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ABSTRACT

Self-sustained oscillations are ubiquitous and of fundamental importance for a variety of physical and biological systems including neural
networks, cardiac dynamics, and circadian rhythms. In this work, oscillation quenching in diffusively coupled dynamical networks including
“inertial” effects is analyzed. By adding inertia to diffusively coupled first-order oscillatory systems, we uncover that even small inertia is
capable of eradicating the onset of oscillation quenching. We consolidate the generality of inertia in eradicating oscillation quenching by
extensively examining diverse quenching scenarios, where macroscopic oscillations are extremely deteriorated and even completely lost in the
corresponding models without inertia. The presence of inertia serves as an additional scheme to eradicate the onset of oscillation quenching,
which does not need to tailor the coupling functions. Our findings imply that inertia of a system is an enabler against oscillation quenching in
coupled dynamical networks, which, in turn, is helpful for understanding the emergence of rhythmic behaviors in complex coupled systems
with amplitude degree of freedom.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087839

During the past decade, in order to revive the deprived rhythmic
activities of coupled dynamical networks, various schemes have
been proposed to eradicate the onset of oscillation quenching.
However, most of the previously proposed techniques have their
own limitations and drawbacks as they inevitably alter the intrin-
sic coupling functions, which generally cannot be simply modi-
fied in some real-world complex systems. Thus, it is meaningful
to establish methods by which the onset of oscillation quench-
ing can be eradicated without tailoring the coupling functions. In
this paper, we analyze the onset of oscillation quenching in dif-
fusively coupled dynamical networks including “inertial” effects.
Interestingly, we unveil that the inclusion of (even a small) iner-
tia is capable of eradicating the onset of oscillation quenching.
To validate the generic role of inertia, we carefully examine dis-
tinctly different quenching scenarios in the paradigmatic models
of coupled Stuart–Landau (SL) limit-cycle oscillators, including
a pair of SL oscillators with delayed and dynamic couplings,
a mean-field system of N globally coupled SL oscillators with

randomly distributed frequencies, and an arbitrary network of
delay-coupled SL oscillators, where quenching of oscillations has
been previously reported to be the onset in the case of no inertia.
Moreover, to deeply understand the essential role of inertia, we
theoretically analyze a general form of diffusively coupled second-
order dynamical systems with inertia in a fully general setting,
which provides a common framework for understanding the role
of inertia in eradicating the onset of oscillation quenching by
destabilizing the quenched states.

I. INTRODUCTION

Coupled dynamical networks constitute an excellent frame-
work for dissecting a plethora of collective behaviors that sponta-
neously emerge in many fields of science and engineering.1–5 Quite
recently, various phenomena have been discovered and explored
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in coupled oscillatory networks.6,7 Among them, oscillation quench-
ing, which leads to a cessation of macroscopic rhythmic behaviors
of coupled oscillatory systems, has witnessed tremendous progress
in recent years.8–13 Quenching of oscillations in coupled dynami-
cal networks generally takes place via two distinct manifestations:
amplitude death and oscillation death.9,10 Amplitude death occurs
by stabilizing an unstable homogeneous steady state (HSS), whereas
oscillation death manifests through a stable inhomogeneous steady
state (IHSS) created by the coupling.

However, a rich of intriguing self-organized phenomena of
complex real-world systems originate from the sustained evolution-
ary nature of the interacting oscillatory units. For many realistic
networks, rhythmic activity is deemed to be a fundamental prereq-
uisite to ensure their intrinsic behaviors13 such as spiking neural
networks, cardiac and respiratory systems, electric power genera-
tors, and numerous other natural instances.14 A complete loss of
macroscopic oscillations in these real-world systems is destruc-
tive and unwanted, thus the onset of oscillation quenching should
be circumvented to mitigate possible fatal consequences. Devising
strategies to efficiently eradicate the onset of oscillation quenching
in coupled dynamical networks has been highlighted as a challeng-
ing as well as a practically significant issue,8,13 whose studies are
of importance to construct resilient dynamical networks. Recently,
considerable attention has been paid to this topic;13 however, all the
existing techniques inevitably modify the coupling functions,15–19

which could not be simply altered in some real situations. Thus, it
is meaningful to establish additional methods by which oscillation
quenching can be effectively weakened or even completed eradicated
without tailoring the coupling functions.

To better describe real systems, inertia has been included
to refine the phase models,20–26 which features additional non-
trivial and interesting dynamical consequences such as hysteretic
behaviors or explosive synchronization. Incorporation of iner-
tia is crucial for better understanding synchronous dynamics of
fireflies,27 coupled Josephson junctions,28,29 power grids,30,31 phase-
locked loops,32 an array of pendula,33–37 etc. Hitherto, to our
knowledge, even though the second-order Kuramoto phase model
with inertia has been extensively studied,20–26 the effects of inertia
have not yet been adequately addressed in coupled Stuart–Landau
(SL) limit-cycle systems, which involve both phase and amplitude
dynamics.

In this work, we examine the onset of oscillation quenching
in diffusively coupled SL limit-cycle systems including “inertial”
effects. By adding inertia to diffusively coupled first-order oscilla-
tory systems, we uncover that the presence of (even a tiny amount
of) inertia can eradicate the onset of oscillation quenching. We
establish the generic nature of inertia via carefully examining the
paradigmatic systems of coupled SL oscillators under distinctly dif-
ferent scenarios for which oscillation quenching has been previously
reported to occur in the absence of inertia. We further validate the
destabilizing role of inertia in a fully general setting by consider-
ing a general form of coupled dynamical networks with inertia. The
proposed scheme via inertia provides an additional way to eradi-
cate oscillation quenching in coupled dynamical networks, which
might be helpful for understanding the origin of rhythmicity of
realistic complex systems comprised of a large ensemble of coupled
dynamical units.

II. TWO COUPLED STUART–LANDAU OSCILLATORS

WITH INERTIA

We start by considering a system of two coupled Stuart–Landau
(SL) limit-cycle oscillators with inertia described by

mZ̈j(t) + Żj(t) = (1 + iωj − |Zj(t)|2)Zj(t)

+ K[Zk(t − τ) − Zj(t)], (1)

where j, k = 1, 2 (j 6= k), Zj(t) and ωj are the complex amplitude
and the natural rotational frequency of the jth SL oscillator, K
mediates the strength of coupling, and τ quantifies the propaga-
tion delay. The first term mZ̈j(t) (m ≥ 0) on the left-hand side of
Eq. (1) can be interpreted as inertia of the jth element. Note that
inertia has been previously employed to generalize the paradigmatic
Kuramoto phase model,38 which, however, has not still been thor-
oughly considered in the models that incorporate both the phase
and amplitude dynamics. For m = 0 and K = 0, each uncoupled SL
oscillator exhibits a stable limit-cycle motion Z(t) = eiωjt and has an
unstable focus at Z(t) = 0. The SL oscillator is a canonical model
describing the dynamics near a supercritical Hopf bifurcation, which
has been widely used to explore diverse collective behaviors (in par-
ticular, amplitude death and oscillation death) of coupled dynamical
networks for decades.

For K > 0, the transition from oscillatory to quiescent states,
i.e., quenching of oscillations via amplitude death, in system (1) has
been well examined by Aronson et al. for m = τ = 039 and by Reddy
et al. for m = 0 and τ > 0.40,41 They reported that quenching of
oscillations (amplitude death) occurs in two coupled SL oscillators
(1) via stabilizing the HSS Z1 = Z2 = 0, where the HSS is proved to
be stable within a large interval of K for sufficiently disparate fre-
quencies when τ = 039 or even for identical frequencies if τ > 0.40,41

Here, we will first unveil that the quenching of oscillations in (1) can
be eradicated by finite inertia with m > 0 via showing that even tiny
inertia successfully destabilizes the stable HSS under the above two
scenarios.

When the coupled system (1) with m = 0 experiences the
oscillation quenching, the limit-cycle oscillations of all individuals
completely lose their stability due to the coupling, and meanwhile
the origin Z1(t) = Z2(t) = 0 becomes stabilized. By performing a
standard linear stability analysis of (1) around Z1(t) = Z2(t) = 0,
the condition for the onset of the stable HSS is determined from the
characteristic equation

2
∏

j=1

(mλ2 + λ − 1 − iωj + K) − K2 e−2λτ = 0. (2)

The stability of the HSS is switched when the rightmost eigenvalue
(i.e., the eigenvalue with the largest real part) of (2) crosses the
imaginary axis in the complex plane.

For τ = 0, Eq. (2) is reduced to

mλ2 + λ + K − 1 − iω̄ ±
1

2

√

4K2 − 12 = 0, (3)

with ω = (ω1 + ω2)/2 and 1 = |ω1 − ω2|. Figure 1(a) plots the
rightmost eigenvalue of (3) as a function of m, where K = 2, ω = 2,
and 1 = 5 are fixed. For increasing m from zero, it can be observed
that the rightmost eigenvalue of (2) crosses the imaginary axis from
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FIG. 1. Eradicating the onset of oscillation quenching by inertia in two coupled
SL oscillators (1) with τ = 0 and ω1 6= ω2. In this scenario, for m = 0, ampli-
tude death takes place due to the interplay of a sufficient mismatch between two
intrinsic frequencies and a large coupling strength. (a) The rightmost eigenvalue
of (3) as a function of m. K = 2 is used. Locations of the rightmost eigenval-
ues for m = 0 and mc are highlighted by blue triangle and red star, respectively.
The arrows indicate the direction of increasing m. (b) Stable HSS interval vs m.
ω1 = ω − 1/2 and ω2 = ω + 1/2 with ω = 2 and 1 = 5 are fixed for both
panels.

the left to the right at mc = 0.082. For m > mc, the stability of the
stable HSS is reversed, thereby indicating that oscillation quenching
in the case of m = 0 is successfully eradicated by inertia.

For m = 0 in (3), the HSS is stable for 1 < K < (1 + 12/4)/2
if 1 > 2.39 By setting Re(λ) = 0 in (3) and separating the real and
imaginary parts, we derive critical inertia

mc(K) =











K−1

(|ω|+ 1
2

√
12−4K2)

2 if 1 < K 6
1

2
,

K−1− 1
2

√
4K2−12

ω2 if 1

2
< K 6

1
2

+ 12

8

(4)

beyond which the stable HSS becomes destabilized for a given K.
At K = 1/2, mc reaches its maximum mmax = (1/2 − 1)/ω2. For
instance, Fig. 1(b) depicts the stable HSS interval as a function of m,
where ω = 2 and 1 = 5 are used as in Fig. 1(a). The theoretical pre-
diction in Eq. (4) (red lines) is in excellent agreement with numerical
simulations (open circles) of coupled system (1). Clearly, the stable
HSS interval monotonically decreases as m increases, and no longer
exists for m > mmax = 0.375, which implies that the HSS is impos-
sible to be stabilized for any K > 0, thus oscillation quenching is
eradicated.

For τ > 0, Reddy et al.40,41 reported the onset of the stable HSS
in (1) with m = 0 even for ω1 = ω2 = ω. Now, we will probe the
effect of m in this case of death by delay.42 For 1 = 0, Eq. (2) is
further reduced to

mλ2 + λ = 1 + iω − K ± K eλτ . (5)

The HSS is stable if all the roots of (5) are in the open left half of
the complex plane. Figure 2(a) plots the largest real part Re(λ)max

of (5) vs K for m = 0, 0.002, 0.005, and 0.0066, respectively, where
τ = 0.15 and ω = 10 are fixed. Evidently, increasing m results in a
monotonic shrinkage of the stable interval of the HSS, which van-
ishes for m > mc = 0.066. For a global picture, Fig. 2(b) further
plots the stable HSS region in the (τ , K) space for m = 0, 0.002,

FIG. 2. Eradicating the onset of oscillation quenching by inertia in two coupled
SL oscillators (1) with τ > 0 and ω1 = ω2 = ω. In this situation, for m = 0,
quenching of oscillations arises because of the presence of time delay in the cou-
pling. (a) The largest real part Re(λ)max of Eq. (5) vs K for different values of m.
τ = 0.15 and ω = 10 are used. (b) Stable region of the HSS in the parameter
space of (τ , K) as a function of m.

0.005, and 0.01, respectively. Clearly, the stable HSS region mono-
tonically shrinks as successively enhancing the level of system’s
inertia, which completely disappears in the whole parameter space
of (τ , K) once m > mc ≈ 0.014. Thus, for all the time delay, the pres-
ence of inertia is able to eradiate the onset of oscillation quenching
in two coupled SL oscillators (1). In this sense, the stability results
can be said to be valid for any delay.

To elucidate the generic nature of inertia, we will demonstrate
that it is also capable of eradicating the onset of oscillation quench-
ing by destabilizing the HSS in two SL oscillators with dynamic
coupling43

mZ̈j + Żj = (1 + iω − |Zj|2)Zj + K(uj − Zj),

u̇j = −uj + Zk,
(6)

where j, k = 1, 2 (j 6= k). A linear stability analysis of (6) around
Zj = 0 results in the characteristic equation

mλ2(λ + 1) + λ2 + (K − iω)λ − 1 − iω + K ± K = 0. (7)

For m = 0, the stable interval of the HSS is given by

(ω2 − ω
√

ω2 − 4)/2 < K < (ω2 + ω
√

ω2 − 4)/2 if ω > 2. The
largest real part Re(λ)max of Eq. (7) with ω = 3 as a function of K for
m = 0, 0.1, 0.2, and 0.3 is depicted in Fig. 3(a). It is evident that an
increase in m leads to a monotonous decrease in the stable interval
of the HSS. For a global perspective, Fig. 3(b) further delineates the
stable region of the HSS in the parameter (K, ω) space, which eluci-
dates that the spread of the stable HSS region shrinks on increasing
m and eventually vanishes for m > mc, thereby corroborating the
generic effect of inertia in eradicating the occurrence of oscillation
quenching in two coupled SL oscillators.

In our study, we have further confirmed the generic nature
of inertia in eradicating amplitude death in diverse systems of
two SL oscillators with many other coupling configurations, such
as distributed-delay coupling,44 conjugate coupling,45 mean-field
diffusion,46 etc. Note that the presence of inertia, i.e., m > 0, does
not deform the structure of the steady states of coupled dynamical
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FIG. 3. Eradicating the onset of oscillation quenching by inertia in two coupled
SL oscillators with dynamic coupling (6). (a) The largest real part Re(λ)max of
Eq. (7) with ω = 3 vs K for m = 0, 0.1, 0.2, and 0.3. (b) Stable HSS regions in
the (K,ω) parameter plane.

systems but which offers a possibility to modulate their stability. We
have also consolidated the validity of inertia in destabilizing the sta-
ble IHSS (oscillation death) in two diffusively coupled Brusselators.47

All the results corroborate that inertia can be generically employed
to eradicate the onset of oscillation quenching in two coupled
dynamical systems.

III. GLOBALLY COUPLED STUART–LANDAU

OSCILLATORS WITH INERTIA

The virtue of inertia in eradicating the onset of oscillation
quenching is not restricted to two coupled oscillators, which is valid
even in a large population of coupled oscillators. Now, let us study a
system of globally and diffusively coupled SL oscillators with inertia
represented as

mZ̈j + Żj = (1 + iωj − |Zj|2)Zj +
K

N

N
∑

k=1

(Zk − Zj), (8)

where j = 1, 2, . . . , N (N > 2), ωj’s are randomly distributed accord-
ing to a prescribed density function g(ω). In the limit of a weak
coupling K → 0, Eq. (8) can be reduced to the standard Kuramoto
model with inertia.20,21 Note that Eq. (8) is recovered to the same
model as in Refs. 48 and 49 with m = 0, where the loss of macro-
scopic oscillations due to a stabilization of the HSS (i.e., the onset of
amplitude death) has been reported for a sufficiently broad distribu-
tion of natural frequencies.50–52 Next, we will show that the presence
of inertia m > 0 can indeed reverse the stability of the stable HSS in
coupled system (8).

After carrying out a standard linear stability analysis of (8)
around Zj = 0, the onset of the stable HSS can be identified from
the characteristic equation

N
∏

j=1

(

µ − iwj

)



1 −
K

N

N
∑

j=1

1

µ − iwj



 = 0, (9)

with µ = mλ2 + λ + K − 1. The HSS is stable if all the roots of (9)
have negative real parts. Figure 4(a) shows two typical distributions
of characteristic eigenvalues in (9) with m = 0 (black circles) and
m = 0.05 (red squares), where N = 50, K = 2.2, and the frequencies
ωj’s are uniformly sampled on [−0.5, 4.5]. Note that the real part

FIG. 4. Eradicating the onset of oscillation quenching by inertia in a hetero-
geneous population of globally coupled SL oscillators (8). (a) Distribution of
eigenvalues in (9) for m = 0 (black circles) and m = 0.05 (red squares). (b) Sta-
ble coupling interval of the HSS as a function of m. Black and red lines denote
the theoretical predictions of (13) and (14) with ω̄ = 2 and 1 = 5, respectively,
where open circles represent the numerical results.

of the rightmost eigenvalue shifts from negative (m = 0) to posi-
tive (m = 0.05), which signs a successful destabilization of the stable
HSS caused by increasing m. In the thermodynamic limit, N → ∞,
the roots of (9) can be analytically tractable, which are composed of
the continuous and discrete spectra given by

mλ2 + λ + K − 1 − iω = 0 (10)

and

1

K
=

∫ +∞

−∞

g(ω)dω

mλ2 + λ + K − 1 − iω
, (11)

respectively. Equations (10) and (11) provide a fairly accurate pre-
diction of the onset of the stable HSS in the coupled system (8) with
a large but finite N. By assuming ωj to be uniformly distributed on
[ω̄ − 1/2, ω̄ + 1/2], the discrete spectrum in (11) can be further
integrated to yield

mλ2 + λ + K − 1 − iω̄ −
1

2
cot

(

1

2K

)

= 0. (12)

From Eqs. (10) and (12), two critical curves, enclosing the stable
HSS, can be derived as

mc1(K) =
K − 1

(

ω̄ + 1

2

)2
(13)

and

mc2(K) =
K − 1 − 1

2
cot

(

1

2K

)

ω̄2
. (14)

Figure 4(b) plots the theoretical predictions of (13) (black line)
and (14) (red line) with ω̄ = 2 and 1 = 5, which have been fully
supported by the numerical results (open circles) of the coupled sys-
tem (8) with N = 200. Clearly, quenching of oscillations is impossi-
ble to occur for any K > 0 when m > mc ≈ 0.048, which implies the
ability of inertia in eradicating the onset of oscillation quenching in
heterogeneous populations of globally coupled SL oscillators (8).

Chaos 32, 041102 (2022); doi: 10.1063/5.0087839 32, 041102-4

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

IV. NETWORKS OF STUART–LANDAU OSCILLATORS

WITH INERTIA

Next, we demonstrate that the effect of inertia persists even for
networks of delay-coupled SL oscillators. Specifically, we consider
networked delay-coupled SL oscillators with inertia represented as

mZ̈j + Żj = (1 + iω − |Zj|2)Zj +
K

dj

N
∑

k=1

gjk[Zk(t − τ) − Zj(t)],

(15)

where j = 1, . . . , N (N ≥ 2), gjk encodes the topology of the underly-
ing network, that is, if jth and kth nodes are connected by a link, then

gjk = gkj = 1, otherwise gjk = gkj = 0, gjj = 0. dj =
∑N

k=1 gjk repre-
sents the degree of the jth node. From a linear stability analysis
of (15) around Zj = 0, the characteristic equations governing the
stability of the HSS can be deduced as

mλ2 + λ = 1 + iw − K + Kρj e−λτ , (16)

with ρj’s (j = 1, 2, . . . , N) denoting the eigenvalues of the matrix

G =
(

gjs

dj

)

N×N
, which can be ordered as 1.0 = ρ1 ≥ ρ2 ≥ · · ·

≥ − 1
N−1

≥ ρN ≥ −1.0.53 The HSS is stable if Re(λ)max of (16) for
each ρj is negative.

Figure 5(a) plots a typical dependence of Re(λ)max of (16) on
ρj, from which one can find that the bounding modes are the first
ones to become destabilized, thus revealing that the stable region of
the HSS is defined only by the largest and smallest eigenvalues: ρ1

and ρN. As ρ1 = 1 is fixed, the impact of the coupling topology on
the HSS is solely captured by ρN (0 ≥ ρN ≥ −1.0); and the larger
ρN, the larger the stable HSS region is. Figure 5(b) depicts the stable
interval of the HSS vs ρN for m = 0, 0.01, 0.02, and 0.04, respectively,
where ω = 10 and τ = 0.2 are fixed. For each ρN, the stable interval
of the HSS strongly reduces for increasing m and disappears when
m is beyond a critical threshold. Thus, inertia is able to eradicate the
onset of oscillation quenching in the delay-coupled networks (15).

FIG. 5. Eradicating the onset of oscillation quenching by inertia in networked
delay-coupled SL oscillators (15). For m = 0, quenching of oscillations in (15)
can be induced by the presence of time delay in the coupling. (a) A typical depen-
dence of the largest real part Re(λ)max of (16) on ρj , where m = 0.01, ω = 10,
K = 5, and τ = 0.2. (b) Stable coupling interval of the HSS of (15) vs ρN with
m = 0, 0.01, 0.02, and 0.04. The role of topology of the coupled networks is solely
characterized by the value of ρN .

V. GENERAL FORMS OF COUPLED DYNAMICAL

NETWORKS WITH INERTIA

In order to acquire a more general understanding of the nature
of inertia in eradicating the onset of oscillation quenching, let us
finally consider the following general form of coupled dynamical
networks with inertia defined by

mẌj + Ẋj = F(Xj, µj) + K

N
∑

k=1

LjkH(Xk), (17)

where j = 1, . . . , N (N ≥ 2), the variable Xj ∈ Rn and µj ∈ R denote,
respectively, a n-dimensional state vector and an intrinsic param-
eter of the jth system, H : Rn → Rn is the coupling function,
and the N × N (adjacency or Laplacian) matrix L codes the net-
work topology.54,55 The dynamics of the jth node is governed by
Ẋj = F(Xj, µj) with the function F : Rn → Rn, which is assumed to
exhibit a non-stationary behavior such as periodic (or even chaotic)
oscillations. Note that Eq. (17) can be considered as the standard
form of second-order mechanical systems, where each Xj denotes a
degree of freedom in the system.56 Suppose that, quenching of oscil-
lations takes place in the coupled networks (17) with m = 0 for a
certain value of K > 0, i.e., macroscopic oscillations of the coupled
networks are quenched by the coupling via stabilizing a steady state

X∗ = [X∗
1

T, X∗
2

T, . . . , X∗
N

T]
T
, which can be either a HSS or an IHSS.

The presence of inertia with m > 0 dose not change the steady-state
solution X∗ of (17), which, however, may exert a great impact on
its stability. In the following, we will prove that the onset of oscilla-
tion quenching in (17) can be eradicated by inertia, via showing that
the stability of X∗ can be completely reversed once m is increased
beyond a critical threshold mc.

Linearizing (17) around X∗
j , we have the variational equation

mδẌj + δẊj = JF(X∗
j , µj)δXj + K

N
∑

k=1

LjkJH(X∗
k)δXk, (18)

where δXj represents a small perturbation of the jth node from
X∗

j and J is the Jacobian operator. The linear system (18) can be

described by

mδẌ + δẊ = AδX, (19)

with δX = [δXT
1 , δXT

2 , . . . , δXT
N]

T
. For m = 0, quenching of oscil-

lations is supposed to occur as a consequence of the coupling in
(17) via stabilizing X∗, thus the rightmost characteristic eigenvalue,
a ± ib, of the matrix A has a negative real part, i.e., a < 0 (b ≥ 0).
By letting δY = δẊ, Eq. (19) can be written as

(

δẊ

δẎ

)

=
(

0 IN
1
m

A − 1
m

IN

) (

δX
δY

)

(20)

for m > 0, where IN denotes the N-dimensional identity matrix.
The characteristic equation of the linear system (20) is defined

by

det

(

λIN −IN

− 1
m

A
(

λ + 1
m

)

IN)

)

= 0. (21)

After some matrix operations, Eq. (21) is reduced to

det
(

(mλ2 + λ)IN − A
)

= 0, (22)
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whose eigenvalue with the largest real part can be calculated from

mλ2 + λ = a ± ib (23)

as

λ =
−1 ±

√

1 + 4m(a ± ib)

2m
. (24)

Separating the real and imaginary parts of (23) with Re(λ) = 0,
critical inertia mc is explicitly obtained as

mc = −
a

b2
for b > 0, (25)

which is in accordance with the results in Eqs. (4), (13), and (14).
Differentiating (23) with respect to m, it is straightforward to get

dRe(λ)

dm

∣

∣

∣

m=mc

=
b4

4a2 + b2
> 0 if b > 0, (26)

which means that the rightmost eigenvalue λ will transit into the
right half plane when increasing m beyond mc.

Figures 6(a) and 6(b) schematically show the dependencies of
the rightmost eigenvalue λ of the linear system (19) on m for b > 0
and b = 0, respectively. For b > 0, the eigenvalue crosses the imag-
inary axis from the left to the right at mc = −a/b2, whose real part
asymptotically approaches to 0+ as m → +∞. For b = 0, the eigen-
value first decreases from a to 2a as increasing m from 0 to −1/4a,
and then its real part monotonically increases for m > −1/4a, which
asymptotically approaches to 0− as m → +∞. Thus, for a particu-
larly special case of b = 0, the steady state X∗ cannot be destabilized
by m, but its stability can be strongly weakened if m is sufficiently
large, which makes the coupled networks taking a very long transient
time to achieve the quenched state. In contrast, for much more gen-
eral situations with b > 0, there always exists a critical value of mc,
beyond which the stability of X∗ can be completely reversed, there-
fore indicating that the deprived oscillations of (17) are successfully
revived for all m > mc. In this sense, the effect of inertia in eradicat-
ing the onset of oscillation quenching from quenched states can be
said to be valid widely in coupled dynamical networks.

FIG. 6. Mechanisms of inertia in eradicating the onset of oscillation quenching
in coupled dynamical networks of general form (17). (a) and (b) Schematics of
the dependence of the rightmost eigenvalue λ in (24) on m for b > 0 and b = 0,
respectively. The direction of increasing m is indicated by the arrows. For m = 0,
quenching of oscillations is supposed to occur in (17) via stabilizing a steady state
X∗ for a certain coupling strength K > 0. The eigenvalue with the largest real part
of the matrix A, obtained by linearizing (17) withm = 0 around X∗, is assumed to
be a ± ib with a < 0 and b ≥ 0.

VI. CONCLUSION AND DISCUSSIONS

By adding inertia to diffusively coupled first-order oscillatory
systems, we found that the presence of even tiny inertia is capable of
eradicating the onset of oscillation quenching, which takes place in
the corresponding model with no inertia. To establish the generic
nature of inertia, we have carried out the study progressively via
carefully examining distinctly different quenching scenarios in the
paradigmatic system of coupled SL limit-cycle oscillators, including
a pair of SL oscillators with both delayed and dynamic couplings,
a heterogeneous population of N globally coupled SL oscillators,
and an arbitrary network of delay-coupled SL oscillators. Further-
more, a general form of coupled dynamical networks with inertia
has been theoretically analyzed in a fully general setting, which pro-
vides a common framework for a systematic understanding of the
essential role of inertia in eradicating the onset of oscillation quench-
ing. In the main text, we have introduced the inertial terms in all
the dynamical variables for deducing the stability conditions ana-
lytically; however, in our numerical simulations, we have validated
that by associating inertia in only one of the variables of the n-
dimensional dynamical system is sufficient to eradicate oscillation
quenching via destabilizing the quenched states.

In terms of stability principle, the presence of inertia has the
same type of effect on multiple dynamical systems studied, which
generally makes the rightmost eigenvalue of the corresponding lin-
earized systems crossing the imaginary axis from the left to the right
in the complex plane. From the physical point of view, the com-
mon source of inertia in eradicating the phenomenon of oscillation
quenching may be due to the fact that the additional inertial term
actively pumps up additional energy into coupled dynamical net-
works. This effectively compensates the dissipation induced by the
coupling, thus leading to a destabilization of quenched states.

It should be noted that all the theoretical results are obtained
by performing standard linear stability analyses of the coupled sys-
tem around the steady-state solution. Consequently, all the stability
results are only valid in a neighborhood of the steady state around
which the coupled system was linearized. The only thing that can
be concluded from the linear stability analysis of coupled system
around a fixed point is that the HSS (or IHSS) will be stable or
unstable for certain intervals of system’s parameters. The instability
of the HSS, by no means, ensures the appearance of self-sustained
oscillations. When the HSS becomes unstable, it is possible that the
trajectories of the dynamical system converge to an IHSS. However,
for all the quenching scenarios in the models of coupled SL oscilla-
tors considered in this study, we found that the destabilization of
the stable HSS induced by inertia occurs via a supercritical Hopf
bifurcation, which generally implies the emergence of limit-cycle
oscillations. In our numerical simulations of coupled SL systems
with inertia, we indeed observed that the limit-cycle oscillations are
born after the HSS is destabilized by a certain amount of inertia.
However, further rigorous analysis is required to determine that
when the HSS becomes unstable, whether the only stable solution
is oscillatory, which surely deserves a future study.

From the mathematical viewpoint, inertia is taken into account
to make the dynamical system under consideration to be second-
order ODEs, which tends to induce nontrivial behaviors even in a
single uncoupled system such as promoting oscillations, bi-stability,
or hysteresis.2 In particular, the impact of inertia on synchronous
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dynamics of coupled phase-only systems (from the Kuramoto model
to coupled pendula) has been an active research topic for a long
time.20–38 One of the surprising findings is that a first-order phase
transition (hysteretic synchrony) can be resulted from a finite
inertia in the Kuramoto model, which substantially differs from
the no inertial case associated with a second-order transition to
synchronization.20–26 In the weak coupling limit, our model of glob-
ally coupled SL oscillators with inertia in Eq. (8) can be in fact
reduced to the second-order Kuramoto phase model with inertia.20,21

However, the dynamical roles of inertia in strongly coupled systems
with both phase and amplitude dynamics have not been thoroughly
explored before. Our current work has initiated a step in addressing
this issue by revealing that the presence of inertia is detrimental to
the onset of oscillation quenching in coupled dynamical networks.

By adding inertia, the original first-order dynamical system is
transformed to a second-order one. Then, it is expected that the
dynamic behavior of the transformed dynamical system will be, in
general, different from that observed in the original one. We would
like to emphasize that our results clearly indicate that the occurrence
of oscillation quenching is less likely when a first-order system is
translated to a second-order system by adding inertia. To clarify the
point, we have deliberately conducted the study in the way by intro-
ducing inertia in the first-order SL limit-cycle system, which is due
to the fact that the first-order SL oscillator model without inertia
has been widely employed to explore the mechanisms of oscillation
quenching.8,13 In the future, from the very beginning, we should go
beyond oscillation quenching to directly examine other collective
behaviors in diffusively coupled second-order systems with inertia
[e.g., Eq. (8)] such as the incoherent state, partially (fully) locked
states, unsteady (periodic, quasiperiodic, and chaotic) motions,48,49

chimeras,57 exotic states,58 etc., which will yield a more full picture
of the overall dynamics of diffusively coupled second-order systems
with inertia.

On the other side, we anticipate that the role of inertia in
eradicating the onset of oscillation quenching could be evidenced
in pertinent experiments such as coupled nonlinear electronic
circuits,59,60 electrochemical reactions,61 thermoacoustic systems,62

etc., where the phenomenon of oscillation quenching has already
been observed. However, there may exist some possible challenges in
the experimental verifications of our proposed solution such as how
to obtain the inertial term and add inertia to the original first-order
system. Finally, we believe that our present study will inspire a myr-
iad of further research in coupled second-order systems with inertia,
where both phase and amplitude degrees of freedom are involved.
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