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Future power grids will be operating a large number of heterogeneous dynamical actors. Many of these
will contribute to the fundamental dynamical stability of the system, and play a central role in establishing
the self-organized synchronous state that underlies energy transport through the grid. We derive a normal
form for grid-forming components in power grids. This allows analyzing the grids’ systemic properties in
a technology neutral manner, without detailed component models. Our approach is based on the physics of
the power flow in the grid on the one hand, and on the common symmetry that is inherited from the control
objectives grid-forming power grid components are trying to achieve. We provide an initial experimental
validation that this normal form can capture the behavior of complex grid-forming inverters without any
knowledge of the underlying technology, and show that it can be used to make technology-independent
statements on the stability of future grids.
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I. INTRODUCTION

The transport of energy through the power grid depends
on a self-organized synchronous state of distributed
dynamical actors at continental scale. These dynamical
actors are called grid forming. They establish the dynam-
ical state on which power flow is possible. In the current
grid these are primarily conventional power plants, with
control schemes designed around heavy rotating masses.
The energy transition demands a shift from such con-
ventional generators towards inverter-interfaced renew-
able energy sources, with their dynamics specified by
power electronics. This poses a fundamental challenge
to understand the collective phenomena of these novel
grid-forming components, and ensure the existence and
resilience of the self-organized synchronous state. Con-
sequently, the collective dynamics of power grids has
become a very active interdisciplinary area of research in
recent years.

The design of conventional generators is well estab-
lished and grounded in the physics of synchronous
machines. There is a good understanding in the engineer-
ing community what level of model detail is required to
study which questions. This is not the case for inverter-
interfaced energy sources. Here the correct design of
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the control is an ongoing topic of research, e.g., see
Refs. [1–4], especially for so-called grid-forming inverters,
which, unlike grid-following inverters, do not rely on the
preexistence of a stable grid. Consequently, there is, as of
yet, no clear consensus on the proper dynamical modeling
of such future sources of energy.

This situation is especially problematic as we expect
the number of dynamical actors in a future power grid to
increase by orders of magnitude, as energy generation is
going to move more and more from the transmission to
the distribution level. Furthermore, we expect a larger het-
erogeneity in dynamics, as the control is no longer struc-
tured around established principles, i.e., principles dictated
by the physical components. Consequently, it cannot be
expected that all the inverters participating in future power
grids will use similar control designs. At the same time,
the future power grid will face numerous dynamic stability
issues, such as low inertia [5], (lack of) timescale separa-
tion [6], and greater fluctuations of power production [7,8]
and consumption [9,10]. The increasing number of dynam-
ical actors and, in turn, heterogeneity mean that, in tackling
these issues, we need to understand not only the intrinsic
dynamics of individual actors, but more importantly their
interactions in large complex networks [11].

This paper addresses these challenges by providing a
complexity theoretic approach towards the modeling of
future power grids. This means that rather than starting
with detailed models of the individual actors and sub-
sequently simplifying them, we focus on those features
that are crucial for their interaction on the network. Our
approach is based on the physical relationship between
voltage and current, which provides the coupling on the
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network, on the one hand, and on the system desiderata and
the symmetry implied by them on the other hand. We find
that the most important desiderata are active and reactive
power injection, and prescribed voltage levels.

Formulating the dynamics of the nodes in the power
grid in terms of the natural invariants associated with
their symmetry, we can give an order-by-order nonlinear
approximation of their behavior in terms of the deviations
from the local desiderata. The key insight is that, by choos-
ing appropriate variables, the lowest nontrivial order in
this approximation is able to capture the most fundamen-
tal nonlinearities of the power grid dynamics, while also
being capable of expressing all local desiderata. The result
is a normal form for the behavior of grid-forming actors
that resembles controlled Stuart-Landau oscillators, anal-
ogous to the form that appears in bifurcation theory [12],
parametrized by a latent linear input-output system. From
a dynamical systems perspective, the crucial point here is
that we fix not only the dynamics of the oscillators to be
of Stuart-Landau type, but also provide a specific form for
their coupling.

We show by means of comparison to experimental mea-
surements from a sophisticated inverter implemented in the
lab, as well as more broadly through numerical simula-
tions, that our normal form indeed captures the quantitative
and qualitative properties of a wide range of actors. We
also find that it captures important features of the nonlinear
interaction that occurs in highly heterogeneous power grids
containing both conventional generators and grid-forming
inverters.

This normal form provides a starting point for studying
realistic models of future power grids from a truly trans-
disciplinary perspective. By providing a form that closely
resembles the Stuart-Landau oscillator, it enables the appli-
cation of a large range of dynamical system results in the
context of power grids. The fact that the normal form is
parametrized by a latent linear input-output system enables
the use of tools like model reduction and system identifi-
cation. As opposed to the phase models (e.g., the Swing
equation) used in much of the control theoretic and com-
plex systems literature on power grids, the normal form
here is based on the instantaneous, physically relevant vari-
ables, and provides, order by order, all relevant dynamical
aspects of the dynamical actors described.

II. RESULTS

A. Modeling power grids

We start by introducing our approach to the basic mod-
eling of power grids as complex dynamical networks. This
section serves a dual purpose. To make the paper self-
contained to researchers without a strong background in
power system modeling, we briefly introduce the most
salient physical properties of power grids. We then use
this introduction to spell out a sequence of fairly general

assumptions we make on our nodes in order to arrive at
a highly general model of power grid components. For
a more extensive background on overall power grid and
inverter modeling, we refer the reader to Refs. [13,14] (and
the references therein), which we largely follow in this
regard.

Our overall approach is to consider nodes as specify-
ing a voltage that in turn causes a current to flow on the
power lines. In electrical engineering terms we thus think
of nodes as capacitive elements, and consider our dynami-
cal components as controlled voltage sources. While many
of the concrete assumptions below are highly general and
apply to all types of power grid components, the assump-
tion of capacitive behavior is most natural for grid-forming
voltage source inverters.

Notational aside.—In accordance with mathematical
and dynamical systems literature, we use i = √−1 to
denote the imaginary unit and use j for the current (this
is the opposite convention to the electrical engineering
literature).

1. Node model

Most ac power grids in operation today are three phase,
i.e., at every node in the network there are three alter-
nating voltages, Va(t), Vb(t), Vc(t) : R → R, which cause
three separate alternating currents on each transmission
element. The sum of the currents flowing from a node into
the grid is then denoted Ia(t), Ib(t), Ic(t) : R → R. Our first
assumption is that the three phases of both voltage and cur-
rent are balanced (symmetrical) at all times. That is, we
assume that Va(t)+ Vb(t)+ Vc(t) = 0 and Ia(t)+ Ib(t)+
Ic(t) = 0 for all t. This allows us to represent them each
by a complex variable with the aid of what is called the
Clarke or αβ transformation [15]. We denote the complex
nodal voltage by u(t) : R → C, with Va = √

2/3Re(u),
Vb,c = √

2/3Re(u exp(±2π i/3)), and the complex nodal
current by j (t) : R → C, with Ia = √

2/3Re(j ), Ib,c =√
2/3Re(j exp(±2π i/3)).

Assumption 1 (Balanced phases). The nodal voltage and
current are balanced at all times and can thus be described
in terms of the complex variables u and j , respectively.

The main objective of ac power grid control is to reach
and maintain an operating state where all nodal voltages
and currents rotate at a uniform frequency �s (usually 50
or 60 Hz), i.e., a quasisteady state described by a limit
cycle where at each node we have a nodal voltage us(t) ∼
exp(i�st) and current js(t) ∼ exp(i�st). This operating
state is further determined by specifying certain set points,
i.e., desired values for the amplitude of the nodal volt-
age, ρs := |us|, and active as well as reactive power inputs,
ps := Re(usj ∗

s ) and qs := �(usj ∗
s ), respectively. These set

points must be provided by some higher-level control in
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accordance with the desired power flow in the grid. Since
we are primarily interested in the dynamics of the fast act-
ing primary control that takes place at the subsecond scale,
we assume that the control dynamics can be described as
fully decentralized, i.e., we assume that the set points are
given constants and, furthermore, we preclude any addi-
tional communication between the individual nodes such
that information about the state of the power grid can only
be inferred from local measurements. Since we consider
controllable voltage sources, this means that the dynami-
cal coupling between the nodes of the network can only be
realized by measurements of the local nodal current.

Assumption 2 (Decentralized control). (a) The set points
specifying the desired operating state are given constants
and (b) the dynamics at a node depend on the other nodes
only via the currents on the transmission lines.

While the collective network dynamics with this form
of coupling can thus be described in terms of the nodal
voltages and currents, an individual node may also have
any number of internal dynamic variables. We assume
that these are either balanced three-phase quantities (inter-
nal three-phase voltages and currents) or scalar quantities
(e.g., frequency, dc voltages and currents, or auxiliary vari-
ables). For a particular component featuring L of the for-
mer and K of the latter, we denote them by z(t) : R → C

L

and x(t) : R → R
K with their respective operating states

zs(t) ∼ exp(i�st) and constant xs. This distinction is simi-
lar to that between ac and dc variables in Ref. [14] with the
difference that we do not explicitly model phase variables.

Assumption 3 (Internal variables). The node dynamics
may feature any number of internal variables compris-
ing either balanced three-phase variables denoted by z or
scalar variables denoted by x.

Next we assume that the system acts smoothly at the
timescales considered. This is justified if typical timescales
of switching events in the inverter are smoothed out by
filters at the grid connection point, and the dynamics of
stabilization of the synchronous component act faster than,
e.g., intermittent renewable fluctuations [16,17] that act at
the timescales of tens of seconds. If the latter is not the
case, we would require modeling the system as including
stochastic terms; we leave this challenge to future work.

Assumption 4 (Smooth dynamics). The node dynamics is
smooth and can be formulated as a system of ordinary dif-
ferential equations in terms of u, z, and x, with an input
given by j , i.e., there are no voltage jumps.

Putting all of these assumptions together, the general
form of the node dynamics that we are considering here

is given by the system

u̇ = f u(x, z, z∗, u, u∗, j , j ∗), (1a)

ż = f z(x, z, z∗, u, u∗, j , j ∗), (1b)

ẋ = f x(x, z, z∗, u, u∗, j , j ∗), (1c)

where f u : R
K × C

L+2 → C, f z : R
K × C

L+2 → C
L, and

f x : R
K × C

L+2 → R
K are assumed to be sufficiently

smooth functions in the sense that their real and imagi-
nary parts are differentiable analytic functions of the real
and imaginary parts of u and j . From this, it follows that
they can be written as holomorphic functions of u, u∗, j ,
and j ∗; see, e.g., Ref. [18]. Equations (1) admit solutions
congruent with the required operating state, i.e., for some
operating state given by us and js, there exist zs and xs for
which

f u(xs, zs, z∗
s , us, u∗

s , js, j ∗
s ) = i�sus, (2a)

f z(xs, zs, z∗
s , us, u∗

s , js, j ∗
s ) = i�szs, (2b)

f x(xs, zs, z∗
s , us, u∗

s , js, j ∗
s ) = �0. (2c)

Our final assumption concerns the symmetry of the
node dynamics (1). We assume that the node dynamics
are homogeneous with respect to phase angles, i.e., there
are no distinguished phase angles of u and z such that
the dynamics can depend only on relative phase angles
between the three-phase variables. This degree of free-
dom with respect to absolute phase angles translates to
a symmetry under global phase shifts, extending the nat-
ural symmetry of the desired operating state (2) to the
whole phase space. As a global phase shift is equiva-
lent to a time shift for the uniformly rotating operating
state, this last assumption is essentially the requirement
of time invariance with respect to perturbations of the
operating state, a highly desired property of control sys-
tems. Note, however, that this assumption is only valid
when the transistor switching may be modeled as ideal,
i.e., when the three-phase signals do not feature higher
harmonics but are purely sinusoidal. This implies that the
dynamics must be on a timescale where the switching may
safely be neglected by averaging [19,20], which is a stan-
dard assumption in power grid control design, considering
that the switching frequencies are typically in the range
2–20 kHz [13].

Assumption 5 (Symmetry). The node dynamics is homo-
geneous with respect to phase angles, i.e., it possesses a
U(1) symmetry defined by

f u,z(x, eiθ z, e−iθ z∗, eiθu, e−iθu∗, eiθ j , e−iθ j ∗)

= eiθ f u,z(x, z, z∗, u, u∗, j , j ∗), (3a)
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f x(x, eiθ z, e−iθ z∗, eiθu, e−iθu∗, eiθ j , e−iθ j ∗)

= f x(x, z, z∗, u, u∗, j , j ∗), (3b)

for any θ ∈ [0, 2π).

2. Networked model

When the general form (1) is combined with a model for
the transmission lines providing the dynamics of the nodal
currents, we obtain a connected model for the power grid.
While the subsequent derivation of the normal form does
not assume a particular model for the transmission lines,
for the discussion, we make use of the very simple model
of static currents, which we briefly introduce here. A more
detailed discussion of dynamical current models is given
in Appendix A.

We define the network as a graph G = (V , E) with
the set of vertices V = {1, . . . , N }, the set of edges E =
{1, . . . , M }, and its complex structure given by the inci-
dence matrix B ∈ {−1, 0, 1}N×M . Additionally, for each
edge, we have its resistance rm ∈ R≥0 and its inductance
�m ∈ R≥0.

Assuming that the line dynamics evolve much faster
than the node dynamics, and that we are in the vicin-
ity of the desired operating state with uniform frequency
�s, the nodal currents may be approximated by its quasi-
steady-state equations. In terms of the admittance matrix
Y := B diag(rm + i�s�m)

−1BT, these are simply given by

jn =
N∑

m=1

Ynmum. (4)

It follows that we have the active and reactive power inputs
or outputs, pn + iqn := unj ∗

n , given by

pn + iqn =
N∑

m=1

Y∗
nmunu∗

m. (5)

Note that these equations, as well as the full dynamics
from which they arise, are consistent with the symmetry
of Assumption 5. This means that the full network model
is invariant under global phase shifts. Quasisteady states
are again given by an orbit of the symmetry. However a
quasisteady state of the coupled model is not guaranteed
to exist, unless the set points of the nodes are chosen in
a manner compatible with Eq. (5). If this is not the case,
for example, if there is a power imbalance in the system,
the network’s quasisteady state will deviate from the orbit
specified by the set points, i.e., the desired operating state.

B. Normal form of the node dynamics

System (1) is highly general and captures most mod-
els for grid-forming components, as long as they do not

explicitly feature higher-level control layers, asymmet-
ric phases, nonsmooth features (like current limitation,
as in Ref. [21] for example), algebraic equations with-
out a closed-form solution, or model-free control (e.g.,
data-based approaches [22]). The central insight is that by
exploiting the symmetry we can cast the model in a form
that is given by an explicit dependence on the voltage u
that is tightly constraint by the symmetry, and a set of
meaningful quadratic invariants. The latter uniquely spec-
ify different orbits of the symmetry (3). An orbit of the
symmetry is a set of states related by phase shifts. Thus, the
quasisteady states correspond to such orbits. Therefore, the
invariants provide us with a sensible notion of the distance
to the desired operating state (or any other specified qua-
sisteady state). We can then develop the dynamics order by
order in these quadratic invariants. This provides us with
a normal form for grid components with dynamics of the
form given by Eqs. (1) that is valid in the vicinity of the
desired operating state.

1. Derivation

To derive the normal form, we make a temporary change
of variables based on quadratic invariants of symmetry (3).
Recall the equations for the node dynamics

u̇ = f u(x, z, z∗, u, u∗, j , j ∗),

ż = f z(x, z, z∗, u, u∗, j , j ∗),

ẋ = f x(x, z, z∗, u, u∗, j , j ∗).

Since the symmetry is defined by a one-dimensional U(1)
action on a (2L + 4)-dimensional space (disregarding the
scalar variables x for that matter), there are 2L + 3 func-
tionally independent invariants associated with it (see,
e.g., Theorem 2.17 of Ref. [23]). These invariants are
sufficient to specify the orbits of the group action for
an individual node and thus also its desired operating
state. Therefore, we want to choose physically meaningful
invariants, including, in particular, the quantities that are
typically used to define the operation point of the power
grid. While there is a certain freedom of choice involved,
we propose the set of invariants comprising uu∗ =: ρ2,
the voltage amplitude squared, (uj ∗ + u∗j )/2 =: p and
(uj ∗ − u∗j )/(2i) =: q, active and reactive power inputs
and outputs, as well as (uz∗ + u∗z)/2 =: ψ and (uz∗ −
u∗z)/(2i) =: χ , which may be interpreted as internal active
and reactive power flows with respect to the terminal volt-
age. As the remaining variable that is needed to fully
describe the node dynamics, we choose to keep the com-
plex voltage u.

In this combination all invariants are real valued, poly-
nomial, and, together with the complex voltage u, do not
require division by the current or any of the internal vari-
ables when used to express the original set of variables,
i.e., the coordinate transformation is never singular away
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from the origin u = u∗ = 0. Employing this new set of
variables and defining ξ := (xT,ψT,χT)T ∈ R

K+2L yields
the system

u̇ = f̃ u(u, ξ , ρ2, p , q),

ξ̇ = f̃ ξ (u, ξ , ρ2, p , q).
(6)

The explicit transformation is spelled out in Appendix E.
Note that instead of depending on u and u∗ we have u and
ρ2 = uu∗. Effectively, we have expressed a nonholomor-
phic function of one complex variable through a function
of one complex and one real variable that is holomorphic
in the former. Also, note that we did not explicitly write
down the remaining dynamical equations for ρ2, p , and q,
as we are ultimately interested in a normal form expressed
in terms of u and j directly and will not thus need these
equations in the end.

Now symmetry conditions (3) can be stated in terms of
the infinitesimal generator of the group action [23] as

u
∂ f̃ u

∂u
= f̃ u,

∂ f̃ ξ

∂u
= �0. (7)

These equations can be readily solved, e.g., by using the
fact that the f̃ are analytic in u and thus we can com-
pare terms in the Taylor expansion of the left- and right-
hand sides. This provides the explicit dependence of the
dynamics on u:

f̃ u = ugu(ξ , ρ2, p , q),

f̃ ξ = gξ (ξ , ρ2, p , q),
(8)

with some continuous nonlinear functions gu : R
K+2L+3 →

C and gξ : R
K+2L+3 → R

K+2L.
What we have thus achieved is a unified description of

all possible node dynamics congruent with our modeling
assumptions that is based on the common symmetry of
its quasisteady state and preserves the physical relation-
ship between current, voltage, and power. As it turns out,
we may describe the node dynamics as a complex oscil-
lator that is augmented by some internal dynamics and is
coupled to the other nodes in the network via active and
reactive power. Expressing the system in this way now
allows for the aforementioned Taylor expansion with a
well-defined notion of closeness to some desired operating
state.

For notational convenience, we define the vector of
instantaneous invariants y(t) := (ξ(t)T, ρ(t)2, p(t), q(t))T :
R → R

K+2L+3 and a given constant vector y0 :=
(ξT

0 , ρ2
0 , p0, q0)

T ∈ R
K+2L+3 with ρ0 > 0 denoting the point

around which we want to expand the node dynamics.
While the latter can in principle be chosen arbitrarily, of
most practical interest are the cases when y0 represents

either (i) a valid operating state considering the entire net-
work, that is, the active and reactive power and the voltage
amplitude are consistent with a power flow solution, or
(ii) the set points (or also educated guesses thereof if not
explicitly available), which may or may not be consistent
with a power flow solution. However, in both cases we
would have gu(y0) = i�s and gξ (y0) = �0.

Denoting the deviation of y from y0 by δy := y − y0, up
to first order we have

u̇
u

= gu(y0)+ (δy · ∇)gu(y0)+ O(‖δy‖2)

� Au + Buδξ + Cuδρ2 + Guδp + H uδq, (9a)

δ̇ξ = gξ (y0)+ (δy · ∇)gξ (y0)+ O(‖δy‖2)

� Aξ + Bξ δξ + Cξ δρ2 + Gξ δp + H ξ δq, (9b)

with the respective coefficients Cu, Gu, H u ∈ C, Bu ∈
C

1×(K+2L), Cξ , Gξ , H ξ ∈ R
K+2L, Bξ ∈ R

(K+2L)×(K+2L), and
Au,ξ := gu,ξ (y0).

2. Normal form of the node dynamics

Having carried out the expansion, we may now return
to using the dynamical variables u, u∗ and j , j ∗, so that
our model may be easily connected by providing equations
for the currents flowing through the network according to
some model for the transmission lines. We thus arrive at
the normal form

δp + iδq = uj ∗ − (p0 + iq0), (10a)

δρ2 = uu∗ − ρ2
0 , (10b)

u̇
u

� Au + Buδξ + Cuδρ2 + Guδp + H uδq, (10c)

δ̇ξ � Aξ + Bξ δξ + Cξ δρ2 + Gξ δp + H ξ δq. (10d)

Note that the back transformation does not change the
quality of the approximation; this normal form is still accu-
rate up to terms of order ‖δy‖2. Moreover, since we are
dealing with asymptotically stable systems, we expect the
error to be bounded and, in most practical cases, quickly
decrease over time as long as the trajectories remain within
the basins of attraction of both the original system and its
normal form. A streamplot example for the phase space of
the normal form is depicted in Fig. 1. Voltages are given in
per-unit (pu) values.

The rest of this paper will explore the implications and
properties of this normal form.

3. Interpretation

To connect Eqs. (10) to more familiar models for power
grids, it is insightful to consider them from the point of
view of phase-amplitude coupling in power grids. To this
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FIG. 1. Streamplot example for the normal form model without any internal variables. The parameters are Au = 1 + i, Cu = −1,
Gu = i, and H u = 1. For this parametrization, the trajectories converge to a stable limit cycle. The dynamical behavior changes for
deviations of the power: no power deviation δp = δq = 0 (left), an active power deviation δp = −0.9, δq = 0 (middle), and a reactive
power deviation δp = 0, δq = 0.7 (right). It can be seen that, for this choice of parameters, a change in active power changes the
angular velocity (i.e., the frequency), whereas a change in reactive power changes the amplitude of the limit cycle (i.e., the voltage
amplitude).

end, consider the complex voltage in terms of phase and
the logarithm of the amplitude σ , i.e., u = eσ+iφ and

u̇
u

= σ̇ + iφ̇. (11)

As δξ , δρ2, δp , and δq are all real valued, the real and
imaginary parts of Au, Bu, Cu, Gu, and H u respectively con-
trol the influence of the corresponding terms on amplitude
and phase dynamics. For example, in the absence of inter-
nal variables the explicit impact of amplitude deviations
on phase dynamics can be read off immediately from the
imaginary part of Cu. However, internal dynamics can mix
phase and amplitude reactions in more subtle ways.

Form (10) expands the internal dynamics to linear
order in the quadratic invariants. The approximate internal
dynamics is a linear multiple-input–multiple-output sys-
tem with two outputs, given by the real and imaginary parts
of the right-hand side of u̇/u, and three nonconstant inputs,
given by δρ2, δp , and δq. The explicit form is given in
Appendix F.

This opens the door to introducing methods from the
analysis of linear time-invariant systems, such as model
order reduction, to the study of power grid models in a
systematic fashion. One way in which we touch upon this
possibility later in the paper is by using system identi-
fication techniques to fit a model of a fixed complexity
to measurement data of a real inverter. This provides
semi-black-box models for components (see Sec. II D 1).

We also want to remark that, while we chose to work
with the complex voltages (as it makes the expression for
active and reactive power particularly simple, is in line
with the recently developed concepts of virtual oscilla-
tor control [4,24,25], and bears resemblance to an already
established dynamics as discussed in Sec. II C 3), it is not
mandatory to work with these coordinates. If desired, it is
also possible to carry out our approach in terms of uα :=
Re(u) and uβ := �(u) or amplitude and phase directly, i.e.,
u =: ρeiφ .

C. Relation to other models

By approximating the fully nonlinear system (1) with
our normal form (10), we have, in principle, reduced all
qualitative differences between various concrete models
to quantitative differences in their respective coefficients.
Thereby, we can distinguish certain classes of models by
the coefficients being nonzero. In this section, we intro-
duce a few simple examples of different classes of power
grid models and their corresponding normal form, provide
working parameter values, and discuss how the normal
form relates to the well-known Stuart-Landau oscillator.

1. Examples

To understand the relationship of the normal form
to established low-dimensional models of grid-forming
power grid components, we provide the normal form
approximation of a variety of them, and demonstrate which
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coefficients occur in various classes of models. These
examples will also be used in the numerical experiments
for a heterogeneous network in Sec. II D 3.

We begin by giving a concrete implementation of the
abstract derivation of the preceding section for the droop-
controlled inverter model introduced in Ref. [13] [to be
self-contained, we give the equations in Eqs. (H2) of
Appendix H]. In this model the dynamical equation for
the frequency, the only internal variable, is already linear
with respect to the invariants. As the dynamical equations
for the voltage are formulated in terms of amplitude and
phase, i.e., ρ = |u| and φ = arg u, we can make use of the
relationship

u̇ =
(
ρ̇

ρ
+ iφ̇

)
u,

to translate them into complex form. This yields

u̇
u

= 1
τpρ

(−ρ + ρd − kq(q − qd))+ iω

= iω + ρd

τpρ
− 1
τp

− kq

τpρ
(q − qd).

Now carrying out the expansion for y0 = (ωd, (ρd)2, pd,
qd)T, as prescribed by Eqs. (9), we arrive at

u̇
u

� iδω − 1
2τpρ

2
0
δρ2 − kq

τpρ0
δq,

˙δω = − 1
τp
δω − kp

τp
δp .

(12)

The table of normal form coefficients in terms of the
original parameters is given as follows:

A B C G H
u i�s i −1/2τpρ

2
0 0 −kq/τpρ0

ω 0 −1/τp 0 −kp/τp 0

In a similar fashion, we can consider other classes that
result from well-known models.

Example 1 (Pure phase oscillators.). Pure phase oscil-
lators are oscillators without any amplitude or internal
dynamics. As discussed above in light of Eq. (11), the
imaginary part of the coefficients provides the phase
dynamics, the real part the amplitude dynamics. Pure phase
oscillators thus yield the normal form

u̇
u

� Au + Guδp + H uδq

with Au, Gu, H u ∈ iR. The canonical example from this
class is the well-known Kuramoto model [26,27], which

further has H u = 0 and assumes that the nodes are coupled
by purely inductive transmission lines, i.e., Re(Y) = 0.

Example 2 (Phase-frequency oscillators.). The ubiquitous
swing equation [28] (or its nonlinear variant [29]) falls into
the class of phase-frequency oscillators. We still have no
amplitude dynamics, but now allow for an internal vari-
able: the frequency of the oscillator. The normal form of
this type of oscillator is given by

u̇
u

= Au + iδω,

δω̇ � Aω + Bωδω + Gωδp + Hωδq,

with Au ∈ iR. As for the Kuramoto model, the standard
swing equation further has Hω = 0 and typically assumes
coupling with Re(Y) = 0.

Example 3 (Phase-amplitude oscillators.). The quite
recent development of virtual oscillator control [4,24,25]
represents phase-amplitude oscillators, i.e., there is now
amplitude dynamics but no internal dynamics. The corre-
sponding normal form is given by

u̇
u

� Au + Cuδρ2 + Guδp + H uδq. (13)

Example 4 (Phase-amplitude-frequency oscillators.).
Synchronous machines can also be cast into normal form.
There are both phase and amplitude dynamics as well as
internal dynamics. Considering third-order models [30],
there is only the frequency as the internal variable, and the
normal form for this type of model reads

u̇
u

� Au + Buδω + Cuδρ2 + Guδp + H uδq,

δω̇ � Aω + Bωδω + Cωδρ2 + Gωδp + Hωδq,
(14)

with Cu, Gu, H u ∈ R if ω should be the true frequency of
the nodal voltage. As we see from Eqs. (12), the droop-
controlled inverter of Refs. [3,25] also falls into this class.

2. Normalized parameters values

If one wants to work with our normal form given by Eqs.
(10), as an abstract model for grid-forming components
detached from any concrete models, there is the question
of reasonable parameter values from which to start explor-
ing the parameter space and its dynamic features. To spare
the reader the tedious work of trial and error, we thus want
to give a starting point here. As the dynamics of the sys-
tem will highly depend on the given network structure and
node types, we here consider the simple case of two iden-
tical grid-forming components connected by a RL trans-
mission line. We work in dimensionless units such that
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|r + i�s�| = 1 and define tan κ := �s�/r to account for
the ratio of inductivity and resistivity of the transmis-
sion line (more details on this are given in Appendix C).
Prescribing an operating state with ρ0,1 = ρ0,2 = 1 (in
dimensionless units) and a relative phase angle of |�φ0| <

cos−1(1/2), the following sets of parameters yield
convergence to the operating state on a timescale of
5–10 s.

(a) Phase-amplitude oscillators [Eq. (13)]

A C G H
u i�s −1.5 −0.8(cos κ + i sin κ) −0.8(sin κ − i cos κ)

(b) Phase-amplitude-frequency oscillators [Eqs. (14)]

A B C G H
u i�s i −1.5 −0.8 cos κ −0.8 sin κ
ω 0 −1.5 0 0.8 cos κ −0.8 sin κ

For more realistic sets of parameters, we refer the reader to
the simulations of Sec. II D, where we numerically com-
pare the normal form to concrete models. The parameters
used there are of similar order of magnitude however.

3. Connection to the Stuart-Landau oscillator

The normal form derived above is closely related to
the classical model known as the Stuart-Landau oscillator
[31]. Key to this connection is that the invariants we chose
to represent the deviation from the limit cycle, in particular
the voltage amplitude squared, are polynomial with respect
to u and u∗.

Using the quasi-steady-state approximation for the cur-
rent equation (4), and the normal form for amplitude-phase
dynamics given by Eqs. (10) yields the networked system

u̇n � (Ãn + Cn|un|2)un

+
N∑

m=1

(K+
n Y∗

nmu2
nu∗

m + K−
n Ynm|un|2um), (15)

where we have absorbed the expansion points into the
coefficients, i.e.,

Ãn := Au
n − Cu

nρ
2
0,n − Gu

np0,n − H u
n q0,n,

K±
n := 1

2 (G
u
n ± iH u

n ).

It can be seen that the dynamics of the complex voltages un
is that of Stuart-Landau oscillators with a particular non-
linear coupling. Since the admittance matrix Y is given
as a linear combination of Laplacian matrices, the cou-
pling between the individual oscillators may be interpreted
as diffusive, albeit with a state-dependent diffusion matrix
and also involving the complex conjugate voltages of the
connected nodes.

This resemblance is of course no coincidence as the
Hopf bifurcation (from which the Stuart-Landau oscillator
results as the corresponding normal form [12]) prescribes
the same U(1) symmetry for the emerging limit cycle
in the vicinity of the bifurcation point. Furthermore, the
nonlinearity of the amplitude squared arises naturally in
the context of a Taylor expansion. This close relation-
ship opens the door to applying methods from the study
of coupled Stuart-Landau oscillators, as, for example, in
Refs. [32–34], to the dynamics of power grids.

D. Validation and probabilistic stability

While the normal form is guaranteed to be a valid
approximation in a small neighborhood of the desired
operating state, it is not a priori clear whether it can
successfully approximate the behavior of real systems
under realistic perturbation. Furthermore, if the quasis-
teady state of the network starts to deviate from the
desired operating state of the individual units, we might
be stretching the validity of the normal form even further.
This section will show initial evidence that real systems
(Sec. II D 1) and large perturbations (Sec. II D 2) can be
accurately captured by the normal form. Furthermore, we
show in Sec. II D 3 that, for an adapted standard IEEE test
network, the normal form approximation correctly cap-
tures both persistent deviations from the desired operating
state as well as probabilistic stability properties.

1. Lab experiment

We begin with an empirical test of our model using
measurement data of a grid-forming inverter with an elab-
orate control scheme, devised and built at TECNALIA labs
[35]. The data had originally been gathered to validate
numerical simulation tools [36].

We use the normal form as a semi-black-box model that
we fit to this measurement data. Note that while a detailed
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FIG. 2. Left: model fit to data, with one internal variable. Right: validation of the fitted parameters against different test runs. Blue
denotes measurement data. Orange denotes the output of the normal form.

model of the inverter may include many inner control
loops, all of which need to be modeled correctly to repro-
duce the measurements, the semi-black-box model can be
chosen to be much simpler. In fact, we use a single inter-
nal variable, thus obtaining an effective model of reduced
order (dimensionality) for the inverter. Details on the
measurement setup and the fitting procedure can be found
in Sec. IV.

Figure 2 depicts the results. On the left, we see the mea-
surement data against the trajectories of the fitted normal
form with the input that has been used for the fitting. On the
right, we show the trajectories for an input from a differ-
ent measurement while using the same set of parameters,
thereby validating the fit on an independent dataset. We see
that the normal form is able to capture most of the dynam-
ical behavior of the grid-forming inverter very accurately,
only showing overshoots during the sudden shifts in fre-
quency. This is to be expected, however, as we have used
a model of quite low dimensionality.

2. Simulations—infinite bus

We now turn to simulation studies of the normal form
approximation in an infinite bus bar setting, as considered
in Appendix C. We consider droop-controlled inverters of
Schiffer et al. [3] [see Eqs. (H2)] and third-order models
of synchronous machines as used by Schmietendorf et al.
[30] [see Eqs. (H1)].

Figures 3(a) and 3(d) show the resulting trajecto-
ries for a large power perturbation during which the
desired power input at the node is doubled for two

seconds. We see that the qualitative agreement of the
trajectories is excellent in both cases. In fact, the trajec-
tories almost completely match for the droop-controlled
inverter. For the synchronous machine, for which the tra-
jectory drops to extremely low voltage levels, deviations
are more noticeable.

To explore the reaction to a large perturbation more
systematically, we consider various slices of the system’s
phase space. That is, given the operating state specified
in amplitude-angle coordinates by (φo,ωo, ρo), we con-
sider trajectories starting from coordinates of the forms
(φ,ω, ρo) and (φo,ω, ρ). We then ask whether the system
returns to the operating state from these initial condi-
tions, i.e., we consider slices of its basin of attraction.
The model’s basin is depicted in yellow, the basin for the
normal form in red, and their overlap in orange.

Figure 3(b) shows that, for the droop-controlled inverter,
the basins show full agreement. In Fig. 3(c) we see some
deviations at low voltage amplitudes very far from the
operating state. This is to be expected as the normal form
approximation involved expands the voltage dynamics
around the desired operating state. In this case the normal
form underestimates the stability region of the system. In
Appendix II D 3 we see that this is not always the case.

For the third-order model, we have similar results
in Figs. 3(e) and 3(f), with a slight overestimation of
stability in some areas. The qualitative features of the
original model are fully reproduced by the normal form
though.

The details of the numerical setup are given in
Appendix D.
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Results for the infinite bus scenario. Trajectories for the (a) inverter, (d) synchronous machine (the vertical bars signify the
beginning and end of the perturbation at t = 10 s and t = 12 s). Basin cross sections for the (b),(c) inverter, (e),(f) synchronous machine
with four possible cases for each state: points inside the basins of both the original model and its normal form (orange), only inside
the original model’s basin (yellow), only inside the normal form’s basin (red), and outside both basins (white). The crosses depict the
actual operating state (φo,ωo, ρo) of the full models.

3. IEEE-14 bus system

To address the question of whether the normal form
can also capture the complex interactions between different
components, as well as persistent deviations in a realistic
power grid, we turn to the IEEE 14-bus test system [37].
We adapt this test system by placing various grid-forming
components at the nodes, using synchronous machines,
different types of droop control, and dispatchable virtual
oscillator controls. A detailed setup of the simulation is
given in Appendix D.

We then consider the normal form for all of them given
their design set points, ignoring deviations that result in
the actual networks’ operating state due to imbalances and
losses. We study the system at a range of power flows by
scaling the active and reactive power at the inverter nodes
by a common factor fs between 0 and 2. This leads to
a variety of operating states that include some deviation
from the desired operating points of the inverters. Figure 4
shows in red the minimal voltage amplitude that occurs in

the network for these operating states, for both the original
and the normal form models. We see that the normal form
is capable of describing this behavior very accurately. In
black we show the single-node basin stability [38,39] of
node 1, i.e., the probability that a random large perturba-
tion at node 1 destabilizes the system. Again, the results
for the normal form and the full model agree within the
uncertainty bounds.

This demonstrates that the normal form, by taking a
“network first” approach to modeling and keeping the
power flow equations fully accurate, is capable of captur-
ing sophisticated properties of complex highly heteroge-
neous power grids.

III. DISCUSSION

This paper introduces a normal form for grid-forming
power grid components. This form is arrived at by
using symmetry arguments to restrict the functional form
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FIG. 4. IEEE 14-bus test system [37]. The system is studied
for a range of power demands, and all active and reactive power
set points at the inverter nodes are scaled by a common factor fs
between 0 and 2. In red we plot the minimal voltage amplitude
ρmin = minn ρ

o
n in the resulting operating state, the solid line is

the original model, and the dashed line is the normal form. In
black we give the single-node basin stability of node 1.

and expanding order by order in physically meaningful
quadratic nonlinearities, concretely the power and voltage
mismatch at the nodes. At lowest order the normal form is
parametrized by a linear time-invariant system with three
time varying inputs and two outputs. The main factor in the
complexity of the normal form is the number of internal
states of this linear system.

The normal form can be derived from more detailed ana-
lytic models, for which we gave detailed examples, but
it is also possible to directly infer it from experimental
measurements. In the latter case, we can fix the number
of internal states a priori to obtain an empirically best
model of the system at a given complexity. We give a proof
of concept of this approach by fitting the data of a grid-
forming inverter built at TECNALIA to a low complexity
normal form with one internal variable.

A more systematic exploration of this approach will
require adapting tools from system identification to this
context, especially for dealing with noise in the measure-
ments.

We saw in numerical experiments that the normal form
is capable of describing the nonlinear behavior of the
power grid in the vicinity of the desired operating states.
This was explored for both single machines at an infi-
nite bus and a highly challenging heterogeneous network
of diverse grid-forming actors. While the quality of the
lowest-order approximation for a single node is relatively
clear from the derivation and the numerical experiments, a
more thorough understanding of the limits of the approx-
imation when we consider a whole network of oscillators
will require more work.

Besides being of interest in itself, the normal form
presented here also provides a starting point for the trans-
disciplinary study of realistic models of future power grids
[40].

The form closely resembles Stuart-Landau oscillators,
thus opening the door to adapting a large body of dynam-
ical systems research to the study of future power grids.
As it is based on very general principles and physically
meaningful variables, all relevant dynamical aspects of the
dynamical actors can be described by it. This opens up the
possibility to transport results from theoretical research on
control and complex system aspects of power grids, often
based on highly conceptual phase models [41], to models
that are accurate with regard to the real power grid.

The normal form also opens up further novel research
avenues. For example, it can serve not just as a model for
concrete systems but as a specification for the behavior
of future designs. The study of the linear stability of the
normal form can be considered a proof of concept in this
direction.

While this work focuses on grid-forming nodes, we
expect the approach to be fruitful more broadly. By choos-
ing different invariants, and different variables, it is possi-
ble to arrive at normal forms that will be suited to other
classes of grid actors. Nonsmooth behavior might also be
modeled as switching between different normal forms.

Finally, the mathematical approach taken is highly gen-
eral. Whereas ordinary phase reduction approaches require
a small coupling assumption, here we were able to work
from the assumption that coupling and oscillation are well
adapted to each other. It is rare for oscillating systems to
exist and develop in isolation, and we posit that such an
approach is likely to be fruitful in other fields of complex
systems science, synchronization, and oscillator networks.

IV. MATERIALS AND METHODS

For the empirical validation of our approach, we use
measurement data of a grid-forming inverter devised and
built at TECNALIA labs. The inverter control design
basically consists of conventional droop control with a
low-pass filter for the measured power output that emu-
lates inertia. This basic design is similar to Eqs. (H2), but
further includes additional filters for voltage and frequency
measurements, as well as a virtual impedance [35].

Besides the inverter, the lab setup contains an ac power
source and an Ohmic load. The load is connected to the
power source by an emulated line containing a series
of inductances and resistances. The inverter is connected
to the load by a transformer. More details on the setup
and the parameterization of the components can be found
in technical report [42]. In this particular test case, we
vary the voltage angle frequency at the power source
and measure the voltages and currents for two of the
three phases directly at the inverter. The measured time
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FIG. 5. TECNALIA inverter measurement. The depicted lines
are the measured time series for current and voltage at the grid-
forming inverter described in Ref. [35].

series are depicted in Fig. 5. Assuming the three phases
to be balanced, we can thus directly calculate the com-
plex nodal voltage and current (u and j ), and further the
active and reactive power outputs (p and q), as well as the
nodal voltage amplitude ρ. The frequency can be deter-
mined by numerical differentiation of the voltage phase
angle.

We take the normal form with the voltage angle fre-
quency as the only internal variable and fit to this measure-
ment data. To reliably fit such models, it will be necessary
to properly adapt system identification techniques to this
setting. To obtain a proof of concept, we instead opt for
a straightforward two-step approach with generic tools.
First, we perform a linear regression for obtaining rough
parameter estimates, then we fine-tune these using sci-
entific machine learning tools. For the linear regression,
we first numerically calculate the derivative of the com-
plex voltage and the frequency to obtain the left-hand
side of differential equation (14) and subsequently get
an estimate for the parameters using the method of least
squares. For the fine-tuning, we use the current signal as
a data-driven input for a dynamical simulation of the nor-
mal form model using the DifferentialEquations.jl package
[43] and optimize the least-squares fit of the trajectories
with stochastic gradient decent using the DiffEqFlux.jl
package [44].

The code to reproduce the results and figures of this
paper is available from a Zenodo archive [45] or a GitHub
repository [46].
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APPENDIX A: LINE DYNAMICS

As an addendum to Sec. II A, we want to briefly dis-
cuss the applicable line models for our normal form. As
we take nodes to be a voltage that reacts to a current, that
is, it behaves like a capacitor, our lines need to be modeled
as providing a current in reaction to the terminal voltages,
thus behaving like inductances.

Using the same notation as in the main section, we only
need to include further dynamical variables corresponding
to the currents flowing on each transmission line denoted
by je,m(t) : R → C. From the standard laws of electri-
cal circuit elements, a line modeled as a resistor and an
inductance in series satisfies

�m
d
dt

je,m = −rmje,m +
N∑

n=1

Bnmun,

jn =
M∑

m=1

Bnmje,m,

(A1)

which would replace the algebraic relationship between
voltage and current, Eq. (4), that we used in the main
section. The latter is actually derived by considering the
quasisteady state where je,m(t) ∼ exp i�st, i.e., setting

d
dt

j s
e,m = i�sj s

e,m.

More sophisticated models of lines, which include line
capacitances, can be naturally coupled to our nodal ordi-
nary differential equations (ODEs) as long as they provide
ODEs for the terminal currents. This is the case, for exam-
ple, for τ models and iterated τ models of transmission
lines. Models such as the π model that have ODEs for
the terminal voltages lead to algebraic constraints on the
system.

We also want to note that in the special case of a uni-
form ratio between resistance and inductance across the
whole network, i.e., �m/rm =: τ for all m ∈ E , the current
dynamics may be directly expressed in terms of the admit-
tance matrix Y and also greatly simplified with respect to
dimensionality by eliminating the line currents and writing
the nodal current dynamics as

d
dt

jn = −1
τ

jn +
(

1
τ

+ i�s
) N∑

m=1

Ynmum.
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APPENDIX B: FITTED PARAMETERS

We get the following parameters by fitting the model as described in Sec. II D 1:

A B C G H

(u) 3.9426 −0.0064 −4.3700 −0.1561 −0.0022
�(u) −0.4919 0.8614 −0.0672 −0.3988 0.6019
ω −1.9899 −0.9445 −2.0393 −2.8718 4.5051

All parameters have the units 1/s in the per-unit system
with Pbase = 10 kW and Vbase = 393.4 V.

APPENDIX C: LINEAR STABILITY (INFINITE
BUS BAR)

A crucial aspect of obtaining a normal form is that it
allows us to make highly general analytic statements that
apply directly (if approximately) to a wide range of poten-
tial power grid components. To demonstrate this point with
a proof of concept, and to further improve our understand-
ing of the coefficients in Eqs. (10), we consider the linear
stability when connected to an infinite bus (or slack node)
via Eq. (5). We limit ourselves to the normal form with a
single internal frequency variable, i.e., Eqs. (14).

We work in the reference frame corotating with the
infinite bus and fix its phase angle at zero such that the
nodal voltage at the infinite bus is given by a constant
Vs ∈ R>0. Our goal is to derive conditions for the param-
eters that ensure local asymptotic stability for some valid
equilibrium point with synchronized frequency, i.e., some
y0 = (0, ρ2

0 , p0, q0)
T for which Au(y0) = Aω(y0) = 0, and

such that there exists ϕ ∈ [0, 2π) : p0 + iq0 = Y∗(ρ2
0 −

ρ0Vseiϕ). Note that, with a slight abuse of notation, Y
denotes the admittance of the single transmission line
here. For convenience, we make the change of coordinates
σR + iσI := ln u, with the subscripts R, I denoting real and
imaginary parts in the following, and set Bu

I = 1 without
loss of generality. The system we are considering here is
thus given by

p + iq = Y∗(e2σR − eσR+iσI Vs), (C1a)

σ̇R + iσ̇I = Buδω + Cuδρ2 + Guδp + H uδq, (C1b)

˙δω = Bωδω + Cωδρ2 + Gωδp + Hωδq, (C1c)

with the Jacobian

J (y0)=
⎡

⎣
2Cuρ2

0 + Gup+
0 +H uq−

0 H up−
0 −Guq+

0 Bu
R

0 0 1
2Cωρ2

0 + Gωp+
0 +Hωq−

0 Hωp−
0 −Gωq+

0 Bω

⎤

⎦ ,

(C2)

and the constants p±
0 , q±

0 defined as

p±
0 := p0 ± YRρ

2
0 ,

q±
0 := q0 ± YIρ

2
0 .

Invoking the Routh-Hurwitz criterion [47] we can ensure
that all three eigenvalues lie in the left complex half-plane
if the inequalities

trJ (y0) < 0, (C3a)

det J (y0) < 0, (C3b)

trJ (y0)(trJ (y0)
2 − tr2J (y0)) < 2 det J (y0) (C3c)

are satisfied [see Eqs. (G1) in Appendix G for these
inequalities in terms of the parameters]. While these con-
ditions are necessary and sufficient, they are too intricate
to yield any qualitative insights, so we consider the spe-
cial case in which the response of the node to active and
reactive power is adapted to the behavior of the power line:

Gu = −ku cos κ , H u = −ku sin κ ,

Gω = −kω sin κ , Hω = kω cos κ ,
(C4)

for some ku > 0, kω > 0, and tan κ := −YI/YR. This
makes the coupling behave like conventional droop con-
trol [3] for a purely inductive network (YR = 0) even when
YR ≥ 0 (an idea which that been used, e.g., for dispatch-
able virtual oscillator control [4]). To state the sufficient
stability conditions, we first define the short forms

Ru := 1 − Cu

ku|Y| , Rω := Cω

kω|Y| , RV := Vs

2ρ0
,

encoding the ratios between the coefficients specifying the
system’s reaction on voltage amplitude and power devia-
tions, as well as the ratio between the infinite bus voltage
and the desired voltage amplitude at the node (although in
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practical cases we usually have RV ≈ 1/2). Additionally,
we define the angle

γ := tan−1
(

Rω

Ru

)
.

With these definitions and assumptions (C4), we can state
that system (C1) is asymptotically stable if the following
conditions are satisfied:

|ϕ| ≤ π

2
, Bω < 0, sign(ϕ)Bu

R ≥ 0,

Ru > RV cosϕ,

sign(ϕ)Rω ≤ RV|sinϕ|,
(C5)

cos(ϕ − γ )
√
(Ru)2 + (Rω)2 > RV. (C6)

The derivations of these inequalities can be found in
Appendix G. The conditions show that the chief determi-
nants for the stability of a certain equilibrium (with relative
phase angle ϕ and voltage amplitude ρ0) are the ratios
between the coefficients specifying the system’s reaction
on voltage amplitude and power deviations. A geometric
representation of inequalities (C5) and (C6) is depicted
in Fig. 6. Assuming that Vs ≈ ρ0 (as is usually the case
for power grids), it can be seen that, for relative angles
|ϕ| < π/3, it is enough to ensure the correct sign for the
coefficients Cu and Cω, i.e., Cu < 0 and sign(ϕ)Cω ≥ 0,
while respecting the bound on Rω. Here Rω parametrizes
the impact of the amplitude on the frequency of the sys-
tem, relative to the power droop. Thus we find that in a
moderately loaded scenario, the crucial factor for the linear
stability of the system is the amplitude-phase coupling.

FIG. 6. Geometric representation of inequalities (C5) and (C6)
for sign(ϕ) = sign(Rω), with Ru

min := RV cosϕ and Rωmax :=
RV|sinϕ|.

If a greater load, and thus a greater relative phase angle,
needs to be guaranteed stable, we must further ensure
that the influence of voltage amplitude deviations domi-
nates that of power deviations, as given by inequality (C6).
Lastly, we note that inequality (C6) is actually a necessary
bound under assumptions (C4). Inequalities (C5) are only
sufficient, i.e., they may be relaxed by invoking stricter
bounds on Bω and Bu

R, which are rather technical however
[see Eq. (G4)].

Now, given a concrete model from the class of
amplitude-frequency oscillators, we only have to substitute
the coefficients with the corresponding partial derivatives
as given by Eqs. (9) in order to translate the stability
conditions to the specific model parameters.

APPENDIX D: NUMERICAL SIMULATIONS

This appendix describes the model and simulation setup
for Sec. II D, as well as some further results for the
networked case. All simulations are performed using Dif-
ferentialEquations.jl [43]. The network model is built with
PowerDynamics.jl [36]. The simulations are performed
with a RADAU solver [48] with relative tolerances set
to 10−6; for more details, we refer the reader to the code
accompanying the paper.

1. Infinite bus bar

In the infinite bus simulations of Sec. II D 2 we con-
sider a model of a droop-controlled inverter, Eqs. (H2),
and a third-order approximation of a synchronous machine,
Eqs. (H1), connected to an infinite bus. We use pu units
with voltages 1 at the nodes and a per-unit power chosen
such that the admittance of the line, which we take to be
purely inductive, is Y = −1i. The line model also includes
shunt capacitance of Ys = 0.2i. For the inverter model
(H2), we choose the time constant τp = 2.5 and droop
gains kp = 5, kq = 0.1, and expand around ρ0 = Vd = 1,
ω0 = ωd = 0, p0 = pd = 0.5, and q0 = qd = 0.2. For the
synchronous machine model (H1), we choose the damp-
ing constant γ = 0.2, time constant α = 2, and internal
reactance X = 1, and expand around ρ0 = Ef = 1,ω0 = 0
(the model is given in the corotating reference frame),
p0 = pm = 0.5, and q0 = 0 as no explicit set point for
reactive power is given in the model.

2. Network

The network model is based on the IEEE-14 bus dynam-
ical test system, augmented with grid-forming compo-
nents. The distribution of components is shown in Fig. 7.
We use synchronous machines at nodes 1, 3, 6, and 8
[Eqs. (H1)] and inverters with different types of control
at most other nodes, namely at 4, 5, 9, and 12 we use
the droop controlled inverter (H2), at nodes 11 and 14 we
attach the inverter model (H3) (which adds inertia to the
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amplitude dynamics), and at buses 10 and 13 we place
inverters with dispatchable virtual oscillator control (H4).
For the detailed parameter choices, we refer the reader to
the code.

To stress the system, we scale the active and reactive
power demands at all inverter controlled nodes by a com-
mon factor fs varying between 0 and 2. Note that the set
points do not provide a solution of the power flow, and
we have persistent deviations from the desired operating
points.

The main part of the paper discusses the single-node
basin stability for a variety of fs values. Here we also
briefly present more phase space slices in the style of
Fig. 3. Each location in the slice corresponds to an ini-
tial condition for two variables of the system. All other
variables in the system are initialized at the quasisteady

operating state of the network. Thus, the plots show very
large, instantaneous perturbations affecting only a single
node. The results are shown in Fig. 8.

We see that in this highly challenging scenario with
large perturbations, the agreement with respect to the shape
of the stability region becomes significantly worse the
further we stray from the operating state. The most prob-
lematic deviations appear in the voltage amplitude. This
should be kept in mind, when analyzing fault scenarios
that feature such deviations. However, many important
qualitative features are still captured by the normal form.

APPENDIX E: COORDINATE
TRANSFORMATION

Here we write out the steps that lead from Eqs. (1) to
Eqs. (6). First, we define

f̃ u,z,x(u, ξ , ρ2, p , q) := f u,z,x
(

x,
u(ψ − iχ)

ρ2 ,
ψ + iχ

u
, u,

ρ2

u
,

u(p − iq)
ρ2 ,

p + iq
u

)
.

Then we have

ψ̇ + iχ̇ = u̇z∗ + uż∗

= f̃ uψ + iχ
u

+ u(f̃ z)∗

=: f̃ ψ + if̃ χ ,

FIG. 7. IEEE 14-bus test system [37]: the light green circle
denotes the slack bus, red circles denote synchronous machines
(H1), dark green circles denote inverters (H2), the blue circle
denotes a passive node, purple circles denote inverters (H4), pink
circles denote inverters (H3).

and define

f̃ ξ :=
⎛

⎝
f̃ x

f̃ ψ

f̃ χ

⎞

⎠ .

APPENDIX F: LINEAR TIME-INVARIANT
INPUT-OUTPUT FORM OF THE INTERNAL

DYNAMICS

We can write Eqs. (10) in terms of real variables x, xi,
and xo, and real matrices AM , BM , CM , DM :

δp + iδq = uj ∗ − (p0 + iq0), (F1a)

δρ2 = uu∗ − ρ2
0 , (F1b)

u̇
u

= xo
1 + ixo

2, (F1c)

xi = [δρ2, δp , δq, 1], (F1d)

ẋ = AM x + BM xi, (F1e)

xo = CM x + DM xi. (F1f)

This form is the most suitable for using tools from the
study of linear time-invariant systems for power grid
models.

APPENDIX G: LOCAL ASYMPTOTIC STABILITY

Full inequalities (C3) in terms of the normal form coef-
ficients and the expansion point are given by the rather
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FIG. 8. Various basin slices for the IEEE 14-bus test case. Color code as in Fig. 3. Top row: bus 1 (left), bus 4 (middle), bus 6 (right).
Bottom row: bus 8 (left), bus 9 (middle), bus 12 (right).

lengthy expressions

0 > 2ρ2
0 Cu + Gup+

0 +H uq−
0 +Bω, (G1a)

0 < 2ρ2
0

(
(Hωp−

0 −Gωq+
0 )C

u − (H up−
0 −Guq+

0 )C
ω
)

− (p+
0 p−

0 +q+
0 q−

0 )(H
uGω − GuHω), (G1b)

0 < −(2ρ2
0 Cu + Gup+

0 +H uq−
0 )

2Bω

− (2ρ2
0 Cu + Gup+

0 +H uq−
0 )(B

ω)2

+ (Hωp−
0 −Gωq+

0 )B
ω

+ Bu
R(2ρ

2
0 Cu + Gup+

0 +H uq−
0 +Bω)

× (2ρ2
0 Cω + Gωp+

0 +Hωq−
0 )

+ (2Cωρ2
0 + Gωp+

0 +Hωq−
0 )(H

up−
0 −Guq+

0 ). (G1c)

Employing the additional assumptions in Eqs. (C4) and
the definitions of Ru, Rω, and RV yields the more compact
inequalities

0 > W1 + Bω, (G2)

0 > −Ru cosϕ − Rω sinϕ + RV, (G3)

0 > 2ρ2
0 |Y|(ku)2BωW2

1 + ku(Bω)2W1

− kωBu
RW2

(
2ρ2

0 |Y|kuW1 + Bω
)

+ kωBωRV cosϕ + 2ρ2
0 |Y|kukωRVW2 sinϕ, (G4)

with

W1 := RV cosϕ − Ru,

W2 := Rω − RV sinϕ.

From these inequalities we can immediately deduce the
conditions given in Appendix C. By requiring Bω < 0,
inequality (G2) is satisfied if W1 < 0, which yields the
first inequality of inequalities (C5). By further requiring
|ϕ| ≤ π/2, inequality (G4) is satisfied if

0 ≥ W2 sinϕ,

0 ≤ Bu
RW2,

which is equivalent to sign(ϕ)Bu
R ≥ 0 and the second

inequality of inequalities (C5). For inequality (G3), we
make use of the trigonometric identity
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a cosα + b sinα = c cos(α + β)

with

c := sign(a)
√

a2 + b2 , β := tan−1
(

− b
a

)
.

Since W1 < 0 implies that Ru > 0, this yields inequality (C6).

APPENDIX H: MODELS USED IN SEC. II D

For completeness, we give the models we base the heterogeneous network in Sec. II D on. Here the parameters are
kept in line with the notation used in the original papers that they were taken from. We also provide the normal form
coefficients when expanded around the design set points.

(a) Third-order approximation of synchronous machines [30]:

φ̈n = −γnφ̇n + pm
n − pn,

αnĖn = Ef
n − En − Xn

qn

En
,

(H1)

A B C G H
u 0 i −1/2αn(E

f
n )

2 0 −Xn/αn(E
f
n )

2

ω 0 −γn 0 −1 0

(b) Droop-controlled inverter [3]:

φ̇n = ωn, (H2a)

τpnω̇n = −ωn + ωd − kpn(pn − pd
n ), (H2b)

τpn V̇n = −Vn + Vd
n − kqn(qn − qd

n), (H2c)

A B C G H
u iωd i −1/2τpn(V

d
n)

2 0 −kqn/τpnVd
n

ω 0 −1/τpn 0 −kpn/τpn 0

(c) Droop-controlled inverter [3] without the assumption of near instantaneous voltage measurement:

φ̇n = ωn, (H3a)

τPnω̇n = −ωn + ωd − kPn(Pn − Pd
n), (H3b)

τPnτVnV̈n = −(τPn + τVn)V̇n − Vn + Vd
n − kQn(Qn − Qd

n). (H3c)

Writing ω for ξ1, ν for ξ2, B×
ω for B×

1 , and B×
ν for B×

2 , we have

A Bω Bν C G H
u iωd i 1 0 0 0
ω 0 −1/τpn 0 0 −kpn/τpn 0
ν 0 0 (τPn + τVn)/τPnτVn −1/2τPnτVn(V

d
n)

2 0 −kqn/τPnτVn Vd
n

(d) Dispatchable virtual oscillator control [6]:

u̇n =
(
αη + iω0 + ηeiκ

(v�n)
2 (p

�
n − iq�n)

)
un,

− αη

(v�n)
2 un|un|2 − ηeiκ jn,

(H4)
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A C G H
u iω0 −αη/(v�n)2 + ηeiκ(p�n − iq�n)/(v

�
n)

4 −ηeiκ/(v�n)
2 iηeiκ/(v�n)

2
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