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Abstract: In recurrence analysis, the τ-recurrence rate encodes the periods of the cycles of the
underlying high-dimensional time series. It, thus, plays a similar role to the autocorrelation for scalar
time-series in encoding temporal correlations. However, its Fourier decomposition does not have
a clean interpretation. Thus, there is no satisfactory analogue to the power spectrum in recurrence
analysis. We introduce a novel method to decompose the τ-recurrence rate using an over-complete
basis of Dirac combs together with sparsity regularization. We show that this decomposition, the
inter-spike spectrum, naturally provides an analogue to the power spectrum for recurrence analysis in
the sense that it reveals the dominant periodicities of the underlying time series. We show that the
inter-spike spectrum correctly identifies patterns and transitions in the underlying system in a wide
variety of examples and is robust to measurement noise.
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1. Introduction

The dynamics of complex systems as provided by measured time series usually show
complicated and chaotic patterns. Quantifying their recurrence features is a powerful way
to describe them and to infer information about the type of dynamics, stability, regime
changes, or couplings and synchronisation [1–3]. Even more challenging are signals which
do have a heavy tailed-distribution or appear as a spike-train, e.g., neuron firings [4,5],
heart beat variability [6], or extreme flood events [7]. Deriving useful information from
spike-train signals or inter-spike time series is an important topic in data analysis in many
scientific fields [4,5,8,9].

Recurrence plots (RPs) provide a vivid representation of complex dynamics ~xi stem-
ming from potentially high dimensional systems [1]

Ri,j(ε) = Θ
(
ε− Di,j

)
= Θ

(
ε− ‖~xi −~xj‖

)
, ~x ∈ Rd, i, j ∈ [1, . . . , N], (1)

where R is the recurrence matrix, ~xi is the state vector at time t = ∆t · i (∆t the sampling
time), N is the number of sampling points (or length of data series), and d is the dimension
of the system. The crucial free parameter ε is the recurrence threshold, determining what
is a recurrence and, thus, the visible structures in the RP. It can be chosen such that the
recurrence rate RR(ε) = N−2 ∑N

i,j Ri,j(ε) exhibits a certain value [10]. The simple idea to
track recurring states of the d-dimensional trajectory ~xi of the system under study not only
allows for a beneficial visualization of the dynamics, but also for its quantification, using
certain structures in the RP, such as diagonal or vertical lines [1].

Some of these recurrence quantification measures, the entropy of diagonal lines and
the entropy of recurrence times, can be related to the basic characteristics of complex
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systems, such as Kolmogorov–Sinai entropy [11,12]. However, these quantifiers have a free
parameter, the minimal considered line length, and are usually biased, due to the finite
size of the RP and thickened diagonal lines, which need to be corrected [13]. Moreover, the
mentioned statistics cannot account for changing regular (non-chaotic) dynamics, such as
period-doubling bifurcations.

A rather simple idea is to look at the τ-recurrence rate of the RP (τ-RR, Equation (2))
[14,15]. This is the density of recurrence points along the diagonals of the recurrence matrix,
as a function of the distance τ (sampling units) to the main diagonal:

τ-RR(ε) = RR(τ, ε) =
1

N − τ

N−τ

∑
i=1

Ri,i+τ . (2)

τ-RR serves as an estimator for the probability that the system recurs after time τ∆t, with
∆t being the sampling time of the trajectory ~xi = ~x(∆t · i), i = 1, . . . , N. It represents the
period length of cycles in the data (Figure 1D).

Zbilut and Marwan [15] found that τ-RR could be interpreted as analogous to the
auto-correlation function C(τ) and, hence, via the Wiener–Khinchin theorem, provide an
analogue, “generalized”, spectral density. This is reasonable, since the average distances
for a given lag τ

D(τ) =
1

N − τ

N−τ

∑
i=1

Di,i+τ (3)

can be directly read from the distance matrix D and are also preserved in its thresholded
version τ-RR. There are clear advantages to recurrence-derived spectral density, i.e., Fourier
transforming (FT) τ-RR (Figure 1D,E), instead of C(τ). There are no assumptions for sta-
tionarity or sampling when constructing a RP. Furthermore, since an RP can represent high-
dimensional dynamics and its τ-RR serves as a plug-in for C(τ), the correlation structures
of higher dimensional spaces can be read from the recurrence-derived Fourier spectrum.
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Figure 1. Schematic illustration of a τ-recurrence-rate-based spectrum. (A) x-component time
series of the Lorenz63-System (Equation (A1)) and (B) its corresponding Fourier power spectrum.
(C) Reconstructed state space portrait from the time series shown in (A) using PECUZAL time-delay
embedding [16]. (D) Subset of the recurrence plot and the corresponding τ-recurrence rate obtained
from the state space trajectory in (C). (E) Fourier Power spectrum obtained from the τ-recurrence
rate (subset shown in panel (D)) [15]. (D,E) show the results of a part of the time series, which is
highlighted in pink in (A).

However, the interpretation of this generalized power spectral density is unclear, and
it is typically hard to interpret. τ-RR directly encodes the periodicity of the underlying
signal; in contrast, it is unclear what, if any, interpretation the “power” contained in a
particular frequency mode of the τ-RR should be. Whenever τ-RR is a spike-train-like



Entropy 2022, 24, 1689 3 of 18

signal, which it is in most cases (see Figure 1) especially for map-data (low-resolution data),
an FT of such a signal leads to a spike-train-like image in the frequency domain (e.g., [17,18],
see Figure 1E). Thus, how to extract meaningful information about the systems’ state space
trajectory is not intuitive.

For example, consider the signal we would like to analyze (e.g., the τ-RR of a system)
to be a Dirac comb (DC) with inter-spike period Tis:

DCis(t) =
∞

∑
k=−∞

δ(t− kTis), (4)

i.e., a series of Dirac delta functions for a period Tis. There is only one single period,
Tis, in this signal (Figure 2A,D); in principle, we would strive for a single peak in the
frequency domain of this signal at frequency f = 1/Tis. The Fourier spectrum does not
meet this expectation and instead of a single frequency, there are many excited frequencies
(Figure 2B,E). This is because the Fourier components constructively contribute to every
frequency 1/Tis; therefore, DCis(t) coincides with its own Fourier transform up to a factor
1/Tis [19]. (This can also be observed for neuron spike trains, e.g., [5,20].)
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Figure 2. The transformation of a Dirac comb (series of Dirac delta functions) with a single inter-spike
period Tis = 100 (=̂ f = 0.01) into the frequency domain. (A) Dirac Comb (DC) with equal amplitudes
and (B) its FFT-based power spectral density. (C) Proposed inter-spike spectrum of the signal in
(A) showing a single frequency, which corresponds to the inter-spike period Tis ( f = 0.01). (D) DC
with randomly chosen amplitudes and same Tis as in (A), and (E) is its FFT-based power spectral
density. (F) Proposed inter-spike spectrum of the signal in (D) showing a single frequency, which
corresponds to the expected inter-spike period Tis ( f = 0.01). Inter-spike spectra were obtained with
a LASSO regression and a regularization threshold corresponding to ρ = 0.9 accordance of the signals
in (A,D) and its re-composed signals (c.f. Section 2).

In this article, we propose a new way of decomposing a spike-train-like signal into
periodic components as an alternative to the RP-based method suggested in [15] or Fourier-
based spike-train power spectra [4]. This novel inter-spike spectrum does not show resonance
behavior of the signal’s inherent inter-spike frequencies in such a way that the harmonics of
these frequencies are also excited (Figure 2C,F). Section 2 explains the idea. Note that this
approach can be used to decompose arbitrary signals, and is not specific to τ-RR. However,
the more spiky the signal is, the more useful our new approach is compared to FT. In
Section 3, we demonstrate the usage of inter-spike spectrum when transforming the τ-RR
of a system under study. In this case, the inter-spike spectrum can unravel characteristic
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time scales of high dimensional systems, which is not possible when using an FT. Finally,
in Section 5 our results are summarized.

2. Method

To obtain the inter-spike spectrum, the signal, in our case the τ-RR, is decomposed
into a set of appropriate basis functions. The general idea common to many methods is
that the sum of these weighted functions can approximate a finite signal to a sufficient
degree. The weights (in some contexts also called modes or loadings) corresponding to the
individual basis functions must be determined. A number of decomposition techniques
based on different sets of basis functions exist, e.g., trigonometric functions (Fourier and
wavelet analysis [21]), eigenvectors of the corresponding covariance matrix (principal com-
ponent analysis [22] and related techniques) or intrinsic mode functions (empirical mode
decomposition and Hilbert spectrum [19]). These methods typically share the property
that the basis functions form a complete basis, and the set of basis functions is linearly
independent; thus, the weights are uniquely determined.

Here, we propose the use of Dirac combs (DC) with different inter-spike periods as
basis functions, as shown in Equation (4). Let s(ti) be the min-max-normalized signal we
want to transform in terms of length N and ti = i · ∆t, i = 1, . . . , N, where ∆t denotes the
sampling time and s(ti) ∈ [0, 1] ∀ i. In the following sections, we label this time series as
a (1× N)-dimensional vector~s. First, Ñ different DCs of length N are constructed with
inter-spike periods Tis ∈ [1, . . . , Ñ] and Ñ = dN/2e+ 1. Second, in order to account for
possible phase shifts of these basis functions occurring in~s, each of these Ñ different DCs
also need to be shifted one step further Tis − 1 times. This leaves us with a total number
of M = ∑Ñ

i=1 i basis functions which we can arrange as rows of a (M× N)-sized matrix X
(Figure 3 illustrates the described procedure) as follows:

Xi,j =
N

∑
k=0

δ
(

j− 1− kTis(i)− i + Tis(i)
)
, i = 1, . . . , dN/2e+ 1, j = 1, . . . , N (5)

Tis(i) = n, such that n :
n(n− 1)

2
+ 1 ≤ i <

n(n + 1)
2

+ 1, n ∈ N+. (6)

Note that due to the shifting of each of the basis functions of the inter-spike period
Tis, X is no longer linear-independent. Furthermore, there will be identical basis functions,
which do not allow for an unambiguous inter-spike period, if we would include all N
possible inter-spike periods for a signal of length N instead of dN/2e+ 1 (Figure 3A). The
reason is that in contrast to a trigonometric decomposition, where the Nyquist frequency
marks a lower bound for the corresponding wave period, the maximum considered inter-
spike period is bounded by Tmax

is = dN/2e+ 1 (schematically illustrated in Figure 3B).
Eventually, an under-determined linear system

XT β =~s (7)

has to be solved for β, with the (M× 1)-sized vector carrying the loadings we are interested
in. Of the variety of algorithms which can solve this problem, we are particularly interested
in those solutions which promote sparsity in β, since our goal is to decompose the signal~s
into a minimal number of basis functions (for an excellent overview of the topic we refer
readers to Brunton and Kutz [23]). In this paper, we either use the least absolute shrinkage and
selection operator (LASSO) [24] or a sequentially threshold least squares (STLS) regression [23,25]
to obtain a solution β̂. Any other sparse regression technique can be used. Finally, we
group loadings which correspond to basis functions with the same period Tis into β̂ f and

obtain the inter-spike spectrum by simply plotting β̂ f as a function of the frequency f = T−1
is ,

with Tis = ∆t, 2∆t, . . . , (dN/2e+ 1)∆t (Figure 2C,F).
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Figure 3. (A) Example of a full set of basis functions for an input signal of length N = 4, aligned in
the matrix X′. Inter-spike periods Tis larger than dN/2e+ 1 lead to redundant basis functions (i.e.,
repeated lines in X, red sheared) or basis functions, which cannot be uniquely assigned to a certain
inter-spike period (blue sheared). Tis for each row can be obtained by Equation (6). (B) The final set
of unambiguous, but still linearly dependent, basis functions aligned in the matrix X.

When introducing a sparsity regularization, we forsake the ability to fully reconstruct
the signal from the decomposition in favor of identifying the most prominent spikes, and
thus, the most important periodicities, more accurately. This choice is parametrized by a
regression regularization parameter α. We only obtain a solution to Equation (7) with α = 0
as well as a full reconstruction of the signal. Our general approach to fixing α is to preserve
most of the original signal in the sense of matching a given (Pearson) correlation coefficient
ρ between the original signal~s and the reconstruction. The chosen regression method (in
our case, LASSO or STLS) will determine how sensitive the obtained inter-spike spectrum
is with respect to the regularization of the selected ρ (Figure A5). Regarding this, in most of
our applications LASSO yields more robust results, while STLS is usually faster in terms of
computation. We will discuss this in more detail in Section 4. The proposed decomposition
does not show a leakage effect by construction. However, when introducing sparsity
regularization we forsake the ability to fully reconstruct the signal from the decomposition
in favor of identifying the most important periodicities more clearly. This choice is mediated
by a regression regularization parameter α. Only for α = 0 do we obtain a solution to
Equation (7) and thus a full reconstruction of the signal. Our general approach to fixing α is
to preserve most of the original signal in the sense of matching a given (Pearson) correlation
coefficient ρ between the original signal~s and the reconstruction. The chosen regression
method (in our case, LASSO or STLS) will determine how sensitive the obtained inter-
spike spectrum is with respect to the regularization achieved by a selected ρ (Figure A5).
Regarding this, in most of our applications LASSO yields more robust results, while STLS
is usually faster in terms of computation. We will discuss this in more detail in Section 4.

3. Results

We demonstrate the use of the inter-spike spectrum in combination with τ-RR, as
outlined in Section 1, on several interesting research questions. The procedure takes place
as follows:

(1) Compute an RP of the trajectory of the system, Equation (1). If only univariate data
are available, perform a state space reconstruction for obtaining the trajectory first.
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(2) Compute the τ-RR of the RP, as shown in Equation (2).
(3) Transform the τ-RR into the proposed inter-spike spectrum, see Section 2.

3.1. Period Estimation for Different Dynamics in the Rössler System

First, we consider the Rössler system (Equation (A2), shown in Appendix A.2), in
three different dynamical setups. We use the proposed inter-spike spectrum to identify
the type of dynamics. We set the parameters as b = 2, c = 4 and analyze period-2 limit
cycle dynamics (a = 0.36 in Figure 4A,D,G,J), period-3 limit cycle dynamics (a = 0.41 in
Figure 4B,E,H,K) and chaotic dynamics (a = 0.428 in Figure 4C,F,I,L).
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Figure 4. Inter-spike spectra of the τ-RR of the Rössler system in three different dynamical regimes
with parameters b = 2, c = 4. (A) Trajectory of the system in a period-2 (parameter a = 0.36),
(B) in a period-3 (parameter a = 0.41) and (C) in a chaotic regime (parameter a = 0.428). (D–F) The
corresponding RPs, obtained by using a recurrence threshold corresponding to a 10% global recur-
rence rate for (D,E) and 5% for (F). (G–I) τ-RRs of the shown RPs. (J–L) The proposed inter-spike
spectra of the τ-RRs shown in panels (G–I). Spectra were obtained with a LASSO regression and a
regularization threshold corresponding to ρ = 0.95 accordance of τ-RRs and re-composed signals.
The distance ratio of the peaks reflect the limit cycle dynamic. (M–O) Fourier power spectra of the
τ-RRs shown in panels (G–I).
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The inter-spike spectra unravel the specific dynamics, which are also apparent in the
state space portraits (Figure 4A–C) and in the τ-RRs (Figure 4G–I). The proposed idea is
also robust to noise (see Figure A3 in the Appendix C). This is because the peaks of τ-RR
are insensitive to noise. Figure 5 illustrates that while the peak shape does change in the
presence of noise, its position does not, and this is what the inter-spike spectrum encrypts
(see Figure A4 in the Appendix C for further analysis).
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Figure 5. Peak positions of the obtained inter-spike spectra of the τ-RRs for additive noise levels
up to 50% for the discussed Rössler dynamics, (A) period-2 limit-cycle, (B) period-3 limit-cycle
and (C) chaos. The size of the plotted markers scale with the detected peak height. The noise-free
spectra are shown in Figure 4J–L and an example of these spectra with 5% additive noise is shown
in Figure A3J–L. Spectra were obtained with a LASSO regression and a regularization threshold
corresponding to ρ = 0.95 accordance of τ-RRs and re-composed signals.

3.2. Bifurcations in the Logistic Map

We consider the Logistic map xn+1 = r · xn(1− xn) for changing the control parameter
r. We vary r from r = 3.4 to r = 4 in steps of 0.001. For each setting of r

(1) A time series of length N = 201 is computed with a random initial condition
u0 ∈ [0, 1], neglecting the first 1000 samples as transients;

(2) A total of 100 iterative Amplitude Adjusted Fourier Transform (iAAFT) surrogates [26,27]
are computed;

(3) The time series and its iAAFT surrogates are embedded in a 2-dimensional state space
using a time delay of unity;

(4) The two-dimensional trajectories RPs, as shown in Equation (1), are computed under
a threshold ε = 0.05,

(5) τ-RR, as shown in Equation (2), is computed from the RP of the signal and from the
RPs of the surrogates;

(6) Inter-spike spectra are obtained from τ-RR of the signal and from the τ-RRs of the
surrogates, as can be seen in Section 2;

(7) Finally, from the distribution of the surrogate inter-spike spectra, the 95th percentile
is computed. The peaks of the inter-spike spectrum of the signal which exceed this
percentile are counted.

In this example, the null hypothesis for constructing the surrogate data is that the data
stem from a process which yields the same auto-correlation, and hence, the same Fourier
power spectral density, and the same amplitude distribution. We consider the number
of significant peaks in the inter-spike spectrum with respect to the control parameter
in order to distinguish the corresponding dynamics (Figure 6C). A correlation with the
positive Lyapunov exponent (Figure 6A) is discernible (ρPearson(Lyapunov) = 0.72). This
analysis can handle period-doubling since it measures the dominant cycles via the inter-
spike spectrum. However, whenever the periods of the new cycles coincide with integer
multiples of the periods of already existing cycles, the approach cannot detect period
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doubling. A similar case can be observed in Figure 4J,K, where the number of peaks does
not change, but the mutual distance does.

A less computationally intensive approach is to compute surrogates for τ-RR analyt-
ically, rather than computing an RP and its τ-RR for each iAAFT surrogate of the time
series. This translates into a null hypothesis that the τ-RR and its corresponding inter-spike
spectrum stem from an RP of a random signal. In this case, the probability of finding a black
point in the RP can be obtained from a binomial distribution with the probability parameter
p set to the recurrence rate of the RP of the signal. In this way, 100 surrogate τ-RRs are
computed in step (5). The results are even slightly better compared to the ones obtained
from the iAAFT surrogates (Figure 6B, ρPearson(Lyapunov) = 0.81). The first instance of
period doubling at r ≈ 3.458 cannot be detected by any of the surrogates.

The described procedure does work well for map data, because most often the τ-RR
for those kind of data reveals a “spiky enough” nature. On the contrary, highly sampled
(flow-) data often yield not as spiky τ-RRs; therefore, the number of significant peaks in the
inter-spike spectrum may not be sensitive enough to detect period-doubling bifurcations.
Moreover the sensitivity of the inter-spike spectrum in detecting regime shifts also depends
on the critical regularization threshold. Nevertheless, the according inter-spike spectra
still reveal important information (Figure 4) and practitioners can design appropriate
quantifying statistics based on these spectra which suit the research task.

Lyapunov exponent of the Logistic map

No. of significant peaks in inter spike spectrum of τ-RR (H0: random)

No. of significant peaks in inter spike spectrum of τ-RR (H0: iAAFT)

A

B

C

������������������������

������������������������


Figure 6. (A) Bifurcation diagram and Lyapunov exponent and of the Logistic map as a function
of the control parameter r. (B) Number of significant peaks (α = 0.05) in the inter-spike spectrum
of the τ-RR and its Pearson correlation coefficient to the Lyapunov exponent shown in (A) (white
noise surrogates). (C) Same as (B), but for iterative Amplitude Adjusted Fourier Transform (iAAFT)
surrogates [26,27]. To obtain the inter-spike spectra, we used a LASSO regression and a regularization
threshold corresponding to the ρ = 0.95 accordance of τ-RRs and re-composed signals.

3.3. Inter-Spike Spectra of Power Grid Frequency Data

Power grids are large, synchronized, complex networks whose stable functioning is
indispensable for modern societies. To maintain the stability of a power grid, the balance
between energy consumption and energy generation must be ensured. In an AC-power
grid, the grid frequency is an observable variable that reflects how well this balance is
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satisfied. In this process, the grid frequency and its deviations from the nominal frequency
are continuously recorded and monitored by the grid operators (in Europe and many parts
of the world this is 50 Hz or 60 Hz in America and, for example, southern Japan). For
example, if there is more (less) demand than supply, the network frequency decreases
(increases) compared to the nominal frequency [28].

The frequency variations can include other information, such as the functionality of
control systems [29], the effect of fluctuations in renewable energies (REs), demands on the
grid [30] and, moreover, the effect of regular dispatches due to the trading market [31]. The
latter induce periodic frequency jumps. Here we look at the frequency time series for the
Great Britain (GB) and Continental Europe (CE) (Appendix B and Figure A1A,C). Clear
jumps every 30 and 60 min are discernible and quantitatively reflected in the corresponding
autocorrelations (Figure A1B,D). Furthermore, the autocorrelation of the CE frequency time
series shows regular peaks every 15 min (see Figure A1B). These peaks are caused by a
mismatch of power supply and demand [32] during dispatches. In most electricity grids
the operation of dispatchable power plants is scheduled in 1-h blocks, where additional
(shorter) 30 and 15 min intervals might exist.

The evolutionary Fourier frequency spectrum for the Central European data in
Figure 7A, however, does not display sharp peaks exactly at 15, 30 and 60 min, which
may partly be explained by the leakage effect (for technical details on the calculation of the
spectra shown, the reader is referred to Appendix B). More clearly, the 30 and 60 min peaks
are split into two adjacent peaks and the local minimum in between these “double”-peaks
correspond to the exact times. The Great Britain counterpart in Figure 7B has sharp peaks
at 15 and 30 min and also “local predecessor peaks” for 30 and 60 min at the same positions
as in panel A. The fact that sharp peaks are seen here using the same window size and
sampling frequency as in the case of the Central European data shows that the leakage
effect alone is not the cause of the peak splitting, as shown in Figure 7A.
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Figure 7. Averaged evolutionary Fourier power spectra of recorded power grid frequency time
series of (A) Central Europe (CE) and (B) Great Britain (GB) (see Figure A1 in Appendix B). The
corresponding averaged inter-spike spectra of the according τ-RRs, Equation (2), are shown in (C,D),
respectively. Vertical red dashed lines correspond to 15, 30 and 60 min. For technical details on the
calculation of the spectra shown, i.e, the preprocessing and window size being used, the reader is
referred to Appendix B.

In contrast, the 15 min peak is completely absent from the inter-spike spectra of the
τ-RRs of the frequency data (Figure 7C,D), but these show sharp peaks at 30 and 60 min
(there is no leakage effect due to the proposed decomposition technique). In front of
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these peaks, smaller local peaks can be seen, which correspond to the local peaks of the
Fourier power spectra at 28 and 55 min, respectively. Moreover, there is an additional
peak at 40 min for both datasets, which is absent in the Fourier spectrum and which is not
a multiple of the missing 15 min peak. The position and magnitude of the peaks in the
inter-spike spectra are robust to the chosen recurrence threshold, the regression method
and its regularization as well as the sampling time of the original signal.

We interpret the results presented as follows. The missing 15 min in the inter-spike
spectra is due to the much stronger autocorrelation at 30 and 60 min (see Figure A1B,D);
because these periods are integer multiples of 15 min, the inter-spike spectra are not able to
detect them and the sparse regression “drags” the 15 min periods into the mentioned 30 and
60 min peaks. Moreover, the inter-spike spectra, unlike the Fourier spectra, demonstrate
sharp peaks exactly at 30 and 60 min, i.e., during dispatches (not valid in case of the GB
dataset). Finally, we found a clear sharp peak at 40 min which can occur because of any
regular controls in a power grid, and can indicate the need to develop the existing stochastic
processes to model the power grid frequency more precisely [29].

3.4. Evolutionary Inter-Spike Spectra of Earth’s Orbit Data

When applying the proposed inter-spike spectrum to the τ-RR of a time series we
expect additional frequency/period information, due to the fact that the recurrence plot
(RP), Equation (1), and its corresponding τ-RR, as shown in Equation (2), visualize the
trajectory of the embedded time series in an embedding space of a higher dimension.
However, given sufficient embedding of the time series, we would also expect that major
frequencies/periods of the non-embedded time series are incorporated in the RP, its τ-
RR, and eventually in the inter-spike spectrum of the τ-RR. In order to demonstrate
this, we apply the inter-spike spectrum to the freely available eccentricity time series
of Laskar, J. et al. [33]. This astronomical computation of the orbital motion of the Earth
(here, we focus on the eccentricity only) has a clear expectation value of the incorporated
frequencies/periods. The three leading eccentricity cycles of 405 kyr period, 95 kyr period
and 124 kyr period are well known in palaeoclimate studies [34,35]. Our aim in this section
is to show that the inter-spike spectrum of the τ-RR of the embedded eccentricity time
series will reflect these cycles in a similar fashion as the Fourier power spectral density of
the non-embedded eccentricity time series. We will further show that Fourier-transforming
the τ-RR instead of applying the proposed inter-spike spectrum will lead to non-satisfying
results, since the spiky τ-RR excites a variety of harmonics in the corresponding Fourier
spectrum (cf. Section 1). We use a time series which covers the past ∼67 Mio. years (Myr),
with a total length of N = 13, 421 samples and a sampling period of ∆t = 5000.

First, we compute an evolutionary short time FT using a windowsize of ws = 1000
samplepoints (≡ 5 Myr) shifted by unity and a Hamming window. The spectrogram reveals
the expected periods mentioned, which are highlighted and clearly visible (Figure 8A).

Then, we construct the inter-spike spectrogram of the τ-RR by first determining
an appropriate embedding. By using a recent tree-embedding ansatz [36], we mini-
mize the false nearest neighbor statistic [37] and use the continuity statistic [38] for po-
tential delays. Eventually, we obtain 8-dimensional embedding with embedding delays
τ = [0, 18, 36, 48, 62, 101, 114] (in sampling units) for the entire time series. Similar to the
preceding approach we embed the time series with these embedding parameters on win-
dows of size ws = 1, 200 and a unity shift. (We use a slightly larger window here than in
the short FT, because the embedding causes a “loss” of data points and we want to cover
similar time spans.) The RPs are computed on these embedded trajectories with a fixed
recurrence threshold corresponding to a 10% global recurrence rate [10] and the inter-spike
spectra of the corresponding τ-RRs is obtained by using STLS regression (see Section 2) and
a regularization threshold corresponding to ρ = 0.9 accordance of τ-RRs and re-composed
signals. We only use the first 200 data points of the τ-RR (covering a time span of 1 Myr).
The spectrogram also highlights the 95, 124 and 405 kyr periods as expected (Figure 8B).
Additional power is distributed in the harmonics at 190 and 248 kyr periods. Finally, the
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standard FT with a Hamming window of the same τ-RRs used to obtain the inter-spike
spectrogram in panel B yields a smeared spectrogram which does not reflect the expected
periods, but rather suffers from the spike train behavior, i.e., many excited harmonics, of
the FT described in Section 1 and Figure 2. The shown results are robust to a change of the
embedding parameters and windowsizes. However, a low regularization threshold smears
the clear spectrogram in panel B.

405

124
   95

405

124
   95

405

124
   95

A 

B 

C 

Figure 8. (A) Evolutionary Fourier power spectra of eccentricity time series. (B) Inter-spike spec-
trogram of the τ-recurrence rate of the eccentricity time series and (C) its Fourier spectrogram.
Horizontal black dashed lines highlight the analytically expected orbital periods of 405, 124 and
95 kyrs. For comparability, in all cases the spectra aligned in the columns of the shown plots are
normalized to probabilities (sum of unity for each power spectrum). For further computational
details, please refer to the main text.

4. Discussion

We successfully used the idea of transforming the τ-RR for the detection of bifurcations
in the Logistic map. By constructing appropriate surrogates of the inter-spike spectra, and,
thus, a null model, the number of significant peaks in the inter-spike spectrum correlated
well with the positive Lyapunov exponent. This measure was also able to resolve period-
doubling bifurcations. However, we have to admit that by using this method, the detection
of a bifurcation is only possible when the additional period(s) is not an integer multiple of
the former period(s). This behavior is described in the application to the Rössler system,
where we explicitly showed the different inter-spike spectra for period-2, period-3, and
chaotic dynamics. Further development might potentially incorporate the mutual distance
of peaks in the spectrum for a better correlation to the Lyapunov exponent. The inter-spike
spectra of power grid frequency data illustrate that our proposed method may serve as a
valuable source of information in addition to a standard Fourier analysis. Last but not least,
we showed that our approach incorporates frequencies, which are apparent in the Fourier
spectrum of the signal, by applying the method to analytically derived eccentricity data,
where the dominant frequencies are well known.

We discuss some more technical details in the following sections, which will also affect
any application of the proposed method. First of all, the number of required basis functions
M = ∑

dN/2e+1
i=1 i for an input signal of length N is the crucial bottleneck of this approach,

which is why it does not show good scaling behavior. The subsequent sparse regression,
therefore, becomes computationally intensive for N > 1000. Depending on the memory of
the computer used, input signals N > 2000 usually do not work. This means that signals
often need to be downsampled as a preprocessing step (e.g., see Appendix B). Second, the
regularization parameter α for the regression is a crucial free parameter. As described in
Section 2, our idea in this paper is to select the α such that the re-composed signal ~̃s = XT β̂
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matches a given (Pearson) correlation coefficient ρ~s,~̃s between the original signal~s and itself.
This ensures that α adjusts itself to the data as well as to the used regression method. We
found that this increases the comparability of different spectra, especially when performing
a running window approach in order to obtain an evolutionary spectrogram (Figure 8).
However, the two different sparse regression algorithms we encountered in this article
(LASSO and STLS) yield different results for the same desired ρ~s,~̃s. Even if the spectra
obtained in this way look qualitatively similar, they are not always quantitatively similar.
The reason for this is that ρ~s,~̃s is not a smooth function of α in case of STLS, due to the
hard-thresholding involved [25], which is shown in Figure A5. Third, when adopting
our idea of applying the inter-spike spectrum to the τ-recurrence rate of the signals state
space trajectory, the embedding process induces additional free parameters. This is not
a drawback of the proposed decomposition method, but rather a drawback of applying
this technique to the τ-recurrence rate of the system, which was the main motivation for
developing the proposed method. As a very last remark, we draw attention to the fact that
sparse regression can be transformed into sparse logistic regression when the signal we
would like to transform is binary.

5. Conclusions

A novel decomposition technique is proposed that yields the inter-spike spectrum. The
method decomposes any arbitrary signal into basis functions which consist of (lagged)
Dirac combs (DC) of a different inter-spike period. The loading for each period is obtained
by a regularized regression, which promotes sparsity in its solution. We chose LASSO
or a sequentially thresholded least squares regression STLS in this letter. Since there
are M = ∑

dN/2e+1
i=1 i basis functions for a signal of length N, the regression can become

computationally intensive for N > 1000. When plotting the computed loadings as a
function of the period (or frequency), the inter-spike spectrum is obtained. A disadvantage
is that the transformation is not invertible. An advantage is that there is no leakage effect.
Although this novel spectrum is superior to an ordinary FFT-based power spectrum when
the signal has a spike-train-like appearance, the authors suggest that this method should
be considered as an additional source of information but not as a substitute for ordinary
Fourier analysis. Due to the sparse regression underlying the method, there is no unique
inverse of the transformation and the regularization parameter plays a crucial role and
determines the appearance of the obtained inter-spike spectrum. Moreover, similar to
the Nyquist frequency barrier in the Fourier Transform which sets a lower bound for the
corresponding wave period, here the maximum considered inter-spike period is bounded
by Tmax

is = dN/2e+ 1.
The creation of the proposed method was by the idea of transforming τ-recurrence rate

signals (τ-RRs) into their frequency domain. This general idea [15] facilitates a frequency
analysis of high dimensional systems, because the RP is a representation of the system’s
state space trajectory. The τ-RR of a recurrence plot (RP) usually has a spiky shape,
especially for map-like data, and the inter-spike spectrum can reliably reveal the system’s
dominant frequencies, which is not possible when Fourier transforming the τ-RR or the
underlying signal itself. Since the position of the peaks in the τ-RR are not sensitive to
noise, the corresponding inter-spike spectrum also yields robust results in the presence
of noise.

There is a broad range of applications for the proposed idea. The inter-spike spectrum
itself can serve as a valuable tool for the analysis of any sort of spike-train-like data. On
the other hand, the inter-spike spectrum of the τ-RR of a signal can serve as a generalized,
nonlinear frequency analysis tool for complex systems. When there is only a subset of
state variables available, the state space has to be reconstructed as a pre-processing step.
Recent findings [16,36] show that this reconstruction process can be reliably automated and
applied to multivariate data as well. This would allow for a “running window” approach,
in order to detect transitions. Due to the mentioned computational constraints of our
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proposed method, a window size w ≤ 1000 would possibly suffice for most data, especially
when it is map-like, i.e., not highly sampled.
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Appendix A. Exemplary Models

Appendix A.1. Lorenz System

The classical Lorenz-63 system [42] is defined as

ẋ = σ(y− x)
ẏ = x(r− z)− y
ż = xy− βz.

(A1)

For producing Figure 1, we set the initial condition to u0 = [0.0, 10.0, 0.0], used a sampling
time of ∆t = 0.01 and discarded the first 2000 points of the integration as transients. The
parameters have been set to σ = 10, β = 8/3, ρ = 28 and we used a time series consisting
of 6000 samples.

Appendix A.2. Rössler System

The Rössler system [43] is defined as

ẋ = −y− z
ẏ = x + ay
ż = b + z(x− c).

(A2)

For producing Figures A3 and 4, the initial condition for producing panels A & B
was set to u0 = [0.7,−1, 0.4] with a sampling time of dt = 0.05 and in case of panel
C, u0 = [−0.1242,−2.5415, 0.2772] with a sampling time of dt = 0.1. The first 5000 samples
were discarded as transients and trajectories of length N = 5000 were obtained from which
we computed the RPs and the corresponding τ-RRs. For the inter-spike spectra, only the
first 1000 values of the τ-RRs were considered.

Appendix B. Power Grid Frequency Time Series

The raw frequency time series have a length of ÑCE = 58, 752, 000 and ÑGB = 31, 622, 400
with sampling times ∆tCE = 0.2 s and ∆tGB = 1 s, respectively. GB frequency data were
measured during 2016, and were obtained from [44]. CE frequency data were from 2017
and were obtained from [45].

We downsampled these time series to a sampling time of ∆tCE = ∆tGB = 20 s, which
led to total time series lengths of NCE = 587, 520 and NGB = 1, 581, 120 which we used for
further analysis.

https:doi.org/10.5281/zenodo.7328580
https:doi.org/10.5281/zenodo.7328513
https:doi.org/10.5281/zenodo.7328499
https:doi.org/10.5281/zenodo.7328499
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Figure A1. Subset of the frequency time series of (A) Central Europe (CE) [45] and (C) Great
Britain (GB) [44] along with their autocorrelation functions in (B,D), respectively. The normalized
autocorrelations in (B,D) were computed with the entire time series, whereas the subsets shown in
(A,C) contain only 1441 samples.

In this analysis, we divided the time series into non-overlapping blocks of length
Nblock = 4320, covering a time span of 24 h. For each time series block we computed Fourier
spectra and recurrence plots (RPs), Equation (1), along with their τ-RRs, Equation (2). The
RPs were obtained from a uniform 5-dimensional time-delay embedding of each time
series with the delay set to the first minimum of the mutual information [37,46] and a fixed
recurrence threshold corresponding to an 8% recurrence rate was used in order to ensure
comparability [10]. The first 600 data points of the τ-RRs were used to obtain inter-spike
spectra with a LASSO regression and a regularization threshold corresponding to ρ = 0.95
accordance of τ-RRs and re-composed signals. The spectra shown in all panels of Figure 7
are the averages over all blocks, following Meyer et al. [31].
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Figure A2. Fourier spectra of the frequency entire time series from (A) Central Europe (CE),
NCE = 587, 520 and (B) Great Britain (GB), NGB = 1, 581, 120. A subset of the underlying time
series is shown in Figure A1.

Appendix C. Inter-Spike Spectra for Noisy Rössler System
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Figure A3. Same as in Figure 4, but here with 5% additive Gaussian white noise on each component x,
y and z. (A) Trajectory of the system in a period-2 (parameter a = 0.36), (B) in a period-3 (parameter
a = 0.41) and (C) in a chaotic regime (parameter a = 0.428). (D–F) The corresponding RPs, obtained
by using a recurrence threshold corresponding to a 10% global recurrence rate for (D,E) and 5%
for (F). (G–I) τ-RRs of the shown RPs, (J–L) the corresponding inter-spike spectra, and (M–O) the
Fourier power spectra. The appearance of the inter-spike spectra in (J–L), and the Fourier spectra in
(M–O) are unaffected by the additive noise.

0 10 20 30 40 50
percentage of additive noise

0

2

4

6

8

10

12

14

W
as

se
rs

te
in

 d
is

ta
nc

e

Rössler system (a = 0.36)

reg. threshold ρ = 0.90

0 10 20 30 40 50
percentage of additive noise

0

2

4

6

8

10

12

14
Rössler system (a = 0.41)

0 10 20 30 40 50
percentage of additive noise

0

2

4

6

8

10

12

14
Rössler system (a = 0.428)

reg. threshold ρ = 0.95 reg. threshold ρ = 0.99

A B C

Figure A4. Wasserstein distances for the obtained inter-spike spectra of the τ-RRs for additive
noise levels of up to 50% for the discussed Rössler dynamics, (A) period-2 limit-cycle, (B) period-3
limit-cycle and (C) chaos. For each noise level the obtained spectrum is compared to the noise-free
spectrum (these are shown in Figure 4J–L for a regularization threshold corresponding to ρ = 0.95)
by computing its Wasserstein distance. Inter-spike spectra were obtained with a LASSO regression
and three different regularization thresholds corresponding to ρ = 0.9 (blue), ρ = 0.95 (orange)
and ρ = 0.99 (green) accordance of τ-RRs and re-composed signals. Up to a noise level of 20%
the distances are small and rather constant. The fluctuations depend on the chosen regularization
threshold as well as on the underlying dynamics.
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Appendix D. Regularizationparameters for Different Sparse Regression Techniques
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Figure A5. Pearson correlation coefficient ρ~s,~̃s between the input signal signal~s and the re-composed
signal ~̃s = XT β̂ as a function of the regularization parameter α for (A) LASSO and (B) sequentially
thresholded least squares (STLS) regression (see also Section 2). The input time series is of length
N = 200 and stems from the τ-RR of Rössler system in regular dynamics.
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