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ABSTRACT

A class of nucleation and growth models of a stable phase is investigated for various different growth velocities. It is shown that for growth
velocities v & s(f) /t and v & x/t(x), where s(f) and t are the mean domain size of the metastable phase (M-phase) and the mean nucleation
time, respectively, the M-phase decays following a power law. Furthermore, snapshots at different time ¢ that are taken to collect data for
the distribution function c(x, f) of the domain size x of the M-phase are found to obey dynamic scaling. Using the idea of data-collapse, we
show that each snapshot is a self-similar fractal. However, for v = const., such as in the classical Kolmogorov-Johnson-Mehl-Avrami model,
and for v & 1/t, the decays of the M-phase are exponential and they are not accompanied by dynamic scaling. We find a perfect agreement

between numerical simulation and analytical results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0097417

A class of nucleation and growth process is studied analytically
by solving an integro-partial differential equation and verified
numerically by Monte Carlo simulation. The growth velocity is
defined as the ratio of the distance traveled s by the new phase, and
the magnitude of time ¢ needed to travel that distance. We first
choose constant growth velocity by assuming both s and ¢ equal to
constant and reproduce the results of the much studied classical
Kolmogorov-Johnson-Mehl-Avrami (KJMA) model. Choosing
one of them a constant still makes the exponential decay of the
meta-stable phase, such as the KJMA model. However, the growth
velocity is so chosen that neither s nor ¢ is constant, and we find
that the meta-stable phase decays following a power law. Such a
power law is also accompanied by the emergence of fractal. The
self-similar property of fractal is verified by showing that the
system exhibits dynamic scaling revealing a self-similar symmetry
along the continuous time axis. According to Noether’s theorem,
there must exist a conserved quantity, and we do find that the dsth
moment, where dy is the fractal dimension, is always conserved.

I. INTRODUCTION

The formation of any phase is usually a process that starts first
by nucleation of a new phase on an old phase, which is called a
metastable phase, followed by the growth of the new phase, which
eventually becomes a stable phase (S-phase). This mechanism of
nucleation and growth represents one of the most fundamental top-
ics of interest in both science and technology.' It plays a key role in
metallurgical applications as well as in many seemingly unrelated
fields of research. Phase separation and coarsening,” electrodepo-
sition of metals at electrodes via nucleation and growth,” melting
of stable glasses,” dendritic growth,’ kinetics of crystal growth,® the
domain switching phenomena in ferroelectrics,” the spread of eco-
logical invaders,® and growth of breath figures’ are just a few exam-
ples of such systems. Besides, Giacomelli ef al. studied an interesting
case in which nucleation occurs in time, not in space.'” The nature
of the phase transition, which is governed by nucleation and growth
of domains of the S-phase, is well known as a first order phase tran-
sition. One of the characteristic features is that during the transition,
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stable and metastable regions coexist at the same time. Much of
our theoretical understanding of such phenomena is provided by
the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model, which has
been formulated independently by Kolmogorov, Johnson, Mehl, and
Avrami in and around the 1940s."' This model still remains one of
the most studied theories of nucleation and growth processes as it is
often the only means of interpreting the experimental data that help
gain insights into the process.

The KJMA theory is valid under the assumptions that (a) nucle-
ation events are Poissonian in nature, (b) seeds grow with constant
velocity while keeping a fixed geometrical shape and orientation,
and (c) the system is homogeneous in space and time. In the context
of nucleation and growth phenomena, one of the central quantities
of interest is the fraction of the M-phase ®(f) that still survives at
time t. According to the KJMA theory, this quantity in d dimensions
follows an exponential decay known as the Kolmogorov-Avrami
law,

Qq g
CD(t)—exp[ d+1Fvst“], (1)
where the Avrami exponent a = d + 1,'' T" describes the constant
nucleation rate per unit volume, and ; is the constant volume
factor of the d dimensional hypersphere; e.g., Q4 = 1,7,47/3 for
d = 1,2, 3, respectively.

The derivation of correlation functions and their connec-
tion to the scattering cross section,'>” the theory of grain-size
populations,'* and the generalization of the KJMA theory to multiple
stable phases,'” etc., have played a significant role in understanding
the phenomena. Besides, these studies have provided a better means
of interpreting the experimental data. On the other hand, there have
been reports that the experimental data in some cases do not fit a
straight line in the plot of log(— log[®(#)]) against log[t] revealing
that it violates the Kolmogorov-Avrami law.''” Recently, it has also
been observed that nucleation and growth processes result in the
emergence of fractal.'*~** Obviously, constant growth velocity does
not result in fractal. However, the nature of a growth mechanism
responsible for the emergence of fractal is not yet fully understood.
This observation clearly raises some concerns, and hence, it requires
further theoretical interest in order to find variants of the model,
which would be suitable under different physical situations. This is
exactly the purpose of the present work.

In this article, we investigate a class of Kolmogorov-Johnson-
Mehl-Avrami nucleation and growth model in one dimension
for four different choices of the growth velocities. In particular,
we choose (A) v = const., (B) v=o0/t, (C) v =ks(t)/t, and (D)
v = mx/7(x), where o,k and m are constants, s(t) is the mean
domain size, and 7(x) is the mean nucleation time.”” The idea to
move away from the constant growth velocity is borne by the obser-
vation that a growth velocity may change in the course of time
and space. Such choices may provide a more realistic description
and, therefore, will become more suitable under various natural
conditions than constant growth velocity. Usually, as the time pro-
ceeds, size and shape of both phases change continuously, altering
the condition that ultimately determines the growth velocity. We
solve the corresponding rate equation for each choice of the growth
velocity and obtain the exact solution for the domain size distri-
bution function c(x, ) of the M-phase. Alongside, we also give an
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exact algorithm for each case to solve them by numerical simula-
tion. Using the idea of data collapse, we show that the analytical
results are in perfect agreement with our numerical simulations. It
has been found that the M-phase decays exponentially with time for
models (A) and (B), whereas in the case of models (C) and (D), it
decays following a power law. Moreover, the domain size distribu-
tion function c(x, t) of models (C) and (D) is found to obey dynamic
scaling c(x, t) ~ t%*¢) (x/#°) revealing that it evolves with time in a
self-similar fashion and eventually emerges as fractal. We find the
kinetic exponent z =1 and the mass exponent 0 = 1+ d. Their
numerical values are fixed by the dimensional consistency and the
conservation principle.

The rest of this article is organized as follows. Section II for-
mulates the rate equation for nucleation and growth model in one
dimension. We also attempt to solve the rate equation for gener-
alized growth velocity. In Secs. III-VI, we solve the rate equation
for four different growth velocities and discuss the corresponding
scaling theory. For each choice of the growth velocity, the exact
algorithm is given, and an extensive Monte Carlo simulation is per-
formed to corroborate all the analytical results, namely, decay of the
M-phase, a fractal dimension, a conserved moment, and dynamic
scaling. In Sec. VII, we make concluding remarks and leave some
open questions.

Il. FORMULATION OF THE RATE EQUATION

The right choice of the growth velocity should depend on the
detailed nature of the system under investigation. In the present
work, we make a few simple choices so that we can handle the
problem analytically. Furthermore, we took extra care on the dimen-
sional consistency with the terms describing the nucleation mecha-
nism. Our aim is to learn how much effect the growth velocity alone
has on the dynamics of the system. To obtain a mathematical for-
malism of the phenomena, we find it useful to treat nucleation and
growth mechanisms separately and derive their respective govern-
ing equations. To do it, we define the distribution function c(x, t) as
the concentration of domain size x of the M-phase at time . First, we
derive the rate equation for the nucleation mechanism. The random
nucleation of seeds of the S-phase can be thought of as a random
sequential adsorption (RSA) of monodisperse, size-less particles on
a substrate of the M-phase. The distribution function c(x,t) then
obeys the following well-known rate equation for RSA:">*

dc(x, t)
at

o0

= —xc(xt) + 2/ c(y, t)dy. 2)
nucleation x
The two terms on the right hand side of Eq. (2) represent the
decrease and increase of M-phase intervals of size x due to the nucle-
ation of point-like seeds of the S-phase at locations x and y > x,
respectively. The factor 2 in the integral term takes into account that
every nucleation event creates two new domains of the M-phase,
either of which can be of size x.

To derive an expression for the growth mechanism, we con-
sider that once a seed of the S-phase has nucleated at some point on
the M-phase, it keeps growing with some velocity v(x, t). Here, we
assume a simplified generalized case where the growth velocity may
depend on the size x of the M-phase and the time ¢. In general, the
growth velocity may also depend on the size of the S-phase segment,
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but that goes beyond the scope of the present work. To derive the
growth equations, note that the growth of the S-phase occurs at the
expense of the decay of the M-phase. That is, the size of the M-phase
on either side of the growing seeds is shrinking with the same veloc-
ity v with which seeds of the S-phase are growing. The growth term
can be deduced by taking into account all the possible ways in which
the distribution function c(x, ) remains in the domain size range
[x, x + dx] after a span of infinitesimal time dt,

c(x, t+dt) = [1 — 2v(x, t)dt/dx]c(x, t)
+ [2v(x + dx, t)dt/dx]c(x + dx, t). (3)

Here, v(x, t)dt/dx is the fraction of concentration c(x, t) that is lost
in time dt due to the growth of the S-phase with velocity v(x, t), and
the factor 2 takes into account of the fact that M-phase segments are
reduced from both sides. Thus,

dc(x, t)
ot

= 2%[v(x, He(x, ). 4

growth

Putting the nucleation and growth terms together, the general rate
equation for the random nucleation followed by space-time depen-
dent continuous growth, therefore, is

8D < et +2 f Ty + 25 rn D 0]. 9

We now attempt to solve Eq. (5) subject to the initial conditions

c(x,0) = %B(x — L), Lli_r)noo /00 c(x,0)dx = 0. (6)
0

This ensures that there is no seed of the S-phase at t = 0. Once we
know c¢(x, t), we can immediately find the fraction of the M-phase
that remained un-transformed,

(1) = foo xc(x, t)dx, (7)
0

and the number density of the domain size of the M-phase,

N(t) = /00 c(x, t)dx. (8)
0

The fraction of the M-phase covered by the S-phase is related to ® (¢)
via 0(t) = 1 — ®(¢) that evolves with time as

o [
= _/0 v(x, t)c(x, Hdx. 9)

The quantities ®(¢) and N(f) can also be used to obtain the time
dependence of the average interval size s(f) = ®(t)/N(¥).

In the context of the present work, it is the choice of the growth
velocity v(x, t) that will define different models, and accordingly, we
study the following four different choices: (A) v(x, t) = v, the tra-
ditional constant growth velocity (classical KTMA model); (B) v(x, )
= o/t, where o is a constant and bears the dimension of length; (C)
v(x,t) = s(t)/t, where s(f) is the mean interval size of the M-phase
at time #; and finally, (D) v(x, t) = mx/7 (x), where 7 (x) is the mean
nucleation time and m is a dimensionless positive constant.”

scitation.org/journal/cha

For growth velocities v = v(t), which are independent of the
variable x (as in our models (A)-(C)), the general solution of Eq. (5)
can be obtained by substituting the ansatz

c(x, ) = A(t) exp[—xt]. (10)

Here, the time dependent pre-factor A(f) obeys the following ordi-
nary differential equation:

dln A(t)
dt

We have to solve Eq. (11) subject to the initial condition A(0) = 0,
followed by Eq. (6). To proceed further and for clarity, we will treat
for every choice of growth velocity separately and independently.

First, we note that the time dependence of s(¢) is independent
of A(f),

=2/t —2v(Ht. (11)

_em _ A® Iy xexpl—xt] dx

s0 = Nt A® [;7 expl—xtldx

(12)

Solving the integrals, we find that in this case of v = v(f), the mean
interval size of the M-phase shrinks as

s(f) = 1/t (13)

In choosing the growth velocity, we shall make use of this relation.
Interestingly, the same expression also holds for a model without the
growth term, which is known as random scission model.”

11l. MODEL A

We first consider the classical KTMA model defined by the con-
stant velocity of domain of the S-phase v(f) = v,. The goal is to
reproduce the known results so that they help build confidence on
the rate equation approach and help appreciate its simplicity. Solv-
ing the problem rest on finding the distribution function c(x, t),
which means coding all the essential information regarding this
model. After substitution of v(t) = v, into Eq. (11) and a straightfor-
ward integration, we immediately obtain A(f) = * exp[—vp#*], and
the solution of Eq. (5) for the classical KTIMA model is given by

c(x, t) = £ exp[—xt — wot’]. (14)
Using this in the definition of ®(f), we immediately find that
®(t) = exp[—wot*]. (15)

It implies that the plots of log[®(#)] vs £ should give a straight
line with slope equal to —vy. This is indeed the case as shown in
Fig. 1(a). Note that v, = 2vy, where v, is the velocity of front of
the S-phase that moves forward transforming the M-phase into the
S-phase within it. Thus, the velocity with which each seed grows is
vs = 2¥, and substituting it into the expression for ®(t), we can
immediately recover the celebrated Kolmogorov-Avrami law in one
dimension as given in Eq. (1) except the factor I". Note that Eq. (2)
describes the random sequential nucleation of one seed at each time
step, and hence, I' = 1 in the context of the present rate equation
approach. The rate equation approach thus clearly demonstrates its
simplicity and brevity. This is, however, true only for one dimen-
sion. In the context of nucleation and growth phenomena, the 1D
model can, in fact, fully capture the qualitative behavior of the key
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FIG. 1. (a) We plot log(¢ (t)) vs t* for different constant growth velocities to see how the M-phase ¢ (t) decays with time. (b) Plots of N(t) vs t are shown for different

constant growth velocities.

quantities of interest, namely, the decay of the M-phase. The Kol-
mogorov—Avrami law itself is a testament to its justification, which
clearly shows that the exponential decay of the M-phase is common
to all dimensions.

Integration of Eq. (14) gives the number density of domain

of the M-phase N(f) = te="0" . This expression reveals that during
the very early stages, N(t) rises linearly due to the nucleation of
the S-phase, whereas at the late stages, N(f) decreases exponentially,
which reflects a fast coalescence of the neighboring stable phases as
seen in Fig. 1(b).” By taking the ratio ®(t)/N(t), we confirm that
the mean domain size s(f) of the M-phase decays as s(¥) = t~'. To
verify these results, we have done Monte Carlo simulation based on
the following elaborate algorithm. One time unit of the process in
one dimension can be defined as follows:

(i) At the jth step, say, there are n number of domains of M-phase
of size x1, X3, ..., Xp.

(ii) Generate a random number R with a uniform distribution

within the unit interval [0, 1].

(a) Check which of the domains of the M-phase contain R. Say,
it is the kth domain whose size is x. Then, sow a point-like
seed exactly at xR and go to step (iii).

(b) IfR falls within the S-phase, then increase the iteration step
by one unit and go back to step (ii).

Increase the size of the seed of the S-phase on either side by

the constant value v, independently. If the domain size of the

M-phase in any side is less than v,, then the growth of the

S-phase ceases immediately at the point of contact, while it is

continuing elsewhere.

(iv) Increase all the existing domains of the S-phase in the same way
as described in step (iii).

(v) Increase the iteration step and the number of domains of the
M-phase by one unit.

(iii)

(vi) Go to step (ii) and continue the process ad infinitum.

In Fig. 1, we show the plots of our various results and find that both
analytical solutions of the KJMA-process are in perfect agreement to
direct numerical simulations.

IV. MODEL B

We now solve Eq. (11) for the growth velocity v(f) = o/t to
give

c(x, ) = £ exp[—(x + 20)t]. (16)

In this case too, we find that the fraction of the M-phase decays
exponentially,

d(t) = exp[—20t], 17)

but slower than that for constant velocity. Here, the Avrami expo-
nent corresponds to the one that is typically known for heteroge-
neous nucleation and growth processes despite the fact that in the
present case, it strictly describes the homogeneous nucleation.” In
Fig. 2(a), we show plots of log[®(f)] vs ¢ and find a set of straight
lines with slope always equal to —20, which are in perfect agree-
ment with Eq. (17). This proves that the Avrami exponent not only
depends on the nature of the nucleation process but also on the
exact choice of the growth velocity. In a similar way, we find that
the number density of the M-phase varies as

N(t) = te™". (18)

This reveals that at the early stage, N(¢) rises linearly like the model
(A). However, at the late stage, coalescence events take place less
frequently than in the model (A) as shown in Fig. 2(b). On the
other hand, N(#)/t varies following the same relation with time as
d (1) given by Eq. (17). Also, for model (B), analytical and numerical
results show perfect agreement.
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FIG. 2. (a) Plots of log[¢ (t)] vs t of model B are drawn for different o value that determine the extent of growth velocities v since v = o /t. We find straight lines with slope
always equal to —20, which is in complete agreement with our analytical solution given by Eq. (17). (b) The number of domains N(t) of M-phase vs t are shown for model

B as a function of time for different constant growth velocities.

To verify these results, we have done Monte Carlo simulation
based on the algorithm described in model A except step (iii), which
is replaced as follows.

e Increase the size of the seed of the S-phase on either side by
o /j independently provided the domain of the S-phase is greater
than o in both sides. However, if the domain size of the S-phase
in any side is less than o/j, then the growth ceases immediately
at the point of contact, while it continues elsewhere.

Plots in Fig. 2 are drawn using numerical data based on the above
algorithm. We find that our analytical solutions and numerical
simulations are in perfect agreement.

V. MODEL C

Next, we solve the rate equations for the case v(x, t) = ks(t)/t,
where k is a dimensionless parameter. Here, we make use of the
fact that the mean domain size of the M-phase decays as s(f) = 1/t,
which is confirmed by numerical simulations and found that such a
behavior is independent of the precise choice of the growth veloc-
ity. Incorporating this time dependence into the definition (C) gives
v(x,t) = k/*. Solving Eq. (11) for this front velocity yields

c(x, t) = 2170 exp[—xt]. (19)

Unlike the previous two cases, this model is of particular interest for
the following reasons. First, all the moments, M, (f) of c(x, t) where

M,(t) = /OO x"c(x, t)dx, (20)
0

exhibit a power law

M, (t) ~ =012k (21)

Using this relation, we find that the mean domain size s(f) of the
M-phase decays as
_ Ml (t) _ t_1

0=

(22)

We find that the mean domain size decays following exactly the
same way as for models (A) and (B). Second, unlike the previous
two cases, the fraction of the M-phase decays following a power law,

& (1) = 2k, (23)

To verify this, we plot log[® ()] vs log(f) for different k values in
Fig. 3(a) using simulation data, and we find straight lines with slopes
equal to —2k in each case. It suggests that our numerical results
match perfectly with our analytical solution given by Eq. (23).

The physical constraints of the model restrict the feasible range
of k values according to Eq. (21). For instance, the lower bound
is fixed by the behavior of ®(f) that must be an increasing func-
tion of time, and hence, it demands k > 0. On the other hand, the
upper bound is fixed by the constraint that the zeroth moment or
the number density should be an increasing function of time or at
least during the early and/or at an intermediate stage. This immedi-
ately provides the upper bound k < 0.5 since according to Eq. (21),
we find

Mo(H) = N(t) ~ 7%, (24)

Thus, the only non-trivial and physically interesting k values are the
ones that stay within the interval [0, 0.5]. One significant result of the
present model is that unlike the previous two models here, the num-
ber density of domains of the M-phase keeps increasing at all time
(in the scaling regime). This is due to the fact that the front velocity is
a decreasing function of time resulting in a decelerated motion of the
front, and hence, if the size of the M-phase is large enough, the front
will effectively stop at some stage leaving a finite sized interface. In
passing, we note that in this model, again, the average domain size
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FIG. 3. (a) Plots of log[® (f)] vs log(t) are drawn for different k values. The result is a set of straight lines with slopes equal to —2k as predicted by our analytical results. In
(b), we show plots of log[N(s)] vs log(s) are shown for different k values and find straight lines with slopes —(1 — 2k) as predicted by Eq. (25).

s(¢) of the M-phase decays as s(f) = ¢~!. The existence of scaling and
the non-trivial conservation law provides an extra motivation to go
beyond the simple scaling description. This can be done by invoking
the idea of fractal analysis, as it has been a very useful tool to obtain
a global exponent called a fractal dimension. To do so, we need a
proper yard-stick to measure the size of the set created in the long
time limit. The most convenient one is the mean domain size s(t).
Using the relation for s(t), we can eliminate ¢ from Eq. (24) and find
that the number N(s) scales with the yard-stick size or the average
domain size s following a power law,

N@s) ~s7%, (25)
where dy = (1 — 2k) provided k < 0.5. The exponent dy is known
as the fractal dimension or the Hausdorff-Besicovitch dimension of
the resulting set created by the nucleation and growth process.”’ =
In Fig. 3(b), we plot log[N(s)] vs log(s) using numerical simula-
tion data for different k and find a straight line with a slope as it
should be according to Eq. (25). Once again, it proves that numerical
simulation and analytical results match perfectly.

Despite the numerical values of the major variables of the
system, interval sizes x; are changing with time; yet, according to
Eq. (21), we observe that the (1 — 2k)th moment of c(x, t) is a con-
served quantity. That is, at any given time, if there are m number of

intervals of the M-phase of size x1, X, . . ., X, then
My (t) = x7% 4 x 7% k2 = const, (26)

regardless of the time and the value of m provided k < 0.5
(see Fig. 4). Note that self-similarity along the continuous time axis
is a kind of symmetry. Thus, on one hand, we find that the sys-
tem enjoys dynamical scaling symmetry that manifests itself through
data collapse and on the other, we have that the (1 — 2k)th moment

of the interval size of the M-phase is a conserved quantity in
time. The emergence of a non-trivial conserved quantity accompa-
nied by continuous self-similar symmetry in time is reminiscent of
Noether’s theorem as it states that for every symmetry, there is a
corresponding conservation law and vice versa.”>*

We know that if a function f(x, ) of time varying phenomena
satisfies the condition

footy ~ ¢ (x/F), 27)
0.9
0.8
S
S 7
0.6
® k=0.05
0.5 ® k=0.1
® k=0.2
® k=0.25
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
led

t

FIG. 4. Plots of the d;th moment of c(x, t) vs time t are shown for different values
of k < 0.5. It clearly demonstrates that the dith moment is always a conserved
quantity suggesting that numerical and analytical results are in perfect agreement.
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FIG. 5. The plots of the distribution function c(x, t) vs x are shown in (a) and (b) for k = 0.1 and k = 0.2, respectively. Each plot represents four different times where each
set of data represents ensemble average over 1000 independent realizations. In (c) and (d), we plot log[c(x, t) /t2=% vs xt using the data of (a) and (b), respectively, and find
that all the data collapse into a straight line with a slope equal to —1 as suggested by Eq. (19).

then it is said to obey dynamic scaling.”** The solution for c(x, f)
given by Eq. (19) has exactly the same form as in Eq. (27) provided
we choose 6 = 2(1 — k) and z = —1. Here, exponents 6 and z are
fixed by the dimensional requirement that [f] = [¢/] and [x] = #],
respectively. Thus, the model (C) exhibits dynamic scaling with
6 =2(1 — k) and z= —1. It implies that the numerical value of
c(x, t) varies with x for a given time ¢. That is, the data of c(x, ) vs x
will be distinct for fixed time and for each different k value, which
can be seen in Figs. 5(a) and 5(b). However, if we plot c(x, £)t~20=0
or c(x, t) £+ s xt, they should collapse into one universal scaling
curve. Indeed, they do so, however, to show that the scaling func-
tion ¢ (§) is exponential, and we plot them in the log-linear scaling
and find that all the distinct curves in Figs. 5(a) and 5(b) collapse
superbly onto their respective universal curves, which are shown,
respectively, in Figs. 5(c) and 5(d). It means that the solution for
the scaling function is exponential. Besides, the data collapse means
that the system evolves with time and that the snapshots taken at
different times are similar. Since the same system at different times

is similar, the solutions are self-similar. Self-similarity in this prob-
lem manifests, only statistically, through dynamical scaling. This is
one of the key properties of fractal too.

To verify these results, we have done Monte Carlo simulations
based on the algorithm described in model A except step (iii), which
is replaced as follows:

e Increase the size of the seed of the S-phase on either side by k/j>
independently provided the domain of the S-phase is greater
than o in both sides. However, if the domain size of the S-phase
in any side is less than o/j%, then the growth ceases immediately
at the point of contact, while it continues elsewhere.

The data for all the plots shown for this model are obtained by
Monte Carlo simulations based on the algorithm described above.
The perfect matching with our analytical solution suggests that the
algorithm is ideal for describing the integro-differential equation
given by Eq. (5) with growth velocity v = k/#.
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VI. MODEL D

Finally, we consider the case where v(x,t) = mx/t, which
implies that the S-phase travels a distance x of the M-phase in time 7
transforming x into the S-phase.””*® However, according to Eq. (5),
the typical time between two nucleation events on an interval of
size x is T = x7!, and therefore, v(x,t) = mx?, revealing that the
growth velocity decreases increasingly fast as the domain size of
the M-phase decreases since x itself is a decreasing quantity with
time. To solve the model, we incorporate the definition of M, () into
Eq. (5), and then, after some simple algebraic manipulations, we are
able to write the following rate equation for M, (?):

M, | m a4 50 - 5
ar (n+1)

:| Mn+1(t)- (28)

Note that for m = 0, the total mass or M; (¢) is a conserved quantity.
However, for m > 0, the system violates this conservation of mass
principle due to continuous growth of the S-phase at the expense of
the M-phase. The interesting feature of the above equation is that for
each value of m, there exists a unique conserved quantity. We can
find the value n = y for which the moment M, (¢) is a conserved
quantity and it is done simply by setting dM,,(f)/dt = 0.’ Note that
dM,,(t)/dt = 0 can be equal to zero either due to M, ;(f) =0 of
Eq. (28) or due to its co-factor equal to zero. If the former is zero,
then it leads to a trivial result. On the other hand, if the latter is true,
then the problem rests on solving a quadratic equation in y whose
real positive root is

(m) 11—!—1 +1 1+1 2+2 (29)
m)=—— — - — —.

4 2 2m 2 2m m

It implies that the corresponding moment M, () is independent
of time. It has been verified by numerical simulation as shown in
Fig. 6. To find the significance of the value of y, we once again
invoke the idea of fractal. Like in model (C), we can use s(¢) as a

yard-stick and obtain the N(s) we need to cover the system.
We can solve Eq. (28) by assuming a trial solution

M, (D) ~ ™ (30)

such that a(y) = 0 since M, (¢) is a conserved quantity. Substitut-
ing it in Eq. (28) and demanding dimensional consistency, we find a
recurrence relation

a(n+1) =a(n) —1. 31)

Iterating it over and over again subject to the condition that
a(y) = 0 as required by the conservation law, we find that

M, (t) ~ ¢y, (32)

Using this, we find that the average domains of the M-phase
s(t) = M, (t)/My(t) decay exactly like all previous three cases; i.e.,
s(t) = t~!. We then find that N(s) scales as

N(s) ~ 5%, (33)

where df(m) is given by Eq. (29). The plots of log[N(s)] vs log(s) for
different m are shown in Fig. 7(a) using data from extensive Monte
Carlo simulation and find excellent straight lines with slopes equal

scitation.org/journal/cha

to dr.”””* The exponent dj is known as the fractal dimension or the
Hausdorff-Besicovitch dimension of the resulting set created by the
nucleation and growth process.”” Besides, like in model (C), the Kol-
mogorov-Avrami formula in this case is no longer valid. Instead, it
is replaced by the following general power-law decay of the M-phase:

Ot ~ Y, (34)

In Fig. 7(b), we show that plots of log[®(#)] vs log(#) for different
m and find that they all obey Eq. (34). This reveals a general-
ized exponent (1 — dy) that can quantify the extent of the decay of
the M-phase. On the other hand, the coverage by the S-phase 6(¢)
reaches its asymptotic value 6 (00) = 1 as

6(00) — O(t) ~ 1, (35)

which is reminiscent of Feder’s law in RSA processes.”

Finally, we show that the solution for C(x, t) exhibits dynamic
scaling. To do this, we check if the solution for ¢(x, t) obeys dynamic
scaling,

c(x, t) ~ t(l+df)¢ (xt). (36)

To verify this, we plot c(x, f) vs x in Figs. 8(a) and 8(b) for different
m values. According to Eq. (36), the same data would collapse if we
divide c(x, t) by £/ and x by £, Indeed, we find excellent data col-
lapse as shown in Figs. 8(c) and 8(d), respectively, for m = 0.05 and
m = 0.1. It provides a clear litmus test of our solution that it obeys
dynamic scaling, and hence, like model C, the snapshots of model
D too taken at different times are similar. It is worth mentioning
that the number density in (C) and (D) increases for all the time—a
sharp contrast to models (A) and (B) where N(f) increases only at
the early stage. This is due to the fact that in models (C) and (D),
the growth velocity decreases in time in such a way that two grow-
ing phases from an opposite direction hardly coalesce. In fact, the
growth of the S-phase virtually stops at some stage.

1.5

1.4

f

1.2
® m=0.05
1.1 ® m=0.1
® m=0.2
® m=03

0.6 0.8 1.0 1.2 1.4 1.6 1.8

t led

FIG. 6. Here, we show that the dith moment of c(x, t) is always a conserved
quantity for all m values of model D.
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for different m values. In each case, it results in a straight line with slopes always equal to —d; in (a) and —(1 — dy) in (b). These results match perfectly with our analytical

results.

To verify these results, we have done Monte Carlo simulations
based on the algorithm described in model A except step (iii), which
is replaced as follows.

e Increase the size of the seed of the S-phase on each side by an
amount equal to square of the respective domain size of the
M-phase and the growth ceases immediately at the point of
contact, while it continues elsewhere.

VII. DISCUSSION OF FINDINGS AND SUMMARY

In this article, we have studied a class of random nucleation
and growth processes of a stable phase with three different growth
velocities, which can be space and time dependent. Also, we revisit
the classical KJMA model. The three new growth velocities describe
a process in which the growth velocity depends on the local config-
uration of the system at every instant of time. We have solved the
models analytically and verified the results by an extensive Monte
Carlo simulation. One interesting finding is that in all four cases, the
mean domain size s(¢) of the M-phase decays following a power law
s(f) ~ t~¢ with the same exponent & = 1 irrespective of the detailed
choice of the growth velocity. There must be a common mechanism
behind this common nature. Indeed, all the four models share one
common thing; i.e., the nucleation process is described by the ran-
dom scission model. However, the fraction of the untransformed
space (M-phase) and the corresponding number density are very
sensitive to the specific choice of the growth velocity.

The most striking result, though, is the emergence of fractal for
either fully time dependent or fully size dependent growth veloci-
ties in the sense that the growth velocities are either proportional
to inverse square of time ¢ or simply proportional to the square of

size x. The system is called fractal if the exponent of the power-law
decay of N(s) as a function of s is less than the dimension d = 1 of
the space where the system is embedded and at the same time, the
system must be self-similar. One of the ways to test whether the sys-
tems that evolve probabilistically with time are self-similar or not
is that it must exhibit dynamic scaling. Testing of dynamic scaling
means that the numerical values of the dimensional quantities, such
as c(x, t) and x at different time, will be different, but the correspond-
ing dimensionless quantities c(x, )/t%* and x/* would coincide. In
other words, the plots of c(x,t) vs x for time will be distinct, but
all these distinct plots would collapse if we plot c(x, t)/t* vs x/F
instead. We find 6 =1 +d; and z= —1 for both models C and
D, albeit the fractal dimension dy is different. The results are sum-
marized in Table I. The self-similarity is also a kind of continuous
symmetry along the continuous time axis. Interestingly, we also find
that during the evolution, the djth moment is always a conserved
quantity. These two results are reminiscent of Noether’s theorem
that states that for every continuous symmetry, there must exist a
conserved quantity. We have also shown that when either the tem-
poral variable t or both spatial and temporal in the definition of the
velocity are assumed constant, the decay of the metastable phase is
always exponential and is also accompanied by the violation of scal-
ing. One of the key observables in nucleation and growth processes
is how the fraction of the M-phase decays to let the new S-phase
grow. We find that both in models C and D, it decays following a
power law with a unique generalized exponent (1 — dy), though the
dy values are different.

Thus, the present work represents the most obvious natu-
ral extension of the classical KJMA theory. We believe that this
extension is a realistic description for many natural processes.
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FIG. 8. Plots of c(x, t) vs x for (a) m = 0.05 and (b) m = 0.1 are drawn as a representative values of m. In (c) and (d), we plot c(x, t)t=+%) vs xt, and we find excellent
data collapse of the same data of (a) and (b), respectively, which confirms that model D obeys dynamic scaling.

Furthermore, our model sketches the process of invasion and
growth of a biological colony with a random immigration of pioneer
individuals or seed arrival. One important example is the spread of
diseases, such as fungal spots on plant leaves. Here, one assumes that
spores are transmitted by wind or insects and randomly arrive on the
leave surface. Once an infected spot is established, it stays and begins
to grow. In many studies of such biological processes, the growth
has been found to deviate from the constant velocity assumption of
the KJMA model. Instead, it is typically observed that the velocity
increases with the increase in proportion of non-infected areas, i.e.,

TABLE I. Summary of the various model results.

Model (1) N(t) s(t) Scaling Fractal
V=1, et teof t! Violates X
v=ol/t e 2ot te~2! 1 Violates X
v=ks(t)/t Y £ t! Obeys  (1—2k)
v=m x? =d) 14 t! Obeys df(m)

the M-phase (Vanderplank principle’’). Therefore, we believe that
the present investigation of the consequences of state-dependent
growth velocities will have important applications.

We conclude with the following words. The power-law decay
of the M-phase can be assumed to be a generalized formula replac-
ing the classical Kolmogorov-Avrami law, provided the distribution
of the M-phase in the late stage describes a scale-free fractal. The
fractal dimension is the quantitative measure of the notion that the
density of the M-phase is less at a larger length scale. We believe
that the present work will have a significant impact in changing
the way we intended to interpret the experimental data as we are
now aware of the fascinating results due to the decelerating growth
velocity.
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