east–west SST gradient causes air to ascend in the western Pacific
and circulate back to the eastern boundary of the tropical Pacific Ocean, where it descends again. This
atmospheric circulation system is called the Walker cell. During El Niño (La Niña) phases, this circulation is
weakened (strengthened), leading to warm (cool) SST anomalies in the central and eastern parts of the
tropical Pacific.

During the last decades, substantial progress has been made in assessing spatial patterns, the temporal
dynamics, the underlying physical mechanisms, and possible changes of ENSO in response to global
warming [4, 5]. Pronounced anomalies of ENSO, i.e. both El Niño and La Niña events, can trigger droughts,
floods, heat waves, and other extreme weather conditions around the globe [6]. Skillful forecasts of ENSO
variability provide crucial information for decision makers to reduce the negative socioeconomic impacts of
strong ENSO anomalies. The predictability of ENSO at interseasonal and longer time scales has therefore

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2752-5295/ac7f4c
https://crossmark.crossref.org/dialog/?doi=10.1088/2752-5295/ac7f4c&domain=pdf&date_stamp=2022-7-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6919-4358
https://orcid.org/0000-0002-1239-9034
mailto:forough.hassanibesheli@pik-potsdam.de


Environ. Res.: Climate 1 (2022) 011002

attracted substantial attention, using process-based general circulation models [7, 8] and statistical
approaches [9, 10]. In recent years, also machine learning models have been demonstrated to provide skillful
forecasts of ENSO variability [11–13]. Many linear statistical methods such as linear inverse models [14] and
model analogs [15] have been developed to forecast ENSO variability. Since ENSO dynamics is arguably
nonlinear [16], also nonlinear statistical models have been introduced [10, 17]. In addition to these
data-driven inverse modeling approaches, several statistical methods, based on complex network theory,
have been proposed to forecast El Niño events. It has been demonstrated that complex networks provide
powerful tools for investigating the spatial co-variability patterns of climatic variables [18]. Regarding the
prediction of different ENSO phases, this approach suggests that spatial co-variability in the tropical Pacific
plays a crucial role in ENSO predictability. Nevertheless, as for the classical statistical approaches above, the
forecast horizon of network-based approaches remains limited to 1 year [19–21].

Due to their distinctive ability to capture nonlinear relationships and their capability of handling large
amounts of data, ANNs have recently been employed for a broad range of applications in the geosciences,
including pattern recognition, classification, and signal prediction [22, 23]. Despite their need for very large
training datasets, deep-learning models [24] have been employed to successfully classify El Niño events [25]
and to predict ENSO variability [12, 13]. The most skillful ENSO prediction scheme to date, which
outperforms process-based dynamical models at yearly time scales, is based on a convolutional neural
network (CNN) architecture [12]. This model has high forecast skill (with correlation to the observed ENSO
index above 0.5) for 17 months and thus outperforms operational forecasts using process-based models by
5months. The need for large amounts of training data for such complex ANN models has been addressed by
training on process-based climate model simulations of historical climate variability before training further
on reanalysis data [12].

A specific kind of ANNs that has been developed for sequential data such as climate time series is
recurrent neural networks (RNNs). Due to their recurrent nature, general RNNs are computationally
expensive during training and are potentially prone to vanishing/exploding gradient problems. As a result,
echo state networks (ESNs) [26, 27] have been proposed as simplified RNN models with substantially faster
training processes in comparison to conventional RNNs. Due to the simplified training process of ESNs, they
typically require smaller amounts of training data to learn the dynamics of the underlying complex system
compared to other ANN architectures. ESNs have been applied successfully for forecasting deterministically
chaotic dynamical systems [26, 28]. Here, we develop an ESN-based method to predict non-deterministic
time series with comparably low signal-to-noise ratio, which frequently arises in geosciences.

The key assumption underlying our approach is that ENSO variability can be approximately decomposed
into slow and fast modes, where the slow mode is only mildly perturbed by high-frequency forcing such as,
e.g. westerly wind bursts or the Madden–Julian oscillation [29]. Several methodologies and techniques have
been developed to decompose time series into slow and fast variability components, such as, e.g. singular
spectrum analysis (SSA) [30, 31], spectral methods such as the Butterworth (BW) filter [32, 33], or moving
average (MA) filters [34]. Upon a careful evaluation of their performance, we focus on the BW filter in the
following. In our approach, we employ an ESN architecture to model the low-frequency component (LFC) of
ENSO. To address the high-frequency components and perform a forecast of the full variability, we combine
the ESN with the past noise forecasting (PNF) [17] method, which samples suitable high-frequency
components from past observations to force the low-frequency dynamics.

2. Data andmethod

2.1. Data
We employ monthly SST anomalies for the time span 1891–2019 [35], averaged over the Niño-3 (5N–5 S,
150W–90W) and Niño-3.4 (5N–5 S, 170W–120W) regions in the tropical Pacific (figure 1(a)), which are
commonly used to define the Niño-3 (figure 1(b)) and Niño-3.4 indices (figure 1(c)). To obtain the monthly
indices, the seasonal cycles were removed by subtracting the 1981–2010 monthly means from the
corresponding monthly values. The resulting time series, were then standardized.

2.2. Echo state networks (ESN)
A supervised machine learning method that is suited for temporal and sequential data processing is given by
ESNs [27, 37], a specialized type of RNNs with simpler implementation and training process. ESNs are
comprised of three parts: an input layer, a so-called reservoir that processes the input, and an output layer
that uses the reservoir output for prediction. The reservoir can be considered as a high-dimensional
dynamical system with states r(t) that evolve according to the following equation:

r(t+∆t) = F(Wrr(t)+Winx(t)) . (1)
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Figure 1.Monthly sea-surface temperature (SST) anomalies in the Pacific Ocean for the 1997 El Niño event, and SST-based
ENSO indices. (a) SST anomalies [36] in the Pacific Ocean for December 1997, known as the strongest El Niño on record. The
blue and black boxes delineate the Niño 3 (5N–5 S, 150W–90W) and the Niño 3.4 (5N–5 S, 170W–120W) regions from where
SST anomalies are used to define the Niño-3 and Niño-3.4 indices [35], respectively. (b) The Niño-3 index, given by a time series
of SST anomalies averaged over the Niño-3 region in the eastern tropical Pacific as shown in (a), from 1890 to 2019. (c) SST
anomalies averaged over the Niño-3.4 region from 1890 to 2019. Red and blue colors indicate SST anomalies above and below
zero, respectively.

HereWin ∈ RN×L is the input matrix mapping the input of dimension L to the reservoir space of
dimension N.Wr ∈ RN×N is a sparse, weighted adjacency matrix with elements drawn randomly from a
normal distribution with zero means and F refers to a nonlinear activation function for which we choose the
hyperbolic tangent. The reservoir does not require remembering the entire temporal information of the past;
hence, it skips unnecessary information after some time, resulting in extremely fast converging of the
training. In this architecture, an input x(t) of dimension L is non-linearly embedded in the reservoir through
a randomly chosen (N× L)matrixWin. Contrary to most conventional NN models, in the ESN setup, the
values ofWin andWr are not optimized but fixed at randomly chosen values. Hence, the only trainable
connections are given by the reservoir-to-output layer matrixWout, through which the reservoir states are
mapped back to the L-dimensional outputs y(t), i.e.

y(t+∆t) = (Woutr(t+∆t)) . (2)

The goal of the system is to approximate the desired outputs xd, i.e. to find optimal values forWout that
minimize the loss function L. This optimization is most conveniently and robustly done using Ridge
Regression (also known as Tikhonov Regularization) [38] with a regularization penalty parameter λ, which
enhances the numerical stability and prevents over-fitting. The task is, thus, to minimize the cost function

L=
T∑

t=0

||Woutr(t)− xd(t)||+λ||Wout||2 . (3)

Here ||..|| is the L2-norm of a vector and the regularized optimal output matrixWout is determined via:

Wout = (RTR+λI)−1RTxd (4)

where R ∈ RN×L and I denotes the N ×N identity matrix. The prediction phase shown in figure S5
(corresponding to t⩾ 0) initiates with the information of the reservoir state r(t∗) at the last time step of the
training phase to make the prediction y(t∗ + 1). Further predictions are then iteratively made forward in
time, by passing y(t∗ + 1) to the ESN as input to produce a forecast y(t∗ + 2), and so on. Specifically, we train
the model between [t∗ −T, t∗] with a fixed training data length T= 1092 and then iteratively predict the
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subsequent 25months. This forecasting procedure is first carried out for t∗ equal to January 1982, then
repeated for February 1982, and so on until the end of the time series is reached.

As with all ANN models, various hyper-parameters of the ESNs have to be determined. The choice of the
reservoir size (N), the sparsity (p), and the spectral radius (ρ) plays an important role for the efficiency of the
learning process. In order to find optimal values for the hyper-parameters, we tested for different sets of
parameters (N,p,ρ) (see B.1). Regarding the reservoir size N, it is generally expected that the larger the
reservoir, the better the approximation of the underlying dynamics of the system, although this typically
saturates. For our ESN we selected N = 600. Concerning sparsity, p determines the distribution of nonzero
elements in the reservoir matrixWr. In this study, we chose p= 0.2. Another hyper-parameter that can affect
the ESN performance is the spectral radius ρ, that controls the echo state properties of the
reservoir [37, 39, 40]. To set the spectral radius ρ of the reservoir matrixWr, its entries are multiplied with
the fraction of the desired spectral radius which is the largest absolute eigenvalue of the matrixWr [39]. We
choose ρ= 0.95. We employ these choices for the hyper-parameters consistently to initialise the model to
learn the dynamics and predict the target SST time series.

2.3. Past noise forecasting (PNF)
Generally the pivotal problem of forecasting stochastic time series, such as the ones arising from measuring
natural systems like climate, is to understand the dynamics of unresolved, high-frequency variables, since
they may have considerable influence on the prediction of the resolved, low-frequency variables. A possible
solution strategy is to estimate the time-dependent high-frequency forcing from suitable samples from its
past history. Chekroun et al [17] originally developed a particular prediction methodology called PNF to
circumvent this problem. The purpose of PNF is to select the best sample of past stochastic forcing to drive
the system into the future, using the knowledge of the past noise trajectory. To find such potential noise
realizations from past parts of the time series, the stochastic forcing is conditioned on the LFC of the
underlying system. Here, we use BW low-pass filter to decompose the time series into an LFC and the
corresponding high-frequency part. We then split the LFC into different segments of length∆ and search for
those segments that resemble the reference LFC segment just preceding time step t∗, at which we initiate the
forecast:

RMSE(LFC(tj, tj +∆)− LFC(t∗ −∆, t∗))⩽ α (5)

CORR(LFC(tj, tj +∆)− LFC(t∗ −∆, t∗))⩾ γ. (6)

With these selection criteria, one can then identify high-frequency components starting at different
tj < t∗ −∆, which we then use to force the ESN prediction for times t> t∗.

2.4. ESN implementation and combination with PNF
We train the ESN based on 80% of the original dataset (the training interval thus has a length of
1092months) prior to t∗, the time that we aim to commence the prediction task (see figure S5). Using a BW
low-pass filter, we decompose the training data into low- and high-frequency components, where the latter is
treated as noise forcing. We then pass both components as input to the ESN. At each time, we perturb the
LFC at time t by noise at time t+ 1. During the training procedure, the weights of the output matrixWout are
optimized by minimizing the loss function using ridge regression [38]. Using the optimizedWout, the trained
model starts recursively forecasting 25 consecutive months ahead of t∗.

In the prediction phase, since we do not have any information about the future behavior of the noise, we
employ the past-noise forecasting (PNF) method to estimate past noise segments suitable to force the system
into the future. As described in section 2.3, first we find those LFCs (tj, tj +∆) that resemble the LFC
(t∗ −∆, t∗) with∆= 6. We call the two LFC segments analogous if α⩽ 0.5 and γ ⩾ 0.95. In the next step,
we select the corresponding high-frequency variability components of size T= 25. The prediction for the
first time step is then, together with corresponding candidate noise analogues, passed to the ESN as inputs to
predict the second time step, and so on. We repeat this training procedure for every month tr starting from
January 1891 with r ∈ {0, ...,432} and predict 25months ahead for each training set. After completing the
prediction task for all training sets, we obtain the predicted time series at different lead times ranging from 1
to 25months running from 1982 to 2019. For every single iteration, the predicted values are not seen by the
model during the training phase.

Note that the skill of our ESN-based prediction scheme is slightly affected by varying the cutoff value C of
the filter used to separate the low- from the high-frequency components of the ENSO index. Our results are
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Figure 2. Summary of the ESN forecast skill for the Niño-3 and Niño-3.4 indices. Panels (a) and (b) show the prediction skill of
the model in terms of the root mean square error (RMSE) and the Pearson correlation coefficient (PCC) between predicted and
observed values, respectively. The model is trained with a fixed training data length T= 1092 and the prediction task starts from
1982. Results for Niño-3 are shown in blue and results for Niño-3.4 in red color. In panel (b) the magenta curve shows the ENSO
correlation skill of a previously introduced CNN [12] together with a comparison to other process-based based ENSO
predictions. The ability of our ESN–PNF model to predict El Niño events (i.e. times with Niño-3 index above 1 ◦C) are assessed
by two binary classifiers, the Heidke skill score (HSS) and the probability of detection (POD), in (c) and (d), respectively. Solid
lines indicate the average over 100 realizations of the forecast, and shading around the lines represent±1 σ.

presented here for the optimal choice in terms of the overall forecast skill based on the above metrics
(C= 0.03), and compared to alternative choices in (figure S13).

3. Results

Our ESN implementation consists of two main steps; the training phase during which a loss function is
minimized to find optimal output weights for the ESN model, and the prediction phase during which the
optimized ESN is used to predict unseen data (see figure S5).

We focus on forecasting the Niño-3 and Niño-3.4 (figure 2) indices during the time span from 1982 to
2019. To evaluate the skill of our ESN–PNF approach, we consider four different metrics, namely (I) the root
mean square error (RMSE) and (II) the Pearson correlation coefficient (PCC) to evaluate the overall
performance in predicting the ENSO index, as well as (III) the Heidke-skill score (HSS) and (IV) the
probability of detection (POD) to evaluate the binary prediction of El Niño events (see A). For Niño-3 the
RMSE remains almost constant at around 0.5◦C for lead times between one and 14 months, and then
increases linearly up to around 1.4◦C at 24 months lead time (figure 2(a)). The PCC between the observed
and simulated time series for the prediction phase remains constant around 0.8 also up to lead times of
around 14 months and drops below 0.5 after 18 months (figure 2(b)). Note that, following [12] we consider
forecasts as skillful if the correlation coefficients is above 0.5. To assess the skill of our model in predicting El
Niño events (i.e. time steps with ENSO index larger than one), we applied the HSS (figure 2(c)) and the POD
(figure 2(d)), cf appendix for details on these scores. Both event-based metrics also indicate high skill up to
forecast lead times of 18 months. For the prediction phase starting at 1992, we obtain even a much higher
skill during the first 14months (figures S6 and S7). Our results remain similar when 5month running
averages of the Nino-3 and Nino-3.4 indices are considered, and when El Niño events are defined as time
spans for which these smoothed indices are above 0.5◦C for six consecutive months (see figure S8).

Note that the prediction score of our ESN–PNF model varies moderately over time, depending on the
absolute values of the employed ENSO index. For example, we observe higher RMSEs during the 1997–98
and 2015–2016 El Niño events (figure S9). Hence, for El Niño and La Niña events with particularly high or
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Figure 3. Correlation skill of the ESN–PNF model as function of lead time and target month for the Niño-3 index. The Pearson
correlation coefficient (PCC) between the predicted and observed Niño-3 index targeted to each calendar month at different lead
times, averaged over 100 realizations. Here we train the model on a fixed training data length T= 1092 and start forecasting from
1982. See (figure S10) for the Niño-3.4 index.

low values of the ENSO index, the RMSE is comparably higher, but the binary prediction of these events is
still successful.

In order to further assess the reliability of our ENSO forecast, we investigate the sensitivity of the model’s
forecast skill to the target months at different lags (figures 3 and S10). In agreement with previous studies
[12], our ESN–PNF model exhibits the longest forecast horizon for target months in boreal winter (the
correlation between the observed and simulated ENSO index is above 0.5 for 21months) and the shortest
forecast horizon (18months) for target months in late boreal spring. This spring predictability barrier [41]
may be a result of the comparably weak Walker circulation and susceptibility of the coupled
ocean–atmosphere system to the external forcing at that time of the year. Nevertheless, a recent CNN model
has a valid forecast horizon (i.e. lead times at which the correlation remains above 0.5) that is substantially
longer than for process-based dynamical models (11months vs. 4months) for the May–June–July season.
For the May–June–July season, the valid forecast horizon of our ESN–PNF model is even substantially longer
compared to the CNN model [12] (18 months vs 11 months). This indicates that our method is less affected
by the spring predictability barrier compared to the CNN model and substantially less affected than
process-based models, possibly because we estimate the future fast variables that drive the system using the
PNF method.

As an example, the predicted SST anomaly between 1983 and 2019, at a lead time of 17 months, shows
high visual resemblance to the observational Niño-3 index (figure 4(a)), although this is the longest lead time
for which we consider our forecast to exhibit skill. The predicted values are computed as averages over 100
realizations at 17month lead. The performance of our model is also examined by comparing the statistical
properties such as the autocorrelation function (ACF, figure 4(b)) and probability density functions (PDF,
figure 4(c)) of the predicted and observational time series. The ACF shows very close resemblance between
the observed and simulated indices in terms of their correlation structure, and according to the
Kolmogorov–Smirnov test, the hypothesis that the underlying distributions of the observed and simulated
indices are identical cannot be rejected (p= 0.35). Corresponding results for the Niño-3.4 are very similar
(figure S11).

4. Summary and discussion

There have been considerable advances in machine learning-based approaches to predict ENSO variability.
One of the critical obstacles that most deep learning models encounter in predicting climate phenomena
such as ENSO is the unavailability of sufficiently long observational time series, hindering training of these
models purely on observations. In contrast to deep ANNs, the comparably simple ESNs can learn the
dynamics of the underlying system from comparably small amounts of training data. Here, we expanded the
ESN approach to predict time series with high noise levels, as they may arise from real-world measurements
and experiments. We specifically applied our ESN model to predict the SST-based Niño-3 and Niño-3.4
indices. We decomposed the considered ENSO indices into dominant low- and high-frequency variability by
using low-pass filter techniques and trained the ESN model on the slow mode of the system. To model the
effect of the high-frequency forcing on the low-frequency variability, we estimated the potential future
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Figure 4. Comparison between the statistical properties of the predicted and observed Niño-3 indices. (a) Time series of SST
anomalies of the Niño-3 index (red) and the predicted time series (blue) at 17 months lead time. The model is trained with a fixed
training data length T= 1092 and the prediction task starts from 1982. (b) and (c) compare the statistics (ACF and PDF) of the
original and predicted time series; for the predictions, averages over 100 realizations at 17 months lead time are taken. See
(figure S11) for corresponding results for the Niño-3.4 index.

high-frequency forcing of the system by relying on PNF method, which substantially enhanced the skill of
our ESN–PNF model in predicting El Niño events. This improved predictability shows that interactions
across multiple time scales indeed play a crucial role in generating the dynamics of ENSO. At the same time,
the long valid time of our statistical prediction, with horizons up to 21months, reveals that ENSO is in
principle predictable for much longer lead times than previously thought, despite the fact that we have
trained our ESN–PNF model only on single scalar ENSO indices.

Several studies demonstrated that using preprocessing techniques such as low-pass filtering can enhance
forecasting skill of ANNs by providing high-quality inputs [42–44] In practice, however, filtering methods
such as SSA, BW filters, or MA-based methods incorporate information from future values to determine the
LFC. As for all approaches involving filtering prior to the predictive modelling, our approach can therefore
not directly turned into a real-time forecasting of ENSO variability. Of course, the filtering can in principle
be applied solely to the training part, but in that case well-known edge effects, i.e. errors in estimating the
LFC arising at the beginning and end of the time series, would hinder a skillful prediction. We outline
improved methods to reduce such errors when estimating low-frequency time series components as
important subject for future research, which would also improve the skill of the method proposed here in an
operational real-time forecasting setting.

While traditional modelling approaches are often challenged by cross-scale interactions, our approach in
fact exploits the dependencies between low- and high-frequency variability for a more accurate modelling
and statistical prediction. Our methods should therefore also prove valuable in other fields where cross-scale
interactions are relevant, such as Neuroscience or Finance. Our approach indeed outperforms existing
statistical, process-based, and deep-learning based approaches at lead times beyond 1 year, with the caveat
that for the reasons explained above, we have not made our predictions operational. Nevertheless, our results
reveal remarkable long-term predictability of ENSO far beyond the spring barrier [45]. For future studies, it
might be of interest to combine process-based models with machine learning models such as the one
presented here, to combine the strengths of both approaches.
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Appendix A. Scores for forecast validation

A.1. RMSE and correlation coefficient
To quantify the skill of our time series forecast, we use two well-established metrics, namely the
root-mean-squared error (RMSE) and the Pearson’s correlation coefficient (PCC). RMSE measures the
average error magnitude with quadratic weight, which gives a quantitative evaluation of the closeness of the
predicted variables xp compared to the reference variables xr (see figures 2(a), S9 and S13(a)).

RMSE=

√∑n
i=1(x

r
i − xpi )

2

n
. (S1)

PCC measures the linear relationship between the original data and corresponding forecasts. PCC can
take values between−1 and 1, where the positive and negative signs correspond to the direction of the linear
relationship.

=

∑n
i=1(x

r
i − xri ).(x

p
i − xpi )

σxr .σxp
(S2)

where σxr and σxp are the standard deviation of the reference and predicted variables, respectively.

A.2. Heidke skill score (HSS)
To verify the skill of our model for the binary forecast of El Niño events (i.e. months with ENSO index larger
than 1 ◦C), we employ the HSS [46], which is widely applied in binary classification problems. This metric is
a measure of accuracy of a forecast with respect to a randomly generated forecast, adjusted to predictions
that are correct by chance:

HSS=
TP+TN−CRF

N−CRF
(S3)

where TP and TN stand for true positives and true negatives, respectively, N is the total number of possible
events, and CRF indicates the number of correct random forecasts, which can be calculated as follows:

CRF=
(TP+ FN)(TP+ FP)+ (TN+ FN)(TN+ FP)

N
. (S4)

Negative HSS values imply that the forecast skill of the model is worse than a random forecast, HSS= 0
indicates that the forecast is just as good as the random forecast, and HSS= 1 would indicate a perfect binary
forecast. We also consider the probability of detection (POD) as a second metric to evaluate our prediction of
El Niño events, which as defined as

POD=
TP

(TP+ FN)
. (S5)
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Figure S1. Echo state network performance with variations of reservoir size and spectral radius at fixed sparsity= 0.2.

Figure S2. Comparison between the statistical properties of the predicted and observed Niño-3 indices. (a) Time series of SST
anomalies of the Niño 3 index (red) and the predicted time series for (ρ= 0.95, sparsity= 0.2) (magenta), and (ρ= 0.7,
sparsity= 0.2) (green), at 15months lead time. (b) and (c) compare the statistics (ACF and PDF) of the original and predicted
time series.

Appendix B. Supplementary figures

B.1. Hyper-parameters of the ESN–PNF
The key hyper-parameter that determines the echo state property of the ESN model is spectral radius (ρ).
Figure S1 displays the performance of the ESN–PNF in terms of RMSE for different choices of reservoir sizeN
and ρ values. Even though we observed better performance at ρ= 0.7 andN = 600, reducing the ρ value from
0.95 to 0.7 decreases the capability of the ESN model to produce the statistical properties of the underlying
dynamics. To illustrate that, we compared the ACF and PDF of the predicted time series and original Niño-3
index at a 15month lead time for ρ= 0.95 (magenta) and ρ= 0.7 (green) (see figure S2). According to our
results, the reservoir scaled by ρ= 0.95 exhibits better performance in predicting the target signal.
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Figure S3. Echo state network performance with variations of reservoirs size with different sparsity.

Figure S4. Comparison between the predicted and observed Niño-3 indices. Panels (a) and (b) show the prediction skill of the
model in terms of the RMSE and the PCC between predicted and observed values for sparsity= 0.02 (blue), and sparsity= 0.2
(magenta) with ρ= 0.95. Panels (c) and (d) compare the statistics (ACF and PDF) of the original and predicted time series,
respectively.

Further, we examined the role of reservoir size and connectivity on the model’s performance (see
figure S3) at the fixed ρ= 0.95. Our results demonstrate that increasing the reservoir size enhances the
prediction performance of the model. We also observed that the model is not much sensitive to the sparsity
of the reservoir. To have a better insight, we also compared the model’s outputs with sparsity setting equal
p= 0.2 and p= 0.02 in terms of different metrics (RMSE, PCC, ACF and PDF). As it can be observed from
figures S4(a) and S4(b), the sparsity does not affect the performance of the ESN–PNF significantly.

10
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Figure S5. Schematic diagram of echo-state network setup.

Figure S6. Summary of the ESN forecast skill for the Niño-3 index. Panels (a) and (b) respectively show the prediction skill of the
model in terms of RMSE and PCC between predicted and observed values. The ability of the model to detect El Niño events
(i.e. times with Niño-3 index above 1 ◦C) are assessed by two binary classifiers, the Heidke skill score (HSS) and the probability of
detection (POD), in (c) and (d), respectively. Solid lines indicate the average over 100 realizations of the forecast, and shading
around lines represent±1 σ. The results correspond to the reservoir setup trained with a fixed training data length T= 1212
and the prediction starts from 1992.
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Figure S7. Dependency of the forecast skill on the training length. Panel (a) illustrates the RMSE and PCC values between the
predicted and absolute values of Niño-3 index at a lead of 12months with respect to different starting points. Panel (b) shows HSS
and POD for the corresponding lead time. Our ESN model exhibits overall better performance the longer the training data.
Shading around lines represents±1 σ.

Figure S8. Detecting El Niño events for Niño-3 and Niño-3.4 indices with 5month running mean average. The ability of the
model to detect El Niño events (i.e., SST index above 0.5 ◦C) are assessed by two binary classifiers, the HSS and the POD. Panels
(a) and (c) show HSS of the 5month smoothed version of Niño-3 and Niño-3.4 indices respectively. The corresponding POD
scores can be found in panels (b) and (d), where colored shadings around lines correspond to±1 σ.
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Figure S9. Dependence of the forecast skill on the target year for the Niño-3 index. (a) A 12month running mean of the Niño-3
index from 1983 to 2018, here the training length is equal to 1092. (b) Forecast skill of our ESN model from 1983 to 2018 in terms
of the RMSE. Each yearly value is the average RMSE over all months of the corresponding year, calculated on 12month lead. We
note that in some years with exceptionally strong El Niño events, the prediction accuracy of the model is affected slightly.

Figure S10. Same as (figure 3) but for Niño 3.4 index. The Pearson correlation coefficient (PCC) between the predicted and
observed Niño-3.4 index targeted to each calendar month from January to December, at different lead times. Hatches indicate
combinations target months and lead times for which the correlation of observed and predicted ENSO index is above 0.5. The
prediction period is between 1984 and 2017.
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Figure S11. Same as (figure 4) of the main text, but for the Niño 3.4 index. (a) Time series of SST anomalies of the Niño 3 index
(red) and the predicted time series (blue) at 17months lead time during 1984–2017. (b) and (c) compare the statistics (ACF and
PDF) of the original time series and predicted time series; for for the predictions averages over 100 realizations at 17months lead
time are taken.

Figure S12. Enhancement of the ESN model skill using past-noise forecasting (PNF) method. The magenta and red lines refer to
the performance of the model trained on the original data (Niño-3 index) and smoothed data (using a Butterworth low-pass
filter) respectively, and colored shadings correspond to±1 σ. On the other hand, the blue line corresponds to a setup in which we
tried to estimate the potential future high-frequency forcing of the system using PNF method. We used a fixed training data
length T= 1092 to train the model, and then start prediction task from 1982.
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Figure S13. Summary of the ESN forecast skill for Niño-3 index for different cutoff choices to decompose the index into slow and
fast components. Panels (a) and (b) show the prediction skill of the model in terms of RMSE and PCC between predicted and
observed values. The ability of the model to detect El Niño events (i.e. months with Niño-3 index above 1 ◦C) is assessed by two
binary classifiers, the HSS and the POD, panels (c) and (d), respectively.The model is trained with a fixed training data length
T= 1092 and the prediction task starts from 1982. Here the solid lines indicate the average over 100 different realizations and
colored shadings around lines correspond to±1 σ. Different colors, as indicated in the legend of panel (a), correspond to results
for different cutoff thresholds to decompose the ENSO index. In order to determine the optimal cutoff value, we additionally
investigated the dependency of the binary forecast skill of predicting El Niño events, using HSS and PODmetrics. The ESN model
exhibits overall best performance at a cutoff value of C= 0.03 (months−1). Even though a cutoff at C= 0.02 (months−1) displays
a higher correlation skill for very long lead times, the forecast of El Niño events, and also the reproduction of statistical properties
such as the ACF and PDF is worse in this case.

Figure S14. Difference between the trajectory of low-pass-filter of the training signal generated in two different settings. Here red
color indicates a signal obtained from the low-pass filter applied on the entire original time series. Blue color manifests the same
training set (with the same start and endpoints) created from the corresponding non-smoothed training subset with a length
1092months.
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Figure S15. Absolute average difference. Values illustrate differences between the last 12 points of the decomposed training signals
generated in two settings, using (I) low pass filter of the entire original time series and (II) low pass filter of the selected period.
Numbers on the x-axis are related to different starting points of the training set with a length of 1092 months.

Figure S16. Summary of the ESN forecast skill for the Niño-3 index. Here we split the whole time series into two subsets (i.e. the
training and test set) and filter only the training set as the input of the ESN model. Panels (a) and (b) show the prediction skill of
the model in terms of the RMSE and the PCC between predicted and observed values, respectively. The model is trained with a
fixed training data length T= 1092, and the prediction task starts from 1982. Different colors indicate different low-pass filter
cutoffs.
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Figure S17. Correlation skill of the ESN trained on a subset preprocessed by low-pass filter, as a function of lead time and target
month for the Niño-3 index. The PCC between the predicted and observed data targeted to each calendar month at different lead
times. Here we train the model on a fixed training data length T= 1092 and start forecasting from 1982.

Figure S18. Comparison between the statistical properties of the predicted and observed Niño-3 indices. (a) Time series of SST
anomalies of the Niño 3 index (red) and the predicted time series (blue) at 6months lead time. The model is trained with a fixed
training data length T= 1092 and the prediction task starts from 1982. (b) and (c) compare the statistics (ACF and PDF) of the
original and predicted time series; for the predictions.
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