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ABSTRACT

During the past few decades, several significant progresses have been made in exploring complex nonlinear dynamics and vibration sup-
pression of conceptual aeroelastic airfoil models. Additionally, some new challenges have arisen. To the best of the author’s knowledge,
most studies are concerned with the deterministic case; however, the effects of stochasticity encountered in practical flight environments
on the nonlinear dynamical behaviors of the airfoil systems are neglected. Crucially, coupling interaction of the structure nonlinearities and
uncertainty fluctuations can lead to some difficulties on the airfoil models, including accurate modeling, response solving, and vibration
suppression. At the same time, most of the existing studies depend mainly on a mathematical model established by physical mechanisms.
Unfortunately, it is challenging and even impossible to obtain an accurate physical model of the complex wing structure in engineering prac-
tice. The emergence of data science and machine learning provides new opportunities for understanding the aeroelastic airfoil systems from
the data-driven point of view, such as data-driven modeling, prediction, and control from the recorded data. Nevertheless, relevant data-
driven problems of the aeroelastic airfoil systems are not addressed well up to now. This survey contributes to conducting a comprehensive
overview of recent developments toward understanding complex dynamical behaviors and vibration suppression, especially for stochastic
dynamics, early warning, and data-driven problems, of the conceptual two-dimensional airfoil models with different structural nonlineari-
ties. The results on the airfoil models are summarized and discussed. Besides, several potential development directions that are worth further
exploration are also highlighted.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0093478

Aeroelastic flutter, as a dynamic instability caused by the
fluid–structure interaction of inertial, elastic, and aerodynamic
forces, has been a significant and fascinating research topic in
the aeroelastic scientific community. However, the presence of
both nonlinearities and stochasticities, such as atmospheric tur-
bulence, gust, etc., poses a challenge in discerning the underlying
mechanisms, which can lead to more complex dynamical behav-
iors than the deterministic airfoil systems and even induce the
occurrence of extreme events. Such vibrations are extremely dan-
gerous and unexpected for engineering practice and can lead
to damage or fatigue of the wing structure and even bring
catastrophic consequences to an aircraft. Consequently, it is of

great significance, but difficulty, to accurately understand, pre-
dict, and suppress the complex dynamical behaviors of airfoil
models. In recent years, there have been distinguished develop-
ments in machine learning, in particular, deep learning, as its
powerful capabilities of modeling and characterization. Data-
driven techniques for relevant aeroelastic analysis of airfoil
models with a complicated nonlinear structure are becoming
increasingly fashionable. In the present paper, we give a state-
of-the-art overview on complex dynamics and vibration sup-
pression of conceptual airfoil models, which complements the
previous results and promotes the rapid development of related
fields.
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I. INTRODUCTION

Aeroelasticity is a multi-disciplinary research field studying
the mutual interaction of inertia, elastic, and aerodynamic forces,1–9

which is of great significance in aerospace, in particular, the airfoil
flutter. As we all know, there are various nonlinear factors in the
complex wing structure, which often lead to more complex dynam-
ical behaviors than the linear case, such as limit cycle oscillation
(LCO), bifurcation, and even chaotic motion.2 These nonlinear fac-
tors are generally responsible for two typical bifurcations in terms
of the aeroelastic airfoil system, namely, supercritical and subcritical
Hopf bifurcations,3–6 as shown in Fig. 1, where stable and unstable
responses are marked by solid and dashed lines, respectively. Specif-
ically, the supercritical Hopf bifurcation means that when the flight
speed is less than the critical flutter speed of the airfoil system, the
system will converge to a stable equilibrium point, while the system
will experience LCO motion when the flight speed exceeds the crit-
ical flutter speed of the airfoil system. As the flight speed increases,
the LCO amplitude grows gradually, with a decreasing slope as the
nonlinearities become more powerful. The subcritical one, on the
other hand, signifies that the LCO motion takes place before the crit-
ical flutter speed of the airfoil system;3–6 meanwhile, both stable and
unstable LCO motion can be observed. In engineering practice, the
subcritical Hopf bifurcation is usually more dangerous and unex-
pected than the subcritical one because the former one can cause
structural damage or fatigue and even compromise the flight safety
of an aircraft. Therefore, the subcritical Hopf bifurcation is a detri-
mental bifurcation, whereas the supercritical one can be regarded
as a benign bifurcation. To this end, a comprehensive and in-depth
understanding of the nonlinear dynamical behaviors of the aeroelas-
tic airfoil systems is extremely crucial for an efficient and safe design
of aircraft wings.

Over the past few decades, with the rapid development of
aerospace and nonlinear dynamics, there have been tremendous
investigations on nonlinear dynamics and vibration suppression of
aeroelastic airfoil models.2–9 In order to limit the complexity of an
aeroelastic airfoil system, a two-dimensional airfoil model has been
considered. Bisplinghoff and Ashley1 pointed out that the dynamic
behaviors of a wing in a real flight process can be approximately
described by selecting a binary section at 70%–75% of the focal
line from the root to the tip of the wing structure. It is important
to emphasize that the simplified airfoil model does not completely
reflect the real situation, but it is commonly used for the studies of
aeroelasticity problems in different areas, such as aircraft wing,1–9

aeroengine turbine blades,10 and others. A series of research results
on conceptual airfoil models have been reported, including bifurca-
tion and stability analysis,2–34 flutter control,35–54 airfoil-based energy
harvesting,55–60 etc. Meanwhile, the latest review articles have been
given a comprehensive overview on the recent advances of typi-
cal aeroelastic airfoil and panel structures.6–9 However, these studies
mainly focus on the deterministic aeroelastic airfoil models but
usually neglect effects of inevitable random disturbances.

In fact, in complex flight environments, aircrafts are inevitably
subject to various random fluctuations, such as atmospheric tur-
bulence, gust, and pressure disturbance.61–70 Stochasticity has sev-
eral remarkable impacts on the dynamical behaviors of nonlinear
systems due to the coupling between random fluctuations and

nonlinear factors. In particular, for the nonlinear systems with
bistable or multistable characteristics, random fluctuation can cause
rich and interesting behaviors, including critical transition,71–74

stochastic bifurcation,75,76 stochastic resonance,77–79 etc. For the
deterministic airfoil systems, if random inputs are considered,
the nonlinear airfoil systems will exhibit more complex dynami-
cal behaviors and even induce the occurrence of extreme events,
which can cause huge deformation or catastrophic damage to the
wing structure and seriously affect the reliability and service life of
the wing structure. More importantly, the presence of randomness
could reduce the critical flutter speed of the aeroelastic airfoil sys-
tems, which is highly unwanted in the real world. For this reason,
only taking the random fluctuations into account on the aeroelastic
airfoil models can much better reflect the actual operating condi-
tions. As a result, it is very crucial to accurately reveal the complex
dynamical responses of the aeroelastic airfoil systems with random
fluctuations and their occurrence mechanism. With the introduc-
tion of the stochastic concept into aeroelasticity by Lin80 and the
rapid development of nonlinear stochastic dynamics, random flutter
of the aeroelastic airfoil systems has gradually arisen much atten-
tion. In the 1990s, Poirel and Price61,62 studied the random flutter of
a binary wing in turbulent flow with the help of the power spectral
density, the probability density function, and the largest Lyapunov
exponent. Since then, several researchers have already made great
efforts to the nonlinear stochastic dynamics of the conceptual aeroe-
lastic airfoil models.64–69 Although plenty of investigations have
been worked on nonlinear stochastic dynamics of two-dimensional
aeroelastic airfoil systems during the past few decades, they are still
limited.

We have already witnessed that some research results have been
reported on the nonlinear dynamics and vibration control of typical

binary wing models, but there are still many challenges that need to

be addressed. It should be noted that, on the one hand, most of the

existing review articles are mainly limited to the determinist airfoil

systems. On the other hand, the simplified typical two-dimensional
airfoil model cannot accurately reflect the mechanism of practi-
cal dynamical behaviors in some complex situations. At the same
time, the limitations of existing model-based methods have moti-
vated many researchers to develop data-driven methodologies for
airfoil systems with the increase of available data in recent years.
However, the following two problems naturally arise. Is it possi-
ble to perform an analysis on the airfoil models by combining the
measured data with the models? Could we identify or reconstruct
complex nonlinear systems of the airfoil models from the measured
data or time series to overcome the limitation of the simplified airfoil
models? To answer these questions, data-driven modeling, predic-
tion, and control of complex nonlinear systems have emerged as a
powerful and complementary approach to first-principles modeling
due to the development of big data, machine learning, and com-

putational hardware.81–84 Recent years have seen a growing interest
in exploring data-driven problems of aeroelastic systems related
to data-driven prediction and control, aerodynamic shape opti-
mization, and others.81 Nevertheless, it is still in the preliminary
exploration stage and several problems remain. To complement
the previous works, this paper will report recent progress in com-
plex dynamical responses and vibration suppression of conceptual
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FIG. 1. Schematic of typical bifurcation behaviors in terms of the aeroelastic airfoil system: (a) supercritical Hopf bifurcation and (b) subcritical Hopf bifurcation. Reproduced
with permission from Jonsson et al., Prog. Aerosp. Sci. 109, 100537 (2019). Copyright 2019 Elsevier.

two-dimensional aeroelastic airfoil models, especially in nonlin-
ear stochastic dynamics and data-driven aeroelastic analysis of the
airfoil models.

The rest of this paper is organized as follows. We start with
giving a general form of the governing equation for the conceptual
two-dimensional aeroelastic airfoil models and a brief introduc-
tion of typical structural nonlinearity in Sec. II. Then, Secs. III
and IV summarize advances in deterministic and stochastic cases of
the conceptual two-dimensional airfoil model, respectively. Subse-
quently, an overview of data-driven studies on the aeroelastic airfoil
models is performed in Sec. V. Besides, potential development direc-
tions from the past inspiration are presented, and some challenges
are also highlighted in Sec. VI. Finally, a summary is presented in
Sec. VII. We hope that this review will provide new insights and
ideas for further in-depth studies of related problems in the future.

II. GOVERNING EQUATION OF THE AIRFOIL MODEL

The generic governing equations of the conceptual two-
dimensional aeroelastic airfoil models with n degrees of freedom can
be written in a matrix formulation as follows:

M (θ) q̈ + C (θ) q̇ + K (θ) q + G
(

q, q̇; θ
)

= F
(

t, q, q̇; θ
)

, (1)

in which q =
[

q1, q2, . . . , qn

]T
represents the generalized coordinate

vector that depend on the number of structural degrees of freedom
of a specific airfoil model. The dots over the variable indicate the
derivatives with respective to time t. The matrices M, C, and K
are the generalized mass, structural damping, and structural stiff-
ness of aeroelastic airfoil models, respectively. The vector G

(

q, q̇; θ
)

denotes the nonlinear term, and the vector F
(

t, q, q̇; θ
)

represents
the generalized force collecting all the forces and moments affect-
ing the wing structure. The vector θ denotes all the parameters
in the aeroelastic airfoil system (1), including airstream velocity,
material properties, etc. Meanwhile, different types of random fluc-
tuations, including parameter and external load uncertainties, could
be included in the airfoil system (1) depending on the considered
specific problem. Most of the studies are particularly interested in

typical two or three degrees of freedom two-dimensional aeroelastic
airfoil models, which are a very popular and important type of
models describing the dynamics of the wing structure and will be
considered in Secs. III–V. As an example, when considering a typ-
ical two-dimensional airfoil section with plunge (h) and pitch (α)
degrees of freedom and the effects of structural nonlinearity, the
governing equation of the airfoil motion is given by2,34

[

m Sα

Sα Iα

] [

ḧ
α̈

]

+

[

Ch 0
0 Cα

] [

ḣ
α̇

]

+

[

Gh

(

h
)

Gα (α)

]

=

[

−Laero

Maero

]

,

in which m, Sα , Iα , Ch, and Cα are the airfoil mass, the static moment
about the elastic axis, the moment of inertia about the elastic axis,
the plunge damping coefficient, and the pitch damping coefficient,
respectively. Gh

(

h
)

and Gα (α) are the nonlinear plunge and pitch
stiffness terms, and Laero and Maero are the aerodynamic lift force and
moment acting on the airfoil structure, respectively.

Generally, nonlinear factors that arise from a complex air-
foil structure include structural and aerodynamic nonlinearities.
Three common types of structural nonlinearities are usually con-
sidered in the system (1), namely, cubic,2 freeplay,2,7,9 and hysteresis
nonlinearities.2 Specifically, we show the expressions of structural
nonlinearity in the pitch degree of freedom Gα (α) as follows.

(1) Cubic nonlinearity
The cubic nonlinearity is expressed as2

Gα (α) = β0 + β1α + β2α
2 + β3α

3,

where β0, β1, β2, and β3 are constants.
(2) Freeplay nonlinearity

The freeplay nonlinearity is determined by2

Gα (α) =











M0 + α − αf, α < αf,

M0 + Mf

(

α − αf

)

, αf ≤ α ≤ αf + δ,

M0 + α − αf + δ
(

Mf − 1
)

, αf + δ < α,

in which M0, Mf, αf, and δ indicate, respectively, the preload
magnitude, the stiffness in the freeplay range, the beginning of
the freeplay, and the freeplay magnitude.
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(3) Hysteresis nonlinearity
The hysteresis nonlinearity is given by2

Gα (α) =







































α − αf + M0, α < αf; α̇ > 0,

α + αf − M0, α > −αf; α̇ < 0,

M0, αf ≤ α ≤ αf + δ; α̇ > 0,

−M0, −αf ≤ α ≤ −αf − δ; α̇ < 0,

α − αf − δ + M0, α > αf + δ; α̇ > 0,

α + αf + δ − M0, α < −αf − δ; α̇ < 0,

in which the meanings of each symbol are the same as in the case
of the freeplay nonlinearity.

For the sake of convenience, the governing equation (1) can be
rewritten in a state-space form as follows:

d

dt
x (t) = f (x (t) , t) , (2)

in which x (t) =
[

q (t) , q̇ (t)
]T

denotes the state vector of the aeroe-
lastic airfoil system (1) and f (x (t) , t) represents the nonlinear vector
fields. In Secs. III–V, the problems of relevant complex dynamics
and vibration suppression of conceptual aeroelastic airfoil models
will be discussed based on Eqs. (1) and (2). It should be emphasized
that some slight differences, such as external or parametric (deter-
ministic or stochastic) excitations, control force terms, and others,
could be included into Eqs. (1) and (2).

III. DETERMINISTIC CASE OF THE AIRFOIL MODEL

A. Flutter analysis

Flutter analysis is very necessary to provide a reliable basis for
the design of nonlinear aeroelasticity of an aircraft. However, exact
analytical solutions in nonlinear aeroelastic problems are only pos-
sible for a few special cases. For this consideration, approximated
analytical or numerical results are desired for the two-dimensional
airfoil system (1).

On the one hand, to understand well the nonlinear behav-
iors of the aeroelastic airfoil model, several approximated analytical
techniques have been developed to theoretical analysis of the airfoil
system (1), including the harmonic balance method, the incremental
harmonic balance method, multiple scales method, etc.11–19,34,37 Dai
et al.11 presented a time-domain collocation method for studying
flutter behaviors of a two-dimensional airfoil model with harden-
ing cubic structural nonlinearity. Wei and Mottershead12 addressed
complex dynamical behaviors of a two degrees of freedom rigid
rectangular wing through combining a describing function method
with a Sherman–Morrison formula, in which softening cubic stiff-
ness nonlinearity in the pitch degree of freedom was considered. Liu
et al.14 investigated LCO and quasiperiodic regimes of a nonlinear
aeroelastic airfoil system with an external store via an incremen-
tal harmonic balance method. Sanches et al.17 studied aeroelastic
tailoring of a typical airfoil section with hardening cubic stiffness
nonlinearity, and a multiple scales method was employed to obtain
the approximated analytical solutions. Recently, Zheng et al.15 pro-
posed a modified incremental harmonic balance method combined
with Tikhonov regularization to get a semi-analytical solution for

FIG. 2. A fractional Scott-Blair’s model. Reproduced with permission from Liu
et al., J. Sound Vib. 432, 50–64 (2018). Copyright 2018 Elsevier.

an airfoil model. Furthermore, Zheng et al.19 proposed a time-
domain minimum residual method to predict LCO responses of a
two-dimensional airfoil system with non-smooth hysteresis nonlin-
earity. Compared with the existing semi-analytical methods, e.g.,
the incremental harmonic balance method, the proposed one can
lead to the approximated solutions with a higher accuracy.19 Addi-
tionally, Liu et al.37 studied nonlinear behaviors of a typical two
degrees of freedom airfoil model with a fractional viscoelastic prop-
erty and a harmonic external force. Therefore, to characterize the
viscoelasticity of the wing material, the following stress–strain con-
stitutive relationship of a simple fractional Scott-Blair’s model was
employed,37

σ (t) = ηDp` (t) , 0 ≤ p ≤ 1, (3)

in which σ (t) and ` (t) are the stress and strain, respectively. The
material-dependent constants η and p represent the viscosity coef-
ficient and the order of a fractional derivative, respectively. The
fractional differential operator D

p in Eq. (3) is considered via the
well-known Caputo definition; that is,37

D
pf (t) =

1

Γ
(

1 − p
)

∫ t

0

f ′ (s)

(t − s)p ds, t > 0, 0 < p < 1,

in which f (t) is a continuously differentiable function and Γ (t) is
the Gamma function. As the order p varies from p = 0 to p = 1, the
property changes from pure elasticity to pure viscosity, as shown in
Fig. 2. Then, an averaging technique was developed to derive the
amplitude–frequency relations of the established viscoelastic airfoil
system, and its correctness was verified by numerical simulations.
The results indicated that the obtained approximated analytical
solutions have a good agreement with the numerical ones. More
recently, Martini et al.34 exploited a describing function method to
detect subcritical Hopf and fold bifurcations in an aeroelastic airfoil
system with pitch and plunge degrees of freedom.

On the other hand, for the case that the analytical solutions are
hard to obtain, many researchers have also investigated numerically
and experimentally the effects of structural nonlinearities on the
two-dimensional airfoil system (1).5,20–33 As an illustration, He et al.20

proposed an extended Hénon’s technique to perform influences of
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friction and asymmetric freeplay on the nonlinear dynamical behav-
iors of an aeroelastic airfoil system, in particular, the LCO motion. In
practical applications, aeroelastic airfoil systems usually are affected
by different types of structural nonlinearities. Effects of combined
hardening cubic and freeplay nonlinearities were explored on the
nonlinear dynamical responses of a typical aeroelastic section with
three degrees of freedom numerically and experimentally.21 da Silva
and Marques23 studied dynamical responses of a typical airfoil
section with a trailing-edge control surface, in which different com-
binations of concentrated structural nonlinearities were considered.
Besides, viscoelastic materials, with viscosity and elasticity, have
already been investigated in several vibration-related engineering
problems in recent years.24,26,27,37 For instance, Sales et al.26,27 success-
fully attached viscoelastic materials into a typical airfoil model with
freeplay structural nonlinearity for mitigating undesired aeroelastic
responses. Besides, Corrêa and Marques28 first explored nonlinear
dynamics of a typical airfoil section with a bistable spring at plunge
degree of freedom. More interestingly, Nitti et al.10 recently investi-
gated the problem of vibration localization in a rotor constituted by
multiple coupled airfoils with two degrees of freedom. At the same
time, the concept of basin stability introduced by Menck et al.,85 as
a global stability concept, was exploited to ascertain the likelihood
of the system converging to a certain localized state. The following
localization coefficient was defined:10

L(ẑ) =

(

max(ẑ)
∑N

i=1 ẑi

−
1

N

)

N

N − 1
, L ∈ [0, 1], (4)

in which ẑ =
[

ẑ1, . . . , ẑN

]T
, N is the number of blades, and ẑi is the

root mean square of a steady-state amplitude of the ith state. Sub-
sequently, the basin stability value SB of four different vibration
patterns defined according to Eq. (4), including homogeneous vibra-
tions (L0.0−0.05), slightly localized vibrations (L0.05−0.15), moderately
localized vibrations (L0.15−0.45), and strongly localized vibrations
(L0.45−1.0), along the airstream velocity V, were calculated, as dis-
played in Fig. 3. It can be seen clearly that both the homogeneous
and the slightly localized vibrations are more likely to occur in
comparison with the strongly localized vibrations.

B. Flutter suppression

Flutter is a typical self-excited vibration, which is unwanted in
practice and can lead to a reduction in aircraft performance or even
catastrophic failure to the wing structure in the worst case. To this
end, several passive or active control strategies have been presented
to suppress the flutter instability of the airfoil system (1), including
time-delay feedback control, sliding mode control (SMC), nonlinear
energy sink (NES), and others.35–54 Yuan et al.36 employed a radial
basis function (RBF) neural network to design an adaptive RBF
observer-sliding mode controller for suppressing the catastrophic
large-amplitude vibration of a two-dimensional airfoil system with a
single trailing-edge control surface. Liu et al.37 carried out an inves-
tigation on the vibration suppression of a two degrees of freedom
airfoil model with a harmonic excitation and fractional viscoelastic
damping terms. A fractional integral sliding surface was employed to
design a sliding model controller, and numerical simulations were

implemented to illustrate the performance of the proposed con-
trol scheme. The obtained results showed that the proposed SMC
has good performance in vibration suppression. Moreover, shape
memory alloys, as an intelligent material, have been employed as
thermomechanical actuators for active vibration control of aeroe-
lastic airfoil systems. de Sousa et al.43–45 provided numerical and
experimental investigations on dynamical responses of typical airfoil
section with shape memory alloy springs.

Active control methods can achieve effective suppression of
the undesired flutter responses for nonlinear aeroelastic airfoil sys-
tems. However, the design of an active controller usually requires
the attachment of sensors and actuators to the wing structure, which
increases the weight of the aircraft. Therefore, passive control is pre-
ferred over the active one in the design of practical controllers. In
recent years, the NES technique as a passive control strategy has
been applied to nonlinear aeroelastic systems to effectively sup-
press the flutter behavior of the airfoil systems.38–42,46–49 Bichiou
et al.40 studied the effectiveness of the NES in suppression of the
LCOs of an aeroelastic airfoil system. Zhang et al.42 numerically
explored the flow-induced vibration of a two-dimensional airfoil
model coupled with two NESs located at the leading and trailing
edges. Pidaparthi and Missoum41 investigated flutter mitigation of a
typical two degrees of freedom airfoil model with nonlinear stiffness
in pitch and heave employing an optimally designed NES based on a
stochastic optimization approach. Kassem et al.38,39 proposed a novel
technique for flutter suppression of a conceptual two-dimensional
airfoil system using an active dynamic vibration absorber. Theoret-
ical and experimental results showed that the proposed technique
is very effective and feasible for vibration suppression of the airfoil
model. Recently, to improve the performance of the flutter suppres-
sion, multiple NESs were considered in aeroelastic airfoil systems.
For example, Bergeot and Bellizzi47 studied flutter mitigation in a
two degrees of freedom airfoil system coupled to a set of NESs. Basta
et al.49 examined flutter suppression of a wing model via distributed
vibration absorbers. They found that a proper selection for the vibra-
tion absorber can lead to a 23.4% increase in the flutter speed when
one single absorber is attached. However, an 84% increase in the
flutter speed can be achieved when employing an array of distributed
vibration absorbers.49

IV. STOCHASTIC CASE OF THE AIRFOIL MODEL

Several random fluctuations, such as atmospheric turbulence,
gusts, etc., always exist in the practical flight environment, which
will affect the performance of an aircraft.61–70 As a consequence,
it is of extreme importance to consider stochasticity in the design
process of an aircraft. The development of random dynamic the-
ory provides us an opportunity to understand the complex dynamic
behaviors of the conceptual airfoil system (1) with different random
fluctuations. In general, for a nonlinear dynamics problem, three
aspects are usually of interest, i.e., input–system–output. When we
consider the effects of random fluctuations on the aeroelastic air-
foil system (1), the following three problems arise. The first one
is how to describe complex stochastic excitations in the aeroelas-
tic airfoil models? The second one is how to obtain the solution of
the established stochastic airfoil systems? The third one is how to
suppress the undesired random vibrations in the aeroelastic airfoil
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FIG. 3. Basin stability value for four different vibration patterns of the first blade against the airstream velocity. Reproduced from Nitti et al., Nonlinear Dyn. 103, 309–325
(2021). Copyright 2021 Author(s), licensed under a Creative Commons Attribution (CC BY) License.

systems? In recent years, the development of stochastic dynamics
exhibits the following characteristics. The excitation models develop
from simple Gaussian, white, and stationary noises to non-Gaussian,
non-white, and non-stationary noises and other complex situations.
The systems expand from simple low-dimensional, smooth nonlin-
ear systems to high-dimensional, non-smooth, and other complex
cases. These facts promote the development of the stochastic flutter
of the conceptual airfoil models.

A. Stochasticity quantification

Stochasticity quantification is of extreme significance and the
key step to subsequent research studies and has attracted much
attention from scholars in the aeroelastic fields.66,86–91 It should be
emphasized that appropriate models to quantify the uncertainties
are of considerable importance to flutter analysis of the aeroelas-
tic systems. In general, probabilistic, non-probabilistic, and fuzzy
methods are three main approaches employed for modeling dif-
ferent uncertainties.92 If enough data are available to determine
the statistical distribution of uncertainty parameters, probabilistic
methods are preferred. For example, Xu et al.93 and Hu et al.94

employed Gaussian white noise to model the external random fluc-
tuation acting on a typical two degrees of freedom airfoil model.
The idealized Gaussian white noise usually cannot well describe
the complex flight environment. On the contrary, the noises with
non-zero correlation time are more desired in practice. In the past
few decades, Poirel and Price61,62 exploited colored noise models
to characterize stochasticity of a two-dimensional airfoil model in
turbulence flow. They considered the Dryden turbulence model
and modeled the vertical and longitudinal velocity components
as61,62

duT +
Vm

L
uT dt = σT

(

2Vm

πL

)
1
2

dW1, (5a)

dwT +
2Vm

L
wT dt +

V2
m

L
2

(∫ t

0

wT ds

)

dt

= σT

(

V3
m

πL
3

)
1
2
(∫ t

0

dW2

)

dt + σT

(

3Vm

πL

)
1
2

dW2, (5b)

in which uT and wT are the longitudinal and vertical components,
respectively, Vm is the mean freestream velocity, L is the total lift
force, σT is the standard deviation, and W1 and W2 are two inde-
pendent Wiener processes. In addition, Liu et al.95 employed an
exponentially correlated, colored Gaussian noise to establish a new
stochastic airfoil model with harmonic excitation. Specifically, the
considered colored noise satisfies95

E [ξ (t)] = 0, E [ξ (t) ξ (s)] =
ν

τ
exp

[

−
|t − s|

τ

]

, (6)

in which E [·] denotes the mathematical expectation and ν and τ

are, respectively, the noise intensity and the correlation time. Fur-
thermore, they also used a narrow-band process with the following
expression to characterize random disturbances of the external flight
environment:96

ξ (t) = A cos [�t + νW (t)] , (7)

in which A, �, W (t), and ν are, respectively, the amplitude, the cen-
tral frequency, the standard Wiener process, and the noise intensity.
Subsequently, Chassaing et al.66 employed an adaptive stochastic
spectral projection method to quantify stochasticity on a two-
dimensional elastically mounted lifting surface in supersonic flow.
They described the stochasticities in structural damping of both
plunge and pitch degrees of freedom as uniform random variables.
Besides, other important excitation models with different statistical
properties were also presented to quantify the stochasticity on the
two-dimensional aeroelastic airfoil models, such as non-Gaussian
colored noise,97,98 randomly fluctuation flow,99,100 etc.101–103
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FIG. 4. Steady-state amplitude–frequency responses of the airfoil system (1) with the narrow-band random fluctuation (7) when the noise intensity ν = 0 and the flow speed
less than the critical flutter speed: (a) plunge motion and (b) pitch motion. “–,” stable analytical solutions; “·,” unstable analytical solutions; and “F,” numerical solutions.
Reproduced with permission from Liu et al., Commun. Nonlinear Sci. Numer. Simul. 84, 105184 (2020). Copyright 2020 Elsevier.

However, in practice, available information on uncertainty is
usually limited and insufficient, which leads to difficulties in deter-
mining their statistical characteristics.92,104 For this case, interval
analysis, as a non-probabilistic method, has been preferred and per-
formed in the aeroelastic airfoil models with non-probabilistic inter-
val uncertainties.92,104–113 For instance, Zheng and Qiu105 employed
an interval uncertain model to quantify the stochasticity of the air-
foil system’s parameters. Both aerodynamic and structural param-
eters were considered to be dependent on an n-dimensional
interval uncertain parameter vector γ = [γ1, γ2, . . . , γn]T that
satisfies105

γ ∈ γ I =
[

γ , γ
]

= [γ c − 1γ , γ c + 1γ ] . (8)

It follows that

γj ∈ γ I
j =

[

γj, γj

]

=
[

γ c
j − 1γj, γ

c
j + 1γj

]

, j = 1, 2, . . . , n,

in which γ = (γj) and γ = (γj) denote, respectively, the lower and

upper bounds of the vector γ , and γ c = (γ c
j ) and 1γ = (1γj) rep-

resent the nominal value and the interval radius of the vector γ I,
respectively.105

On the other hand, for many practical engineering problems,
knowledge is usually incomplete or unavailable. Hence, the fuzzy
method is more suitable to describe the uncertain behavior.92,114–116

In this work,92 the fuzzy uncertainty and the reliability analysis of an
airfoil system were investigated utilizing a fuzzy interval approach.
Therefore, the uncertainties were modeled as fuzzy triangular mem-
bership functions.92

B. Noise-induced complex dynamics

1. Stochastic bifurcation

The coupling interaction between the nonlinearity and the
stochasticity can lead to complex vibration behaviors in compari-
son with a deterministic model.64–66,96,99,117–127 Thus, it is important

to understand the resulting dynamics of the aeroelastic airfoil sys-
tem (1) with uncertain disturbances via analytical, numerical, or
experimental methods. Several effective techniques, such as the cen-
ter manifold reduction method,64 the incremental harmonic balance
method,65 and the adaptive spectral method,66 have been devel-
oped to analyze the nonlinear behaviors of the two-dimensional
airfoil systems with gust-load or parameter uncertainty. Besides,
Liu et al.93,95,96 revealed analytically the influence mechanisms of
different types of random fluctuations, including Gaussian white
noise,93 Gaussian colored noise,95 and narrow-band noise,96 on a two
degrees of freedom aeroelastic airfoil model. They developed some
approximated analytical techniques to achieve theoretical analysis
for the established airfoil systems, including a stochastic averaging
technique93,95 and a method of multiple scales.96 In Refs. 93 and
95, a perturbation technique, together with the stochastic averag-
ing method, was examined to achieve the reducing and decoupling
of a coupled two degrees of freedom typical airfoil system. Then, the
amplitude–frequency relation and the time-averaged mean square
response of the amplitude for the stochastic airfoil models were
deduced and verified. What’s more, in Ref. 96, the effects of both vis-
coelasticity and narrow-band random fluctuations defined by Eq. (7)
on the airfoil model were further studied in detail. Therefore, the
method of multiple scales was employed to derive approximated
analytical solutions of the proposed airfoil model and the correct-
ness of which was verified through numerical simulations. They
found that the narrow-band random fluctuation has some remark-
able influences on the nonlinear dynamics of the airfoil model. For
the case of the noise intensity ν = 0, the airfoil systems show dif-
ferent dynamic behaviors when the flow speed is less than and
beyond the critical flutter speed. Single-periodic responses are only
in certain ranges of the frequency � or amplitude A when the flow
speed is beyond the critical flutter speed. Such behaviors are dif-
ferent from the case of the flow speed less than the critical flutter
speed, where the airfoil system always shows periodic motions for
a larger periodic excitation.96 Figure 4 demonstrates the steady-state
amplitude–frequency responses of the airfoil model when the noise
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FIG. 5. Time history of the pitch motion of the airfoil system (1) with the narrow-band random fluctuation (7) under different noise intensities when the frequency � = 0.84
[marked by the red solid-line in Fig. 4(b)]: (a) ν = 0.05, (b) ν = 0.10, (c) ν = 0.15, and (d) ν = 0.25. Reproduced with permission from Liu et al., Commun. Nonlinear Sci.
Numer. Simul. 84, 105184 (2020). Copyright 2020 Elsevier.

intensity ν = 0 and the flow speed is less than the critical flutter
speed. We can observe a good consistency between the approxi-
mated analytical solutions and the numerical ones and a bistable
behavior as marked by the gray regions in Fig. 4. If the frequency
� is beyond a certain critical value, a saddle-node bifurcation will
occur where jump phenomena appear in the amplitude–frequency
response curve. Within the bistable region, two probable vibra-
tion patterns, called low-amplitude and high-amplitude oscillation
states, coexist. When the noise intensity ν = 0, the steady-state
responses of the airfoil model are strongly determined by the initial
conditions of the system. However, an interesting phenomenon, i.e.,
a stochastic jump phenomenon between high-amplitude and low-
amplitude oscillations, can be induced with the increase of the noise
intensity ν gradually, as plotted in Fig. 5.

Recently, Raaj et al.99,118 explored the synchronization phe-
nomenon in a two degrees of freedom aeroelastic airfoil system
during an intermittency route to flutter. Furthermore, coupling
nonlinear dynamical systems are also studied, which can lead
to some complex behaviors.120,121,128 Amplitude death, as one of
the most interesting phenomena, has been explored in the air-
foil systems.119–121 Raaj et al.120,121 further considered the non-
linear dynamics of two coupled nonlinear aeroelastic systems
with identical structures subjected to axial flows and uncovered

an interesting phenomenon, i.e., amplitude death. Riley et al.88

proposed a methodology for uncertainty quantification in an aeroe-
lastic airfoil model, and the modeling uncertainty was used to drive
the necessity of further experimental data points. More recently, Ian-
nelli et al.91 explored the influences of model uncertainty on the non-
linear dynamics of an aeroelastic system. Besides, Zheng and Qiu105

proposed a novel numerical method to study the flutter stability of
airfoil systems with interval uncertain parameters. They considered
interval uncertain parameter vector γ described by Eq. (8) into both
aerodynamic and structural parameters of an aeroelastic airfoil sys-
tem (1) and then expressed the governing equations with interval
uncertainty as follows:105

M (γ ) q̈ +
(

C (γ ) + C1p (γ )
)

q̇ +
(

K (γ ) + K1p (γ )
)

q = 0, (9)

in which C1p and K1p represent the aerodynamic damping and stiff-
ness matrices, respectively. Subsequently, two effective approaches,
including the sensitivity-analysis-based vertex method and the
Bernstein polynomial method, are implemented to solve a gener-
alized eigenvalue problem associated with Eq. (9) to obtain interval
bounds of the uncertain parameters. At the same time, some com-
parisons were performed among the proposed two approaches,
the interval perturbation method, and the Monte Carlo simulation
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method, in terms of a two degrees of freedom aeroelastic airfoil
model.105

2. Stochastic stability

The stability of aeroelastic systems with random fluctuations
is very crucial to engineering applications. Singh et al.129 explored
stochastic stability of a typical two-dimensional airfoil aeroelastic
model in turbulence flow. The Dryden turbulence models (5a)–(5b)
were exploited to describe the vertical and longitudinal velocity
components, and the Hopf bifurcation phenomenon was analyzed
via a stochastic dimensional reduction method. Liu et al.94,97,101,130

studied stochastic stability of a binary airfoil model under differ-
ent random fluctuations, including colored, narrow-band, and other
noises, through calculating the moment Lyapunov exponent, respec-
tively. In general, the pth moment Lyapunov exponent is defined
as94,97,101,130

Λ
(

p, x0

)

= lim
t→∞

1

t
log E [‖x (t, x0)‖]p , p > 0, (10)

in which x (t, x0) denotes the solution process. If Λ
(

p, x0

)

< 0,
the pth moment is stable; otherwise, it is unstable almost surely.
Under some specified conditions, the limit of Eq. (10) exists and is
independent of the initial value x0. Consequently, Λ

(

p, x0

)

can be

expressed as Λ
(

p
)

, and then the largest Lyapunov exponent is given
by

λ =
dΛ

(

p
)

dp

∣

∣

∣

∣

∣

p=0

= lim
t→+∞

1

t
log‖x (t, x0)‖.

It should be noted that it is of great difficulty to determine
the moment Lyapunov exponent in general. As a result, approx-
imated analytical or numerical solutions are expected. In these
works of literature,94,97,101,130 utilizing the singular perturbation the-
ory, approximated analytical solutions of the moment Lyapunov
exponent were obtained, which agree well with the Monte Carlo
simulation results.

Besides, for some real-world problems, the desired system state
may be mathematically unstable in the sense of Lyapunov stability
but oscillate sufficiently near the desired state. For this moment, its
performance is still acceptable because such a system state is not
able to damage the structure of an aircraft.131 Thus, the concept of
practical stability was proposed by LaSalle and Lefschetz132 and then
developed by Laksmikantham et al.131,133 to study the stability of
nonlinear systems. Generally speaking, the practical stability is more
appropriate to some practical applications than the Lyapunov one
because it can characterize both qualitative and quantitative behav-
iors of the systems.132 Under the above consideration, Liu et al.95

exploited the concept of practical stability to analyze the stochas-
tic stability of a two degrees of freedom aeroelastic airfoil system
with a combined excitation of harmonic external force and colored
Gaussian noise.

3. Early warning of aeroelastic flutter

It should be emphasized that the presence of both nonlinear-
ity and stochasticity can induce some complex dynamical behav-
iors, including intermittency134–139 and undesired critical transition

behavior from the low-amplitude oscillation state to the high-
amplitude one93,95,96 induced by random fluctuations in aeroelastic
airfoil systems. These unwanted behaviors will seriously threaten
the flight safety of an aircraft and usually lead to structural dam-
age and even catastrophic failure of an aircraft due to accumulation
of fatigue. As a consequence, identifying the onset and predicting
the occurrence of undesired and dangerous flutter behaviors and
achieving their early warning before flutter occurs is thus extremely
crucial and necessary in the design and health monitoring of the
wing structure. In the past few years, the problem of early warn-
ing has been a particularly interesting topic140–142 and has been
considered in the aeroelastic fields.134–139

Usually, complex dynamical behaviors appear in the unstable
region of the subcritical Hopf bifurcation, as indicated in Fig. 1(b),
in particular, the interesting intermittency behavior, which is dan-
gerous and can destroy the wing structure. Hence, the unstable
region is also called a high-risk region to the airfoil model and
must be precursed before it occurs. In recent years, Venkatramani
et al.134 explored the dynamical responses of an NACA 0012 air-
foil through a wind tunnel experiment. They observed intermittent
bursts of periodic oscillations in the pitch and plunge degrees of free-
dom from the experimental data. At the same time, a powerful tool
called a recurrence plot was exploited to characterize the dynamical
behaviors of an airfoil system in the phase space, which is obtained
by134,135,143

Rij = 2
(

ε̄ − ‖xi − xj‖
)

, i, j = 1, 2, . . . , N, (11)

where N is the number of measured points xi, 2 is the Heaviside
function, ε̄ is a predefined threshold, and ‖xi − xj‖ is the Euclidean
distance between the state points xi and xj. The recurrence matrix
constructed by Eq. (11) is a symmetric matrix comprising the ele-
ments of zeros and ones. They found that statistics from recurrence
plots can be employed to develop model-free precursors for achiev-
ing early warning of the unwanted aeroelastic flutter behaviors.134

Moreover, they attempted to understand the physical mechanisms
that cause the intermittency bebavior in the airfoil system with a ran-
dom fluctuation flow135 and found that the time scales of the input
flow fluctuations can cause two different types of intermittency, i.e.,
“on–off” and “burst” type intermittency. Furthermore, they devel-
oped a new indicator, i.e., the Hurst exponent, and explored its
potential to warn against the impending flutter behavior.136 At the
same time, Venkatramani et al.137 further presented a set of model-
independent indicators that are obtained directly from the time
history, including entropy measures, the Lempel–Ziv complexity,
Hurst exponents, and measures from recurrence plots to achieve
early warning of the impending aeroelastic flutter.137 Recently,
effects of random fluctuation flow on the stability of a two degrees
of freedom airfoil model with cubic structural nonlinearity were
examined.138 A Shannon entropy measure was presented to quan-
tify the stochastic P-bifurcation regime, which can also be regarded
as a precursor to warn the dangerous flutter behavior.

More recently, Ma et al.144 explored the prediction of noise-
induced tipping from low-amplitude to high-amplitude oscillations
on a two degrees of freedom airfoil system with the narrow-band
random fluctuation (7). More importantly, a new concept, i.e.,
the high-risk region defined as the escape probability PE ≥ 1/2,
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FIG. 6. High-risk regions of the pitch degree of freedom of the airfoil system (1) with the narrow-band random fluctuation (7): (a) and (b) Rα−� with respect to the noise
intensity ν and the frequency �. (c) and (d) Rα−A with respect to the noise intensity ν and the amplitude A. Reproduced with permission from Ma et al., Chaos 32, 033119
(2022). Copyright 2022 AIP Publishing LLC.

as an efficient early warning indicator, was proposed to approx-
imately quantify the high-risk regions where the noise-induced
catastrophic high-amplitude oscillations may occur in advance.144

Figure 6 demonstrated the high-risk regions Rα−� and Rα−A of the
pitch motion with respect to the noise intensity ν, frequency �, or
amplitude A of the random excitation, respectively. It can be seen
that both the high-risk regions Rα−� and Rα−A increase with the
increase of the noise intensity ν. The quantified high-risk regions are
the important geometric structures that can be exploited to predict
in advance and early warn the noise-induced catastrophic high-
amplitude oscillations in the aeroelastic airfoil systems before such
unwanted behaviors occur.144

We have found that over the past few decades, there have
been several studies potentially providing a series of early warning
approaches for impending aeroelastic flutter or catastrophic tipping

behaviors in conceptual aeroelastic airfoil systems. These findings
suggest that critical behavior in airfoil systems could have promis-
ing applications even for real-time structural health monitoring and
prediction.

C. Suppression of random vibration

Sustained random vibration is particularly dangerous and
unexpected to the engineering design, which generally leads to dam-
age or structural fatigue to the aircraft wing. During the past decade,
several control approaches, such as optimal control, feedback con-
trol, and others, have been developed to suppress the undesired
random vibration of the aeroelastic airfoil system (1) with different
random fluctuations.95,98,123,145–153 For instance, Liu et al.95 exploited
an SMC technique to address vibration suppression of a two degrees
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FIG. 7. Time history and phase diagrams of the airfoil system (1) with the colored Gaussian noise (6) and the SMC law: (a) and (c) plunge motion. (b) and (d) Pitch motion.
Reproduced with permission from Liu et al., Appl. Math. Modell. 64, 249–264 (2018). Copyright 2018 Elsevier.

of freedom airfoil model excited by a combination of harmonic
force and colored Gaussian noise. Therefore, an integral sliding
mode vector function was selected to construct the SMC law.95 More
importantly, the concepts of ultimate reachability with an arbitrary
small bound and practical stability were introduced to analyze the
reachability and stability of the controlled airfoil system.95 Figure 7
shows the time history and the phase diagrams of the stochastic
airfoil system with the designed SMC control, in which the insets
in Figs. 7(a) and 7(b) display the corresponding partially enlarged
view. A stochastic jump can be observed when the SMC controller
is not activated in the airfoil system, whereas the system states will
converge to zero under the SMC controller. Numerical simulation
results indicated that the presented control scheme is very effec-
tive and feasible to suppress such a stochastic jump due to the effect
of random fluctuations on the aeroelastic airfoil system. Moreover,
Huang and Tao98 proposed a feedback control strategy to exam-
ine vibration control of a two degrees of freedom binary airfoil
model subject to non-Gaussian colored noise. At the same time,
the stability of the controlled airfoil system was also analyzed via
the largest Lyapunov exponent. Zhang et al.123 proposed an adaptive
controller with an estimation update law to stabilize the unexpected
vibration of a three degrees of freedom airfoil model with stiffness

and damping uncertainties. Besides, the excitation of atmospheric
gust was also considered to model the effects of the external flight
environment on the wing structure.

However, most of them may not work effectively if actuator
faults include in the systems.154–157 The existing works rarely con-
sider the effect of actuator faults in the airfoil models, but it is more
practical and significant to take the fault-tolerant control problem.
In recent years, Gao et al.154–156 addressed flutter suppression of two-
dimensional airfoil models by means of the RBF neural network
and the fault-tolerant control technique. Therefore, both actuator
faults and uncertain disturbances were considered in the airfoil
system, and a RBF neural network was utilized to construct the con-
trol law.154–156 Simulation results demonstrated that the proposed
fault-tolerant control strategy is reliable and robust to the aeroelastic
airfoil system with actuator faults.

V. DATA-DRIVEN PROBLEMS OF THE AIRFOIL MODEL

There are still several problems that need to be solved in the
existing research studies on the dynamics and vibration suppression
of the conceptual aeroelastic airfoil models. In terms of modeling,
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most of the current studies are mainly based on accurate mathemat-
ical models, but it is difficult and is challenging to obtain an accurate
mathematical representation of the governing equation (1) for com-
plex wing structures. In terms of methodology, traditional theories
and methods rely on the mathematical model (1) with all parameters
known and show low computational efficiency in dealing with com-
plex situations, especially for high-dimensional or stochastic cases.
Although numerical simulations can provide insights into dynam-
ical responses of the aeroelastic airfoil systems, it is impractical
because the high computational expense is inevitable in practice. On
the other hand, with the development of sensor technology, people
can collect a large amount of structural response monitoring data by
placing a large number of sensor devices on the wings of an aircraft
to monitor the vibration state of the airfoil structure from a wind
tunnel experiment or a flight test. An important emerging problem
is to leverage data to improve modeling and prediction of complex
nonlinear dynamical systems. Consequently, developing fast and
efficient methods for processing these available data are highly desir-
able. Considering the increasing complexity of real wing structures
and the increasing amount of available data, data-driven problems
of the aeroelastic airfoil models have been an increasingly popu-
lar research topic. At the same time, machine learning has recently
received considerable attention for its powerful modeling and char-
acterization capabilities, which offers the possibility of solving prac-
tical nonlinear problems from a data-driven perspective.81–84,158–161

As an illustration, Xu et al. have leveraged the advantages of deep
learning for high accuracy solving of integer- and fractional-order
Fokker–Planck–Kolmogorov equations,158–160 meanwhile explored
global dynamical behaviors and response forecasting of a nonlin-
ear dynamical system by combining the generalized cell mapping
method and deep learning.161 Thus, inspired by the development of
data science and machine learning, new theories and methods for
the data-driven studies of complex dynamics and vibration control
of aeroelastic airfoil models should be presented. In the past decade,
data-driven techniques, including statistical and machine learning,
have become a critical complement to the nonlinear aeroelastic
systems.

A. Data-driven identification and reconstruction

As we all know, accurate mathematical models allow for robust
aeroelastic flutter analysis, response prediction, and control design,
which are very critical for aircraft safety, gust-load alleviation, and
others. However, the governing equation (1) of the conceptual
aeroelastic airfoil models is often unknown, but only limited mea-
sured data or time series are available. It is imperative to identify or
reconstruct the complex airfoil system from the available but limited
data.162–192 Usually, the nonlinear aeroelastic behaviors of the typi-
cal nonlinear airfoil models are strongly determined by the system
parameters, and therefore, it is of great importance and necessary to
accurately identify the structural parameters of the aeroelastic airfoil
systems from the measurement response data before carrying out
relevant nonlinear analysis. Liu et al.180,181 employed an enhanced
response sensitivity approach to address parameter identification
of two-dimensional aeroelastic airfoil systems with cubic structural
nonlinearity and without or with time-delay consideration cases,
respectively. They transferred the parameter identification into a

nonlinear least-squares optimization problem. Furthermore, Ding
et al.182 proposed an enhanced Jaya algorithm to achieve parameter
identification for a two-dimensional aeroelastic airfoil model with
an external store. They constructed the following objective func-
tion under the discrepancy between the measured and calculated
responses:182

P∗ = arg min
P





Npoint
∑

ss=1

Ttime
∑

tt=1

(

qmeasured
ss,tt − qcalculated

ss,tt

)2



 , (12)

in which the model vector P =
[

p1, p2, . . . , pn

]T
consists of the

identified systemic parameters, Npoint is the total number of mea-
surement points used for the purpose of identification, Ttime repre-
sents the total response time of each measurement point, qmeasured

ss,tt

is the measured response at time tt of the ss-th point, and qcalculated
ss,tt

means the corresponding calculated response. Then, an enhanced
Jaya algorithm was employed to optimize this objective function
(12). The results showed that the enhanced Jaya algorithm can
acquire more accurate results than other algorithms. In recent
years, Balatti et al.183 performed an investigation on gust-load
identification from the measured flight data. Three approaches,
including Tikhonov regularization (TIKH), truncated singular value
decomposition (TSVD), and damped singular value decomposition
(DSVD), were employed to deduce the identified gust load. All the
obtained numerical results suggested that the TIKH and TSVD reg-
ularization can achieve a more significant reduction than the DSVD
one on the reconstruction error.183

Recently, Liu et al.184 explored fixed-interval smoothing of
a conceptual two-dimensional airfoil model with structural non-
linearities in incompressible flow via a state-of-the-art technique.
Under the system (2) and by means of the classical Runge–Kutta
algorithm, for any pair of estimated system states

(

x̂j, x̂j+1

)

and inter-

mediate values {x̂
(i)
j }

s

i=1
, denote X̂ = {x̂j}

m

j=1
, X̃ = {x̂

(1)
j , . . . , x̂(s)

j }
m

j=1
,

the system states and even the unknown parameters can be esti-
mated simultaneously via minimizing the following loss function:184

L

(

X̂, X̃
)

=

m−1
∑

j=1

[

κ
(j)
1 L

(j)
1

(

X̂, X̃
)

+ κ
(j)
2

s
∑

i=1

L
(j,i)
2

(

X̂, X̃
)

]

+ λ̄‖Y − X̂‖
p
p, (13)

where

L
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1
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)

=

∥

∥

∥

∥

∥

x̂j+1 −
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∥

∥

∥
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2

,
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=

∥

∥

∥

∥

∥

x̂
(i)
j −

[

x̂j + 1tj

s
∑

l=1

ailf
(

x̂
(l)
j

)

]
∥

∥

∥

∥

∥

2

2

,

Y represents the noisy measurement data, and λ̄ ∈ (0, +∞) denotes
a penalty/regularization parameter. For the reason of simplificity, we
have omitted the time dependence in the vector fields f. The norm
in the second term of Eq. (13) can be selected as the l2-norm ‖·‖2

2 for
the Gaussian noise or the l1-norm ‖·‖1

1 for the heavy-tailed noise.
Other symbols and more details for this algorithm can be found in
Ref. 184. The accuracy and effectiveness of the introduced algorithm
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on the aeroelastic airfoil system with cubic or freeplay structural
nonlinearities are performed under several numerical experiments.
The simulated measurement data are generated according to the
following equation:180,184

Y = X + noise−level · std (X) · εnoise, (14)

in which X = {xj}
N
j=1

is the sampling data from the simulation tra-

jectory as the true state, εnoise is the measurement noise, noise−level
represents the level of measurement noise in percent, and std (X)

is a diagonal matrix and its diagonal elements consist of the stan-
dard deviation of each state.184 Both typical Gaussian or heavy-tailed
measurement noises were considered in Eq. (14). As an illustrated
example, the results of the pitch motion of the airfoil system with
cubic nonlinearity are performed in the chaotic regime corrupted
by 40% zero-mean Gaussian white measurement noise, as shown in
Fig. 8, in which partial system parameters, including nonlinear stiff-
ness coefficients and flow velocity, are assumed to be unknown. The
obtained results suggested that the introduced algorithm can achieve
excellent estimation for the system state and the unknown system
parameters simultaneously.184

Additionally, Mannarino and Mantegazza185,186 proposed two
techniques for nonlinear aeroelastic reduced-order modeling by
exploiting continuous- or discrete-time recursive neural networks
from input–output data, respectively, and the feasibleness of the
proposed approaches was verified via a two degrees of freedom
typical aeroelastic airfoil section. Bai et al.187 and Ghorbani and
Khameneifar,188 respectively, investigate reconstruction of airfoil
data and airfoil profile from unorganized noisy point cloud data
via a compressive sensing or a recursive weighted local least-squares
scheme. Dawson and Brunton189 and Sun et al.190 employed sparse
identification of nonlinear dynamics to improve approximations
of the Wagner function and identify reduced-order models for the
unsteady lift of an oscillating airfoil. Li et al.191 employed the LSTM
neural network to fit the relationship between the output and input
for varying Mach number and mean angle of attack. At the same
time, they also investigated the transonic flutter boundaries of a
NACA 64A010 airfoil to illustrate the performance of the pro-
posed technique. Beregi et al.192 carried out a study that focuses on
discovering universal differential equation (UDE) models for a non-
linear aeroelastic airfoil section. Both neural networks and Gaussian
processes were considered as universal approximators against the
mechanistic models from the first principles. Numerical and exper-
imental results indicated that the proposed algorithm has superior
performance on an aeroelastic airfoil system, and the trained UDE
model can fit well with the measurement data.

B. Data-driven prediction and control

To ensure the safe operation of aeroelastic airfoil systems, it is
very necessary to achieve a fast and accurate prediction of complex
dynamical behaviors. Catastrophic consequences can be avoided
and controlled if we can know about the possibility that the aeroe-
lastic airfoil system undergoes the undesired vibration behaviors
before they occur. As a consequence, there is of particular inter-
est developing effective techniques to predict long-term behaviors
of the aeroelastic systems from a short segment of transient data.

During the past decade, data-driven prediction and control prob-
lems of the aeroelastic airfoil models have been popular due to the
development of data science and machine learning.165,191,193–215

For example, in the aspect of response prediction, Sudha
et al.193 employed an autoregressive model to investigate flutter
prediction of a typical three degrees of freedom airfoil model
based on simulation data. To improve the accuracy and effi-
ciency of the flutter prediction procedure, Gu and Zhou196 focus
on flutter onset prediction utilizing the well-known autoregressive
moving-average (ARMA) parametric model. Both numerical and
experimental results were performed to test the effectiveness of
the ARMA parametric model for aeroelastic flutter prediction of
the airfoil model. In these works,200–205 a novel method based on
a critical slowing down was proposed for forecasting the bifur-
cation behaviors only from the much fewer observation data of
the pre-bifurcation regime. Simulation results suggest that the pro-
posed method can predict the post-bifurcation regime accurately.
Recently, Wang et al.206 employed the generative deep learning to
develop an important method for extracting and predicting the flow
fields around supercritical airfoils. Additionally, Wang and Wang209

analyzed the nonlinear aeroelastic behaviors using deep learning and
compared the differences between the deep neural network (DNN)
and the long short-term memory (LSTM) applied to the prediction
of flutter speed. Figure 9 shows, respectively, the prediction results
of the flutter speed obtained from the DNN model and the LSTM
model.209 In Fig. 9, the red dots indicate the results of the true flutter
speed vs the predicted flutter speed, while the dashed line represents
the prediction result of the DNN or LSTM model. They found that
accuracy of 95.6% is achieved for the case of DNN, while the accu-
racy of 96.8% is achieved for the case of LSTM, which indicates that
the LSTM model can obtain higher accuracy for predicting the flut-
ter speed than the DNN one.209 In addition, Li et al.211 proposed a
new technique based on deep reinforcement learning for reducing
the aerodynamic drag of supercritical airfoils. Results show that the
learned policy is effective and can be applied repeatedly to achieve
greater drag reduction.

Besides, in the aspect of vibration control, Zhang and Söffker212

proposed a novel data-driven criterion and design a controller for
stabilization of unknown nonlinear discrete-time systems based on
online black-box system identification. Importantly, the proposed
stability criterion directly uses the time series instead of the dynam-
ical models of the aeroelastic airfoil system. Jia et al.215 proposed a
novel optimal controller, i.e., a data-driven adaptive dynamic pro-
gramming control strategy, for an aeroelastic airfoil system, which
can effectively avoid the effects of uncertainty. Numerical results
indicated that the proposed control method can eliminate the LCO
phenomenon of the aeroelastic airfoil system within several seconds
and possess superiority and feasibility.

VI. FUTURE DIRECTIONS FROM PAST INSPIRATION

During the past decade, we have already witnessed that there
has been some significant progress in complex nonlinear dynamics
and vibration suppression of the conceptual two-dimensional air-
foil models, in particular, the aspects of stochastic dynamics and
data-driven studies. Despite all this, there are still several open prob-
lems that are worth further exploring in-depth in the aspects of
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FIG. 8. Estimates of the pitch motion for the airfoil system (2) with cubic nonlinearity in the chaotic regime corrupted by 40% zero-mean Gaussian white measurement noise:
(a) time history, (b) relationship between the true and estimation state, (c) phase diagram, (d) measurement noise, and (e) the density histogram of the measurement noise.
Reproduced with permission from Liu et al., Acta Mech. Sin. 37, 1168–1182 (2021). Copyright 2021 Springer Nature.

accurate modeling, response solving, and dynamics control of con-
ceptual airfoil models.

(1) Stochasticity quantification of complex flight conditions. The
stochasticity in the existing studies is mostly characterized as
simple cases, such as Gaussian or uniform distributions. How-
ever, in a complex flight environment, the excitations of an
aircraft subjected to them are very complicated. On the one
hand, an aircraft inevitably encounters various kinds of severe
flight conditions, such as extreme high or low temperatures,
strong winds, thunderstorms, etc., which will have a significant
threat on the flight safety of an aircraft. On the other hand,
in a turbulent environment, there may be random fluctuations
with a long-correlation feature. It is of considerable impor-
tance to accurately understand the nonlinear dynamics of the
conceptual airfoil models under extreme flight conditions and
long-correlation noise to ensure the flight safety of an aircraft.
Consequently, we need to further explore the excitation mod-
els acting on the aeroelastic airfoil models that can characterize
the complex flight conditions of an aircraft, such as Poisson or
Lévy noises,216–218 with a large jump describing the extreme flight
conditions, fractional Gaussian noise219 with a long-correlation
property, and even other complex cases.

(2) High-dimensional nonlinear airfoil models. For simplicity,
most of the existing works only consider the simplified
two-dimensional aeroelastic airfoil models. However, more
complex wing models, such as beam or plate structural

models, folding wings, high-aspect-ratio wings, etc., can
better reflect the situation in practical engineering, but it also
brings some chalenges, especially in the aspect of theoretical
analysis of the airfoil systems. For such complex situations,
the governing equations of the aeroelastic airfoil models are
usually described as high-dimensional nonlinear ordinary or
partial differential equations, which may lead to the course of
dimension. It will severely limit the application of the clas-
sical solving methods for the dynamical response analysis of
complex wing structures. Effective decoupling and reducing for
the high-dimensional nonlinear airfoil systems becomes a cen-
tral challenge in the theoretical and numerical analysis and the
applications of data-driven techniques. The key is to ensure
fidelity between the solution of the original system and the solu-
tion of the reduced-order system. Fortunately, the averaging
principle can guarantee this property.220–222 Thus, it is necessary
to further discuss more complex airfoil models, in particular, the
cases with random fluctuations. Meanwhile, the development of
high-fidelity reduced-order theory and efficient numerical algo-
rithms is extremely urgent for nonlinear aeroelastic analysis of
complex airfoil models.

(3) Dynamics control of conceptual airfoil models. Complex dynam-
ical phenomena, including unwanted subcritical Hopf bifurca-
tions, discontinuous or catastrophic saddle-node bifurcations,
chaotic motion, stochastic switching, and even extreme events,
can be induced due to the mutual coupling of nonlinearity and
stochasticity in the conceptual airfoil models. These behaviors
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FIG. 9. Prediction results of flutter speed of the airfoil model obtained from different methods: (a) DNN model. (b) LSTM model. Reproduced from Y. R. Wang and Y. J. Wang,
Adv. Mech. Eng. 13, 16878140211062275 (2021). Copyright 2021 Author(s), licensed under a Creative Commons Attribution (CC BY) License.

would cause an aircraft to become unstable. For example, abrupt
jump and hysteresis phenomena are caused in the airfoil systems
by the saddle-node bifurcations, in which two stable attractors
exist with an unstable one in between at a certain interval of the
control parameter. Several control strategies, such as bifurca-
tion control methods,223–225 have been studied in the last several
decades to achieve better dynamics control of a variety of non-
linear dynamical systems. However, as the wing structure and
service environment become more complex, the airfoil model
exhibits strong nonlinearities, strong coupling, model uncer-
tainties, external disturbances, and others, resulting in more
complex dynamical behavior, which makes the design of control
methods extremely difficult. In particular, it will become more
complicated when random or non-smooth factors are present.
As a result, future research is needed to propose some effective
controller design methods for solving the stability of complex
wing systems, such as active or passive control strategies, partic-
ularly data-driven techniques combined with machine learning,
in order to better realize the complex dynamics control of typ-
ical airfoil models. Meanwhile, it is also imperative to consider
the practical application of control methods in the control of
complex dynamics of conceptual airfoil systems.

(4) Hypersonic aeroelastic airfoil models with uncertain distur-
bances. The existing studies on the airfoil models with uncer-
tain disturbances have focused on the subsonic, transonic, and
supersonic cases, but little research studies have been worked
on the stochastic dynamics of airfoil models in hypersonic
flow, especially in the theoretical analysis. Hypersonic vehi-
cles have become a development trend and requirement in
the aerospace field. In hypersonic flow, the flight environment
is more severe, and the fluid-interaction coupling problem is
also more complicated where both structural and aerodynamic
nonlinearities have to be considered, resulting in the wing
structure being more prone to aeroelastic instability.
Meanwhile, the coupling problems of multiple physical fields,

including aerodynamic, structural, control, and thermal, have
to be also considered in the hypersonic scenario. These will
cause difficulties in accurate modeling, response solving, and
vibration suppression of the hypersonic airfoil models. For this
reason, new theories and methods are highly anticipated to be
developed for fluid–structure interaction analysis and vibra-
tion suppression of the hypersonic aeroelastic airfoil models,
which can help ensure good flight characteristics of hypersonic
vehicles and avoid catastrophic consequences due to the
unwanted aeroelastic behaviors of the wing structures.

(5) Data-driven study of conceptual airfoil models with complex
uncertain disturbances. In recent years, several data-driven tech-
niques have been exploited to carry out preliminary explo-
rations of related data-driven problems of typical aeroelastic
airfoil models, related to data-driven modeling, flutter predic-
tion and control, and others. However, it should be emphasized
that many of the existing studies mainly consider deterministic
airfoil models but neglect the effects of uncertain disturbances
on the aeroelastic airfoil systems. The presence of random
perturbations will limit the application of existing data-driven
methods and present some challenges in the interpretability and
generalization of the machine learning methods. As a result,
we should develop new data-driven approaches and theories
applicable to the study of data-driven problems in conceptual
aeroelastic airfoil models with uncertainty disturbances. At the
same time, interpretation and generalization of machine learn-
ing algorithms on the aeroelastic airfoil models are also highly
recommended.

(6) Data-driven problem of conceptual airfoil models with a small
amount of data. Many of the state-of-art data-driven tech-
niques, in particular, deep neural network models, still require
a large amount of training data, which are often unavailable,
impractical, or interpretable to their engineering application
with small datasets. In fact, for many practical engineering prob-
lems, the available data are generally quite limited and have a
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characteristic of small data, such as life testing data, on-line tran-
sient data, etc. Particularly, the amount of data has a consider-
able effect on the interpretation of machine learning techniques.
It is extremely crucial and of great importance for engineering
practical applications to obtain accurate understanding of the
aeroelastic airfoil systems with a small dataset. More impor-
tantly, we prefer to predict the long-term dynamic behaviors
of an aircraft using a small amount of transient data, in order
to meet the real-time requirements during the actual flight.
Accordingly, we should be devoted to developing several effec-
tive machine learning techniques that is applicable to the small
data problems by combining the mechanistic models and the
available data, such as physics-informed neural network, trans-
fer learning, data fusion, and others.

VII. CONCLUSIONS

In this paper, we review several significant theoretical, numer-
ical as well as experimental developments on the complex dynamic
response and vibration suppression of conceptual two-dimensional
aeroelastic airfoil models over the past decade, in particular, the
deterministic and stochastic dynamical responses and the relevant
data-driven problems. To begin with, the general form of the gov-
erning equation for the conceptual two-dimensional aeroelastic
airfoil models and a brief description of representative structural
nonlinearities arising from the wing structure, including cubic,
freeplay, and hysteresis nonlinearities, are presented. Subsequently,
the results related to the nonlinear dynamics and vibration suppres-
sion of the deterministic airfoil models are summarized, including
analytical or semi-analytical, numerical, and experimental method-
ological studies of flutter analysis, and active and passive vibra-
tion control methods of unexpected flutter responses. At the same
time, the recent advances on the aeroelastic airfoil models with
different types of random fluctuations are summarized, including
stochasticity quantification, noise-induced dynamics, early warn-
ing of unwanted aeroelastic behaviors, and other interesting topics.
Furthermore, several main results in recent years in data-driven
problems of the aeroelastic airfoil models are summarized, espe-
cially for data-driven response prediction and data-driven inverse
problems. Finally, further fascinating research directions that are
worth attention are also recommended, in particular, accurate mod-
eling, response solving, control of complex dynamics, and even the
problems of a small amount of data in conceptual aeroelastic airfoil
models. This mini-review aims at helping scholars in related fields
to be able to quickly understand the latest research results and pro-
vides valuable insight and inspiration for them to carry out related
research.
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