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ABSTRACT

With the outbreak of COVID-19, great loss and damage were brought to human society, making the study of epidemic spreading become
a significant topic nowadays. To analyze the spread of infectious diseases among different areas, e.g., communities, cities, or countries, we
construct a network, based on the epidemic model and the network coupling, whose nodes denote areas, and edges represent population
migrations between two areas. Each node follows its dynamic, which describes an epidemic spreading among individuals in an area, and
the node also interacts with other nodes, which indicates the spreading among different areas. By giving mathematical proof, we deduce
that our model has a stable solution despite the network structure. We propose the peak infected ratio (PIR) as a property of infectious
diseases in a certain area, which is not independent of the network structure. We find that increasing the population mobility or the disease
infectiousness both cause higher peak infected population all over different by simulation. Furthermore, we apply our model to real-world
data on COVID-19 and after properly adjusting the parameters of our model, the distribution of the peak infection ratio in different areas can
be well fitted.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0102390

Network spreading dynamics is a significant issue in network
science. Outbreaks of COVID-19 make research on disease trans-
mission even more important and strategies for epidemic pre-
vention are usually proposed from a regional level. Therefore,
this paper establishes an epidemic model considering epidemic
spreading among areas. In our model, a network is constructed
where nodes represent areas, and edges denote migrations
between two areas. For each node in the network, there is a
dynamic transition among susceptible, infected, and recovered
individuals. We give a proof of the stability at the final state of
the system and find that the final solution is only related to the
infected transition rate and recovery rate. Based on our model, we
put forward the peak infected ratio as a significant index to mea-
sure the epidemic in different areas and analyze its property by
simulation with statistical methods. By changing the structure of
the network, we observe different properties of indexes. In addi-
tion, the influence of the connection strength of coupling between
areas and the infection rate in the Susceptible-Infected-Recovered
(SIR) epidemic model on the infected ratio is also investigated.

Additionally, we utilize our model to fit epidemical spreading
data in the real world.

I. INTRODUCTION

Since the outbreak of COVID-19 at the end of 2019, infectious
disease has been a serious threat to public health all over the world.
Controlling epidemic outbreaks does not only demand pharmaceu-
tical interventions such as vaccination and antiviral drugs but also
requires the implementation of public health measures, e.g., social
distancing, shelter in place orders, disease surveillance, contact trac-
ing, isolation, and quarantine.1 Nowadays, there are more case data
as well as analyses performed by scientists and researchers, which
benefits the study of epidemiology.

Mathematical research on infectious diseases can be traced
back to the acclaimed work of Kermack and McKendrick, which
defines the modern mathematical modeling of infectious diseases,
which has evolved through the years in an impressive body of
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work,2,3 whose culmination is well represented by the monumental
summary of Anderson and May.4 However, in the real world, the
spreading of disease happens when one individual interacts with
others, while in the SIR model, differential equations consider a
homogeneous assumption, i.e., all individuals have equally the same
possibility of getting infected or infecting others, causing inaccuracy
in real-world situations where individuals have frozen patterns of
interaction.5

Network theory provides a general framework for study-
ing individual contacts in disease transmission.6 Since the
Watts–Strogatz network7 (WS network) and the Barabási–Albert
network8 (BA network) were proposed, complex networks have
attracted much attention from researchers and have been a useful
tool in various fields. With the network theory, more models for
epidemic spreading were proposed considering the structure of con-
nection among people. A continuous-time epidemic process with
constant transition rates between compartments was described by
the Markov chain theory.5 A later study found that the impact of an
epidemic is increased by a small but potentially significant amount
when the contacts are random rather than regular.9 In addition,
quantitatively the numerical thresholds with theoretical predictions
of the heterogeneous mean-field theory and the quenched mean-
field theory were compared.10 By establishing a queuing system, the
increase and decrease of vertex degree can be described, and the
spreading process on it can be analyzed in recent studies.11,12

Compared to the framework where each node corresponds to a
single individual, a different framework considers nodes as entities
where multiple individuals or particles can be located and eventu-
ally wander by moving along the links connecting the nodes, which
are often framed as reaction–diffusion processes.5 The analysis of
the basic reproduction number in disease-free equilibrium provides
a theoretical basis for the epidemic model.13 Based on the repro-
duction number, an epidemic model is proposed to describe the
dynamics of disease spread among patches due to population dis-
persal and a threshold between the extinction and persistence of the
disease is established.14 Influenza-like diseases models, in which the
individual contacts are represented by contact networks, allow for a
heterogeneous number of contacts and, thus, are more general than
the classical homogeneous mixing model.15 The metapopulation
approach is introduced to describe spatially structured interacting
subpopulations, such as city locations, urban areas, or geographi-
cal regions. With reaction–diffusion processes and metapopulation
models in heterogeneous networks, the critical value of the transi-
tion in real topology can be analyzed.16,17 Examples of the system
are provided by mechanistic epidemic models, where particles rep-
resent people moving between different locations or by the routing
of information packets in technological networks.5

With real-world data, general analysis of complex weighted
networks can be obtained.18 The contact network among people is
found to be a strongly connected small-world-like graph while the
locations graph is scale-free. Within the network simulation frame-
work, the relative merits of several proposed mitigation strategies
for disease spread can be analyzed.19 At the same time, there is also
various analysis of the transportation network based on each region.
For example, the highway in Korea has a heavy tail while air and
public ground transportation establish inhomogeneous systems and
have power-law behaviors.20 The railway network in China is found

to have both small-world and power-law properties.21 The exist-
ing data show that the Indian railway network displays small-world
property.22 In general, it is reasonable to take the WS network or the
BA network as the area network.

In addition to epidemic propagation dynamics on the net-
works, network synchronization has been studied by lots of
researchers over decades focused on the synchronization phe-
nomenon of a population of dynamically interacting units.23 Bara-
hona considered the generic synchronization of oscillator networks
of arbitrary topology and linked the linear stability of the syn-
chronous state to an algebraic condition of the Laplacian of the
graph.24 Pecora showed that determining the stability of the syn-
chronous state can be done by a master stability function25 and
put forward the theory of identical or complete synchronization of
identical oscillators in arbitrary networks.26 Similar to the synchro-
nization phenomenon, the consensus problem is analyzed and the
consensus algorithm for the network is also proposed.27

With the complexity of real-world individuals’ connections, the
analysis of the whole system, which represents a country that has
billions of population, like China or India turns out to be difficult.
Taking the global interaction and local process into consideration,
in this paper, we simulate epidemic spreading among areas with
dynamic equations. In our model, we regard areas as nodes in a
network, and the epidemic spreading among the population as the
property of the area. The system has a certain stable point at the
final state; however, the state in the intermediate process is com-
plex though it plays an important role in the prevention of disease.
Consequently, we put forward an index to describe the peak infected
ratio, which describes the severity of the outbreak, and research
studies on the simulation are conducted through statistical methods.

The paper is organized as follows: we present our model for
epidemic spreading among areas in Sec. II. Section III presents
simulation results for the model, where the influence of differ-
ent parameters of the model is analyzed, and we apply our model
to real-world data to give an analysis of the real-world situation.
Conclusions and open problems are presented in Sec. IV.

II. SPREADING MODEL AMONG AREAS

In the real world, epidemics spread among individuals with
the population migration among different areas, which is neglected
in most epidemic models. To address this issue, in this section, we
utilize a spreading model among areas.

Two dynamic processes are included in our model, which
are the epidemic spreading among individuals, and the epidemic
spreading among areas. We describe the epidemic dynamics in an
area through the SIR epidemic model and describe the spreading
among areas by the network coupling. In detail, a network is con-
structed where each node denotes an area that is connected with
other areas, and epidemics spread between areas through edges,
which indicates the migration of population among areas in prac-
tical (Fig. 1). Inside an area as a node in our model, an epidemic,
such as COVID-19, spreading among individuals is described via
the SIR model. Epidemics also spread among different areas due to
population migration, which can be regarded as the coupling in the
network.
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FIG. 1. An illustration of our area spreading network model. Node j follows the
SIR epidemic equations for its epidemic dynamic, where individuals transit among
three states, while it interacts with its neighbors based on the output function H,
which indicates the epidemic spreading among areas.

In general, epidemics among areas can be described as a com-
plex dynamical network whose nodes represent different areas that
have three components, including Susceptible, Infected, and Recov-
ered. They stand for the ratio of the three different classes of individ-
uals. In general, at the stable state, I = 0 and R = 1 − e−RR0 , where
R0 is called as the basic reproduction number.

The interaction of nodes is a coupling process that can be gen-
eralized into a differential equation. In addition, different network
structures describe a variety of connection patterns between areas
that have different topological properties that cause the various out-
comes of an epidemic. We regard the above process as the coupling
of an area network, where nodes couple with each other while indi-
viduals in it follow a SIR spreading equation. Then, we define our
model as follows.

In our proposed area network, a node i has three states compo-
nents Si, Ii, Ri, following the equation below:















dSi
dt

= −βSiIi − σ
∑N

j=1 H11Sj,

dIi
dt

= βSiIi − γ Ii − σ
∑N

j=1 H22Ij,

dRi
dt

= γ Ii − σ
∑N

j=1 H33Rj,

(1)

where Si, Ii, and Ri denote the ratio of Susceptible class, Infected class,
and Recovered class in the whole population and H illustrates the
migration rate of each class in the population. β is the infection
transition rate and γ is the recovery transition rate. σ is the overall
connection strength between the nodes.

The motion of the node as areas (individuals inside the node),
which is expressed as βSiIi and γ Ii, illustrates the process of suscep-
tible individuals getting infected, and the infected individuals getting

recovered. On the other hand, σ
∑N

j=k HkkSj, k = 1, 2, 3 illustrates

the interaction between nodes (areas). σ indicates the connection
strength of the coupling between nodes and a higher σ means a
stronger level of interactions between nodes. The matrix H illus-
trates the migration rate of each class in the population. For the
general model, H is the matrix that regulates the transformation of
different states of different nodes in the interaction; however, for
the simplification of the model, we confine H to be diagonal. In our

model, H11 is the migration rate of the Susceptible class, H22 is the
migration rate of the Infected class, and H33 is the migration rate
of the Recovered class. The higher the value in H, the stronger the
connection of the component is, which indicates a more frequent
migration of a population.

We illustrate our area spreading network model in Fig. 1. In the
part Dynamic inside a node, we show a SIR process where the state
transition is S → I → R. On the other hand, in the part Dynamic
between nodes, the bold arrow shows the interaction between a
node and its neighbors with the output function H. With these two
parts, our model can be utilized to analyze the spreading process
among the different areas. In Eq. (1), βSiIi indicates the infect-
ing process and γ Ii indicates the recovery process. This part of
the equations illustrates the SIR model, which includes dS = −βSI,
dI = βSI − γ I, and dR = γ I, in a limited area, however. The general
model divides the population into three disjoint classes of individu-
als, where S is the susceptible class in which individuals contract the
disease and become infected, I is the infected class in which individ-
uals spread the disease to the susceptible class and R is the removed
class, i.e., the class of individuals who die or recover from the disease
and become immune. In addition, β and γ are known as the tran-
sition rates for infection and recovery, which are subject to β > 0
and γ > 0.

In detail, β measures how fast the disease spreads among the
individuals, and γ indicates how fast individuals recur after being
infected. β/γ is the basic reproduction number R0, and R0 > 1 is
the condition that the epidemic can spread.4 When the spreading
process is stationary, we have R = 1 − e−βR/γ and I being neglected.
With this equation, the process of spreading in a homogeneous
population can be predicted.

In the other part of our model in Eq. (1), we propose the
coupling among nodes. The item σ

∑N
j=k HkkSj, k = 1, 2, 3 illustrates

the coupling of different nodes through the three components. In
our model, we utilize network coupling to describe the interac-
tion among different areas, which considers the spatial effects in an
epidemic. In real life, there are transportation flows or population
migration between two areas all the time, consequently, the disease
from one area to others via mobile population. Therefore, we take
the migration process as well as the SIR process in areas into con-
sideration. σ is the connection strength, which indicates the degree
of interaction or the frequency of migration among areas. The larger
the value of σ is, the higher degree of the interaction among areas
is. In particular, our spatial model reduces to the typical SIR model,
given σ = 0.

A general motion for a single node is ẋ = F(x), where x is
the state vector of the node in an m-dimensional space and F(x) is
the dynamical equation. We assume an identical output function as
H(x) for all nodes in the network and set H(x) = Hx, where H is a
diagonal matrix. With the linear function, a node generates its signal
and sends it to its neighbor nodes in the network, having the general
coupling equation as:

Definition 1. A coupling equation for the proposed model is

ẋi = F(xi) − σ

N
∑

j=1

GijH(xj), (2)
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where Gij is the weight of the edge in a common network, and it is
set positive to ensure that the formula is realistic.

The weight of an edge connecting two different nodes shows
the strength of the connection of the area. However, to simplify the
problem, we set it to be constant 1 or an unweighted network in our
model, which illustrates a constant population migration strength.

By restricting Gii = −
∑N

j=1,i 6=j Gij, the adjacency matrix G of the

network has a zero row-sum.
Note that our stable state means that all node states are in agree-

ment, that is, a consensus or synchronization state is reached. In this
state, the epidemic can still be spreading, but all node changes will
be consistent.

We next display the process of our model by components as
follows:

Spreading network among areas

1. Network initializing. Randomly choose a node to be the initial
area where the epidemic first outbreaks.

2. Spreading process inside an area. Following the SIR model, we
update each state of node j, (Sj, Ij, Rj).

3. Spreading process among different areas. Following the
dynamical equation in Eq. (1), the state node j will be coupled
with nodes connected to it, implying the population migration
among areas.

4. Recording and Termination. When the system reaches a stable
state, record the state vector at every time point. We set a termi-
nation time for the whole process, the spreading process, thus,
can end up by the termination time.

In this process, we first initialize the system with a given net-
work and set all the nodes in the network having the S component
in the state vector to be 1, indicating there are no infected or recov-
ered populations. Then, randomly choosing a starting node to be
where the epidemic started suggests that the I component of the
state vector is positive. We start the epidemic process inside the
area. In addition, as the disease spreads among the population in a
specific area in the real world, the epidemic follows the SIR model
and the infected population grows in the original area, while the
infected population also gets recovered at a rate γ . With the cou-
pling model, the disease spreads to other areas in the neighborhood
as the population migration, causing the I component of the state
vectors of nodes connected to be positive, which leads to some indi-
viduals getting infected and then they recover after some time inside
an area. As the process repeats continuously, we record the state vec-
tor at every time point. When the termination time is up, we end the
process.

To better demonstrate how the model works, we illustrate an
epidemic process in a network with four nodes connected in Fig. 2.
The connecting nodes marked with 0, 1, 2, and 3 stand for four areas,
and the labels show the ratio of the three population classes in the
area they are linked to. Different colors of the node display the level
of severity of the epidemic in the area by that how many populations
got recovered, varying by time. The labels connected with the nodes
show the value of the ratio of the three classes of the population in
the node. In this process, the epidemic first started in node 0 at time
t = 0, and we choose t = 0, 20, 26, 33, 46 for demonstration. In node
0, the infected first grows and then spreads to areas 1, 2, and 3. Thus,

node 0 is more likely to have the highest infected ratio during the
whole period, while the other nodes go through a similar process
since they are all neighbors of node 0.

From Figs. 2(a) to 2(e), the initial area gets a much more severe
epidemic, while the connected areas begin to suffer the disease. In
Fig. 2(a), almost all of the population are the susceptible class except
a small amount of the infected population in node 0. In Fig. 2(b), the
epidemic spreads among all the areas and the infected ratio in node 0
reaches its peak. In Figs. 2(c)–2(e), the infected population decreases
and finally reaches zero, which is the stable state of the system.

III. SIMULATION

In this section, we mainly analyze the epidemic spreading pro-
cess utilizing the proposed modeling process to generate a sequence
of node states varying with time in a given network after the disease
begins to spread. In Sec. III A, we study the state vector during the
epidemic process, where the three epidemic states perform differ-
ently during the process and become stationary simultaneously after
some time. In addition, to analyze the peak infected ratio of a node
and the total infected ratio in the whole network, we analyze the
influence of the infect transition rate β and connection strength σ in
Sec. III B. Specifically, we utilize python to run all these simulations.
We simulate the epidemic spreading process among individuals and
areas on these common networks:

• WS small-world networks that randomly re-attach edges on a
network where each node is connected with its k nearest neigh-
bors. Adjusting the rewiring parameter p makes it possible to
interpolate between a regular lattice at p = 0 or a structure close
to an Erdös–Rényi random graph at p = 1. To balance this, we
set the p = 0.5.

• BA networks which follow the growth and preferential attach-
ment principle. The BA network has hubs due to a prefer-
ential attachment mechanism. By analyzing it, we obtain the
properties of spreading in area networks with hubs.

• Circulant graphs are undirected graphs act on by a cyclic group
of symmetries that takes any vertex to any other vertex.28 Circu-
lant graphs stand for networks where the nodes have the same
degree, and in circulant graphs, all the vertices have the same
status.

Previous studies have shown that real-world regional networks
have scale-free or small-world property; therefore, it is reasonable
to utilize the BA network or WS network as the model of the area
network. In contrast, due to the homogeneity of nodes in circulant
graphs, we utilize simulation results on circulant graphs as a com-
parison. In our model, we set the networks to have dozens of nodes
since the area as the basic unit should not be large. In addition,
in the real world, due to epidemic prevention policy, the infected
population usually has a lower migration rate than the uninfected
population. Thus, we set the diagonal matrix H in the linear output
function to be (1, 0.01, 1), i.e., only a small amount of the infected
population can move to other areas.

Based on the above preparations, we next present simulations
of our epidemic model.
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FIG. 2. Epidemic spreading among four areas as nodes numbered 0, 1, 2, 3. The figure shows how the epidemic spreads among areas based on our model. The S, I, and
R indicate the value of the three components of the state vector in each node, and the change of color shows the epidemic spreading process in this network. The epidemic
first starts in node 0 and then spreads to other nodes. The values in the boxes connected to nodes indicate the state vector of nodes. (a) The states of these nodes at t = 0.
(b) The states of these nodes at t = 20. (c) The states of these nodes at t = 26. (d) The states of these nodes at t = 33. (e) The states of these nodes at t = 46.

A. Time variation analysis

In this subsection, we demonstrate the epidemic state of the
state vector in each node in a given network, varying with time
during the spreading process.

We generated a BA network with 16 nodes and the attachment
parameter m = 4. Then, we select a node, set its initial I nonzero,
and let S = 1 − I, while all other nodes are all set as I = 0 and S = 1.
The spreading parameter β = 0.5, and the recovery transition rate
γ = 0.2 to ensure β/γ > 1, which guarantees the disease to spread
around. In addition, we let the connection strength σ = 0.3 as a
small value to avoid causing the vector state has negative compo-
nents during the epidemic. Through these settings, we show the
dynamic process of the three states of different nodes varying with
time in Fig. 3.

In Fig. 3, we can see that the evolution of nodes follow-
ing Eq. (1) and the process reaches the stable state in the end.
In Figs. 3(a)–3(c), different lines represent different ratios of
the population state in different nodes in the network, while in
Figs. 3(d)–3(f), we focus on the difference between the node state

and the average node state, which describes the deviation of the node
state to the whole group state.

Figures 3(a)–3(c) illustrate the dynamic process of states for
each node. We finally obtain the synchronization of node states

through their different evolutionary routes. In addition, the stable

value of the recovered ratio in the node is 0.89, which is also the

same value as the result of the SIR model, taking the same param-
eters β = 0.5 and γ = 0.2, suggesting that with an extra network
structure, the outcome of the SIR model remains the same. More-
over, we can see that in Fig. 3(b), one of the nodes gets an extremely
large infected ratio compared to the others at some time point, since
it is the first node where the disease outbreaks, while the increase of
the recovered population lowers the infected ratio in other nodes. In
Figs. 3(d)–3(f), we introduced ei = xi − x̄, where xi is the state vec-
tor of nodes i and x̄ = 1

N

∑

i xi, to measure the distance between the

vector state of one node and that of the entire group. Each line is
the process of the error rate of the state value during the period in
the corresponding area. We can observe that all the components of
each ei of the corresponding node become 0, indicating that the state
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FIG. 3. The outcome of disease in a BA scale-free network that has 16 nodes and the attachment parameter m = 4. The parameters of the output function are H11 = 1,
H22 = 0.001, and H33 = 1, which means the individuals in the susceptible class or recovered class can move from one area to another, and the infected can hardly move due
to the illness. In addition, the coupling strength σ = 0.3, and the spreading parameters β = 0.5 and γ = 0.2. (a)–(c) show how the ratio of S, I, R in population changes
with time through the spreading dynamic model. In (d)–(f), for each node, we have ei = xi − x̄ and x̄ = 1

N

∑

i xi. 16 different lines are plotted; thus, we hide the legend.
This shows the evolution of the difference between nodes. (a) S varying with time. (b) I varying with time. (c) R varying with time. (d) eS varying with time. (e) eI varying with
time. (f) eR varying with time, compared with SIR model.

is stable. In addition, the process shows an increase and decrease in
state differences among nodes, and the I state has the largest vari-
ance and fluctuates most greatly, which suggests during the whole
epidemic period, the ratio of infected is quite different from node to
node.

To compare the typical SIR model and our proposed model
with area coupling, we apply both models and present the propor-
tions of individuals in three epidemic states varying with time with
two different models in Fig. 4. In our model, there are a number of
areas, and we choose the area where the epidemic began to spread
and a randomly chosen area for observation as well as the average
value of all the areas. As we can see in Fig. 4(a), the proportion of sus-
ceptible individuals in our model begins to decrease later than that
of the typical SIR model, and it also reaches a stationary state later
than that of the typical SIR model with the same stationary value

below 0.2. From Fig. 4(b), the trends of the lines of our model and
the types are the same, and all of them eventually become 0 when
the system is stationary. However, the fraction of the infected of the
typical SIR model peaks at t = 30 approximately, while the infected
fractions in our proposed model all peak behind t = 40. In addi-
tion, the highest value of the average infected proportion of all the
areas in our model is lower than that of the typical SIR model. As is
shown in Fig. 4(c), recovered individuals in our model also increase
later than that of the typical SIR model and reach the stationary state
later compared to the typical SIR model. The stationary values for
the recovered fraction are the same in both models. In conclusion,
in simulations, the stationary fractions of susceptible and recovered
individuals based on Eq. (1) are the same as those of the typical SIR
ordinary differential equations (ODEs). While the peak value of the
infected fraction based on Eq. (1) is different from that of the typical
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FIG. 4. The fractions of susceptible, infected, and recovered individuals varying with time are presented, respectively. Gray dashed lines indicate the fraction of individuals
in three states based on the typical SIR ordinary differential equation, while solid lines represent the fraction of three states according to our proposed model in Eq. (1).
We select the area where the disease first begins to spread marked by blue solid lines, a randomly chosen area with orange solid lines for observation. We also show the
average value of all the areas marked by black solid lines for comparison. The stationary fraction of susceptible and recovered individuals in the two models are the same;
however, the time when the system reaches stationary is different. The peak values of the fraction of infected individuals are also different in the two models. (a) The fraction
of S varying with time. (b) The fraction of I varying with time. (c) The fraction of R varying with time.

SIR ODEs due to the network coupling in our model, and there is
divergence among different areas in terms of the peak infected ratio
(PIR) and the time that the system reaches a stationary state.

To illustrate the effect of spatial factors on epidemic spreading,
we can also compare the spreading process of different areas shown
in Fig. 4. From Fig. 4(a), the proportion of susceptible individuals
in the start area begins to decrease from 1 at the earliest, and the
susceptible fraction in the area we randomly choose in the network
decreases later. The susceptible fraction of the start area also reaches
a stationary state earlier compared to the randomly chosen area. In
addition, susceptible individuals in both areas decrease earlier than
the average level. However, we can see that the stationary values of
the susceptible proportion are the same. A similar situation can be
seen in the proportion of recovered individuals shown in Fig. 4(c).
In Fig. 4(b), the peak value of the infected proportion is the highest
in the start area at about 0.5, and it is above 0.3 in the randomly cho-
sen area. Both of the peak values in the two areas are higher than the
average value. The time difference in the proportions in three states
among areas is due to our model where the disease occurs originally
in an area then it takes time to spread to other areas. In addition,
the value of PIR varies in different areas in our model. Therefore,
the coupling among areas that indicates the migration or transporta-
tion flows in our model contributes to spatial effects, i.e., differences
in the epidemic outbreak time and the peak value of the infected
fraction.

In Sec. III B, we analyze the infected ratio, which is related to
both the network structure and disease properties.

B. Peak infected ratio analysis

In this subsection, we focus on the peak infected ratio of dif-
ferent areas. From the simplified simulation results in the above

section, the infected ratio of the node first increases and then
decreases. A similar phenomenon can be found in the real world
and is of significance in addressing the epidemic spreading, which
leads to our analysis of the peak infected ratio of areas.

To simplify the notation, for the area network in Eq. (1), we
define PIR to be a vector formed by the peak infected ratio of nodes
and PIRj to be the peak infected ratio in node j during the period.

PIRj depends on both the dynamic of node j itself and the state
of its neighbors. In particular, when there is only one node 0, our
model simplifies into the SIR model not considering the epidemic
spreading among areas. In this simple case, where only one node 0
exists simplifying the system into the SIR model, the PIR vector has
only one component PIR0 in the system and the peak infected ratio
will be approached for dI0/dt = 0 and dR0/dt > 0. Hence, the turn-
ing point of the epidemic is the case that more people get recovered
than get infected during the period.

The system with one area only considers its dynamic process
and it is easy to figure out the numerical solution. However, con-
sidering the interaction between areas is more complicated, since
the epidemic spreading is affected by the structure of the network,
connection strength of the network of the node coupling, and the
initially infected areas. Due to the complexity to obtain the influence
of parameters in Eq. (1), we run a bunch of simulations to show the
PIR varying with different parameters.

For each node denoted as j in the network, we obtain a group
of PIRj and mainly focus on the index max, mean, min, and vari-
ance coefficient of the data. The max is denoted as the maximum
value of the infected ratio of the nodes during the whole time; hence,
this index implies a high infected ratio in the area. However, max
only covers the infected ratio in one area, ignoring the infected ratio
in other areas. Hence, we also let mean be the average value of all
the PIRj for each node j in the network and min be the minimum
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value of all the PIRj for each node j in the network, which makes the
description of the data more comprehensive. In addition, we intro-
duce cv to be the variation coefficient defined as the variance divided
by average and show the extent of variability to the mean value of the
population.

For the interaction between areas, which is the node coupling in
our model, σ and H reflect the strength of the connection between
two nodes. Concretely, σ is the connection strength of all the epi-
demic states of the state vector, while H11, H22, and H33 denote
the connection strength of each component. However, the migra-
tion rate of the uninfected population has fewer influences on the
result compared to the migration rate of the infected population.
We, thus, only consider σ and ignore the difference between the
uninfected population migration in our analysis. Additionally, node
properties and network structures have a great influence on the
infected ratio, higher degree causes more interactions with other
nodes, which means a stronger population migration to the area in
practical, leading more likely to import infected population. In addi-
tion, the shorter average shortest path also speeds up the process that
the infected population spreads among the whole network.

In the following part, we investigate the influence of different
parameters on the epidemic spreading. We first analyze how the PIR
varies with the connection strength between nodes; then, analyze
the effect of the β , which always causes a growing infected popu-
lation, and next present a heatmap to show the results when both
connection strength and infect transition rate vary.

We compare the simulation results in the three different net-
works, WS networks, BA networks, and circulant networks. We
generate three WS networks with different average values of the
degree that are kWS = 4, 8, 16. We also generate three BA networks
with different attachment parameters mBA = 4, 8, 16. In addition, we
generate three circulant networks with different average values of
degree kCir = 4, 8, 16. These settings aim to generate different types
of networks with different densities of edges.

The initial number of nodes in all networks is set as 100, and we
let the infect transition rate β = 0.5, and the recovered rate γ = 0.2.
Given a network, the epidemic starts at a node with the average
degree and spreads around the network until the system reaches a
stationary state in the end. We set the connection strength σ in the
range of (0.05, 0.75) with an interval of 0.05, and for each σ we simu-
late the spreading process based on the given network and record the
state vector of each node. In addition, we calculate the max, mean,
min, and cv of the data, which is shown in Fig. 5, where we analyze
how PIR is related to σ in different networks or in the same type of
network with different parameters.

To illustrate the correlation of these data more rigorously, we
utilize the Pearson correlation coefficient, which is the covariance of
the two variables divided by the product of their standard deviations,
as a normalized measurement of the covariance of two factors. The
formula for the Pearson coefficient is

r =

∑

(Xi − X̄)(Yi − Ȳ)
√

∑

(Xi − X̄)

√

∑

(Yi − Ȳ)

,

where Xi and Yi are the individual sample points indexed with i.
The correlation coefficient ranges from −1 to 1. A value of +1

FIG. 5. The cv , max, mean, and min of PIR vary by σ in different networks.
The red, green, and red lines denote the simulation results of BA networks, WS
networks, and Circulant networks. The markers on these lines, from circles, and
triangles to squares, indicate the increase in degrees. From these figures, we
show the effect of σ on PIR in the three types of networks of different scales.

implies that all data points lie on a line for which Y increases as X
increases and vice versa for −1. A value of 0 implies that there is
no linear dependency between the variables. The closer the abso-
lute value of the Pearson coefficient is to one, the stronger the linear
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TABLE I. The Pearson correlation coefficient of σ with the max, mean, min and cv
of PIR in different network structures.

cv max mean min

mBA = 4 −1.00 0.81 0.99 0.97
mBA = 8 −0.99 −0.65 0.96 1.00
mBA = 16 −0.91 −0.96 0.78 0.98
kWS = 4 −0.18 0.89 1.00 −0.10
kWS = 8 −0.97 0.51 1.00 0.98
kWS = 16 −0.98 −0.90 0.91 0.99
kCir = 4 −0.94 0.74 1.00 0.46
kCir = 8 −0.96 −0.11 0.99 0.91
kCir = 16 −0.98 −0.93 0.98 0.88

correlation is; on the contrary, the closer the absolute value of the
Pearson coefficient is, the weaker the linear correlation is. Utilizing
the Pearson coefficient, theoretical analysis of the numerical results
can be obtained. The Pearson correlation coefficient of σ with these
properties is calculated in Table I.

In Fig. 5(a), we illustrate the coefficient variance change for dif-
ferent network structures varying from the connection strength. It
displays that, with a smaller degree, the slowing down of the epi-
demic spreading causes a higher variance among areas, especially
for the circulant network, since it is featured with a longer average
shortest path than the other two types of networks. The Pearson
correlation coefficient shows a strong negative correlation in these
networks.

In Fig. 5(b), we present the maximum of PIR change for dif-
ferent network structures varying with the connection strength σ .
We can see that as σ increases, it reduces the infected ratio decline
in an area. The result seems to be counterintuitive; however, higher
population migration reduces the infected ratio in an area with
an infected ratio higher than the neighbors, i.e., more connections
make neighbors share the stress of areas with a higher infected
ratio. The Pearson correlation coefficient shows that the correlation
of max and σ seems to be uncertain in these networks. How-
ever, though the maximum infected ratio decreases, increasing the
interaction can raise the average infected ratio.

In Fig. 5(c), we show how the average of PIR changes for dif-
ferent network structures varying from the connection strength. It
shows that all the lines monotonically increase and the Pearson cor-
relation coefficient shows a strong positive correlation, indicating
that a higher σ leads to a higher total infected ratio from the per-
spective of the whole network. In addition, in Fig. 5(d), we show
how the min of PIR changes for different network structures vary-
ing from the connection strength, which has a similar result as in
Fig. 5(c), and the Pearson correlation coefficient also shows a strong
positive correlation.

Next, we present the influence of β . In the original work of Ker-
mack and McKendrick, the final results of the epidemic depend on
both the infection transition rate and the recovery transition rate,
which means the outcome of the SIR model depends only on the rate
of individuals infected and recovered. In our model, the final value
of PIR can be figured out by solving Eq. (1). However, with differ-
ent topological structures, the outbreaks of disease are also different.

When the epidemic inside the areas follows the SIR model, interact-
ing with other areas should be taken into account as well. Given a
fixed value of γ , the infected ratio increases as β gets larger. In addi-
tion, the max PIR increases fast, while the mean PIR grows slowly,
since a larger β leads to more recovered population in the area,
which moves to other areas, resulting in the restrain of infection in
other areas and a slowing down of the increase of PIR.

With the increase of the infection transition rate, the infected
ratio also increases. However, different network structures cause a
difference of PIR in the statistical index. In different network struc-
tures, the minimum or average of PIR gets larger with the increase of
β at different speeds. Next, we build networks with the same param-
eters shown in Fig. 5. The connection strength is set as σ = 0.3, and
the infect transition rate β is set from 0.24 to 0.6. The results are
shown in Fig. 6 and the Pearson correlation coefficient of σ with
these properties is calculated in Table II.

Figure 6(a) illustrates the coefficient variance change for differ-
ent network structures varying from β , and the curves seem to be
irregular and the Pearson correlation coefficient is also uncertain,
while in Figs. 6(b) and 6(c), which show how the max and aver-
age of PIR changes for different network structures varying from β ,
we observe the index value increase with the increase of β , which
is consistent with our intuitive cognition. In addition, the Pearson
correlation coefficient also shows a strong relationship. Moreover,
Fig. 6(d) displays the minimum infected ratio, where the trend of
circulant networks with a small average degree has barely changed.
It suggests that in a circulant network, the epidemic can hardly
spread to certain areas regardless of the infection rate. Consequently,
though higher β causes a higher infected ratio in the whole sys-
tem, there are some nodes in the network that have a low infected
ratio.

A higher β causes higher max and mean of PIR since higher
infectivity of the disease causes more infected individuals leading
each area to a large value of PIR. While a higher σ results in a higher
total infected ratio but have a possibility of lowering the max PIR
among different areas, since more frequent population migrations
may lead to infected individuals transferring among different areas,
which balances the peak infected ratios of areas.

To understand the difference between them, we build a WS net-
work with 50 nodes, 4 initial edges, and a rewire probability p = 0.5.
We choose this network due to its small-world property, and by
varying p, we can balance it between a regular and a random net-
work. With the same network, we begin the epidemic simulation in
a node with an average degree, and we vary σ and β in each exper-
iment. To deeply understand the relationship among PIR, σ , and β ,
we run the simulation with the connection strength σ ranging from
0.05 to 0.55 at an interval of 0.05 and set the infect transition rate
β ranges from 0.25 to 0.7 at an interval of 0.05, and the result is
illustrated in Fig. 7.

In Fig. 7, we utilize heatmaps to show the result, in which the
color of the grid shows the max/mean PIR value of the simulation
with the different parameters. In Fig. 7(b), we observe that a higher
β or higher σ causes a higher mean PIR. A higher σ indicates a
stronger connection among nodes, while a higher β increases the
infectivity of disease among the population. Though the property
is different, the two parameters have on average a similar effect
that their increase causes more infected population. In Fig. 7(a),
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FIG. 6. The statistical indicators max, mean, min, and cv of PIR vary by β in BA
network with mBA = 4, 8, 16, WS network with kWS = 4, 8, 16, and the circulant
network with kCir = 4, 8, 16. From these figures, we show the effect of β on PIR
in the three types of networks. (a) cv varying with β . (b) max varying with β .
(c) mean varying with β . (d) min varying with β .

TABLE II. The Pearson correlation coefficient of β with the cv, max, mean and min

of PIR in different network structures.

cv max mean min

mBA = 4 −0.75 0.89 0.99 0.95
mBA = 8 0.59 0.95 0.98 0.91
mBA = 16 0.95 0.99 0.99 0.96
kWS = 4 −0.80 0.90 0.99 0.99
kWS = 8 −0.28 0.94 0.98 0.86
kWS = 16 0.94 0.97 0.98 0.85
kCir = 4 0.45 0.96 0.96 0.52
kCir = 8 0.13 0.96 0.95 0.58
kCir = 16 0.79 0.98 0.95 0.56

however, when it comes to the max PIR, increasing σ can hardly
change the result and even reduces the value in some cases.

The enlightenment of this is, without a thorough isolated area,
the population migration probably will not affect the result of the
epidemic strongly, while rational measures to reduce the infect
transition rate can be of great use.

C. Real-world data

Due to the COVID-19 epidemic, we have data on the propor-
tion of infected people in various cities in each country as a refer-
ence. In the following analysis, we apply our area spreading model
to fit the real-world data of COVID-19. As for real-world data, we
choose the statistical data set of COVID-19 for these three countries:
the USA, China, and India (data sets from Novel Corona Virus 2019
Data set: https://www.kaggle.com/sudalairajkumar/novel-corona-
virus-2019-data set/version/151, and we choose the data from before
07/01/2021).

In simulations, we consider a nation as a network with nodes
considered as different areas in the country, and we select WS net-
works as the underlying network in our model since studies show
that area networks have the small-world property. We simulate the
epidemic spreading process of different areas of a country accord-
ing to Eq. (1), and adjust the value of the coupling parameter σ

to set the connection level among areas to describe the spatial fac-
tor. The higher the value of σ , the stronger the connection among
areas in the country, which means a large transport flow or migra-
tion of population among these areas. Based on the results of the
epidemic spreading process we simulate, we calculate the PIR value
of each area as our simulation results. For real data, we obtain data
sets that include the daily number of infected individuals in states or
provinces. These real data reflect spatial factors since there are trans-
portation flows or population migration among areas in a country all
the time during epidemics. Hence, we set an appropriate value for
the connection strength σ for describing the mobility and migration
flows among different areas around the country. Then, we further
obtain PIRj for each province or state j in the country according
to the real infected individual numbers. We rank the values of PIR
of both the simulation and real-world data from low to high and
compare them.
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FIG. 7. Themax andmean value ofPIRwith two parametersβ andσ . The under-
lying network is a WS network with 50 nodes. The color of each grid indicates the
value of the max or the mean of PIR according to the color index. β is set from
0.25 to 0.70, and σ is set from 0.10 to 0.55. From the different appearances of
these two figures, we obtain the different influences of the two variables on the
PIR. (a) Max PIR with different βs and σ s. (b) Mean PIR with different βs and σ s.

The setting of the simulation applied to the real-world data is
shown in Table III. The recovery rate is set to be the same for all
the nations since we assume that there is no difference for indi-
viduals recovering from the same disease around the world. In
addition, we set the connection strength σ to be the same for all
the networks. We set different infect transition rates β for different

TABLE III. Parameters for the nations and the cross entropy between the PIR distri-

bution of our model and the real world. The small value of cross entropy shows the

proximity of our model to the real world.

Nation USA China India

n 52 31 35
k 10 4 5
β 0.31 0.185 0.265
γ 0.18 0.18 0.18
σ 0.2 0.2 0.2
Cross entropy 2.356 0.350 1.316

countries according to the actual situation. For instance, as China
has implemented a strict epidemic prevention strategy, and, thus, in
our model, we set the model corresponding to China to have the
lowest value of β and the USA to have the highest value of β .

We also present the ratio of provinces or states with PIR smaller
than the given value to illustrate the PIR distribution in each net-
work. In the USA, all states experienced disease infection due to their
relatively loose disease prevention and control. In contrast, due to
the extremely strict epidemic prevention and control in China, the
overall infection rate in China is relatively low and only one province
China has a higher infection ratio than other areas. Compared with
the first two, India is like a compromise of them. The simulation
result and the real-world data are illustrated in Fig. 8.

In Fig. 8, on the left, we present the ranked PIR of each area in
the country and of the nodes in the corresponding network. On the
right, we present the quantile on the distribution of the PIR in both
real data and simulation results, which show a great fit. In Fig. 8(a),
we illustrate the real-world data and our simulation results of the
USA, and most states in the USA have a high PIR. From the dis-
tribution of the PIRj, we observe that about half of the areas have
PIRj > 8%. In Fig. 8(b), we present the PIR of China, and 97% of
areas in China have a peak infected ratio <0.1%, which is due to the
strict epidemic prevention policy that leads to a low β . In Fig. 8(c),
about half of the areas have a peak infected ratio lower than 2%, and
the maximum is about 12%.

To measure the goodness of fitting for practical PIRj distribu-
tion based on the model we proposed, we utilize cross entropy as
presented in Table III. By slightly changing the β , we obtain the
illustrated results, which means the disease can be controlled by the
decrease of β , suggesting that a strictly epidemic prevention strat-
egy all over the network is of great use while restrained moving is
probably useless if not being completely cut off.

However, to simplify the model, we assume that the population
is continuous, which means that despite how strict the prevention
and control are, there are always infected population migration into
other areas, while it is not true in real world since discrete population
makes no infected population migration becoming possible. There-
fore, when migration can be completely forbidden, restrain moving
in areas that have an infected population and carrying out strict epi-
demic prevention strategy in the areas is an economic strategy. On
the other hand, even a single infected individual moving to other
areas will cost great damage, so in this case, carried out an epidemic
prevention strategy all over the country is more reasonable.
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FIG. 8. By ranking the peak infected ratio during the time in each country in the nation, we illustrate the pink bars which denote the infected ratio, and the orange lines show
the simulation results of the PIR in each node which is also sorted from low to high in Figs. 8(a), 8(b), and 8(c) on the left. On the right, each point (xi , yi ) the figure shows the
quantile of the distribution. Each point stands for a certain PIR value, while x0 and y0 are corresponding to the quantile of the distribution of the real data and the simulation
result. This gives a visual representation of the goodness of our model fitting real situations. (a) The USA, (b) China, and (c) India.

IV. CONCLUSION

In this paper, to simplify the network spreading model when
it comes to a system with different areas, we propose a model that
regards areas as nodes in the network instead of the traditional
model that considers individuals as nodes. With this new model, we
analyze the maximum infected ratio in the system, which is not only
affected by different topological structures of the network but also
varies with both connection strength and the property of the dis-
ease. An increasing population movement between areas can relieve
the pressure on the most infected areas to some extent, but it is likely
to increase the proportion of infections in other areas. Reducing the
infection rate in various areas over some time through a reasonable
protection strategy can effectively reduce the highest infection rate.
Finally, we conclude that the lockdown of an area can sometimes
hardly work on lowering the infected ratio if not being completely
isolated.

To simplify the process, our model is only based on a determin-
istic system. However, in future work, we will introduce a system
with randomness to make our model more realistic. Then, there are
other infectious disease dynamics models, e.g., SIS, SIRS, etc. that
we have not implemented in this paper. The duration of the infected

ratio reaching a warning line also needs future study. All these issues
will be our research goal for the next stage.
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