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ABSTRACT

We study the spreading of renewable power fluctuations through grids with Ohmic losses on the lines. By formulating a network-adapted
linear response theory, we find that vulnerability patterns are linked to the left Laplacian eigenvectors of the overdamped eigenmodes. We
show that for tree-like networks, fluctuations are amplified in the opposite direction of the power flow. This novel mechanism explains
vulnerability patterns that were observed in previous numerical simulations of renewable microgrids. While exact mathematical derivations
are only possible for tree-like networks with a homogeneous response, we show that the mechanisms discovered also explain vulnerability
patterns in realistic heterogeneous meshed grids by studying the IEEE RTS-1996 test system.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0122898

Recently, many studies have analyzed the spreading of short-term
renewable power fluctuations through power grids. In most of
these studies, it was assumed that the power transmission on the
lines is lossless. For lossless flow networks, the flows at the emit-
ting and receiving end of a line are equal. Hence, any flow change
will be symmetric on both ends of the line. In contrast, for net-
works with transmission losses, the flow at the receiving end is
always smaller than on the emitting end and changes in the flow
at both ends are not symmetric anymore. The spreading of fluc-
tuations through the network will, therefore, depend on the flow
direction at each link. Consequently, the nodes that are partic-
ularly vulnerable to power fluctuations are not necessarily those
that have the strongest excitation for power fluctuations at other
nodes. In fact, for renewable fluctuations, we find that all nodes
are almost equally excited, while the most vulnerable nodes are
located in the high consumption regions in the network, i.e., at
the sinks of the power flow.

I. INTRODUCTION

A fundamental challenge for the operation and control of
power grids is to maintain the balance between power production
and power demand. In AC power systems that are dominated by

conventional generators, the power fluctuations on the demand side
are balanced by the control schemes of the production side to main-
tain a stable frequency at 50 or 60 Hz, respectively. However, with
the ongoing integration of highly intermittent renewable energy
sources such as wind and solar, there are not only fluctuations on the
demand side but also on the generation side.1 Demand fluctuations
are typically uncorrelated and can, therefore, average out for a large
number of consumers. In contrast, the power fluctuations in large
wind and solar farms stem from the same meteorological conditions
and can, therefore, be highly correlated. As a result, these fluctua-
tions add up and can lead to large fluctuations of power production
at single nodes in the network system.2

The impact of noise on the stability of the synchronous state
in complex dynamical systems has been intensively studied with the
method of linear response theory. Analytical results were given for
singular perturbations,3 white Gaussian noise,4 and exponentially
correlated noise.5–7 The spreading of intermittency from fluctuations
to the frequency response throughout a lossless network was cal-
culated by Haehne et al.8 Zhang et al.29 identified three frequency
regimes of the network response networks: a bulk, a resonant, and a
local regime. The bulk regime covers low-frequency perturbations,
and the network responds as a whole. In contrast, as already pointed
out by Kettemann et al.,9 high-frequency perturbations stay localized
at the fluctuating node and decay exponentially. They constitute the
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local regime. The resonant regime is where the fluctuation spectrum
and the oscillatory dynamics of the network overlap and produces
complex resonant response patterns.

To our knowledge, all prior analytic works on linear response in
power systems consider rather simple power system models. In this
work, we want to transfer this theoretical knowledge and develop
a linear response theory that is well suited to also describe more
realistic power systems, including higher order dynamical mod-
els of inverters or generators. Of particular importance is that our
approach is capable of dealing with transport losses on the lines.
Mathematically such systems can be represented by an asymmet-
ric effective network Laplacian. We derive an approximation of the
response that is highly predictive of the actual behavior of the system
in many cases of interest. The theory is used to explain key features
of the complex phenomenology that was numerically observed for
renewable fluctuations in an AC microgrid model.10 The major find-
ing is that auto-correlated power fluctuations are enhanced in the
opposite direction of the power flow due to Ohmic losses on the
lines. With simulations in the IEEE RTS-199611 test case, we are able
to show that this mechanism is relevant also for more realistic sys-
tems with a meshed topology and heterogeneous parameters. The
fact that renewable fluctuations in load-heavy regions of the grid
have a higher impact on the frequency stability is of high relevance,
for example, for the connection of new wind parks to a grid.

II. POWER FLOW NETWORKS WITH LOSSES

We first give the general form of the power grid equations
we want to consider and derive some general properties of the
linearization that help characterize the system.

The network structure of the grid can be represented by a graph
G = (N , E), with a set of N nodes corresponding to generators and
loads and a set of E edges corresponding to the transmission lines
that carry the power flow. The dynamical state of each node i is
represented by xi(t) : R → R

Di . In the following, we will use the
notation that node indices are denoted by superscripts and variable
indices are denoted by subscripts, such that xi

l is the lth variable
of the ith node. The state of the entire dynamical system x(t) :
R → R

S contains the states of all components, with a total system

size S =
∑N

i=1 Di. We assume that every node i is coupled with its
adjacent nodes by a power flow Pi(x) : R

S → R that depends only
on the state difference

ẋi = f(xi, Pi(x)),

Pi(x) =
∑

l

Pij(xi
θ − x

j
θ ).

(1)

Here, Pij(·) is the signed power flowing on the line ij as a func-
tion of the node states, and as seen from node i. If no power is lost
on the line, we have Pij = −Pji. In Eq. (1), we made two additional
assumptions,

1. The node dynamics is homogeneous, i.e., f i = f j = : f.
2. The power flow depends only on one internal state variable xθ ,

e.g., the voltage phase angle for AC power grids and the absolute
voltage for DC power grids.

Furthermore, we require some natural properties to hold for
the power flow.

• Losses are positive Ploss : = Pij + Pji > 0.
• Positive power flow increases with state difference: If Pij > 0

then ∂Pij

∂x
ij
θ

> 0.

• Losses increase with increasing power flow: If Pij > 0 then
∂Ploss

∂x
ij
θ

> 0.

From this, it follows that if Pij > 0, that is, we have power
flowing from i to j, we have

∂Pij

∂x
ij
θ

>
∂Pji

∂x
ji
θ

. (2)

We assume the system has a stable stationary state x = ξ . The
change of the power flow at node i for a deviation δx from the
stationary state is given by

δPi = Pi(ξθ + δxθ ) − Pi(ξθ ) ≈
∑

j

∂Pi

∂x
j
θ

(ξθ )δx
j
θ .

We define a matrix Lij := ∂Pi

∂x
j
θ

(ξθ ). Inserting the power flow

equation, we see that this has the form of a weighted Laplacian
matrix

Lij = δij

∑

k

wik − wij, (3)

with weights wij = ∂Pij

∂x
ij
θ

(ξ
ij
θ ). Usually, Laplacians are defined to be

symmetric matrices, with the underlying assumption being the con-
servation of flow on the links. However, if we consider transport
losses, the Laplacian matrix describing the diffusion dynamics on
the linear level is asymmetric, i.e., wij 6= wji.

Similar to the symmetric case, asymmetric Laplacians always
have an eigenvalue λ1 = 0. The corresponding right eigenvector is

homogeneous v(1)
r,i = v(1)

r,j for all j. The corresponding left eigenvec-
tor, however, is generally heterogeneous. It is determined by the
equation

0 =
∑

i

v(1)
l,i Lij =

∑

i

(

v(1)
l,i wij − v(1)

l,j wji

)

= :
∑

i

Fij.

In tree-like networks, this gives a strict relation for the eigenvec-
tor entries of two neighboring nodes. We can see this by starting
at the nodes with degree one. At these nodes, there is only one sum-
mand Fij, which, therefore, has to be zero. All the summands are
by definition antisymmetric Fij = −Fji and, therefore, we know that
the corresponding summand Fji in the condition for the neighboring
node is also zero. By going up the tree structure to nodes of a higher
degree we can eliminate the summands corresponding to all previ-
ously visited nodes. Doing this, we see that in the above equations
not only the sum is equal to zero but every single summand has to
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be zero itself and, therefore,

v(1)
l,i

v(1)
l,j

=
wji

wij

.

Assume the power is flowing from node i to node j. From Eq. (2),
it follows that wij > wji and, hence, in a tree network the entries
of the left eigenvector corresponding to λ1 = 0 of the asymmetric
Laplacian are increasing along the power flow in the network

v(1)
l,j > v(1)

l,i for Pij > 0. (4)

Since we assume that the nodes are homogeneous, we can fac-
torize the linearization of the dynamical system (1) into a network
part and a local part. In Appendix A it is shown that the Jacobian of
this system can be written in the form

J = A ⊗ I + B ⊗ L, (5)

with matrices A, B ∈ R
D×D, the weighted Laplacian L ∈ R

N×N as
defined in Eq. (3) and ⊗ denoting the Kronecker product. The
eigenvectors and eigenvalues of this Jacobian take the form

v(a,b) = u(a)(λa) ⊗ v(b) ,

σ(a,b) = µa(λb) ,
(6)

where λ, v are the eigenvalues and eigenvectors of the Laplacian
and µ(λ), u(λ) are the eigenvalues and eigenvectors of the matrix
C(λ) = A + λB. In the following, we will use n and m to denote the
multi-index (a, b).

III. LINEAR RESPONSE THEORY

In the following, we want to calculate the response of (1) to
an additive fluctuation η(t) : R → R

S. We assume the system has
a stable fixed point x(t) = ξ . The linear response of the deviation
δx(t) : = x(t) − ξ is then given by

δx(t) =

∫ ∞

−∞

χ(t − t′)η(t′)dt′,

where χ(t) = θ(t)eJt is the response function of the system. In the
Fourier space, the convolution reduces to a simple product

δx̂(ν) = χ̂(ν) · η̂(ν).

We quantify the response signal by applying the L2 norm. For a
single system variable, it is defined as

‖δxi(t)‖2 =

√

∫ ∞

−∞

|δxi(t)|2dt.

From Parseval’s theorem, it follows that ‖δxi(t)‖2 = ‖δx̂i(ν)‖2. In
the following, we will restrict ourselves to the case of single node
fluctuations, where there is only one non-zero entry ηj(t) driving the
system. In principle, it is straightforward to generalize our approach
to fluctuations at multiple nodes. In that case, not only the auto-
correlation but also the cross-correlation of fluctuations has to be
taken into account. However, the focus on single node fluctuations
is sufficient to understand the effects of auto-correlated fluctuations

and transport losses. For single node fluctuations, the L2 norm of the
response is given by

‖δxi(t)‖2 =

√

1

2π

∫ ∞

−∞

|χ̂ij(ν)|2Sηjηj
(ν)dν, (7)

where Sηjηj
(ν) = |η̂j(ν)|2 is the power spectrum of the fluctuation.

The response matrix can be decomposed into the response of the

single eigenmodes χ̂(ν) =
∑

n χ̂
(n)

(ν). In Appendix B, it is shown
that these mode response functions are given by

χ̂
(n)

(ν) =
v(n)

r v
(n)

l

jν − σn

,

where σn are the eigenvalues of the Jacobian and v(n)
r v(n)

l is the outer
product of the corresponding right and left eigenvectors. Inserting
the mode expansion into Eq. (7) yields a sum of single mode terms

|χ̂
(n)
ij |2 and cross-mode terms χ̂

(n)
ij

¯̂χ
(m)
ij . Denoting γn = |<(σn)| and

νn = =(σn), the single mode terms are given by
∣

∣

∣
χ̂

(n)
ij (ν)

∣

∣

∣

2

=
π

γn

∣

∣

∣
v(n)

r,i

∣

∣

∣

2 ∣
∣

∣
v(n)

l,j

∣

∣

∣

2

L(n)(ν),

where L(n) are Lorentzian functions with width γn and maximum at
ν = νn,

L(n)(ν) =
1

π

γn

γ 2
n + (ν − νn)

2
.

For auto-correlated perturbation signals, the integral (7) is gener-
ally hard to solve, particularly, when the power spectral density is
not known analytically. In that case, we could only determine the
power spectral density from measurements and compute the L2-
norm semi-analytically. An analytical approximation for the single
mode terms can be calculated for small γ , the low damping regime.
In the limit γn → 0, the Lorentzian function converges toward a
Dirac delta distribution

lim
γn→0

L(n)(ν) = δ(ν − νn)

and, hence, for small γn we can approximate the integral as
∫ ∞

−∞

L(n)(ν)Sηjηj
(ν)dν ≈ Sηjηj

(νn).

This approximation is valid if the spectral density does not
vary much over width of the Lorentzian functions Sηjηj

(ν) ≈ Sηjηj

(ν + γn). In Appendix C, it is further shown that for small damp-
ing parameters γn the cross-mode terms are suppressed. Neglect-
ing these terms is valid if the mode dampings are much smaller
than their spectral distance γn, γm � |νn − νm|. The L2 norm of the
response can then be approximated as

‖δxi(t)‖2 ≈

√

∑

n

1

2γn

∣

∣

∣
v(n)

r,i

∣

∣

∣

2 ∣
∣

∣
v(n)

l,j

∣

∣

∣

2

Sηjηj
(νn), (8)

which we call the peak approximation. We see that the response is
given by a superposition of the different mode contributions. How
strongly a certain mode is excited depends on the power spectral
density at the eigenfrequency νn and the entry of the left corre-
sponding eigenvector at the perturbed node, whereas the response
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strength at different nodes is determined by the entries of the right
corresponding eigenvector.

IV. EXAMPLE: AC MICROGRID MODEL

We now will turn toward an example system to demonstrate
the power of our theoretical approach. We analyze the impact of
turbulent fluctuations on power grids by characterizing the vulner-
ability and excitability of the different nodes in the network. Here,
we define the vulnerability of a node as the strength of the network
response to power fluctuations at this particular node. Conversely,
the excitability of a node is the strength of the response at this node
given power fluctuations at another node. Using our approximation
of the L2 norm, we are able to explain three previously observed
properties of renewable power grids.10

1. There is a pronounced fine structure in both vulnerability and
excitability of nodes.

2. Losses on the lines lead to a pronounced network structure
in the vulnerability of the nodes, but not in which nodes are
excited.

3. The vulnerability appears high in parts of the network that are
consumer-heavy, and within these areas tends to rise the further
away from the center of the network the node is.

In the following, we will provide an analytical explanation for
these observations for an islanded microgrid with fluctuating renew-
able in-feed. Following Schiffer et al.,12 droop-controlled inverters
with virtual inertia in their simplest form can be modeled by the
swing equation

φ̇i = ωi,

Miω̇i = Pi(t) − Diωi −

N
∑

k=1

Pik(φi − φk).
(9)

We include resistive losses of the power flow on the lines via the
conductance matrix Gik

Pik = |Vi||Vk|[Gik cos(φi − φk) + Bik sin(φi − φk)]. (10)

Furthermore, we assume that the power in-feed at each node is
composed of a constant and a small fluctuating part

Pi(t) = Pi + δPi(t). (11)

We simulate this system on a 100-node network generated by a ran-
dom growth model for power grids.13 The power fluctuation signal
is generated by a combination of stochastic wind and solar power
fluctuation models.14,15 The power spectrum of the resulting signal
is power-lawed with the Kolmogorov exponent of turbulence. Fur-
ther details on the parametrization and the fluctuation modeling can
be found in Appendix D. The response at each node is quantified in
terms of the L2 norm of the frequency deviation from the nominal
grid frequency ωs

‖δωi(t)‖2 =

√

∫ ∞

−∞

(ωi(t) − ωs)
2dt.

The response of the entire dynamical system S can then be quan-
tified in terms of the L2 norm of the average deviation from the

nominal grid frequency

‖S‖dev =

√

√

√

√

∫ ∞

−∞

1

N

N
∑

i=1

(ωi(t) − ωs)
2dt. (12)

It should be noted that this measure is different from the synchro-
nization norm that has been used in most of the studies on the
response of swing equations in the linear regime5,7,16,17

‖S‖2
sync =

√

√

√

√

∫ ∞

−∞

1

N

N
∑

i=1

(

ωi(t) −
1

N

N
∑

l=1

ωl

)2

dt.

While being useful to study the synchronicity in the network, this
measure by definition omits any fluctuation of the bulk of syn-
chronous frequencies. However, as will be shown in the following,
this bulk behavior turns out to be the most dominant mode in the
frequency response to renewable power fluctuations. Furthermore,
due to the presence of losses, this mode is no longer homoge-
neous throughout the network. As we will see, it can completely
dominate the effect of network structure on the systems node-wise
vulnerability.

A. Fine structure of network responses

Following Auer et al.,10 we simulate single node fluctuations
in the full nonlinear system (9) for every pair of perturbed (input)
and observed (output) nodes and depict the response strength as
a color-coded matrix plot (Fig. 1). Here, the horizontal and verti-
cal lines correspond to nodes with large vulnerability or excitability,
respectively. Comparing the simulation of the linearized system with
the full nonlinear system shows that the main response pattern also
remains in the linearized dynamics. However, some nonlinear arti-
facts are not captured by the linearized model. These nonlinear
effects cannot be analyzed with our linear theory. For a given time
series of a power fluctuation δP(t), we can numerically determine its
power spectral density and thereby semi-analytically compute the
peak approximation (8) for the L2 norm of the frequency responses.
In Fig. 1, it can be seen that this approximation can reproduce
the response pattern of the linearized system. This means that by
only knowing the eigenvectors of the system and the spectral den-
sity of the power fluctuations at the eigenfrequencies of the system,
we can analytically predict the response strength at every node in
the network. The full network response is a superposition of the
responses of every single mode. The contribution of each eigenmode
is determined by the spectral excitation factor and the response pat-
tern by the left and right eigenvectors of that mode. When a single
mode is dominating the response of the network, the vulnerabil-
ity and excitability of the nodes can be linked to the left and right
eigenvectors of this mode.

B. Line losses and the bulk mode

In the following, we will assume homogeneous damping and
inertia parameters Di = D, Mi = M. The Jacobian of the system (9)

Chaos 32, 113114 (2022); doi: 10.1063/5.0122898 32, 113114-4

© Author(s) 2022

 19 O
ctober 2023 06:44:12

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 1. Color plot of the L2 norm of the frequency response at single nodes. The color corresponds to the L2 norm of the frequency response at the output nodes (x-axis)
given a turbulent fluctuation at the input nodes (y-axis) in the grid depicted in Fig. 2. (a) Simulations of the full nonlinear system for each pair of input and output nodes.
(b) Simulation of the linearized system. (c) Analytic prediction calculated with the peak approximation (8). (d) Contribution of the bulk mode to the analytic prediction.

can then be written in the form (5), with matrices

A =

(

0 1
0 − D

M

)

, B =

(

0 0
− 1

M
0

)

,

and the Laplacian weights

wik = |Vi||Vk|[Bik cos(φik) − Gik sin(φik)].

From Eq. (6), it follows that

σ(±,b) = −
D

2M
±

√

D2

4M2
−

λb

M
. (13)

For the Laplacian eigenvalue λ1 = 0, we have two Jacobian eigenval-
ues, σ(+,1) = 0 and σ(−,1) = − D

M
. The eigenvalue σ(+,1) corresponds

to the symmetry of homogeneous phase shifts that do not contribute
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to the dynamics, whereas σ(+,1) corresponds to homogeneous fre-
quency shifts leading to an exponentially decaying response of the
nodes’ frequencies with rate D

M
. When the algebraic connectivity of

the network, i.e., the second smallest eigenvalue of the Laplacian,

fulfills the condition λ2 > D2

4M
, the square root term in (13) will be

imaginary and, therefore, σ(−,1) is the only overdamped mode in the
system. In this case, the mode fully determines the behavior of the
system in the bulk regime and we, therefore, refer to it as the bulk
mode.

When the algebraic connectivity is significantly larger than the

threshold λ2 � D2

4M
, the eigenfrequencies of all the other system

modes are rather high. For correlated fluctuations, the power spec-
trum at high frequencies is suppressed2,18 and, therefore, we find that
the network response in this regime is entirely dominated by the
bulk mode. The right Laplacian eigenvector of this mode is homoge-
neous, whereas the left eigenvector has heterogeneous entries. This
means that all nodes are equally excited but certain nodes have much
higher vulnerability to power fluctuations. The resulting dynami-
cal asymmetry corresponds to the continuous horizontal lines in the
bulk mode plot (Fig. 1) and has its origin in the Ohmic losses of the
lines.

FIG. 2. Vulnerability of nodes in the power flow network for bulk-dominated
dynamics. Nodes are colored according to the deviation norm (12) of the sys-
tem response for fluctuations at this node. The link arrows indicate the direction
of the power flow.

C. Vulnerability in tree-networks

When the bulk mode is dominating the response of the system,
the difference of the vulnerability of nodes to power fluctuations
is entirely determined by the left eigenvector of this mode. From
Eq. (4) it follows that entries of this eigenvector are increasing along
the power flow. This means that fluctuations are amplified in the
opposite direction of the power flow and the nodes located at the
sinks of the flow are the most vulnerable. In Fig. 2, it can clearly
be seen that the network branch where the power is flowing from
the center toward the outlying nodes is much more vulnerable than
the network branches where the power is flowing toward the center.
This explains the observation by Auer et al.10 that the vulnerabil-
ity of nodes and the closeness centrality of the network are closely
related.

V. EXAMPLE: IEEE RELIABILITY TEST SYSTEM-1996

As the last example, we simulate the IEEE Reliability Test
System-199611 to show that our findings are still valid in a
much more realistic test case, including a meshed grid topology,
(algebraically modeled) load buses, and heterogeneous generator

FIG. 3. Vulnerability of load nodes to intermittent fluctuations in the IEEE Reliabil-
ity Test System-1996. Load nodes are depicted as circles and colored according to
the L2-norm of the system response for fluctuations at this node. Generator nodes
are depicted as squares. The link arrows indicate the direction of the power flow.
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parameters. Similar to the example in Sec. IV, we simulate single
node power fluctuations using a combination of stochastic wind
and solar power fluctuation models.14,15 Imagine a large solar or
wind farm connected to one of the buses in the system. Since the
fluctuations at single solar panels and wind turbines can be highly
correlated within a farm, these fluctuations will not average out but
rather add up to a large power fluctuation at the respective node.

We simulate single node power fluctuations at the load buses
and measure the frequency response at the generator buses in the
system using the deviation norm (12). The results are depicted in
Fig. 3. It can be seen that the vulnerability toward power fluctuations
at a bus increases in the direction of the power flow. Accordingly, the
most vulnerable buses are located in the parts of the grid with a very
high share of loads. This indicates that our findings concerning the
joined effect of auto-correlated power fluctuations and line losses
are also valid in a more realistic system setup.

VI. CONCLUSION

In this paper, we presented a linear response theory for corre-
lated fluctuations in power grids that was used to derive an approx-
imation for the frequency response that turned out to be highly
accurate in the regime studied. We have shown that important fea-
tures of the response can be understood as a consequence of the
Laplacian that describes the dynamical coupling of nodes in the
network being asymmetric in the presence of Ohmic losses on the
power lines. In particular, we were able to fully explain the structures
in the node vulnerability that have been observed in numerical sim-
ulations of an islanded microgrid with high renewable penetration.10

For tree-like grids, the location of vulnerable nodes is related to the
power flow throughout the network. In particular, fluctuations at net
power flow sinks result in a strong frequency response at all nodes
in the network. For tree-like grids with very unbalanced power pro-
duction, we find that the consumer heavy-branches are much more
vulnerable to turbulent in-feed of renewable power. This effect is a
direct consequence of both the losses on the power lines and the
correlated nature of renewable power fluctuations. Considering the
generality of our theoretical approach, it should be mentioned that
the application to power grids is not limited to the fluctuation of
renewable energy sources but might also be the basis for studying
the impact of demand fluctuations on grids. Also, this work was
focused on single node fluctuations. However, the formulation of the
response in terms of power spectra also provides an elegant start-
ing point for understanding correlated multi-node fluctuations. In
that case, not only the auto-correlation but also the cross-correlation
of fluctuations will play a crucial role for understanding dynami-
cal interactions. Furthermore, the formulation used here is suited to
study active power flow variations. To understand the response of
the full active and reactive power flow, as well as voltage variations,
e.g., for the study of fluctuations in effective models,19 the approach
needs to be generalized to more general models than Eq. (1). Finally,
in this work, we only focused on explaining the linear response
patterns in the network. However, in the simulations of the full
nonlinear system, we observed nonlinear resonance effects at a few
nodes, which are not fully understood an need to be investigated in
future research.
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APPENDIX A: FACTORIZATION OF THE NETWORK

JACOBIAN

Taking the total derivative of the kth component of the right-
hand-side function at the ith node with respect to the lth variable at
the jth node yields

df i
k

dx
j

l

=
∂f i

k

x i
l

δij +
∂f i

k

∂pi
δlθ

(

δij

∑

n

∂pin

∂xi
θ

−
∂pij

∂xi
θ

)

.

Defining the matrices Akl =
∂fk
xl

, Bkl =
∂fk
∂p

δlθ and using the fact

that the definition of the weighted Laplacian (3) yields the Jacobian
(5). For a right eigenvector of this Jacobian, we have

Jv(a,b) = (A ⊗ I + B ⊗ L)u(a)(λb) ⊗ v(b)

= Au(a)(λb) ⊗ v(b) + Bu(a)(λb) ⊗ Lv(b)

= Au(a)(λb) ⊗ v(b) + λbBu(a)(λb) ⊗ v(b)

= (A + λbB)un(λb) ⊗ v(b)

= µa(λb)v
(a,b) = σ(a,b)v

(a,b).

The proof for the left Jacobian eigenvectors can be done
similarly.
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APPENDIX B: MODE DECOMPOSITION OF THE

RESPONSE FUNCTION

The Fourier transform of the response function χ(t) = θ(t)eJt

is given by

χ̂(ν) = (jνI − J)−1.

The Jacobian can be factorized as J = Q6Q−1, where Q and Q−1 are
given by the left and right eigenvectors

Q =
[

v(1)
r . . . v(n)

r

]

, Q−1 =









v
(1)
l

...

v
(n)

l









,

and 6 is a diagonal matrix whose diagonal elements are the eigen-
values 6nn = σn. Using this, we can show that

(jνI − J)−1 = QQ−1(jνI − J)−1QQ−1

= Q(jνI − Q−1JQ)
−1

Q−1

= Q(jνI − 6)−1Q−1 .

An element of this matrix is given by

[Q(jνI − 6)−1Q−1]ij =

N
∑

n=1

QinQ−1
nj

jν − σn

=

N
∑

n=1

v
(n)
r,i v

(n)

l,j

jν − σn

and, therefore,

χ̂(ν) =

N
∑

n=1

v(n)
r v

(n)

l

jν − σn

.

APPENDIX C: SUPPRESSION OF CROSS-MODE TERMS

The contribution of cross-mode terms is quantified by

∫ ∞

−∞

χ̂
(n)
ij

¯̂χ
(m)
ij dν =

∫ ∞

−∞

v(n)
r,i v(n)

l,j v̄(m)
r,i v̄(m)

l,j

(ν − νn + jγn)(ν − νm − jγm)
dν.

We define the function

f(n,m)(ν) =
1

(ν − νn + jγn)(ν − νm − jγm)
,

The integral of this function can be solved using the residue theorem
∫ ∞

−∞

f (n,m)(ν)dν = 2π j Res
(

f (n,m), νm + jγm

)

=
2π j

νm − νn + 2jγnm

,

where we defined γnm = (γn + γm)/2. For single mode terms
(n = m), the integral is growing by a factor γ −1

n as γn → 0, whereas
for the cross-mode terms (n 6= m), the integral converges to a finite
constant. Hence, if the damping parameters γnm are significantly
small, the cross-mode terms will be suppressed. Moreover, the cross-

mode term χ̂
(n)
ij

¯̂χ
(m)
ij will be even smaller, if the overlap of the

eigenvectors of modes n and m is small. For systems that factorize
into a network and an internal part [see Eq. (6)], this is the case
when the Laplacian eigenvectors have little overlap in their support

on the network. While it is hard to give general rules when this will
be the case, this could explain why the approximation in Eq. (8) gives
reasonable results even outside of the low-damping limit.

APPENDIX D: PARAMETRIZATION OF THE

MICROGRID MODEL

The microgrid model case is kept at a conceptual level to study
the effect of local fluctuations on dynamic grid stability and isolate
the influence of the network structure. Germany has 4500 MV dis-
tribution networks that connect 500 000 LV distribution networks.20

Thus, the microgrid is chosen as a network of 100 nodes to rep-
resent an average German grid at a medium-voltage (MV) level.
The MV level is a good test case for modeling power grids with a
high renewable energy share since most PV power plants are con-
nected to low voltage (LV) or MV levels. An islanded microgrid
must be internally power-balanced and not connected to a higher
grid level. Being power balanced, we assume that there are 50 net
producers and 50 net consumers with Pi = ±0.2 MW power in-
feed before losses. The power in-feeds are chosen homogeneously
to focus on topology and network effects in the model. As there is
no connection to upper grid levels, losses are compensated locally at
each node, and the net power in-feed is given by P̃i = (Pi + Ploss/N).
Mathematically, this is equivalent to switching to the co-rotating
frame. The network topology is generated by a random growth
model for power grids.13 We have chosen a parametrization such
that we get tree-like grids which is a typical structure for distribu-
tion grids. The grid parametrization follows from the voltage level.
The line impedance for typical MV grids with 20 kV base voltage
equals Z = R + jX ≈ (0.4 + 0.3j) �/km.21 For simplicity, all power,
voltage, and impedance values are transformed into the per unit sys-
tem with a base voltage of 20 kV and a base power of 1 MW, which
are typical values for MV grids.21,22 The absolute impedance of each
line scales with the geographic distance l between linked nodes and
consequently differs per link. The average line length is 23.7 km.21

Furthermore, the model case is assumed to be dominated by invert-
ers to analyze a scenario with high renewable penetration. Wind
and solar power plants are connected to the grid via inverters. In
an islanded scenario, some of these inverters will need to be grid
forming to ensure frequency stability. As mentioned above, network
nodes are aggregated with a mix of grid-forming inverters, grid-
feeding inverters, and demand.23 Since grid-feeding inverters do not
contribute any inertia, the effective nodes have inertia much lower
than nodes fully consisting of grid-forming inverters would have.
Grid-forming inverters are modeled following Schiffer et al.12 with a
droop-controlled frequency based on a low pass filtered power mea-
surement. The virtual inertia and damping for the network model is
then given by the low-pass filter exponent τp and the droop control
parameter kp from grid-forming inverters: M = τp/kp, D = 1/kp, ∀i
with i = 1, . . . , N. Standard parameters for the droop and time con-
stants of grid-forming inverters are in the range kp = 0.1, . . . , 10 s−1

and τp = 0.1, . . . , 10 s.12,24 For the simulations, we, therefore, used
M = 0.1 s and D = 0.01 s2. In the simulations, intermittent time
series for solar and wind power fluctuations were generated by a
clear sky index model, based on a combination of a Langevin and
a jump process, developed by Anvari et al.,2 and a Non-Markovian
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FIG. 4. Vulnerability of load nodes to intermittent fluctuations in the CIGRE MV
grid. Nodes are colored according to the L2-norm of the system response for fluc-
tuations at this node. The link arrows indicate the direction of the power flow. Lines
6–7 and 4–11 can be opened by a switch.

Langevin type model developed by Schmietendorf et al.,14 respec-
tively. The power fluctuation δP(t) is a combination of the signals
generated with these models for wind and solar power fluctuations

δP(t) = 0.5δPW(t) + 0.5δPS(t). (D1)

Both the PDF of the fluctuations and their increment time series
are fat-tailed (the tails are not exponentially bounded25). The power
generation from wind and solar power plants has a power spectrum
that is power-lawed with the Kolmogorov exponent of turbulence.2,18

Thus, these time series show long-term temporal correlations.

APPENDIX E: CIGRE MV GRID SIMULATIONS

As a second realistic example, we simulate renewable power
fluctuations in the CIGRE MV grid.26 Following Ref. 27, we slightly
modify the original model such that it can be operated in the
islanded mode (disconnected from the higher grid level). For this,
we scale the power ratings of all distributed generation units by
a factor of 2 and reduce the load at node 1 such that the grid is
self-supplied. Furthermore, we assume that all generation units are
controllable and equipped with frequency and voltage droop control
and can, therefore, be modeled as

θ̇i = ωi,

τPi
ω̇i = −ωi + ωd − kPi

(

Pi − Pd
i

)

,

τPi
V̇i = −Vi + Vd − kQi

(

Qi − Qd
i

)

.

The simulation results are depicted in Fig. 4. It can also be seen
that for a more detailed dynamical model including voltage dynam-
ics, the vulnerability to renewable fluctuations increases along the
power flow and that power fluctuations at the node with the highest
demand (node 1) cause the largest response in the network. Addi-
tionally, this example shows that closing the switches at the lines
6–7 and 4–11 can reduce the vulnerability to power fluctuations by
forming meshes in the grid (see nodes 4, 5, and 6).
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