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ABSTRACT

Dynamical systems theory has emerged as an interdisciplinary area of research to characterize the complex dynamical transitions in real-world
systems. Various nonlinear dynamical phenomena and bifurcations have been discovered over the decades using different reduced-order
models of oscillators. Different measures and methodologies have been developed theoretically to detect, control, or suppress the nonlinear
oscillations. However, obtaining such phenomena experimentally is often challenging, time-consuming, and risky mainly due to the limited
control of certain parameters during experiments. With this review, we aim to introduce a paradigmatic and easily configurable Rijke tube
oscillator to the dynamical systems community. The Rijke tube is commonly used by the combustion community as a prototype to investigate
the detrimental phenomena of thermoacoustic instability. Recent investigations in such Rijke tubes have utilized various methodologies
from dynamical systems theory to better understand the occurrence of thermoacoustic oscillations and their prediction and mitigation, both
experimentally and theoretically. The existence of various dynamical behaviors has been reported in single and coupled Rijke tube oscillators.
These behaviors include bifurcations, routes to chaos, noise-induced transitions, synchronization, and suppression of oscillations. Various
early warning measures have been established to predict thermoacoustic instabilities. Therefore, this review article consolidates the usefulness
of a Rijke tube oscillator in terms of experimentally discovering and modeling different nonlinear phenomena observed in physics, thus
transcending the boundaries between the physics and the engineering communities.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091826

The occurrence of various nonlinear self-sustained oscillations in
different systems observed in our day-to-day life has been stud-
ied from a dynamical system’s perspective. Many such systems

dynamical states, bifurcations, and nonlinear behaviors such as
synchronization and oscillation quenching in coupled systems
that are often observed in nonlinear oscillators. Different non-

that mesmerize the human mind have been modeled as an oscil-
lator. Theoretical reduced-order models have been developed for
oscillators, e.g., Stuart-Landau, Van der Pol, Rossler, Lorenz, etc.,
to study and predict a plethora of dynamical behaviors observed
in natural systems. The experimental validations of these theo-
retically discovered dynamical phenomena, however, are limited
to oscillators involving electronic circuits including Chua’s cir-
cuit, lasers, pendulums, chemical oscillators, etc. In the present
study, we introduce the Rijke tube as a paradigmatic member to
the family of nonlinear oscillators. Rijke tube systems are pro-
totypical thermoacoustic oscillators and have been extensively
studied to understand the occurrence of complex thermoacous-
tic instabilities observed in gas turbines and rocket engines used
for propulsion and power generation applications. Recent stud-
ies on the Rijke tube have shown the existence of numerous

linear measures have been used to predict critical transitions
in a Rijke tube system. Therefore, through this review article,
we introduce the dynamical systems’ community to the Rijke
tube oscillator to experimentally validate their novel theoretical
findings and, thus, bridge the gap between the physics and the
engineering communities.

. INTRODUCTION

Most observations in our daily life can in one way or the other
be studied from a dynamical system’s perspective. Any system whose
behavior evolves with time, such as a moving bicycle,' the flow-
ing riverbed,”’ flocks of birds flying in the sky,' the changing
climate,” varying population densities of animals,*’ and the beating
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heart,"” can be considered as dynamical systems. These systems can
be mathematically modeled through differential equations by apply-
ing various physical laws."" For example, the motion of an object
can be described using Newton’s laws of motion, planetary dynam-
ics using gravitational laws, and the power output from electronic
circuits using electrostatic and electrodynamical system equations.'”
Specifically, any system that evolves with time can be investigated
from a dynamical system’s perspective using a governing equation
of the following form:

x = flx, 1), (1)

where x refers to the state variable (or a vector of state variables)
of the system and f indicates a function that governs the evolu-
tion of the variable in time. The behavior of a system can manifest
as various dynamical states. For instance, in the trivial case when
flx,£) = 0, the system is always considered to be at a steady state
where the dynamics of the state variable x saturates to a fixed value.
On the contrary, when f(x, f) constitutes linear and nonlinear terms,
the behavior of the system becomes complicated and exhibits a wide
variety of dynamical states. One commonly observed dynamical
state is the self-sustained oscillatory state wherein the dynamics of
a state variable shows fluctuations about a mean value. The occur-
rence of various self-sustained nonlinear behaviors has been studied
from a dynamical systems perspective by modeling the system as a
network of oscillators.'>*

Oscillations fascinate the human mind from a very young age,
starting from the joyful oscillations in a swing to the monotonous
motion of a pendulum bob. Our knowledge on such oscillations
grows as we learn about the spring-mass systems from physics
textbooks.'>'® The simple back and forth repeated fluctuations turn
into intricate linear and nonlinear differential equations. Oscilla-
tions can vary from being a mind-soothing tone from musical
instruments'” such as a flute or the vibrations in the string of a gui-
tar to the loud destructive sounds from the roaring of gas turbines or
rocket engines.'" In biological systems, oscillations can be associated
with the sustenance of life in the form of respiratory cycles, neural
networks in the brain, rhythmic beating of the heart, etc.'** Further-
more, hazardous disease spread models*' and structural oscillations
in bridges’>*’ and skyscrapers*>* are also represented by oscillators.
Oscillations, therefore, are ubiquitous in nature and engineering,
and their characteristics and desirability vary from system to system.

Although the nature of these aforementioned systems may
seem very different, the inherent equation behind the oscilla-
tions remains the same. For example, let us consider a simple
spring-mass-damper system, governed by the following equations
of motion:

mx + cx+ kx =0, 2)

where m is the mass of the system and ¢ and k are the damp-
ing coefficient and the spring constant, respectively [Fig. 1(a)]. The
oscillations in the system are driven due to the restoring force (kx)
of the spring, while the damper (cx) damps the oscillations. Sim-
ple harmonic oscillations are observed in the undamped case for
¢ =0 [Fig. 1(b)]. For a constant value of ¢ < 0, negatively damped
oscillations are observed [Fig. 1(c)], whereas for ¢ > 0, the system
ultimately attains a steady state in time [Fig. 1(d)], where x,; =0
can be referred to as an equilibrium state (or a fixed point). On
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FIG. 1. (a) Schematic of a spring-mass system with state variable, x(t), defined
as the distance from mean position x = 0, mass m, damping coefficient ¢, and
spring constant k. Dynamics of the state variable shows (b) undamped oscillations
for ¢ = 0, (c) an unstable behavior for c = —0.2 < 0, and (d) a stable behavior
forc = 0.2 > 0. The other parameters are keptatm = 1,k = 10,and x(0) = 1.

the other hand, introducing a nonlinear damping term [i.e., c(x)x],
the system engenders self-sustained oscillations.”” To analytically
obtain the equilibrium points, we need to set all the equations of lin-
earized time derivatives of state variables to zero, where the roots of
these equations indicate fixed points. Any perturbations to the equi-
librium points excites oscillations in the system, which eventually
decays (¢ > 0), grows (c < 0), or remains at a constant amplitude
in time (¢ = 0) depending on the value of c. The stability of these
fixed points can be obtained by computing the first derivatives of the
linearized equations [i.e., f(x)] about the fixed points. Depending
on the value of f (x), i.e., f (xeq) < 0 or f(x,) > 0, the fixed point
is classified as stable or unstable, respectively. A stable fixed point
tends to attract all the neighboring trajectories toward it—similar
to a sink. In contrast, an unstable fixed point tends to repel all the
trajectories nearby—similar to a source.

Apart from fixed points, there exists another set of attractors
and repellers for the trajectories in the phase space for systems that
exhibit oscillatory behavior. These attractors are often classified as
regular or strange attractors.'’>”” Regular attractors possess a dis-
tinct closed-looped shape for a particular dynamical state, whose
examples include the limit cycle and frequency-locked oscillations.
A regular attractor is also observed for quasiperiodic oscillations,
where the trajectory is bounded by a torus in phase space. In con-
trast, strange attractors are observed for chaotic oscillations.”****
Such oscillations are deterministic and exhibit sensitive dependence
on the change in initial conditions. The dimension of regular attrac-
tors is an integer number, while that of strange attractors is a
non-integer number.”* Regular oscillations are often modeled using
Vand der Pol or Stuart-Landau oscillators, while chaotic oscillations
are modeled using Lorenz or Réssler oscillators.' %!

Extensive research in the dynamical systems’ theory has been
carried out to characterize the nonlinear behavior of an oscilla-
tor. The bifurcation analysis is one commonly used approach to
study the occurrence of qualitative changes in the dynamics of an
oscillator on the variation of a control parameter.”"* These quali-
tative changes include emergence or change in the stability of fixed
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points,” the presence of tipping,” bistability and hysteresis,” etc.
Other approaches that have been developed to detect the dynam-
ical properties of an oscillator include Poincaré map, recurrence
plots, calculating measures such as Lyapunov exponents, correla-
tion dimension, etc.”**>” In addition to studies on characterizing the
dynamical behavior of individual oscillators, many studies have been
devoted toward understanding the coupled dynamics arising due to
the interaction of two or more oscillators. Furthermore, several stud-
ies have focused on developing various control strategies based on
self-feedback, mutual coupling, and external forcing to control or
quench self-sustained oscillations in a system of oscillators.”"'

Over the last three decades, various researchers have used dif-
ferent reduced-order nonlinear models and coupling schemes to
analyze the behavior of coupled oscillators. Toward this purpose,
commonly used oscillator models include the Van der Pol, Lorenz,
Stuart-Landau, Duffing, Chua, relay oscillators, etc.”*"*~* Vari-
ous coupling schemes™ have been invented, including time-delay
coupling, dissipative coupling, relay coupling, conjugate coupling,
environment coupling, etc. A system of such coupled oscillators
exhibits a plethora of dynamics depending on the number of oscilla-
tors and their coupling scheme.”~*” These dynamical states include
homogenous states such as synchronization,’”** amplitude or oscil-
lation death,’">" symmetry-breaking states such as chimera,”*
weak chimera=" and clustering,”® etc. However, the experimen-
tal evidence of coupled behaviors of these oscillators is limited to
a few systems including electronic circuits,””*’ lasers,”** chemi-
cal oscillators,*** and thermo-fluid systems.”>*~*" Although these
experimental systems provide limited controllability and a reduced
number of control parameters, they are extensively used due to the
demand for experimental verification.

In the present review, we introduce the Rijke tube, a proto-
typical thermoacoustic oscillator, as a paradigmatic oscillator in the
family of the aforementioned nonlinear oscillators. A typical ther-
moacoustic system consists of a heat source placed at a particular
location inside a duct. The heat source comprises a single flame,
multiple flamelets, or an electrically heated wire mesh. In such sys-
tems, positive feedback between the acoustic field in the duct and
the heat release rate fluctuations across the heat source often lead
to the occurrence of large amplitude self-sustained acoustic oscil-
lations known as thermoacoustic instability. Earlier review articles
on Rijke tubes in the engineering literature®~"* highlight the appli-
cation and relevance of such systems in the aerospace and rocket
industry from the perspective of investigating mechanisms and con-
trol of thermoacoustic instability. Here, we will cover numerous
recent experimental and theoretical studies performed on Rijke
tube systems in the last decade from a dynamical system’s perspec-
tive. These studies have investigated various dynamical transitions
(bifurcations) leading to the occurrence of thermoacoustic instabil-
ity, different nonlinear states observed during such instabilities, and
a variety of methodologies based on coupling or external forcing
used to mitigate these instabilities and measures developed to pre-
dict the occurrence of thermoacoustic instability in the system. Simi-
lar studies on characterizing and controlling the dynamical behavior
of oscillators are usually performed with phenomenological mod-
els in the dynamical systems literature. Here, we aim at attracting
the attention of the dynamical systems’ community to the Rijke tube
oscillator, which is known only in the thermoacoustic community,
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with its potential applications in advancing experimental research
on nonlinear oscillators.

Rijke tube systems are rather simple in design, easy to fabricate
and operate, and also allow us to perform strictly controlled exper-
iments. Furthermore, the presence of numerous control parameters
in such systems and their individual control facilitate the investi-
gation of various phenomena observed in general dynamical sys-
tems theory. The effect of external fluctuations (both harmonic and
stochastic) on the nonlinear behavior of a bistable oscillator can
be easily demonstrated through experiments by installing various
additional external subsystems such as actuators or loudspeakers.
Coupled phenomena such as synchronization and amplitude death
observed due to the interaction of oscillators can be easily studied
and verified by connecting two or more Rijke tubes using simple
tubes. Thermoacoustic instability in Rijke tubes often portrays itself
as dancing flames along with rhythmic sound production during the
states of limit cycle, quasiperiodicity, frequency-locked, and chaotic
oscillations.””™”

The outline of the article is as follows. In Sec. 11, we describe the
discovery of thermoacoustic oscillations in the original Rijke tube
system and various advances that have been made in the study of
Rijke tubes over the years in brief. Subsequently, we explain var-
ious dynamical states exhibited by the Rijke tubes and, thereby,
justify the claim of it being an excellent example for an oscil-
lator. We also present different types of Rijke tube systems and
briefly describe each of their experimental setups. In Sec. I1I, we
present the various bifurcations exhibited in a Rijke tube oscilla-
tor by varying the control parameter along with a description of the
dynamical states exhibited by the system. This is followed by a dis-
cussion on various routes to chaos observed in Rijke tube systems.
Section IV describes bistability along with different noise-induced
dynamical behaviors, such as coherence resonance, stochastic bifur-
cations, and pulsed instabilities. The interaction between coupled
Rijke tube oscillators leading to synchronization and phase-flip
bifurcation and different states of forced synchronization of the
Rijke tube oscillator are presented in Sec. V, followed by a discus-
sion on control strategies implemented to mitigate thermoacoustic
instability in Sec. VI. Finally, in Sec. VII, we conclude the study
and provide insights into possible future advancements and devel-
opments in the field along with its applications to other streams of
science and technology. Hence, we summarize relevant works con-
sidering the oscillatory behavior of the Rijke tube and the various
dynamical behaviors exhibited by the oscillator. Before we dive into
delineating the simple experimental Rijke tube as an oscillator and
explaining its distinguished characteristics, let us explore the various
types of Rijke tube oscillators.

1. A BRIEF HISTORY ON RIJKE SYSTEMS
A. Thermoacoustic instability and its challenges

The occurrence of thermoacoustic instability in rocket and
gas turbine engines has hindered the development of the energy
and aviation industry as well as the space and defense programs
for decades.'®’®”" The issue of thermoacoustic instability emerged
with deadly consequences in the rocket industry especially in the
1960s during the testing phase of the Apollo launch.>* When
testing the F1 engine for powering the Saturn V rocket, the Apollo
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team at NASA found that the gases in the engine developed violent
pressure oscillations (known as “combustion instability” or “ther-
moacoustic instability” in the parlance of propulsion engineers),
which causes significant harm to the engine. Although combustion
instability refers to stable limit cycle oscillations, engineers refer
to it as “instability” or the “unstable state of operation” due to
its disastrous consequences. Thermoacoustic instability can result
in loss of structural integrity resulting from increased vibrations,
overwhelming the thermal protection systems, damage to electronic
systems including guidance and navigation systems, performance
losses due to thrust oscillations, loss of controllability of the vehicle,
and sometimes even failure of the mission, causing an impediment
in the engine development amounting to billions of dollars of losses
annually to engine manufacturers.'**'-*

Scientists from all around the world have invested considerable
time and effort to suppress thermoacoustic instability and thereby
reduce the financial losses associated with it. Various theoretical
and experimental studies on thermoacoustic instability have been
performed over the years to understand the thermoacoustic phe-
nomena, characterize the various dynamical behaviors, and develop
methodologies to suppress these large amplitude thermoacoustic
oscillations. To understand the complex interactions between sub-
systems that lead to the occurrence of thermoacoustic instability, it is
essential to begin the process from a simple prototypical system and
gradually work our way toward more complex systems by adding
individual complexities. Hence, fundamental research on thermoa-
coustic instability began on prototypical thermoacoustic systems
known as Rijke tubes. Next, we present a historical perspective on
the development of Rijke tube systems.

B. History of Rijke tube systems

Higgins®! was the first to report the generation of combustion-
driven acoustic oscillations by a hydrogen diffusion flame enclosed
in a tube [Fig. 2(a)]. He referred to this phenomenon as the “singing
flame.” However, recent reports®-* point to the existence of such
oscillations prior to Higgins in a devise called “Kibitsunokama” (or
the iron bowl of Kibitsu), which was mentioned by a Buddhist monk
in his diary in 1568. Subsequently, Sondhauss™ observed the occur-
rence of acoustic oscillations in a glass tube with a heated closed bulb
at one end and the other end open to the atmosphere [Fig. 2(b)].
Later, in 1859, Rijke® discovered the production of a tonal sound
from a metal gauze, heated using a burner in a vertical duct. Such
a setup using the vertical duct with the concentrated heat source
located in the lower half was thereafter referred commonly as the
“Rijke tube” [Fig. 2(c)]. He observed the production of a loud sound
soon after the removal of the flame from the duct, which gradu-
ally decayed as the gauze cooled. He inferred that the production
of sound was due to the direct conduction of heat from the metal
gauze to the surrounding air in the tube. Rijke further observed that
the sound was absent when the tube is placed horizontally or when
the gauze is located in the upper half of the tube. He reasoned that
the upward flow of air in the vertical tube due to the natural con-
vection of air is necessary for the production of sound. The rapid
expansion of the air as it passes through the hot gauze and the grad-
ual contraction after engenders the sound in the tube.”-*” However,
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FIG. 2. Schematic of the experimental setups used for investigating thermoa-
coustic instability in the pioneering studies by (a) Higgins,* (b) Sondhauss,” and
(c) Rijke.”

his conclusion was incomplete and was unable to explain the rele-
vance of locating the wire gauze in the lower half of the Rijke tube in
the production of sound.

Subsequent analysis of heat-driven oscillations by Rayleigh
filled this void.”’~** He proposed that the addition of heat at the point
of highest compression or the extraction of heat at the point of high-
est expansion in an acoustic cycle promoted the generation of tonal
sound waves in the system. On the other hand, the heat addition
during the maximum expansion and the heat extraction during the
maximum compression resulted in the damping of acoustic oscil-
lations in the system. Thus, to generate thermoacoustic instability,
both acoustic pressure and heat release rate fluctuations should be
in-phase with each other. This condition for acoustic driving by a
heat source is now popularly referred to as the Rayleigh criterion,”
as it explains the promotion of thermo-acoustic oscillations in a
Rijke tube.”" Subsequently, the Rayleigh criterion was generalized to
account for acoustic losses in the system, whose expression can be
given as follows:”>”

1 (7 v
T / / P'(Hg'(t) dVdt > Acoustic damping, (3)
o Jo

where p'(¢) and ¢'(¢) correspond to the acoustic pressure and the
global heat release rate fluctuations in the flame and ¢, V, and T
correspond to the time variable, combustor volume, and the time
period of oscillations, respectively. Thus, thermoacoustic instability
is established in a system only if acoustic driving caused by unsteady
heat release rate fluctuations overbalances the acoustic damping in
the system. A detailed description of the history and the develop-
ment of the Rijke tube can be found in Refs. 68, 71, 93, 95, 97, and 98.
Hereon, we will discuss various modern variants of Rijke tube con-
figurations developed recently for studying the nonlinear behavior
of a Rijke tube oscillator.

C. Types of Rijke tube systems
1. Horizontal Rijke tube

The horizontal Rijke tube is a recent variant of the original
Rijke tube that we discussed before. It consists of a horizontal duct
with an electrically heated wire mesh as a compact heat source,
located at the quarter location from the inlet of the duct (Fig. 3).
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FIG. 3. Schematics illustrating (a) the boundary conditions of a duct that is open
at both the ends and (b) the experimental setup of a horizontal Rijke tube. In (a), x;
indicates the location of the heater wire gauze from the inlet, L is the duct length, p’
is the acoustic pressure fluctuations, and & is the mean flow velocity. (b) Adapted
with permission from Tandon et al., Chaos 30, 103112 (2020). Copyright 2020 AIP
Publishing LLC.

An external power supply is used to control the heat input to the
wire mesh; thus, it controls heat release rate fluctuations in the sys-
tem. As mentioned above, the natural convection of the air flow
is necessary for the generation of acoustic oscillations in the verti-
cal configuration of a traditional Rijke tube. It, therefore, causes an
intrinsic dependency between the heat release rate fluctuations in
the flame and the upward air flow. As a result, it is difficult to obtain
an independent control over the supply of air and the generation of
heat release rate fluctuations in the traditional vertical Rijke tube.
The ingenious invention of the horizontal Rijke tube by Matveev”
in 2003 brought a radical change, making the research performed on
Rijke tubes far less complicated. In this system, a continuous mean
air flow is established using external devices such as a blower™'"’
or a compressor.'”’ This decouples the mean flow and heat release
rate fluctuations in the system that, in turn, helps in independently
studying the effect of an increase in the mean air flow rate in the
Rijke tube system. This simplification in the setup further enables us
to evade the need to model natural convention (seen in traditional
Rijke tubes), facilitating much easier modeling of Rijke tube systems.

The duct used in the horizontal Rijke tube is long and main-
tains an open-open boundary condition for the acoustic standing
wave established inside the duct. Mathematically speaking, the total
pressure p(x,f) in a Rijke tube can be described as p(x,t) =p
+ p'(x, t), where p is the atmospheric pressure, p'(x, f) are the acous-
tic pressure oscillations, and x and ¢ are the space and time variables.
At both the ends of the Rijke tube, we have p(x = 0,t) = p(x =L, )
= p, where L is the length of the duct. Therefore, at the boundary,
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we observe p'(x = 0,1) = p/'(x = L, ) = 0. This boundary condition
where the acoustic pressure is zero is referred to as an acoustically
open boundary condition. On the other hand, in the case of acousti-
cally closed boundary conditions, the acoustic velocity (u') is zero at
the boundary.'**-'*

Furthermore, air is passed through a decoupler prior to enter-
ing the system. The decoupler is a large chamber used to dampen the
fluctuations in the air flow and supply a steady flow into the system.
The acoustic pressure oscillations established in the Rijke tube can
be measured using microphones/piezoelectric transducers mounted
on the duct. In a horizontal Rijke tube, we can vary different con-
trol parameters, such as the heater power supplied to the mesh, the
heater location in the duct, and the mass flow rate of air, to study
the occurrence of limit cycle oscillations (i.e., thermoacoustic insta-
bility) in the system. In addition, we can study the effect of external
perturbations (e.g., noise or harmonic forcing), facilitated through
loudspeakers, on the transition of the system behavior from a steady
state to limit cycle oscillations. Electrical heaters are also used in the
vertical configurations of Rijke tubes in recent theoretical studies by
Andrade et al.'">'" and Wilhelmsen and Meglio.""”

2. Vertical Rijke tube burners

In addition to the previously discussed Rijke tube configura-
tion consisting of a heated wire mesh as a compact heat source,
another widely used configuration considers the flame as a com-
pact heat source. Here, the flame indicates the region in the space
where chemical reactions take place, which converts cold unburnt
reactants (i.e., fuel and air) into hot burnt products. By saying com-
pact, we mean that the length of the heat source (i.e., the flame or the
mesh) is much smaller than the wavelength of the acoustic standing
wave established in the duct (i.e., lgame << ). We refer to such sys-
tems as Rijke tube burners in this article. Depending on how the fuel
and air enter into the combustion chamber, the type of flame in ver-
tical Rijke tube burners is usually classified as a diffusion flame or a
premixed flame.

In a diffusion flame Rijke tube burner [Fig. 4(a)], the fuel and
the oxidizer (air) are supplied through separate feed lines. The fuel
is supplied through a burner tube, whereas the oxidizer is supplied
through an annular space between the burner tube and the Rijke
tube. Both the fuel and the oxidizer enter the system via separate
decouplers that suppress the flow fluctuations, thus providing a
quiet flow. The diffusion flame is established at the interface where
the fuel (in gaseous form) meets the air. Previous experimental stud-
ies showed that a conical laminar flame'” or a turbulent flame''’ can
be established in this type of burner.

On the other hand, in a premixed flame Rijke tube burner
[Fig. 4(b)], the fuel and air are injected into a common mixing cham-
ber and this well-mixed fuel-air mixture is then fed to the burner
tube through a decoupler. The fuel-air mixture is ignited in the sys-
tem using a spark plug or a small pilot flame. In this setup, we can
study the interaction of the acoustic field with different configura-
tions of laminar flames including conical flame,'' "> V-flame, "' >
and also multiple conical flames.''»!1%11°

In experiments with such Rijke tube burners, we can vary dif-
ferent control parameters, such as the equivalence ratio (i.e., the
ratio of the actual fuel/air ratio to the ideal/stoichiometric fuel/air
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FIG. 4. Schematic representation of (a) a diffusion and (b) a premixed flame
vertical Rijke tube burner.

ratio for combustion) and the location of the flame in the tube, to
study the occurrence of thermoacoustic instability in the system.
The acoustic pressure in the duct can be measured using condenser
microphones or piezoelectric transducers. The heat release rate fluc-
tuations in the flame can be measured in terms of temporal or
spatiotemporal fluctuations in CH* or OH* radicals''*"'"* emitted by
the flame using a photomultiplier tube or a high-speed camera.

3. Other Rijke-type combustors

Other than the aforementioned two basic types of Rijke-
type combustors, there are a few more novel Rijke-type com-
bustors utilized to investigate thermoacoustic instability. These
include the spray combustor,''”'?" two-heater Rijke tubes,'”"'*
loop tubes,'*»'*»'** the segmented Rijke tube,”” and Rijke-Zhao
tubes.'”*~'** The spray combustor used by Pawar et al.''”'*’ con-
sists of needle spray injectors producing tiny droplets of fuel into
the resonator tube. The droplets are further passed through a mesh
unit, where secondary atomization takes place. The mesh unit also
serves as a flame holder, facilitating the variation of the location
of the flame in the duct. The two-heater Rijke tube'”! consists of
a horizontal aluminum duct with a square cross section having
two heating elements: a stationary primary heater and a movable
secondary heater. A segmented tube'” is a Rijke tube consist-
ing of two segments having different cross-sectional areas for the
upstream and the downstream of the tube. A Rijke-Zhao tube'*
consists of a mother tube having a Bunsen burner that splits into
two daughter tubes having different lengths. We will discuss vari-
ous dynamical behaviors and bifurcations observed experimentally
in the aforementioned configurations of Rijke tubes in detail in
Secs. [11-V. Having discussed various experimental configurations
of a Rijke tube oscillator, we next move our attention toward their
mathematical modeling.

D. Theoretical studies

Ever since the discovery of thermoacoustic oscillations in the
Rijke tube system, experimental studies on such systems were
reported investigating various characteristics of the system. This was
followed by theoretical studies to enhance the understanding of the
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dynamics exhibited by the system. The model based on the friction
interaction between the heated gauze and the convective updraft
proposed by Pflaum'* in 1909 set the beginning of such an anal-
ysis. The first attempt at quantitative modeling was put forth by
Lehmann'" in 1937 based on flawed assumptions. This, in turn, led
to the inaccurate conclusion that an increase in the convective veloc-
ity of the system would indefinitely increase the intensity of sound.
Later, the study by Neuringer and Hudson'’' adopted a different
approach by starting from the equations of pressure and velocity fol-
lowed by a linear perturbation analysis. In this manner, they derived
the equation for complex frequencies in a Rijke tube. Their analysis
verified the experimental observation of growth of oscillations when
the heater is located in the lower half of the tube and dampening of
such oscillations when the heater is placed in the upper half of the
tube.

Subsequent studies focused on the development of flame
transfer functions,'”” deriving equations for the growth rate of
oscillations,"* and the robustness of such oscillations to changes in
parameters, such as flow velocities and heater temperature.'** Suc-
cessful predictions of stability limits were obtained using the analysis
with flame transfer functions and growth rates.'”>'*" A similar the-
oretical analysis was performed on premixed flames by obtaining
the transfer functions for a conical flame and thereby obtaining the
stability limits."*>'*° A series of investigations by McIntosh and his
colleagues'”’~"*” investigated premixed flames using the large activa-
tion energy theory to simplify the differential equations in the flame
zone. They obtained the flame response for various parameter com-
binations of flame location, mean flow rate, temperature, and finite
tube lengths.

Another approach extensively used to model Rijke tube systems
was through investigations on the Rayleigh criterion [Eq. (3)], which
requires the addition of heat during maximum compression or min-
imum expansion to promote oscillations and vice versa to dampen
oscillations. Putnam and Dennis'*>'*" theoretically verified this cri-
terion, starting from the linearized gas equations to investigate the
phasing between the heat addition and the pressure fluctuations.
Clarke et al.'** obtained an analogy of such phasing relation using a
piston configuration. They concluded that driving of acoustic oscil-
lations can be obtained when the phase difference between the heat
release rate and pressure fluctuations remains bounded between
£90°, while damping of acoustic oscillations occurs when the phase
difference is beyond these set limits. The study by Culick'*’ pro-
duced a general proof for the Rayleigh criterion that is applicable to
both linear and nonlinear thermoacoustic oscillations. These stud-
ies, therefore, marked the beginning of investigations on utilizing
the phase relations and coupling between the pressure and heat
release rate fluctuations to understand thermoacoustic instability
deeper.

A particular form of investigation of this coupling was devel-
oped by Crocco and Cheng,'*' commonly referred to as the n — ¢
model, to investigate the linear stability of combustion systems.
Nicoli and Pelce'*” derived a relation for the heat transfer between
the heater and the surroundings in a low Mach number flow by
taking the instantaneous mass flow rate perturbations into account.
Using the modified King’s Law,"** Heckl'"” developed a correlation
between the unsteady heat release rate at time ¢ to acoustic veloc-
ity fluctuations at time, t — 7. Zinn and co-workers'**~"*" and Culick
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and co-workers'* introduced a Galerkin approach and its extension
to solve the nonlinear models of the thermoacoustic system. Bala-
subramanian and Sujith"”' constructed a reduced-order model for a
horizontal Rijke tube exhibiting a subcritical Hopf bifurcation. This
model utilizes the modified King’s law and the Galerkin technique
to obtain the temporal evolution of the acoustic perturbations in a
Rijke tube.

Next, we will describe the derivation of a mathematical model
in the time domain for a horizontal Rijke tube system from momen-
tum and energy conservation laws proposed by Balasubramanian
and Sujith.””' The conservation laws for a one-dimensional acoustic
field are

ol 9
aL; * ai ’

L (4)

A e}

ot p v ’

where p" and &' are the dimensional acoustic pressure and velocity
fluctuations, p is the mean density of air, and y is the heat capacity
ratio. Furthermore, t and X are the dimensional time and space vari-

ables. Here, é’ is the heat release rate modeled using the modified
King’s law and follows the empirical model suggested by Heckl,"*”

é/ _ 2LW(TW - T)\/W
= Sﬁ >
u ~ ~
_ \/g] 8(x — 2. (5)

Here, L,, and d,, refer to the equivalent length and diameter of the
wire, (T, — T) is the temperature difference between the wire and
the ambient temperature, and S is the cross-sectional area of the
duct. A, C,, 7}, and 1, are the heat conductivity, the specific heat of
air at constant volume, time lag accounting for the thermal inertia of
the medium, and the mean velocity of the air, respectively. § (x — xy)
is the Dirac delta function, and u}(t — 1) = /(x5 t — 7,). The above
sets of equations are normalized as follows:
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where ¢, is the speed of sound and M is the Mach number. Thus, the
non-dimensional set of equations for the acoustic field are
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On reducing the above set of partial differential equations to ordi-
nary differential equations using the Galerkin technique,"” the
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velocity and the pressure field can be written as

u = Z njcos (jmx) and p' = — Z );7M7ij sin (jrx).  (8)

=1 j=1

Therefore, we obtain the following set of equations after accounting
for damping in the system,'*

J’
dt 9)

—7jK sin (j7 xf)
f
30

where ¢ = ;- [cl— + ¢ /"’j‘], in which ¢; and ¢, are damping

iij + 28w + wfn; =

1 !
X|: ‘§+uf(t_ft) -

coefficients. The expression of non-dimensional heater power is
given by

4y — DL (T, — T)WmAC,uopd,. (10)

yMcopSf

The above set of equations [Eq. (9)] indicate the final second-order
equation, and we hereafter refer to it as the Balasubramanian-Sujith
oscillator.

Numerical integration of Eq. (9) generates the acoustic pressure
and velocity time series from the model. The variation of param-
eters, such as the heater power (K), the time lag (t), the heater
location (xy), and the damping coefficient (c;), can be utilized to
study the onset of thermoacoustic oscillations in the Rijke tube.
Subramanian et al.>* used the method of numerical continuation
to conduct a thorough bifurcation analysis, and obtained regions
of global stability, instability, and bistability. Subsequently, Sub-
ramanian et al."”> employed the method of multiple scales to get
the slow flow equat1ons from Eq. (9) and recast it into the Stu-
art-Landau equation.””* Furthermore, linear and nonlinear stability
analyses were performed usmg the method of harmonic balance and
numerical continuation.”

Magri and Juniper°*"”” proposed a mathematical framework
of an adjoint sensitivity analysis to detect the most influential com-
ponents of the system that is responsible for the occurrence of
thermoacoustic instability and quantified their influence on the
frequency and growth rate of oscillations. This method, in turn,
helps in creating changes in a thermoacoustic system or develop-
ing passive controls that can extend its linearly stable region. They
performed two types of analysis, i.e., structural sensitivity analy-
sis and a base-state sensitivity analysis, on the adjoint equations
obtained from the linear stability analysis of the Balasubramanian
and Sujith””' model. Through a structural sensitivity analysis, they
quantified the effect of feedback mechanisms possessed by any
component of the system on the frequency and growth rate of oscil-
lations. On the other hand, through a base state sensitivity analysis,
they examined the effect of a change in different parameters in
Eq. (9) on the stability of the Rijke tube system.
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11l. NONLINEAR BEHAVIOR OF A RIJKE TUBE
OSCILLATOR

Having discussed the various types of Rijke tube systems and
models for the Rijke tube oscillators, in the present section, we char-
acterize various bifurcations, nonlinear phenomena, and dynamical
states exhibited by such oscillators due to a change in the sys-
tem parameter. We start our discussion with primary bifurcations
observed during the transition from the steady state to thermoacous-
tic instability in Rijke tube systems.

A. Hopf bifurcations

As we know from the fundamentals of the dynamical systems
theory, variation in the control parameter can induce a change in
the stability of fixed points (or closed orbits) that, in turn, leads to
the creation of new fixed points (or closed orbits) or the destruc-
tion of the existing ones in a phase space.”*” Such a qualitative
change in the dynamics of the system due to a small change in
the control parameter is referred to as bifurcation. There are four
types of local bifurcations, i.e., saddle-node, transcritical, pitchfork,
and Hopf bifurcations, which are commonly studied using reduced-
order models in the dynamical systems theory.”>*>'** Similar to the
bifurcations observed in paradigmatic models,”*'*” most of the
Rijke tube systems undergo a Hopf bifurcation due to the varia-
tion of different control parameters, such as the heater power, the
heater location, and the damping coefficient.''"'>!>1°0=1> During
this bifurcation, a change in the control parameter leads to the tran-
sition of the system behavior from a fixed point to an oscillatory
state (often limit cycle oscillations). Hopf bifurcations are primar-
ily classified into two types: supercritical Hopf and subcritical Hopf
bifurcation.

In Fig. 5, we show the Hopf bifurcation characteristics of a hor-
izontal Rijke tube system during the transition from the steady state
to limit cycle oscillations (thermoacoustic instability). The bifurca-
tion diagram is obtained by plotting the variation of the root-mean-
square value of acoustic pressure fluctuations (P,,s) against the
electric power supplied to the heater (K) in a quasi-static manner.'"!
We notice that the nature of Hopf bifurcation observed in the hor-
izontal Rijke tube depends on the value of the mass flow rate of air
supplied to the system. For low or high values of the mass flow rate of
air, the system exhibits a supercritical Hopf bifurcation or a subcrit-
ical Hopf bifurcation, respectively, for the variation of heater power
(K) as the control parameter.

For the supercritical Hopf bifurcation [Fig. 5(a)], we observe a
continuous (i.e., a second-order) transition in the pressure ampli-
tude as the system behavior changes from steady state to limit cycle
oscillations. Furthermore, the variation in the pressure amplitude is
nearly the same in both the forward (increasing K) and the reverse
(decreasing K) variation of the heater power. On the other hand,
during the subcritical Hopf bifurcation [Fig. 5(b)], for the forward
path (increasing K), we observe an abrupt jump (i.e., explosive, first-
order transition) in the amplitude of acoustic pressure fluctuations
during the transition from steady state to limit cycle oscillations.
While for the reverse path (decreasing K), the system remains in the
limit cycle state even after the Hopf point and transitions abruptly to
the steady state at a lower value of the heater power compared to the
Hopf point. This bifurcation from limit cycle oscillations to steady
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FIG. 5. One-parameter bifurcation diagram showing the variation of
root-mean-square of acoustic pressure fluctuations (P,,s) with the heater
power (K) for (a) supercritical and (b) subcritical bifurcation observed experimen-
tally in a horizontal Rijke tube. (c) Two-parameter bifurcation diagram between
the mass flow rate of air (m) and the normalized heater power (K/Kg) showing a
change in the criticality of the system as the mass flow rate of air is varied in the
same system, where K indicates the heater power at the fold point. Reproduced
with permission from Etikyala et al., Chaos 27, 023106 (2017). Copyright 2017
AIP Publishing LLC.

state is called fold bifurcation.”®*" Thus, we notice the existence of
hysteresis in the parameter space of the heater power for subcritical
Hopf bifurcation [Fig. 5(b)]. Furthermore, we observe that the varia-
tion of the mass flow rate of air causes a change in criticality'”' of the
horizontal Rijke tube [Fig. 5(c)]. Here, a change of criticality refers
to the switching from supercritical to subcritical Hopf bifurcation
or vice versa with varying mass flow rates of air in the same system.
Note that the transition between these bifurcations is gradual.
Figure 6 shows the properties of limit cycle oscillations
observed in a horizontal Rijke tube system during the state of ther-
moacoustic instability. For limit cycle oscillations, we observe con-
stant amplitude periodic oscillations [Fig. 6(a)]. During this state,
the system emits a very loud tonal sound having a specific frequency
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FIG. 6. (a) Time series, (b) amplitude spectrum, and (c) phase portrait cor-
responding to the state of limit cycle oscillations observed experimentally in a
horizontal Rijke tube, highlighting the presence of high amplitude thermoacoustic
oscillations with a dominant frequency of 162.8 Hz and a single close-loop in the
phase portrait.

corresponding to the unstable acoustic mode of the duct [Fig. 6(b)].
Such oscillations manifest as a single closed loop attractor in the
embedded phase space [Fig. 6(c)].

B. Tipping

In Sec. 111 A, we discussed the bifurcation-induced transition
from steady state to limit cycle oscillations or more specifically bifur-
cation induced tipping.'®* Tipping (alternatively known as critical
transition) is a general classification of a phenomenon where a small
change in the control parameter across a critical value leads to a
qualitative change in the state of the system. The value of the param-
eter at which such a transition happens is referred to as the critical
point or the tipping point.'*

Ashwin et al.' classified critical transitions in a dynamical sys-
tem into three types, where the classification is based on the mech-
anism of tipping. Bifurcation-induced tipping (B-tipping) occurs
when the system parameter gradually crosses the critical point
(the bifurcation point) resulting in a bifurcation, as discussed in
Sec. III A. On the other hand, noise-induced tipping (N-tipping)
refers to the switching of the state of a system due to the presence
of stochastic perturbations. Rate-induced tipping (R-tipping) occurs
when the system parameter is considered to be a time-dependent
variable. Tipping occurs when the rate exceeds the critical value
leading to a qualitative change in the system dynamics. The study
by Thompson and Sieber'*”>'* classified tipping based on the differ-
ent levels of consequences as safe, explosive, and dangerous. These
classifications of tipping, i.e., based on either the mechanism or con-
sequences of tipping, were derived from investigations on climate
change models.
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FIG. 7. Time series of acoustic pressure fluctuations (p’) as a function of the
time-varying control parameter (i.e., heater power P) obtained experimentally dur-
ing the occurrence of thermoacoustic instability in a horizontal Rijke tube for three
different rates (r) of change of voltage supplied to the heater. The inset indicates
the rate of change of root-mean-square of pressure fluctuations (p;), whose value
is maximum at the onset of thermoacoustic instability. We can notice an increase
in the delay (3) in the transition to thermoacoustic instability with an increase in
r. Here, w indicates the Hopf point of the system from quasi-static experiments.
Reproduced with permission from Pavithran and Suijith, Chaos 31, 013116 (2021).
Copyright 2021 AIP Publishing LLC.

In addition to B-tipping discussed in Sec. III A, there are a few
studies in the thermoacoustic literature that focus on investigating
R-tipping and N-tipping in Rijke tube systems.'*”'”" Tony et al.'”’
were the first to study rate-induced tipping in horizontal Rijke tubes
where they demonstrated preconditioned R-tipping both experi-
mentally and theoretically. They observed that the critical rate of
change of the control parameter is a function of the initial condition.
Later, Unni et al.'”’ examined the effect of noise on rate-dependent
transitions and observed high variability in critical transitions due
to the presence of noise. They observed transition from R-tipping to
N-tipping as the amplitude of the pressure oscillations approached
the noise floor and delayed transition due to varying rates. A sub-
sequent study by Zhang et al.'”' investigated the R-tipping delay
phenomenon in a thermoacoustic model, where the rate of parame-
ter variation is observed to delay the tipping point (see Fig. 7). They
noticed that the characteristics of additive and multiplicative expo-
nential colored noise, such as initial values, ramp rate, etc., have
considerable influence on the R-tipping delay phenomenon.'**'”*
We will discuss the studies on tipping that serve as early warning
signals to thermoacoustic systems in detail in Sec. VI D.

C. Transition from steady state to limit cycle via
intermittent oscillations

Unlike direct transitions observed from steady state to ther-
moacoustic instability through Hopf bifurcation in Secs. III A
and III B, we come across a few studies on Rijke tube systems
that report the transition to occur via an intermediate dynamical
state. Various types of oscillatory dynamics such as intermittency,'"”
bursting,'”*'"® beating,'”” and mixed-mode oscillations'"* have been
observed as the intermediate state in different Rijke tube systems.
Intermittency observed prior to thermoacoustic instability has been
characterized by the occurrence of bursts of high amplitude periodic
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FIG. 8. Different types of intermediate states observed in acoustic pressure fluc-
tuations (p’) during the transition from steady state to limit cycle oscillations, such
as (a) intermittency in the spray combustor,"'® (b) beating dynamics in the Rijke--
type burner,'”* (c) bursting in the multiple flames matrix burner,'"® and (d) bursting
in the horizontal Rijke tube.'”® Reproduced with permission from Tandon et al.,
Chaos 30, 103112 (2020). Copyright 2020 AIP Publishing LLC.

oscillations amidst epochs of low amplitude aperiodic ones. Simi-
larly, bursting oscillations refer to the alternating occurrence of large
amplitude periodic oscillations and a quiescent state. Mixed-mode
oscillations refer to the switching of the system behavior between
two and more distinct amplitudes of periodic oscillations and
timescales, whereas beating refers to the occurrence of amplitude-
modulated periodic oscillations in the system. These oscillations are
conjectured to arise due to the coexistence of subsystems with mul-
tiple time scales of oscillations and such systems are usually referred
to as slow—fast systems.'”*~""

Pawar et al.'” reported the existence of intermittency'’” in
a Rijke-type laboratory spray burner during transition from sta-
ble operation to thermoacoustic instability when the flame location
is varied [Fig. 8(a)]. Using various measures from the dynamical
systems theory, they confirmed the presence of type-II intermit-
tency. Furthermore, their study suggests that intermittency could
be more dangerous as compared to limit cycle oscillations, as the
maximum amplitude of bursts during intermittency is nearly thrice
the amplitude of limit cycle oscillations. Weng et al.'’”>'” reported
the presence of beating dynamics between the steady state and limit
cycle oscillations in a porous plug stabilized laminar premixed flame
Rijke tube burner [Fig. 8(b)]. The amplitude-modulated oscillations
were accompanied by low-frequency flame pulsations having fre-
quency lower than 1 Hz, thereby creating a time scale difference of
10? — 10 between the pulsations in the flame and thermoacoustic
oscillations. Subsequently, Kasthuri et al.'"> observed the presence of
bursting and mixed-mode oscillations in a premixed matrix burner
with several interacting laminar flames [Fig. 8(c)]. They found that
these oscillations occur due to the interaction of a slow timescale
associated with temperature fluctuations and a fast timescale with
acoustic pressure fluctuations.

Tandon et al.'”® systematically investigated the role of slow
and fast timescales on the occurrence of intermittent oscillations
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prior to thermoacoustic instability in a horizontal Rijke tube system.
Toward this purpose, they modeled slow oscillations in the control
parameter and studied the interaction of these oscillations with a
fast oscillating acoustic pressure field as the system dynamics transi-
tions from steady state to limit cycle oscillations. When slow and
fast subsystems are uncoupled, they observed regular occurrence
of bursting in the pressure signal prior to thermoacoustic instabil-
ity [Fig. 8(d)]. On the other hand, when slow and fast subsystems
are coupled with each other, they noticed the amplitude-modulated
bursting in pressure oscillations.

So far, we discussed the transition of a Rijke tube system from
steady state to limit cycle oscillations and their corresponding bifur-
cations. In the following subsection, we will describe the dynamics
of such systems beyond the state of limit cycle oscillations and asso-
ciated bifurcations leading to the occurrence of different dynamical
regimes.

D. Secondary Hopf bifurcations in thermoacoustic
systems

In many dynamical systems, increasing the control parameter
further in the regime of limit cycle oscillations engenders the pos-
sibility of secondary Hopf bifurcations, leading to the emergence
of new frequencies in the system.””’' The interaction between the
former and the newly generated frequencies post-bifurcation gives
rise to various complex dynamical states that are different from
period-1 limit cycle oscillations. These states include period-2,
period-3, period-k, frequency-locked, quasiperiodic, strange non-
chaotic, intermittent, and chaotic oscillations. There are many
experimental as well as theoretical studies in the thermoacoustic lit-
erature that report the existence of these dynamical behaviors in
Rijke tube systems.”®””!!LH21551797152 Sometimes, a secondary Hopf
bifurcation observed due to a change in the control parameter leads
to transition from low-amplitude limit cycle oscillations to high
amplitude limit cycle oscillations, where both the limit cycle oscil-
lations exhibit the same frequency.”* Mukherjee et al.'"” reported the
presence of such secondary bifurcation of limit cycle oscillations in
a laminar Rijke type burner. Furthermore, as the dynamical behav-
ior of many systems ultimately tends to reach a state of chaotic
oscillations with a change in the control parameter, the dynamical
transitions associated with the occurrence of chaos are often referred
to as routes to chaos.''""'* The system finally reaches the state of
chaotic oscillations either through period-doubling route to chaos
via Ruelle-Takens-Newhouse route to chaos or through intermit-
tency route to chaos.” A plethora of nonlinear dynamical states
observed during each of these routes to chaos have been reported
in Rijke tube systems as well.”®!!%!2%17%18]

1. Rich nonlinear behavior of thermoacoustic systems

In laminar premixed flame Rijke tube burners (Fig. 4), we
witness rich dynamical behavior resulting from a secondary Hopf
bifurcation of limit cycle oscillations (see Fig. 9) due to the variation
of different control parameters.’>="!!1!1518018L181-15 Tn thig section,
we will discuss the characteristics of these dynamical states and then
elaborate different routes to chaos observed in Rijke tube systems.
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Period-1 limit cycle oscillations: Limit cycle oscillations
are characterized by constant-amplitude periodic oscillations
[Fig. 10(a)]. Such oscillations have a single dominant frequency
in the power spectrum, hence often referred to as period-1
limit cycle oscillations. These signals possess a distinct single
closed-loop attractor in the phase space, where the phase space
trajectory repeats its behavior after each time period of the oscil-
lation. The Poincaré section of limit cycle oscillations shows a
single point.

Frequency-locked or period-k oscillations: Unlike period-1
limit cycle oscillations, frequency-locked oscillations possess
more than one narrow band peaks (say, fi and f,), which are
rationally related to each other (i.e., fi/f, = p/q, where p and g
are integer numbers) in the power spectrum [Fig. 10(b)]. These
signals are periodic and repeat their behavior in the phase space,
depending on the ratio of frequencies (f; /f,). When this ratio
is an integer number (say, k), we observe period-k oscillations
in the signal with k orbits in the phase space. For example,
during period-2 oscillations, we observe two dominant frequen-
cies in the spectrum, where the low-amplitude frequency peak
(say, f2/2) is observed at the subharmonic of the dominant fre-
quency peak (say, f,). We notice the presence of two distinct
loops for the phase space trajectory [Fig. 10(c)], hence two dis-
tinct points in the Poincaré section. In Rijke tube systems, many
theoretical >'** and experimental'**'*’ studies have reported the
presence of period-2 oscillations. The experimental evidence
of frequency-locked oscillations has been reported by Kabiraj
et al.”>''" and Vishnu et al.”’

Quasiperiodic oscillations: For quasiperiodic oscillations, we
observe two dominant frequencies (say, f; and f,) and fre-
quencies corresponding to their linear combinations (say, nf;
+ mf,, where n and m are integer numbers) in the spectrum
[Fig. 10(d)]. These two dominant frequencies are irrationally
related to each other (fi/f; # p/q). As a result, quasiperi-
odic oscillations are aperiodic oscillations, and their proper-
ties never repeat after a finite duration of time. The phase
space trajectory of quasiperiodic oscillations lies on a torus
structure in the phase space [Fig. 10(d)] and their Poincaré
section shows a closed structure.”’ Quasiperiodic oscillations
have been reported in a theoretical study on a two-dimensional
ducted premixed flame by Kashinath et al.’® and in various
experimental studies on a laminar premixed flame Rijke tube
burner-,—’\,,—f,l 11,112

Chaotic oscillations: Chaotic oscillations are characterized by
an exponential divergence of nearby trajectories in the phase
space, which occur due to a high sensitivity to initial conditions.
A power spectrum of these oscillations possesses more than two
irrationally related frequencies and their linear combinations,
which manifests as a broadband spectrum. As a consequence,
chaotic oscillations are aperiodic in time. The phase space of
such oscillations shows the existence of a strange attractor,
where the behavior of the phase trajectory is highly unsta-
ble, while their Poincaré section exhibits a scatter of points
[Fig. 10(e)]. The maximum Lyapunov exponent of chaotic oscil-
lations is always positive. These oscillations have been reported
in theoretical studies on a two-dimensional ducted premixed
flame by Kashinath ef al.”® and on a horizontal Rijke tube by
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Subramanian et al.”*” and in different experimental studies on a
laminar Rijke tube burner.”>"”''"!1?

(5) Strange nonchaotic oscillations: Strange nonchaotic oscilla-
tions point toward the existence of a fractal attractor, similar
to that observed for chaotic oscillations; however, unlike chaos,
they do not possess sensitivity to initial conditions. Hence, the
maximum Lyapunov exponent of strange nonchaotic oscilla-
tions is always negative. The Poincaré section of these oscil-
lations presents a wrinkled torus (Fig. 11), while their power
spectrum shows a broadband of frequencies. These oscillations
are often observed in systems with quasiperiodically forced
oscillations.'*~'" The evidence of such oscillations in self-
excited dynamics is rare; they have been observed in a pulsating
star network by Lindner et al.'”! and recently in experiments
on a laminar premixed flame Rijke tube burner by Premraj et
al."" Guan et al."”” reported the existence of strange nonchaos in
forced limit cycle oscillations of acoustic pressure in a premixed
flame Rijke tube burner. On the other hand, Weng et al.'* pro-
vided the theoretical evidence of strange nonchaos in a model of
nonlinearly coupled damped oscillators of a laminar Rijke tube
burner.

2. Various routes to chaos in thermoacoustic systems

As mentioned before, the route to chaos refers to the funda-
mental mechanism by which a regular attractor becomes a chaotic
attractor as the control parameter is varied.'**'”* Various numer-
ical studies have focused on studying different routes to chaos in
order to clearly understand the enigma of chaotic oscillations itself.
In laminar Rijke-type thermoacoustic systems, three routes to chaos
have been reported, which we describe as follows:
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(1) Period-doubling route to chaos: This route to chaos is the
most commonly studied scenario in the dynamical systems
literature.”'>=*"" It was first discovered by Feigenbaum”’' and,
hence, referred to as the Feigenbaum scenario.Lei and Turan'”’
reported the presence of a period-doubling route to chaos in a
time-lag model of a combustion system. Subramanian et al.'”*
showed the existence of this route to chaos for the variation of
heater power in the Balasubramanian-Sujith oscillator model
of the Rijke tube oscillator (Fig. 12). During period-doubling
bifurcations, the system behavior initially transitions from a
steady state to limit cycle oscillations via Hopf bifurcation
[Fig. 12(a)]. Such limit cycle oscillations undergo a sequence
of secondary Hopf bifurcations, causing their transition to
period-2 [Fig. 12(b)], period-4 [Fig. 12(c)], period-8 oscillations,

etc. until chaotic oscillations are observed [Fig. 12(d)]. Similar
results were observed in a numerical study on a slot stabilized
two-dimensional premixed flame by Kashinath et al.”® for the
variation of flame location as the control parameter. As per our
knowledge, experimental evidence on the period-doubling route
to chaos is still unreported in Rijke tube systems. An experimen-
tal study on a horizontal Rijke tube with an electrically heated
wire mesh as the heat source by Gopalakrishnan and Sujith'®’
reported the presence of period-2 oscillations. However, further
period-doubling bifurcations were not observed in the system
due to limitations in the experimental configuration. The usage
of the wire mesh as the heat source restricted the increase in
the heater power beyond a limit, above which the mesh melts.
Therefore, future investigations on a horizontal Rijke tube
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consisting of a plate-type heat source may provide the possibil-
ity of observing multiple period-doubling bifurcations leading
to chaos experimentally.

Ruelle-Takens-Newhouse route to chaos: In the Ruelle-
Takens scenario,” the system exhibiting limit cycle oscillations
undergoes another Hopf bifurcation leading to the appearance
of a second frequency in the signal. Contrary to the period-
doubling route, where the second frequency is rationally related
to the first frequency, here the system acquires a second fre-
quency that is irrationally related to the first, hence exhibit-
ing quasiperiodic oscillations. Further increase in the control
parameter leads to the occurrence of another frequency that is
incommensurate with the other two frequencies. The presence
of three frequencies leads to the transition from quasiperi-
odic oscillations to chaotic oscillations. This route was first
discovered by Ruelle and Takens*” and Newhouse et al.””* inde-
pendently and is also referred to as a quasiperiodic route to
chaos.

Kabiraj et al.”>''" observed a quasiperiodic route to chaos
in an experimental study on a laminar premixed flame Rijke
tube burner as the location of the flame in the duct is varied
as the control parameter (Fig. 13). They observed the transition
from limit-cycle oscillations [Fig. 13(I)] to chaotic oscillations
[Fig. 13(I11)] via the intermediate states of quasiperiodic oscil-
lations [Fig. 13(II)]. Furthermore, Kashinath et al.’® reported
the presence of Ruelle-Takens-Newhouse route to chaos on the
variation of the flame position in a numerical study on a slot
stabilized two-dimensional premixed flame burner.
Intermittency route to chaos: During the intermittency
route to chaos, as we change the control parameter, the
limit cycle oscillations transition to chaotic oscillations via
intermittency.”’’*> During the state of intermittency, the sys-
tem dynamics alternates between irregularly occurring bursts
of chaotic oscillations and epochs of periodic oscillations. As

5,111

lations, followed by (b) period-2 and (c) period-4 oscillations, ultimately reaching
the state of (d) chaotic oscillations. Reproduced with permission from Subrama-
nian et al., Int. J. Spray Combust. Dyn. 2, 325-355 (2010). Copyright 2010 SAGE
Publications.

the system approaches the onset of chaotic oscillations, the
number of occurrences of such bursts in the signal is observed
to be increasing, ultimately leading to chaotic oscillations in
the system. This route was first discovered by Pomeau and
Manneville’” in dissipative dynamical systems and is, therefore,
called the Pomeau-Manneville scenario.

In thermoacoustic systems, Guan et al.''” reported the pres-
ence of an intermittency route to chaos in an experimental
study on a premixed flame Rijke tube burner as the location
of the flame is varied as the control parameter. They observed
the transition from steady state [Fig. 14(c)] to limit-cycle oscil-
lations [Fig. 14(d)], followed by quasiperiodicity [Fig. 14(e)]
to intermittency [Fig. 14(f)] and then to chaos [Fig. 14(g)].
The intermittency observed in the system consists of epochs
of high amplitude chaos amidst bursts of medium-amplitude
quasiperiodicity.

To summarize, Rijke-type thermoacoustic systems, similar to
other phenomenological oscillators in the dynamical systems theory,
exhibit complex nonlinear behaviors and bifurcations. Hence, we
confirm the nonlinear nature of Rijke tube oscillators and encour-
age the application of the Rijke tube oscillator as a general nonlinear
oscillator. Next, we discuss the bistable nature of the Rijke tube oscil-
lator and present different nonlinear behaviors that can arise in such
systems due to the influence of external stochastic perturbations in
the system.

IV. NOISE-INDUCED DYNAMICS IN THE
SUBTHRESHOLD AND BISTABLE REGIONS OF
THERMOACOUSTIC SYSTEMS

Most systems in nature are inherently noisy and, therefore,
exhibit many noise-induced phenomena and bifurcations.”’*~*"
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These dynamical changes include modification in the stability mar-
gins, occurrence of coherence and stochastic resonance, and exci-
tation of new dynamical states.”’'~”'* In this section, we discuss
various noise-induced dynamics in the sub-threshold and bistable
regimes of Rijke tube oscillators.'’*'**?!522 The regime correspond-
ing to a single stable fixed-point solution (stable focus), observed
prior to the Hopf point in supercritical Hopf bifurcation [Fig. 15(a)]
and the fold point (saddle-node) in subcritical Hopf bifurcation
[Fig. 15(b)], is referred as the subthreshold regime.”’? A bistable
region is observed for subcritical Hopf bifurcation and lies between
the Hopf and fold points of the system parameter space [Fig. 15(b)],
wherein a stable fixed point coexists with stable and unstable solu-
tions of limit cycle oscillations. In the upcoming section, we discuss
two kinds of noise-induced dynamics, namely, coherence reso-
nance and stochastic bifurcations observed in the subthreshold
regime of the Rijke tube oscillator. Subsequently, we present the

discussion on noise-induced dynamics in the bistable region of such
oscillators.

A. Coherence resonance

The addition of noise in the subthreshold regime of an excitable
system (or an oscillator) has a counter-intuitive effect of increasing
the coherent nature of its oscillatory response rather than deteriorat-
ing it.”**** Coherence resonance refers to a noise-induced coherence
characterized with a resonance-like dependence on the strength
of noise as the system approaches the bistable region. It was first
described and analyzed by Pikovsky and Kurths*** in a noise-driven
excitable FitzHugh-Nagumo system. During coherence resonance,
the degree of regularity in the dynamics of the system is observed
to be maximum at intermediate values of external noise intensity.
This phenomenon has been studied in many oscillators including
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Stuart-Landau’” and Van der Pol oscillators*****® under the influ-
ence of additive white noise, indicated by /2D¢(t) where D rep-
resents the noise intensity and ¢ (¢) highlights the noise character-
istics. Furthermore, coherence resonance has been experimentally
observed in various real systems such as electrochemical cells,**"**
semiconductor lasers,””** neural pacemakers,”” and gaseous jets.”"’

Coherence resonance has been studied in various Rijke tube
systems both experimentally*’” and theoretically.”’**** Figure 16
shows the occurrence of coherence resonance in a laminar premixed
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FIG. 15. Bifurcation diagrams of (a) supercritical and (b) subcritical Hopf high-
lighting the subthreshold and bistable regions. Reproduced with permission from
Gupta et al., J. Sound Vib. 390, 55 (2017). Copyright 2017 Elsevier.

flame Rijke tube burner’'” for increasing values of noise intensity
D. For low and high values of D, the noisy fluctuations in the sys-
tem induce transient coherence, which dies down as time progresses
[insets of Figs. 16(a) and 16(c)]. On the contrary, for intermediate
values of D, we observe the noise-induced emergence of coherent
(periodic) oscillations in the system [inset of Fig. 16(b)].

The existence of coherence resonance has an important appli-
cation in thermoacoustic systems. We can use the increase in the
coherent nature of pressure oscillations in the steady state regime of
the system prior to the Hopf point as a precursor to an impend-
ing thermoacoustic instability.”’”?'>**> Furthermore, the existence
of coherence resonance has been examined for subcritical Hopf
bifurcation”'”*"* and supercritical Hopf bifurcation’” individually
as well as collectively.””” The comparative analysis between these
bifurcations showed the existence of a qualitative difference in the
variation of different measures such as autocorrelation factor and
spectral width and height of the coherence resonance curve. Such a
qualitative difference exists due to the inherent difference in the type
of nonlinearity in the system.*”

Similar to coherence resonance, where maximum coherence is
observed in the signal at intermediate levels of noise, we can also
observe the maximum amplification in the signal for intermediate
levels of noise due to stochastic resonance.”””*** Stochastic resonance
is one of the well-known noise-induced phenomena in bistable sys-
tems that correspond to the enhancement of amplitude response of
the system due to the addition of external periodic forcing in the
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presence of noise. This phenomenon has potential applications in
various fields including physics, engineering, sensory systems, biol-
ogy, and medicine.””””*~*> The existence of stochastic resonance
has, however, not yet been discovered in the thermoacoustic system

as per the authors” knowledge.

B. Stochastic bifurcations and hysteresis

The presence of high intensity additive noise in a system could
lead to the disappearance of sharp transitions to limit cycle oscil-
lations during Hopf bifurcations, which are otherwise observed in
deterministic systems.””**”” Hence, it is indeed very challenging to
obtain the Hopf points (or transition boundaries) in the system,
as the system transitions from being a deterministic system to a
stochastic system.””'! Therefore, we resort to tracking the probabil-
ity distribution of the variables rather than calculating their absolute
values.”!

Furthermore, systems with noise may undergo stochastic bifur-
cations, while transitioning from one dynamical state to another.
Stochastic bifurcations are classified into two types: phenomeno-
logical bifurcation and dynamic bifurcation, commonly referred to
as P-bifurcation and D-bifurcation, respectively.”'"*** P-bifurcation
describes qualitative changes observed in the probability density
function (PDF) of the variable, whereas D-bifurcation is associated
with the change in the measure of a system variable (as discussed in
Sec. I1I) or with the sign change of the Lyapunov exponent due to a
change in the control parameter.

Stochastic bifurcations are observed in various nonlinear
systems”' ¥ such as Van der Pol oscillators,”* biological systems,**”

REVIEW scitation.org/journal/cha

and laser systems.”"’ Rijke tube systems also tend to exhibit stochas-
tic behavior and stochastic bifurcations in the presence of noise.
As a result, such systems are modeled using stochastic differential
equations.”’' The probability density function (PDF) is calculated
by solving the Fokker-Planck equation of stochastic systems, which
was first introduced to thermoacoustic systems by Clavin et al.”**
Noiray and Schuermans”* introduced the Fokker-Planck equation
to identify the deterministic characteristics of noise perturbed limit
cycle oscillations in a turbulent thermoacoustic system undergoing
a supercritical Hopf bifurcation. Gopalakrishnan et al.”** derived the
stationary amplitude distribution from the Fokker-Planck equation
of a stochastic Balasubramanian-Sujith oscillator model'*' for the
horizontal Rijke tube undergoing a subcritical Hopf bifurcation.
They observed the presence of stochastic P-bifurcations at low levels
of noise as well as their absence at high levels. At a low noise level,
the transition of the system behavior from the subthreshold to the
bistable (or hysteresis) region is associated with the occurrence of
a P-bifurcation, where the PDF changes from being unimodal to a
bimodal form. While the transition from the bistable to limit cycle
region is associated with the occurrence of a second P-bifurcation,
where the PDF changes from being a bimodal to a unimodal form.
With an increase in the noise intensity, the width of the hysteresis
region correspondingly decreases following a power-law behavior,
while the transition from steady state to limit cycle oscillations
becomes continuous.”** As a result, at a very high noise level, we do
not observe any hysteresis region; hence, the PDF always remains
unimodal, leading to the absence of P-bifurcation in the system.

Saurab et al.”'* experimentally investigated the effects of noise
in a Rijke tube with laminar premixed flame and observed the
presence of a P-bifurcation along with coherence resonance. Li
et al.””’ analytically studied the stability of the stochastic one-
dimensional self-excited nonlinear standing wave thermoacoustic
system.””” Moreover, Li et al.”*® identified the presence of two dif-
ferent types of P-bifurcations in this system, one with a crater-like
PDF and the other had two peaks and one trough.

C. Noise-induced limit cycle oscillations: Effect of
bistability

As discussed in Sec. I1I A, Rijke tubes undergo a subcritical
Hopf bifurcation for certain parameter ranges. This bifurcation is
accompanied by the formation of a hysteresis loop and a bistable
region [Fig. 15(b)]. In the bistable region, the system dynamics can
exist as two possible stable states, and the choice of the state acquired
by the system depends on the initial amplitude or the energy pos-
sessed by it."”>**” For example, let us consider a simple nonlinearly
unstable system of a ball resting in the depression. In this scenario,
small perturbations to the ball’s displacement would die down, mak-
ing the system linearly stable. On the other hand, large perturbations
would cause the ball to become unstable, causing it to fall to another
stable state (Fig. 17). Hence, depending on the amplitude of initial
perturbations, the system would either remain in the same stable
state or transition to another stable state.

For subcritical Hopf bifurcation, if the system is operating at
the stable state in the bistable zone and the perturbations induced
are below a certain threshold, the system approaches the same stable
steady state after the transients subside. On the other hand, when the

Chaos 32, 072101 (2022); doi: 10.1063/5.0091826
Published under an exclusive license by AIP Publishing

32,072101-16


https://aip.scitation.org/journal/cha

Chaos

(a) (b) (©)

\_./

S S S S S

S

FIG. 17. Schematic diagrams representing a ball resting on a surface that is (a)
globally stable and (b) and (c) having multiple stable states. The introduction of
finite amplitude perturbations can change the stability of the system in (b) and (c).
The stable and unstable positions are marked by S and U, respectively.

amplitude of perturbations or the corresponding energy is higher
than the threshold, the system switches its dynamical behavior and
transitions to stable limit cycle oscillations. Such a phenomenon is
commonly known as subcritical transition.”***’

For example, in a fluid flow through a pipe, the transition from
a laminar to a turbulent flow occurs when the value of Reynolds
number is greater than 5000 (Re,, > 5000), and the unstable eigen-
values emerge in the system.””**' Therefore, for Re > 5000, any
external perturbations introduced in the system grows in time.
However, nonlinear perturbation analysis** shows that the highest
Reynolds number at which external perturbations decay is between
100 < Re* < 1000, which is significantly less than Re,, = 5000. Such
behavior in turbulent flow systems is referred to as a bypass transi-
tion and such transitions are different for normal and non-normal
systems. In the case of normal systems, the two Reynolds numbers
coincide (Re* = Re,,), whereas the difference between the two criti-
cal Reynolds numbers arises leading to a bistable zone. For a normal
system, when the individual eigenvectors decay, the resultant also
decays. In contrast, for a non-normal system, when the individ-
ual eigenvectors decay, the resultant can grow transiently before it
eventually decays.””” Such a non-normal system may show a tran-
sient growth in the amplitude of perturbations in a linearly stable
regime and the amplitude of the fluctuations may grow due to linear
mechanisms to a level where the nonlinearities are important. When
the system is operating in a bistable state, it may switch to other
dynamical states as a result of nonlinear driving. Therefore, if a sys-
tem operates in the linearly stable steady state of the bistable regime
of a subcritical Hopf bifurcation, the presence of both nonlinearity
and non-normality plays a role in exciting the system to limit cycle
oscillations from small but finite amplitude disturbances.*’-'*

The progress in a non-modal stability analysis and non-normal
behavior has recently enabled us to study the impact of short-
term behavior on the occurrence of thermoacoustic instabilities
from a new perspective.”’ The influence of non-normality has been
investigated theoretically in a horizontal Rijke tube,'?"'%>***=2% pre-
mixed flame Rijke tube burners,'”>***" resonator tubes,”” one-
dimensional thermoacoustic systems,”””*’ and entropy waves.”®'
Experimental verification of non-normality in thermoacoustic sys-
tems was performed by Mariappan and Sujith'” in a horizontal
Rijke tube. Further investigations on the non-normal behavior in
thermoacoustic systems highlighted its effects on various control
strategies. For example, nonlinear driving that causes the system to
reach limit cycle behavior can be prevented by controlling the tran-
sient growth through active control’** or feedback control.”*” For a
comprehensive discussion on the non-normal and nonlinear nature

8
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of the thermoacoustic system, the readers may refer to Juniper'* and
Sujith et al.*!

Furthermore, the phenomenon of subcritical transition to limit
cycle oscillations in the bistable region due to external perturba-
tions has been examined in different genres of thermoacoustic sys-
tems including a horizontal Rijke tube,'"*"" a premixed flame Rijke
tube burner,”**** and a ducted non-premixed flame burner'” and
Rijke-Zhao tubes.'”” The external perturbations (both harmonic and
noise) required for a subcritical transition in thermoacoustic sys-
tems are often generated through loudspeakers. We note that such
a subcritical transition of the system behavior from stable steady
state to stable limit cycle oscillations (i.e., thermoacoustic instabil-
ity) due to external perturbations has been traditionally referred to
as “triggering” in the parlance of aerospace and rocket propulsion
systems.'>'*

In addition to excitation through periodic perturbations, noise-
induced excitation of limit cycle oscillations in the bistable region
has also received immense interest due to its practical applica-
bility in excitation of thermoacoustic instability in solid rocket
combustors.'#**»?>2 This phenomenon of noise-induced limit
cycle oscillations has been studied theoretically’ > as well as
experimentally'”” in different Rijke tube oscillators. An excitation to
limit cycle oscillations in such systems is strongly dependent on the
strength of the noise. Hence, when the strength of noise added to
the system exceeds a certain threshold value, the system undergoes
nonlinear driving to a limit cycle state.”’>*'° Further studies exam-
ined the influence of the frequency and the type of noise on the
subcritical transition of a thermoacoustic system and concluded that
low frequency noise is more effective in facilitating the transition in
the system than high frequency noise.'** Furthermore, pink noise is
found to be more effective than white noise or blue noise in exciting
the system to thermoacoustic instability.”’” Jegadeesan and Sujith'"”
found that the noise strength required for exciting limit cycle oscil-
lations in a diffusion flame Rijke tube burner is significantly lower
than that required for harmonic perturbations in a deterministic
system.

So far, we have discussed the effect of perturbations on the sta-
bility and dynamical characteristics of the acoustic pressure field
in the subthreshold and bistable regimes of different Rijke tube
oscillators. In the upcoming section, we move our attention toward
synchronization in coupled thermoacoustic oscillators.

V. SYNCHRONIZATION IN THERMOACOUSTIC
OSCILLATORS

In this section, we will present the synchronization character-
istics of coupled and forced Rijke tube oscillators. As mentioned
previously, during the state of thermoacoustic instability, such as
limit cycle, quasiperiodic or chaotic oscillations, a Rijke tube sys-
tem behaves as a nonlinear oscillator. Coupling or forcing of such
Rijke tube oscillators can cause the system to exhibit a wide vari-
ety of synchronization phenomena. Before going into the details of
synchronization of Rijke tube oscillators, we first provide a brief
discussion on synchronization of general oscillators.

Synchronization is a ubiquitous phenomenon observed due to
the interaction between two and more oscillators in many natu-
ral and engineering systems.’>***" It refers to the adjustment of
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motions of the constituent oscillators to a common phase and fre-
quency upon coupling.” Interaction between oscillators has been
studied primarily through two mechanisms, i.e., mutual coupling
and forcing.” The corresponding types of synchronization are clas-
sified as mutual and forced synchronization, respectively. During
mutual coupling, the constituent oscillators change their behavior
due to the presence of bidirectional coupling between them. Var-
ious types of local, non-local, and global coupling schemes have
been employed to study mutual synchronization of oscillators.*>**
These couplings include time-delay, dissipative, conjugate, diffu-
sive, environment, on-off coupling, etc.”>*"** On the other hand, in
forced coupling, a unidirectional coupling exists between the forc-
ing system and the oscillator.”” The forcing parameters such as the
amplitude and frequency of the forcing signal are varied as control
parameters in studies on forced synchronization, as elaborated in
Sec. V B.

The mutual interaction of two oscillators prominently gives
rise to three distinct states of coupled behavior: synchronized oscil-
lations, desynchronized oscillations, and quenching of oscillations.
Depending on the value of phase difference between the synchro-
nized oscillations, the coupled behavior can be classified as in-phase
(0° phase difference) and anti-phase (180° phase difference) syn-
chronization, as shown in Figs. 18(a) and 18(c), respectively. If
both the oscillators possess different (non-identical) frequencies, the
phase difference between them drifts in time, and the corresponding
interaction between these oscillators is characterized as desynchro-
nization [Fig. 18(d)]. The coupled behavior of oscillators sometimes
leads to complete suppression of their oscillations known as “oscil-
lation quenching.” Oscillation quenching has been mainly classified
into two types: amplitude death and oscillation death.””' Dur-
ing amplitude death, all the oscillators reach a homogenous steady
state [Fig. 18(b)], while during oscillation death, both the oscil-
lators stabilize to different steady states (non-homogenous steady
states). In the case of forced interaction, quenching of oscillations in
the forced system occurs through a phenomenon of asynchronous
quenching,'*>*=*"> wherein the amplitude of the oscillator drops
to a minimum value equal to that of external forcing. Thus, the
methodologies based on the mechanisms of coupling or forcing
an oscillator can help in mitigating thermoacoustic instabilities.”
We have provided an elaborate discussion on amplitude death and
asynchronous quenching in Sec. V1.

There have been extensive studies performed on mutual or
forced synchronization of phenomenological oscillators, such as
Stuart-Landau, Van der Pol, Rossler, and Lorenz oscillators, neu-
ral networks, ecological models, population models, disease spread
models, etc.''*#7%20%272=27¢ These studies have shed light on many
hidden features of interacting systems. In the upcoming discussion,
we show that the experimental and theoretical investigations on
Rijke tube oscillators also demonstrate the characteristics of mutual
and forced synchronization as observed for paradigmatic oscillators.

A. Mutual synchronization of coupled Rijke tube
oscillators

In Sec. 111, we discussed the bifurcation characteristics of a sin-
gle Rijke tube oscillator during the transition from steady state to
limit cycle oscillations. The introduction of coupling between two
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FIG. 18. Time series and the amplitude correlation plot between acoustic
pressure fluctuations corresponding to states of (a) in-phase synchronization,
(b) amplitude death, (c) anti-phase synchronization, and (d) desynchronization
in a model of two coupled Rijke tube oscillators A and B.”*°

such oscillators significantly changes their dynamical properties. In
this case, Srikanth et al.”*>*”” found a forward shift in the occurrence
of Hopf bifurcation along with a reduction in the amplitude of limit
cycle oscillations when compared to these properties for an isolated
Rijke tube oscillator. Recently, there has been an increased interest in
studying the behavior of two coupled Rijke tube oscillators.”*?7#-
These studies have potential applications in understanding the inter-
action between multiple combustion systems of can-annular-type
combustors used in gas turbine engines.”*=*¥

The coupled behavior of two thermoacoustic systems has been
studied under two coupling schemes: time-delay and dissipative.””"
Time-delay coupling accounts for the finite time required for the
propagation of information (or acoustic oscillations) from one oscil-
lator to another. This type of coupling is introduced in an exper-
imental system by connecting the two oscillators using a coupling
tube, whose diameter is much smaller than the diameter of the
Rijke tube.”>”*® The increase in the length (I.) and the diameter
(d) of the coupling tube in experiments have direct correspondence
with an increase in the time delay (r) and the strength of cou-
pling (#7) between the oscillators in the model.”*>**" On the other
hand, dissipative coupling accounts for the dissipation of energy
during the transfer of information from one oscillator to another
as a consequence of mutual interaction. The sources of dissipa-
tion of energy could arise due to the direct flow transfer from one
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system to another through the coupling tube or from the loss of
acoustic energy due to the introduction of the coupling tube.”**-**
In addition to the variation of coupling parameters, the effect of
change in system parameters, such as the amplitude and natural fre-
quency of each oscillator in the uncoupled state, has been shown
to play an important role in the coupled dynamics of Rijke tube
oscillators. #0240

Thomas et al””* used the mathematical model of the ther-
moacoustic oscillator'”! explained in Sec. II D to study the cou-
pled interaction of two thermoacoustic oscillators [see Fig. 19(a)].
The equations for a pair of Balasubramanian-Sujith oscillators
coupled through both time-delay and dissipative coupling are as

follows:****7%
dnf
— = (11)

i} 4 2gom? + ofn! = —xjKsin(jxy)

i 1
X[ ‘§+Uf(t_ft) —\/;}

+ HaGi) =) + A (= 1) = i (),

Dissipative coupling Time—delay coupling
where a and b indicate the oscillators in the coupled system; .%; and
J; denote the dissipative coupling strength and time-delay coupling
strength, respectively; and t denotes the time delay between the
oscillators. Keeping either of the coupling strengths (#; or .#;) as
zero makes the system purely time-delay coupled or dissipative cou-
pled, respectively. The remaining terms in the equation are similar
to those discussed in Sec. II D.

In an experimental study, Dange et al.”*’ observed the synchro-
nization of large amplitude limit cycle oscillations in two identical
Rijke tube oscillators coupled using a single coupling tube [see
Fig. 19(b)]. With an increase in the length of the coupling tube (I.),
they found that the oscillators suddenly change their synchronized
dynamics from in-phase to anti-phase synchronization or vice-versa
at a critical value of the coupling tube length. This abrupt change in
the phase of these oscillators from one form of synchronization to
another is commonly referred to as phase-flip bifurcation.”***"

Srikanth et al.”*” studied the characteristics of coupled Rijke-
tube oscillators during phase-flip bifurcation for a wider range of
coupling parameters numerically and analytically. They found a
recurring occurrence of phase-flip bifurcation in a system at odd
multiples of half the time period of limit cycle oscillations, i.e., for
7. = t/T = n/2, where 7 is the coupling delay, T is the time period
of oscillations in the uncoupled state, and n = 1,3,5,.. .. In addi-
tion to the change in the relative phase of oscillators, they detected
an abrupt jump in the frequency of the oscillators during the phase-
flip bifurcation. The amplitude of limit cycle oscillations also shows
an oscillatory pattern, where the maximum amplitude suppres-
sion is observed during the occurrence of phase-flip bifurcation in
the system. Having discussed mutual synchronization in coupled
thermoacoustic oscillators, we present the forced synchronization
characteristics of such oscillators in Sec. V B.
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FIG. 19. Schematics of the model and the experimental setup of two coupled
Rijke tube oscillators. Coupling parameters in the model are coupling strength
(#) and coupling delay (z), while in experiments, these parameters are the
length and diameter of the connecting tube. (b) Reproduced with permission from
Dange et al., Chaos 29, 093135 (2019). Copyright 2019 AIP Publishing LLC.

B. Forced synchronization of a Rijke tube oscillator

Studies on forced synchronization highlight the behavior of a
Rijke tube oscillator in response to external harmonic forcing, as
modeled by the following equation:'*!

d?’]}' .
— 12
a (12

lt 1
X[ ‘§+uf(t_ft) —\/:|

+ Agsin(2mfit),
— ———

Forcing term

where Ay is the forcing amplitude and f; is the forcing frequency.

As mentioned previously, the occurrence of forced synchro-
nization is characterized by the state where the forced oscillator
exhibits the same frequency as the forcing system and the relative
phase between these systems remains constant in time. The response
of a forced oscillator to forcing depends on As and f; of forcing.
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Generally, such responses of a forced oscillator are effectively repre-
sented using an Arnold tongue, which is the synchronization bound-
ary in the parameter space of amplitude and frequency of forcing.
Nearby the onset of forced synchronization, a plethora of dynami-
cal states are observed in the relative phase dynamics of the forced
system, which include phase drifting, intermittent phase locking,
phase trapping, and phase locking.”* Furthermore, a forced oscillator
shows resonance amplification and synchronous quenching when
forcing is applied near the natural frequency of the oscillator.””!

Recently, forced synchronization of limit cycle, quasiperiodic,
and chaotic oscillations in a Rijke-tube oscillator has been studied in
great detail. All the aforementioned phenomena, which have been
previously observed in forced paradigmatic oscillators such as Van
der pol and Stuart-Landau oscillators, are witnessed in the dynam-
ics of a forced Rijke tube oscillator.''»!?h186:272292=2%4 Kashinath et
al.”*” studied forced synchronization of limit cycle, quasiperiodic,
and chaotic oscillations in a model for a laminar premixed flame
Rijke tube burner. In an experimental study, Mondal et al."*' exam-
ined forced synchronization of limit cycle oscillations in the acoustic
pressure of a horizontal Rijke tube system, while Guan et al.”
and Roy et al.”” investigated forced synchronization of limit cycle
oscillations in both the acoustic pressure and heat release rate fluctu-
ations of a laminar premixed flame Rijke tube burner. Furthermore,
Guan et al.””" and Sato et al.””® extended the experimental investi-
gation to study forced synchronization of quasiperiodic oscillations
in a laminar premixed flame Rijke tube burner and a gas filled reso-
nance tube, respectively. In a different study, Sahay et al.”** examined
forced synchronization of two coupled identical and non-identical
horizontal Rijke tube oscillators with forcing being applied to one of
the oscillators, both experimentally and numerically.

Next, we discuss the key properties of forced synchronization
of limit cycle oscillations in a Rijke tube oscillator. In Fig. 20(a),
we show the Arnold tongue (i.e., V-shaped synchronization bound-
aries) observed experimentally for the forced response of limit
cycle oscillations in the acoustic pressure of a horizontal Rijke tube
oscillator.'*! Inside the Arnold tongue, limit cycle oscillations in the
Rijke tube are synchronized with the forcing, but outside the Arnold
tongue, these oscillations are desynchronized with each other. The
value of Ay required for forced synchronization of the oscillator at a
fixed value of f; exhibits a near linear variation with increasing fre-
quency detuning (|f,o — f;) on either side of the natural frequency
(fuo) of the oscillator. A subsequent study by Sahay et al.”** found
that an increase in the amplitude of the limit cycle oscillations in
the unforced state narrows the Arnold tongue region, causing a cor-
responding increase in the value of forcing amplitude for forced
synchronization of the oscillator.

We notice that the occurrence of forced synchronization hap-
pens via two routes, namely, the locking route and the suppression
route,” indicated by route A and route B in Fig. 20(a), respectively.
When the difference between the forcing and the natural frequency
of the oscillator is high [shown as route B in Fig. 20(a)], the transi-
tion occurs via the route of suppression. In this route, an increase
in Ay causes the transition to the phase-locking state through a
torus-death bifurcation, where the magnitude of natural frequency
(fuo) in the spectrum is suppressed without shifting the value of f,o
toward the forcing frequency f;.”* On the other hand, when the dif-
ference between f; and f, is low [shown as route A in Fig. 20(a)], we
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FIG. 20. (a) Arnold tongue obtained from experiments on the horizontal Rijke
tube, highlighting the boundaries between the region of (I) phase locking, (1)
phase trapping, and (lll) phase drifting in the two-parameter bifurcation plot
between the amplitude of forcing (Ar) and the relative frequency of forcing (f; /fno,
where f; is the forcing frequency and fy is the natural frequency of oscillation).
(b) Variation of normalized amplitude response of the spectral peak correspond-
ing to self-excited oscillations (A,/Ay), forcing oscillations (A¢/A,), and overall
acoustic pressure signal (P,s/P° ). Exhibition of synchronous quenching of self-

rms
-excited oscillations and resonance amplification of forcing oscillations is observed

in the phase-locking region. The dotted circle in (a) represents the region where
phase trapping is not observed. Reproduced with permission from Mondal et al.,
J. Fluid Mech. 864, 73 (2019). Copyright 2019 Cambridge University Press.

observe the occurrence of the locking route to forced synchroniza-
tion. The oscillator undergoes a saddle-node bifurcation to attain
phase-locking, where the position of the natural frequency peak
gradually shifts toward the forcing frequency with an increase in the
forcing amplitude.™

Furthermore, in the Arnold tongue (Fig. 20), we notice the
presence of the region of phase trapping [Fig. 21(c)] in between the
regions of phase drifting [Fig. 21(a)] and phase locking [Fig. 21(d)]
for the suppression route, while a direct transition from phase drift-
ing to phase locking is noticed for the locking route. Here, phase
drifting is a state of desynchronization between the forced oscil-
lator and the forcing system, where the unwrapped relative phase
between the forced and forcing oscillations exhibits a continuous
increase/decrease in time [inset in Fig. 21(a-II)]. The pressure sig-
nal observed during this state shows limit cycle oscillations [inset
in Fig. 21(a-1)] and the corresponding Poincaré section (first return
map) shows a single small cluster of points [Fig. 21(a-I)]. Dur-
ing the state of phase trapping, the relative phase between the
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FIG. 21. (1) Poincaré section with an inset of the pressure time series and (Il)
the frequency spectrum along with an inset of the unwrapped relative phase time
series, corresponding to the dynamical states of (a) phase drifting, (b) intermittent
phase locking, (c) phase trapping, and (d) phase locking, observed experimentally
in a forced Rijke tube system. In (1l), the red dot on the abscissa represents the
forcing frequency, whereas the dashed vertical line indicates the natural frequency
of limit cycle oscillations in the absence of forcing. Reproduced with permission
from Mondal et al., J. Fluid Mech. 864, 73 (2019). Copyright 2019 Cambridge
University Press.

systems is bounded and oscillates about the mean phase differ-
ence [inset in Fig. 21(c-1I)]. The pressure signal exhibits amplitude
modulation [inset in Fig. 21(c-I)], its amplitude spectrum shows
a dominant peak at the forcing frequency [Fig. 21(c-1I)], and the
Poincaré section shows a closed-loop orbit [Fig. 21(c-I)], indicat-
ing the presence of quasiperiodic oscillations in acoustic pressure
during this state. For phase locking (forced synchronization) state,
the unwrapped relative phase between the forcing and forced oscil-
lations remains constant in time [inset in Fig. 21(d-11)], the pressure
signal shows limit cycle oscillations [inset in Fig. 21(d-I)] at the forc-
ing frequency [Fig. 21(d-1T)], and the Poincaré section shows a single
clutter of points [Fig. 21(d-1)].

Moreover, prior to the occurrence of phase trapping, an inter-
mediate state called intermittent phase locking is observed in the
forced system. During this state, the unwrapped relative phase
between the forced and the forcing systems demonstrates an alter-
nate occurrence of epochs of phase locked and phase drifting oscilla-
tions, where the phase drifting region is associated with phase jumps
covering integer multiples of 27 rad [inset in Fig. 21(b-II)]. Due
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to the presence of strong peaks at both the forcing and the natural
frequencies [Fig. 21(b-1I)], we notice the presence of modulations
(beating) in the amplitude envelope of the acoustic pressure signal
[inset in Fig. 21(b-1)], where the modulation frequency is equal to
the difference between these frequency peaks. The Poincaré section
of this state shows a closed-loop orbit, indicative of quasi-periodic
oscillations [Fig. 21(b-I)].

Furthermore, we observe an interesting behavior of the simul-
taneous occurrence of resonance amplification of the forcing signal
and the synchronous quenching of natural oscillations inside the
Arnold tongue.””' In Fig. 20(b), we present the variation of nor-
malized spectral amplitude of self-excited oscillations (4,/A,) and
forced oscillations (As/A,) along with the root-mean-square (rms)
amplitude of the acoustic pressure signal (P,,,;/P°, ) in a horizontal
Rijke tube with increasing f;at a fixed value of Ay. The spectral ampli-
tude of self-excited oscillations gradually decreases as the frequency
ratio (f7/fu) approaches the Arnold tongue and attains zero inside
the boundaries of the Arnold tongue. This behavior is regarded as
the occurrence of synchronous quenching.””! In contrast, the spec-
tral amplitude of forced oscillations shows a gradual increase near
the Arnold tongue, followed by an abrupt jump to a high ampli-
tude as the frequency ratio approaches unity inside the Arnold
tongue from the left-hand-side. This behavior is attributed to the
occurrence of resonant amplification.””’ This is followed by a grad-
ual decrease in the amplitude of forcing oscillations with a further
increase in the frequency ratio.

The simultaneous occurrence of synchronous quenching
and resonance amplification, also referred to as synchronance
(synchronization-resonance) by Mondal et al.,'*' leads to the dom-
inance of forcing oscillations in the final response signal of the
acoustic pressure. When the forcing frequency is much higher
than the natural frequency, both the spectral amplitude curves (i.e.,
An/Aq and Ag/Ag) saturate and become independent of changes
in the forcing frequency. The combined behavior of the two spec-
tral amplitudes is observed in the variation of the rms value of the
response pressure signal (P,,,s/P°, ).

Unlike forced synchronization of limit cycle oscillations,
forced synchronization of quasiperiodic oscillations happens via a
complicated path and involves various variants of quasiperiodic
oscillations.”*** The system first transitions from quasiperiodic
oscillations having two dominant frequencies to another variant of
quasiperiodic oscillations having three dominant frequencies (two
natural frequencies and one forcing frequency). This is followed
by the transition to a resonant quasiperiodicity corresponding to
partial synchronization, where one of the natural frequencies under-
goes synchronization, whereas the other remains desynchronized
with the forcing frequency. Ultimately, the system reaches com-
plete forced synchronization of oscillations, where both natural
frequency modes synchronize with the forcing frequency. Guan et
al.”’* observed the presence of two Arnold tongues, each centered at
their corresponding dominant frequencies.

Sahay et al.”* studied the characteristics of the forced response
of coupled thermoacoustic oscillators, where two horizontal Rijke
tube oscillators are mutually coupled using a connecting tube
and one of the two oscillators is externally forced using speakers.
Figure 22 presents the Arnold tongue obtained from experiments
through the simultaneous application of forcing and coupling in two
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FIG. 22. Arnold tongue of (a) Rijke tube oscillator A and (b) Rijke tube oscillator
B, where both these oscillators are mutually coupled to each other using a single
coupling tube and oscillator A alone is forced using loudspeakers.”*” Adapted with
permission from Sahay et al., Phys. Rev. Appl. 15, 044011 (2021). Copyright 2021
APS.

identical Rijke tube oscillators, A and B. Here, acoustic forcing is
applied only to Rijke tube A and Rijke tube B is indirectly forced
through the coupling tube. The Arnold tongue of oscillator A is
observed to be larger when compared to that observed for oscillator
B that is not directly forced. Therefore, the region of synchronance
(i.e., the combined presence of synchronous quenching and reso-
nance amplification) is small for oscillator B when compared to
oscillator A. However, in the case of non-identical Rijke tube oscilla-
tors, forced synchronization of oscillator B is rarely observed, while
that of oscillator A remains nearly the same as that observed in the
case of identical oscillators.

The consequences of the interaction between coupled systems
were also investigated by Zhang et al””” using the Balasubrama-
nian-Sujith model of a horizontal Rijke tube with sinusoidal excita-
tion. Periodic oscillations were observed when the value of f; is much
lower and higher than f;,. In specific ranges of f;, the system exhibited
alternate occurrences of quasi-periodicity and periodic oscillations.
Furthermore, they concluded that the regime of periodic oscillations
is composed of devil’s staircases. The devil’s staircase, otherwise
known as the cantor function, is a monotonic continuous function
mapping the set [0,1] onto itself while maintaining zero derivatives
throughout the interval.*”*

C. Synchronization between the self-excited acoustic
field and the heat release rate fluctuations

As we discussed in Sec. I, thermoacoustic instability is the result
of a positive interaction between the acoustic field in the combustor
and the heat release rate fluctuations in the flame. The onset of ther-
moacoustic instability is detected by the well-known Rayleigh crite-
rion [Eq. (3)]. As per this criterion, when the mean phase difference
between the acoustic pressure and the heat release rate fluctuations
of the flame lies between —7 /2 and 77 /2, the energy from the flame is
periodically added to the acoustic field giving rise to thermoacoustic
instabilities. Mondal et al.”’> examined the coupled behavior of these
two subsystems in a laminar premixed Rijke tube burner during the
quasi-periodicity route to chaos using the framework of synchro-
nization theory. Such an analysis may be viewed as analogous to the
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FIG. 23. (a) The variation of the phase locking value (PLV), (b) the correlation
coefficient (r), and (c) the relative mean frequency (Aw) between the acoustic
pressure and heat release rate fluctuations for different regimes of quasiperiodicty
route to chaos, observed experimentally when the location of the flame (x;) inside
the laminar premixed Rijke tube burner is varied as a control parameter. Different
regions of synchronization are indicated as phase locking (I and V), intermittent
phase locking (Il and IV), and phase drifting (1ll). Reproduced with permission
from Mondal et al, Chaos 27, 103119 (2017). Copyright 2017 AIP Publishing LLC.

investigation of the coupled behavior between the human heart and
respiratory or brain using the synchronization theory.”*="'

Mondal et al.”’” found that during the state of periodic (or limit
cycle) oscillations, the acoustic pressure and heat release rate fluctu-
ations are phase-locked (i.e., synchronized). However, in the regime
of quasiperiodic oscillations, different behaviors of synchronization
of these oscillators are observed, which include phase-locking, phase
trapping, intermittent phase locking, and phase drifting. While dur-
ing chaotic oscillations, states of intermittent phase locking and
phase drifting are observed. The different phase dynamics observed
during these states occur primarily due to the dissimilar spectral
content of two locked frequencies. They also proposed various sta-
tistical measures (see Fig. 23), such as the phase locking value (PLV),
correlation coefficient (r), and relative mean frequency (Aw), to
quantitatively characterize the synchronization behavior between
the acoustic pressure and the heat release rate fluctuations during
self-excited states of thermoacoustic instability. These measures can
help in detecting the boundaries of different states of synchroniza-
tion observed during the quasiperiodicity route to chaos.

Weng et al."”” developed a nonlinearly coupled damped oscil-
lator model to study the coupled behavior of acoustic pressure (p’)
and heat release rate (¢') fluctuations in a laminar premixed Rijke
tube burner. The governing equations of these coupled oscillations
are given below:

ﬁ+g¢u)+a§pa)=(;41—qa—rgﬂpax (13)
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q+ 641 + opq() = Cyp(p(t — 1)* = 1), (14)

where 1, = 27 J@y> Ty = 27 [y and Cop (or Cpq) indicate the cou-
pling strength between p’ and ¢’ (or ¢’ and p’). wy and wy are the
angular frequency of the acoustic and the heat release rate fluctu-
ations, while ¢; and ¢, are damping terms. This model is able to
capture the experimentally observed quasiperiodicity route to chaos
(discussed in Sec. III D) by Kabiraj et al.''' and the state of strange
non-chaos identified by Premraj et al.'"’ Furthermore, this model
also qualitatively replicates the synchronization behavior between
the acoustic pressure and heat release rate fluctuations observed by
Mondal et al.,”** as shown in Fig. 23.

In Secs. I11-V, we have discussed various behaviors and char-
acteristics exhibited by a general nonlinear oscillator and elaborated
on the existence of such dynamical behavior in Rijke tube systems.
We established the vast potential of Rijke tubes in experimentally
verifying complex dynamical behaviors commonly reported in the
literature through nonlinear oscillator models. Next, we move our
focus toward various prediction and control strategies devised to
warn the undesired impending thermoacoustic oscillations or to
suppress them after their onset.

VI. CONTROL AND PREDICTION STRATEGIES FOR
THERMOACOUSTIC INSTABILITY

As discussed in Sec. 111, thermoacoustic instabilities have been
observed in the form of large amplitude self-sustained oscillations
in the acoustic field of the combustor. We showed that such oscilla-
tions occur via a Hopf bifurcation in the Rijke-type thermoacoustic
systems. The presence of thermoacoustic instabilities is undesir-
able in practical systems as they cause severe vibrations leading to
heavy structural damage and loss in the performance of the engine.
Therefore, it is necessary to keep the system away from the regime
of operation of thermoacoustic instability. There have been several
studies dedicated to develop control strategies that can mitigate and
forewarn thermoacoustic instability. Due to the simple nature and
ease of handling, Rijke-type thermoacoustic systems remain the pri-
mary choice for many researchers to experiment or model novel
control methodologies that can mitigate or predict thermoacous-
tic instabilities.’®*"” In this section, we will summarize traditional as
well as recently discovered control methodologies based on the syn-
chronization theory to suppress thermoacoustic instability in Rijke
tube systems. We will also discuss recent developments in early
warning technologies to forewarn critical transition to thermoa-
coustic instabilities in rate-dependent experiments on Rijke tube
systems.

The control strategies developed for suppression of thermoa-
coustic instabilities have been classified as passive and active.”>"’
Passive control strategies aim at evading the occurrence of ther-
moacoustic instability by introducing modifications in the hardware
design of the components, such as combustor geometry, fuel injec-
tion system, or using acoustic dampers such as resonators or liners to
remove acoustic energy from the system.'**>**="" In contrast, active
control strategies are based on interrupting the coupling between the
acoustic field and the heat release rate field of the combustor through
external perturbations, leading to the decay of thermoacoustic oscil-
lations in the system.”>""® Active controls are further classified into
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FIG. 24. Schematic diagrams representing the application of (a) closed-loop (or
feedback) control and (b) open-loop control to mitigate limit cycle oscillations in a
thermoacoustic system.

open-loop and closed-loop control (or commonly known as feed-
back control) depending on whether the control strategy is inde-
pendent or dependent on the system response, respectively.”” In
Secs. VI A-VI C, we will discuss control strategies, such as feedback
control and open-loop control, developed for the mitigation of limit
cycle oscillations in a single Rijke-type thermoacoustic system.

A. Feedback control

Feedback control strategy involves the usage of external actua-
tors to perturb the inlet flow field of the Rijke tube in response to the
behavior of a dynamical variable measured from the system.”>*'%*!!
To elaborate this, we supply a portion of the information of the sys-
tem to its input through controllers [Fig. 24(a)]; thus, both the input
and the output of the system are dependent on each other. The con-
troller adjusts the phase and the gain of the output signal before
feeding it back into the input. Hence, this strategy involves three
crucial steps.”””’'* The acquisition of the signal of thermoacoustic
instability from the system using sensors, such as a pressure trans-
ducer or a thermal sensor. This signal is then fed into a controller,
where the signal is processed and supplied to an actuator. Actua-
tors use this processed information to alter the inlet conditions of
the system, thus changing the coupling between the acoustic field
and heat release rate fluctuations, causing the mitigation of ther-
moacoustic instabilities. Actuation devices used in thermoacoustic
systems are loudspeakers that perturb the acoustic velocity or the
acoustic pressure field and fuel valves that change the heat release
rate field in Rijke tube burners.”’”~'" Delayed feedback has been
used as a common methodology to suppress limit cycle oscillations
in general oscillator systems’“~**’ starting from the early implemen-
tation of feedback control in a laminar flame Rijke tube burner by
Dines,”*' Ffowcs,””> and Heckl.”'"” Recently, such methods have been
rigorously studied in the thermoacoustic literature to mitigate limit
cycle oscillations.”>#*09=312321,323
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B. Open-loop control via asynchronous quenching

As discussed in Sec. V B, the application of external peri-
odic forcing to an oscillator can entrain the frequency of self-
excited oscillations with forcing during the onset of forced synchro-
nization. Furthermore, we argued that forced synchronization can
occur through the locking-route or the suppression-route (asyn-
chronous quenching) depending on whether frequency detuning is
small or large, respectively.”>*”’ External periodic forcing has been
commonly used in practice to suppress self-sustained oscillations
in hydrodynamically unstable flows'~*** and wakes,””” ionization
waves,”” oscillatory reactions,”” transmission electrical lines,”* etc.,
through the phenomenon of asynchronous quenching. In order to
achieve such asynchronous quenching, the oscillator must be forced
at a frequency far from its natural frequency.”” In the thermoa-
coustic literature, this method of forcing is referred to as open-loop
control.”7!

During open-loop control, external periodic forcing is used to
perturb limit cycle oscillations in a thermoacoustic system at differ-
ent amplitudes and frequencies. Unlike feedback control, we do not
need any input from the combustor dynamics to drive the actuator
in open-loop controls. The external perturbations either affect the
flow field incoming to the system or affect the acoustic field devel-
oped in the system [Fig. 24(b)]. At appropriate values of the forcing
parameters, external perturbations interrupt the coupling between
the acoustic field and the heat release rate field, thereby quenching
thermoacoustic instabilities in the system.

Recently, an approach based on forced synchronization
(Sec. V' B) of limit cycle oscillator has been used to explain
the mitigation of thermoacoustic instabilities through open-loop
controls.'2h19»272285295295,932 Ty Fig. 25, we show the forced response
of limit cycle oscillations in the acoustic pressure field of a horizon-
tal Rijke tube for different parameters of periodic forcing generated
through loudspeakers.”*” In this figure, the distribution of differ-
ent colors indicates the relative change in the amplitude of forced
pressure fluctuations, p),., against the amplitude of these oscilla-

tions in the unforced state, p; (ie., Ap,, /py, where Ap, = p,
— Pl..s) and a V-shaped plot signifies the Arnold tongue (i.e., forced
synchronization boundary).

We notice that the introduction of forcing significantly affects
the amplitude of limit cycle oscillations in the system. When forcing
is applied close to the natural frequency of the oscillator, we find the
occurrence of resonance amplification of synchronized limit cycle
oscillations (i.e., synchronance'”»**>***) in the Arnold tongue, where
the growth of the amplitude is greater than twice the amplitude of
limit cycle oscillations in the unforced state, ie., Ap), . /py < —1.
In contrast, when forcing is introduced at a frequency lower than

the natural frequency of limit cycle oscillations (see for f;/fp < 1),
we observe the quenching of limit cycle oscillations in the sys-
tem due to asynchronous quenching.’”’ The maximum suppression
of limit cycle oscillations (i.e., Ap,,./py — 1) is observed along
the Arnold tongue, i.e., at forcing parameters required to achieve
forced synchronization of limit cycle oscillations in the system
(Fig. 25). Asynchronous quenching is not observed for f;/fp > 1
in the horizontal Rijke tube system;'’"*** however, asynchronous
quenching of limit cycle oscillations has been reported for both
sides of f,o in a laminar premixed flame Rijke tube burner by Guan
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et al.””” Furthermore, Roy et al.”” provided physical reasons behind
asynchronous quenching of limit cycle oscillations by analyzing the
forced response of coupled acoustic pressure and heat release rate
fluctuations in the system. They found that these oscillations are
locked at +90° during the state of asynchronous quenching; as a
result, the driving of the acoustic field by the heat release rate field is
very low, which, in turn, leads to suppression of acoustic oscillations
in the system.

C. Mitigation of thermoacoustic instabilities through
mutual coupling

In Sec. V A, we discussed that coupling two or more oscillators
can either synchronize their oscillations or mitigate them through
the amplitude death phenomenon. During amplitude death, all
oscillators reach the same steady state.’ Similarly, coupling a system
to itself via self-feedback can also quench limit cycle oscillations in a
single Rijke tube oscillator.””” Various coupling schemes have been
developed to mitigate self-excited oscillations in a system of coupled
oscillators.'>*" Here, we will discuss the application of the amplitude
death phenomenon in quenching limit cycle oscillations in a system
of coupled thermoacoustic oscillators.

Practical gas turbine engines such as can or can-annular com-
bustors often consist of a ring array of multiple combustion units
(known as “cans”), working simultaneously to provide the required
thrust.”** Hence, these combustors tend to interact with each other
and are therefore coupled through components such as the plenum
chamber, the turbine stage, and cross-fire tubes.””” Most of the tra-
ditional active and passive control strategies discussed before to
mitigate thermoacoustic instability are expensive and are devised for
an isolated combustion system. However, the application of these
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strategies to simultaneously mitigate thermoacoustic instabilities in
a system with multiple combustors is yet to be explored in detail.

Recent developments in the suppression of thermoacoustic
instabilities in single or multiple thermoacoustic systems rely on
implementing different schemes of coupling between oscillators.
Toward this purpose, both experimental and theoretical studies
have been performed on a single Rijke tube oscillator”’” and a
system of two coupled Rijke tube oscillators.”¢*?7¢=024225 For sup-
pressing the limit cycle in a single system through a self-delayed
feedback, the acoustic field of the system is fed back into the sys-
tem after a finite time delay, which is achieved experimentally by
using a single coupling tube.”””*>*° For coupled Rijke tube oscilla-
tors, suppression of low amplitude limit cycle oscillations is achieved
experimentally by connecting the oscillators using one”**** or two”"!
coupling tubes. On the other hand, suppression of high-amplitude
limit cycle oscillations is achieved by adding a frequency mismatch
between the oscillators.”” Both time delay and dissipative coupling
schemes have been used to mitigate limit cycle oscillations in ther-
moacoustic oscillators. The coupled behavior of such oscillators is
similar to that observed in Stuart-Landau oscillators'*® and Van der
Pol oscillators.”* Thus, the possibility of mitigation of limit cycle
oscillations developed in single and multiple thermoacoustic sys-
tems through the mechanism of mutual coupling has emerged as
a promising and cost-effective methodology.

Figure 26 shows the dynamical behavior of a system of two
identical Rijke tube oscillators coupled using a single connect-
ing tube experimentally.”®’ A two-parameter bifurcation diagram is
shown between the amplitude of acoustic pressure fluctuations (p,)
in the isolated oscillator and the length of the connecting tube (L).
We notice that low-amplitude limit cycle oscillations can be eas-
ily quenched through the method of mutual coupling for a larger
range of length of the coupling tube, while it is difficult to quench
large amplitude limit cycle oscillations in two identical Rijke tube
oscillators. The coupling of such large amplitude limit cycle oscilla-
tions results in phase-flip bifurcation on increasing the length of the
coupling tube in the system.

In order to quench high amplitude limit cycle oscillations in
two Rijke tube oscillators, Dange et al.”* introduced frequency
detuning in the system (Fig. 27). Frequency detuning can be intro-
duced by varying the natural frequency of one of the oscillators,
while keeping the natural frequency of the other one a constant. In a
Rijke tube system, the frequency of acoustic oscillations is varied by
changing the length of the duct, note that the frequency is inversely
proportional to the length of the duct (i.e., f, o 1/L). In Figs. 27(c)
and 27(d), we notice that the mutual interaction between detuned
Rijke tube oscillators having high amplitude of limit cycle oscilla-
tions facilitates a small suppression of oscillations. Increasing the
detuning between the oscillators [Fig. 27(a)] gradually increases the
suppression of limit cycle oscillations [Figs. 27(c) and 27(d)], and at
sufficiently large detuning, the state of amplitude death is observed
in the system [Fig. 27(e)]. A further increase in detuning engen-
ders the state of partial amplitude death [Fig. 27(f)], where large
amplitude limit cycle oscillations are restored in one Rijke tube oscil-
lator while the other remains in a state of nearly suppressed periodic
oscillations. These results are qualitatively similar to the occurrence
of amplitude death and partial amplitude death in non-identical
diffusively and time delay coupled weakly nonlinear oscillators.*”
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FIG. 26. Two-parameter bifurcation diagram between the isolated amplitude of
each oscillator (po) and the length of the coupling tuhe (L) highlighting the depen-
dency of the coupling and the system parameters on the occurrence of amplitude
death in a system of coupled identical Rijke tube oscillators. Colors for AP, IP,
and AD indicate regions of anti-phase synchronization, in-phase synchronization,
and amplitude death, respectively. Reproduced with permission from Dange et al.,
Chaos 29, 093135 (2019). Copyright 2019 AIP Publishing LLC.

Srikanth et al.”*’ theoretically studied the effect of variation in
the coupling and system parameters on the occurrence of ampli-
tude death in two time-delay coupled Rijke tube oscillators given
in Eq. (11). They observed that amplitude death occurs for a spe-
cific range of coupling delay (z.), where the size of such death
islands decreases with an increase in the value of coupling strength
(). Furthermore, they found that the occurrence of amplitude
death is highly dependent on the heater power (K) and, there-
fore, on the amplitude of limit cycle oscillations in the uncoupled
state; an increase in the amplitude of these oscillations narrows the
region of amplitude death and eventually suppresses them com-
pletely. They showed that the transition between amplitude death
and the oscillatory state (i.e., limit cycle oscillations) due to a change
in any coupling or system parameter depends on the nature of the
bifurcation of the isolated oscillator. To elaborate, this transition is
explosive and hysteric for an oscillator exhibiting a subcritical Hopf
bifurcation in the uncoupled state, whereas it is continuous for an
oscillator undergoing a supercritical Hopf bifurcation.

Furthermore, Srikanth et al.”’”” extended the effectiveness of
delayed acoustic coupling through a connecting tube to sup-
press thermoacoustic instabilities in a single Rijke tube oscillator,
both experimentally and theoretically. Thomas et al.””” investigated
the effect of Gaussian white noise on the occurrence of ampli-
tude death in the model of coupled Rijke tube oscillators and
showed that the abrupt transition from the oscillatory state to
the steady state becomes continuous due to prebifurcation noise
amplification.””

Having discussed various studies on the mitigation of ther-
moacoustic instabilities in Rijke-tube oscillators utilizing different
approaches from the synchronization theory, we next discuss stud-
ies that utilize Rijke tube systems to develop and demonstrate
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the efficacy of various early warning signals for critical transi-
tions.

D. Early warning signals (precursors)

As discussed in Sec. III, many dynamical systems undergo
abrupt transitions, also called tipping or critical transitions, as the
control parameter is varied. In such systems, an early warning for
the occurrence of these transitions is necessary to avoid the conse-
quences that arise after their onset. In some cases where the variation
of the control parameter is continuous, the rate at which such a
parameter is varied greatly affects the performance of early warn-
ing measures for such critical transitions. In this section, we discuss
various early warning measures developed in Rijke tube systems to
detect the occurrence of critical transitions. The Rijke tube has been
utilized to evaluate the efficacy of early warning signals prior to
extending the measures in other thermoacoustic systems.

In thermoacoustic systems, different measures have been
invented to obtain early warning signals that predict the occurrence

20.5

of thermoacoustic instability.””’ These measures exhibit a drastic
change in their values prior to the onset of such instability. Tracking
the changes in the measure can help us to provide early warn-
ing for impending instability. Thus, we can prevent the system
from reaching the state of thermoacoustic instability and thereby
evade its consequences. This approach goes along with the saying,
“prevention is better than cure.”

Gopalakrishnan et al.””” applied the knowledge of a critical
slowing down on approaching the tipping point in a horizontal Rijke
tube to predict the occurrence of a subcritical Hopf bifurcation in
the system. The phenomenon of critical slowing down is associ-
ated with the loss of stability of the system as the control parameter
approaches the bifurcation point. It also indicates the slow recovery
rate of the system to the external perturbations introduced close to a
critical transition.” Their study obtained early warning signals from
variance and lag-1 autocorrelation of the acoustic pressure data from
experiments as well as from the model of the Rijke tube (Fig. 28).
Figure 28(a) shows the acoustic pressure signal obtained from the
horizontal Rijke tube as the heater power is varied continuously at
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a fixed rate. The onset of limit cycle oscillations in the system is
observed at t = 644s. The measures, variance and lag-1 autocorre-
lation, are calculated for a moving window. Gopalakrishnan et al.*”
observed an increase in the variance [Fig. 28(b)] and a decrease
in the lag-1 autocorrelation [Fig. 28(c)] well before the onset of
thermoacoustic instability. Furthermore, they suggested that the
variance of the signal is more robust to external noise imposed by
the loudspeaker in predicting the onset of thermoacoustic instability
when compared to the autocorrelation function.

A recent study by Pavithran and Sujith'*° examined the impact
of the rate of change of control parameter on the performance
of different early warning signals of thermoacoustic instability in
a horizontal Rijke tube. Various early warning measures, such as
lag-1 autocorrelation (AC), variance (VAR), skewness (SKEW), kur-
tosis (K), and Hurst exponent (H), were chosen for the investi-
gation (Fig. 29). During the onset of thermoacoustic instability,
the root mean square value of the acoustic pressure fluctuations
indicates significant growth in the amplitude [Figs. 29(a), 29(g),
and 29(m)]. Autocorrelation [Figs. 29(b), 29(h), and 29(n)] and vari-
ance [Figs. 29(c), 29(i), and 29(0)] tend to increase much before the
actual transition on approaching the onset of thermoacoustic insta-
bility due to critical slowing down.'>*"! Skewness that also tends
to increase on approaching the tipping point [Figs. 29(d), 29(j),
and 29(p)] does not have any relation with critical slowing down.'®”
As the system approaches the transition to thermoacoustic instabil-
ity, the skewness of the distribution changes from being negative to
positive. Kurtosis (K) exhibits a value of 3 for a normal distribution;
however, it does not show any perceivable trend during the onset of
thermoacoustic instability [Figs. 29(e), 29(k), and 29(q)].

The Hurst exponent (H = 2 — D, D is the fractal dimension)
computes the correlations in the time series.”’>”> When H > 0.5,
the signal is said to be persistent, while for H < 0.5, the signal is
anti-persistent. When H = 0.5, the signal is uncorrelated. Hence, as
the system transitions from a regime of uncorrelated oscillations to
a state of periodic high amplitude oscillations, the Hurst exponent
decreases from a value close to 0.25 to zero, serving as a potential
measure to detect the transition to thermoacoustic instability with
changing fractal characteristics of the pressure signal [Figs. 29(f),

29(1), and 29(r)]. Comparing the behavior of each of the aforemen-
tioned early warning measures at different rates of change of the
control parameter, Pavithran and Sujith'*® noticed that measures
such as lag-1 autocorrelation and Hurst exponent can predict the
transition well before the tipping point for both slow and high rates;
thus, providing adequate warning time for control actions (Fig. 29).

Although these measures provide warnings about an upcom-
ing critical transition, they cannot provide information about what
bifurcation is to be expected. As the system approaches the tip-
ping point, its dynamical behavior can be simplified into a limited
number of possible “normal forms.” This, in turn, provides infor-
mation about the new state (i.e., oscillatory or steady state) that may
occur after the tipping point. Toward this, Bury et al.'”* proposed
a deep learning algorithm that provides early warning signals by
using information about normal forms and scaling behavior of the
dynamics near tipping points in a horizontal Rijke tube system.

Lee et al’”’ proposed a framework for performing input-
output system identification near a Hopf bifurcation. By using the
data from the steady state behavior, they were able to predict the
location and the criticality of Hopf bifurcation in a laminar Rijke
tube burner and a model of the Duffing-Van der Pol oscillator
perturbed with additive white noise. This novel methodology does
not involve the crossing of threshold values (unlike other measures
discussed before) and can be applied to various other dynamical
systems that exhibit a Hopf bifurcation (or systems that can be
reduced to Stuart-Landau equations). Premraj et al.'* investigated
the occurrence of a catastrophic transition, such as flame blowout,
in a laminar premixed Rijke tube burner. During flame blowout,
the flame ceases to exist in the combustor as the time scales of flow
fluctuations become much larger than the reaction timescales in the
system. After the flame blowout, the amplitude of acoustic pressure
fluctuations in the system drops to a very low value. Premraj et al.'"
noticed that the occurrence of flame blowout is preceded by the exis-
tence of extreme events in the acoustic field of the system and found
the presence of special kind of extreme events called the dragon-king
extreme events just prior to flame blowout. Thus, the early warning
to flame blowout can be provided by identifying the dragon-king
extreme events in the acoustic field of the system.
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Early warning measures have been investigated extensively in
many systems including Rijke tubes and to date remain a topic
of immense attention due to their potential applications. The
readers are guided toward a recent review on critical transitions
and early warning signals by Pavithran et al.’*' for a more elaborate
discussion.

VIl. CONCLUSIONS

In the present review, we have introduced the Rijke tube oscil-
lator as a novel paradigmatic oscillator to the nonlinear dynamics
community. Toward this purpose, we have systematically presented
the potential applications of the Rijke tube oscillator in obtaining
experimental verification of various dynamical phenomena that are

observed in general paradigmatic oscillators. We have shown that
depending on the operating conditions, the onset of limit cycle
oscillations in a Rijke tube can happen either through subcriti-
cal or supercritical Hopf bifurcation. We have also observed the
occurrence of secondary bifurcations to various dynamical phe-
nomena such as quasiperiodic, period-k, chaotic, and strange non-
chaotic oscillations, along with the presence of different routes
to chaos in the Rijke tube system. We have further emphasized
the existence of different noise-induced transitions, such as coher-
ence resonance, stochastic bifurcation, and subcritical excitation to
limit cycle oscillations in the subthreshold and bistable regimes of
the system operation. We have examined mutual synchronization
and forced synchronization properties of coupled and forced Rijke
tube oscillators, respectively, and summarized different states of
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synchronization witnessed in such systems. We further discussed
the application of different concepts from the synchronization
theory to control and mitigate the limit cycle oscillations using the
phenomena of amplitude death, partial amplitude death, and
asynchronous quenching in Rijke tube systems. Finally, we have pre-
sented the use of a Rijke tube system as a platform to develop validate
various early warning measures for catastrophic transitions.

We hope that this review paves way for the dynamical systems
community to utilize the Rijke tube oscillator for performing both
experimental and theoretical studies in the future. Although there
has been significant progress in studying the nonlinear behavior of
Rijke tube oscillators over the years, there are still many interesting
phenomena that are yet to be experimentally or theoretically dis-
covered, examined, and validated in Rijke tube oscillators. Next, we
discuss possible areas of research that can be explored to unravel
several hidden dynamical and coupled behaviors in the Rijke tube
systems.

As discussed in Sec. IV B, the occurrence of stochastic res-
onance has not been examined in Rijke type systems. Therefore,
future investigations are required in order to obtain the experimen-
tal or theoretical discovery of stochastic resonance in Rijke tube
oscillators. There are many theoretical studies that report the occur-
rence of the period-doubling route to chaos in different Rijke tube
systems.’*'>> However, the experimental evidence of this route to
chaos is yet to be reported in a Rijke tube system.

Furthermore, in this article, we have restricted our discussion
on the application of Rijke tube oscillators to investigate the dynam-
ical behavior of a single and a pair of oscillators for the variation
of both systems and coupling parameters. However, we know that
with an increase in the number of oscillators in a system (i.e., a
network) or a change in their coupling structures (e.g., local, non-
local, and global couplings or star, line, and ring topologies), we
can observe many complex dynamical phenomena resulting from
the coupling of oscillators.””** These phenomena include cluster-
ing, splay states, bare minimum chimera, weak chimera, amplitude
death, aging, etc., in a minimal network of coupled oscillators,
where the number of oscillators is less (approximately 3-10). Dif-
ferent modeling studies in the past showed the occurrence of these
phenomena in small networks of oscillators. In the future, we can
construct a minimal network of Rijke tube oscillators, and through
appropriate coupling mechanisms, we can experimentally validate
theoretically discovered phenomena. Furthermore, we have also dis-
cussed the possibility of oscillation quenching via amplitude death
in a system of coupled oscillators. However, in some systems, such
suppression of oscillations is undesirable. Recently, through various
theoretical studies,"® restoring of oscillations in a system is shown
by adding a processing delay factor in the coupling term of oscilla-
tors. Developing a controlled experiment on a network of Rijke tube
oscillators to revoke the oscillations from the death state by vary-
ing the feedback factor in the coupling of oscillators is an interesting
study worth future investigations.

In practical systems, the control parameter of a system does
not change quasi-statically; however, it varies continuously in time
with different rates. Many studies have been performed inves-
tigating rate-dependent tipping (bifurcation) on a single system.
Such investigations can be extended to multiple coupled oscilla-
tors. Moreover, in a system of two coupled oscillators, the effect

REVIEW scitation.org/journal/cha

of the rate of change of control parameters in one system on the
tipping behavior of the other can be studied theoretically and
validated experimentally using coupled Rijke tube systems. Further-
more, the presence of noise on the coupled behavior of Rijke tube
oscillators, in terms of their transition from steady state to limit cycle
oscillations or the occurrence of different dynamical states, can also
be included in future investigations.
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