
1.  Introduction
Landslides regularly cause fatalities and damage infrastructure in many areas worldwide (Froude & Petley, 2018), 
and extensive research has focused on anticipating where landslides are likely to occur (Reichenbach et al., 2018). 
For people living in susceptible areas, however, better constraining when landslides are likely is key to reduc-
ing risk, as taking proper action can increase survival rates (Pollock & Wartman, 2020). Globally, advances in 
landslide early warning have mostly concentrated on hourly to daily timescales (Baum & Godt, 2010; Guzzetti 
et al., 2020; Mirus, Becker, et al., 2018; Stanley et al., 2021). Much less attention has been given to quantifying 
seasonal patterns of landslide activity, which would allow for improved planning and emergency preparedness to 
be able to quickly react to short-term warnings.

To characterize landslide seasonality, previous studies have, for example, modeled monthly rock fall frequency 
along a rail corridor in British Columbia (Pratt et al., 2019), investigated seasonal trends in modeled daily landslide 
hazard in the Pacific Northwest (PNW) of the United States (Stanley et al., 2020), or explored seasonal changes 
in intensity-duration thresholds for rainfall-triggered landslides in Italy (Napolitano et al., 2016; Nikolopoulos 
et al., 2015; Peruccacci et al., 2012). Other authors have connected increased landslide activity with seasonal 
changes in precipitation and hillslope hydrologic conditions, especially during the wetter winter season in the 
PNW (Godt et al., 2006; Mirus, Morphew, & Smith, 2018). Studies reporting a seasonal distribution of landslides 
often rely on two metrics: the number (or frequency) of landslides and the presence or absence of landslides 
(Saito et al., 2010; Schneuwly-Bollschweiler & Stoffel, 2012; Sepúlveda & Petley, 2015).
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the season peak in February is up to 10 times higher than at the onset in November, underlining the importance 
of antecedent seasonal hillslope conditions.

Plain Language Summary  Better knowing when landslides are likely over the course of the year 
can reduce landslide risk by improving emergency preparedness. One research challenge is that catalogs of 
past landslides rarely cover the same areas or time periods, and have been collected in different ways. Here, 
we use statistical models to estimate monthly landslide activity in the Pacific Northwest. The models are able 
to combine five different landslide catalogs to make best use of all available information. We find a seasonal 
pattern in both the average number of landslides in a month and the probability of having any landslides. The 
landslide season begins in November, when the average number and the probability of landslides increase. The 
probability of landslides peaks in January and the average number in February, lagging behind winter rainfall 
peaks by one to two months. While landslides are least likely in summer, their activity is more variable in 
winter, with some winters bringing hundreds of landslides, and some very few. At the landslide season peak 
in February, a comparable amount of rain leads to many more landslides than at the onset in November, likely 
because already wet hillslopes are more prone to failure.
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Here, our objectives are to (a) test with statistical models whether these two descriptive metrics objectively reveal 
seasonal variations in landslide activity in the PNW and (b) test if landslide response to precipitation changes 
seasonally. We use Bayesian inference to estimate monthly landslide intensity and probability from five different 
landslide inventories from the region (Figure 1 and Table S1 in Supporting Information S1), employing one set 
of models that learn from landslide inventories alone and another that is conditioned on monthly precipitation 
over the inventory areas. Using Bayesian models in landslide research (Berti et al., 2012; Korup, 2021; Lombardo 
et al., 2020; Nolde & Joe, 2013) has the advantage of providing intrinsic and objective estimates of parameter 
uncertainty, a metric too often neglected in landslide studies (Segoni et al., 2018).

Figure 1.  Reported landslides in the Pacific Northwest from five inventories. (a) Locations of landslides with monthly 
time-stamps (open circles) and footprint area covered by each inventory (black outline) in Washington and Oregon (b). (c) 
Annual time series of landslides (colored bars) over the period of record (gray shading). Black line indicates cumulative 
proportion of landslides recorded over time. (d) Box plots show the distribution of landslides in each month (box encloses the 
interquartile range, horizontal line is the median, whiskers cover 1.5 times the interquartile range); “+1” allows for display of 
months with no landslides on a log-scale.
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Yet, a challenge in modeling landslide activity is that different inventories report landslides in various ways, and 
with differing spatial and temporal coverage (Steger et al., 2017). In the PNW, a number of inventories capture quite 
diverse aspects of landsliding (Figure 1 and Table S1 in Supporting Information S1). The NASA Global Landslide 
Catalog (NASA GLC), for example, largely relied on news and highway department reports, documenting landslides 
along roads and in urban areas (Kirschbaum et al., 2015; NASA, 2018). The Washington Landslide Compilation 
(WLC), on the other hand, mapped widespread shallow landsliding events from LiDAR, aerial photographs, and field 
visits (Washington Geological Survey, 2020). Bayesian multi-level regression makes use of the combined diverse, if 
not seemingly incompatible, information on landslide timing contained in these heterogeneous inventories, while still 
providing estimates for each inventory individually. Our results provide quantitative expectations for monthly land-
slide probability, intensity, and inter-annual variability in the PNW, inclusive of all uncertainty learned from the data.

2.  Study Area and Data
The PNW has one of the highest concentrations of mapped landslides in the United States (Mirus et al., 2020). 
We focused on the states of Washington and Oregon (Figure 1d), which are topographically characterized by two 
mountain ranges, a lower coastal range and the higher Cascades Range, to the east of which relief is generally 
lower. Precipitation in the region has a strong west to east gradient controlled to first order by orographic effects. 
Mean annual precipitation to the west of the Cascades ranges from ∼1,000 to >4,000 mm and drops to <500 mm 
to the east (PRISM Climate Group, 2021).

We analyzed five landslide inventories that cover parts or all of Washington and Oregon and include information 
on landslide timing (Figure 1 and Table S1 in Supporting Information S1). Mapped landslide concentration is 
highest in and to the west of the Cascades, and the length of record varies from 6 to 122 years between invento-
ries (Figure 1). We considered only those landslides with at least a known month of occurrence, which represent 
<1–100% of each inventory (Table S1 in Supporting Information S1). Where recorded, most landslides were 
categorized as rainfall-triggered shallow landslides or debris flows. Depending on the inventory, landslides were 
mapped through field, LiDAR, or imagery analysis, or collected from news articles, highway reports, consulting 
reports or other records (Table S1 in Supporting Information S1).

We subset the NASA GLC to Washington and Oregon (NASA, 2018). We treated the Statewide Landslide Informa-
tion Database for Oregon (SLIDO) historical points data set (SLIDOh) and the landslide polygons data set (SLIDOd) 
separately, as they resulted from different reporting protocols (Franczyk et al., 2020). We also included all landslides 
with monthly time-stamps from the Seattle Historic Landslide Locations (Seattle) (City of Seattle, 2020) and WLC 
(Washington Geological Survey, 2020) inventories, with the exception of the 1980 eruption of Mt. St. Helens.

We used two 4-km resolution precipitation datasets over the inventory areas: the PRISM 30-year Normals 
(Norm91m) describes average monthly precipitation (Ppt) between 1991 and 2020, while PRISM AN81m 
provides monthly estimates of precipitation (PRISM Climate Group, 2021). For consistency with the normals 
data, we analyzed all years between 1991 and 2020 in the AN81m data, computing the spatial mean of both data-
sets across each inventory footprint area (Figure 1).

3.  Methods
We trained two variants of Bayesian multi-level regression models to learn the seasonal pattern of landslide activ-
ity at monthly resolution. We used negative binomial regression to estimate the number of landslides reported in 
a given month (intensity) and logistic regression to estimate the presence or absence of reported landslides (prob-
ability). For each regression, we first fit models to inventory data alone to obtain the seasonal landslide pattern 
without any other predictors (landslide-only models). We then included spatially averaged monthly precipitation 
per inventory area (1991–2020) as a predictor in these generalized linear models to test for a seasonal landslide 
response to precipitation (landslide-precipitation models).

We chose Bayesian multi-level models because they are able to share information between landslide inventories, 
taking advantage of the diverse information contained in the different inventories (multi-inventory models). At 
the same time, the models provide parameter estimates for each inventory individually, thus respecting some 
of the important differences between inventories, like the area covered. In these models, the landslide data are 
grouped by month of occurrence and by inventory, hence one set of parameters is learned for each month and 
inventory. These parameter estimates are informed by a higher-level distribution of (hyper-)parameters that 
is also learned from the data and acts as an adaptive prior for each individual month and inventory. In this 
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way, information is shared across inventories, which has a regularizing effect and generally improves estimates 
for groups with few observations while preventing overfitting to groups with many observations (Gelman & 
Hill, 2007; McElreath, 2020). For comparison, we also fit the landslide-only models to each inventory separately 
(single-inventory models). By binning our data into monthly intervals, we acknowledge the lack of any finer, for 
example, daily, resolution that would require regression models with autocorrelation terms.

We fit the landslide-only negative binomial models to the number of landslides (yi) that occurred in each month m 
recorded in each inventory v. For each month and inventory, the model learned a mean (μm,v) intensity or expected 
number of landslides per area, and a shape parameter (ϕm,v). The negative binomial distribution's variance is 
a function of μ and ϕ and represents the inter-annual variability in the number of monthly landslides. In the 
five single-inventory models, the data were grouped by month and in the multi-inventory model, the data were 
grouped by month and inventory (Equation 1).

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∼ Negative Binomial (𝜇𝜇𝑚𝑚𝑚𝑚𝑚, 𝜙𝜙𝑚𝑚𝑚𝑚𝑚)

ln (𝜇𝜇𝑚𝑚𝑚𝑚𝑚) = (𝛽𝛽0 + 𝛽𝛽0,𝑚𝑚 + 𝛽𝛽0,𝑣𝑣) + ln (𝐴𝐴𝑣𝑣)

ln (𝜙𝜙𝑚𝑚𝑚𝑚𝑚) = 𝛾𝛾0 + 𝛾𝛾0,𝑚𝑚 + 𝛾𝛾0,𝑣𝑣

𝛽𝛽0,𝑚𝑚 ∼ Normal (0, 𝜎𝜎0,𝑚𝑚)

𝛽𝛽0,𝑣𝑣 ∼ Normal (0, 𝜎𝜎0,𝑣𝑣)

𝛾𝛾0,𝑚𝑚 ∼ Normal (0, 𝜓𝜓𝑚𝑚)

𝛾𝛾0,𝑣𝑣 ∼ Normal (0, 𝜓𝜓𝑣𝑣)

� (1)

where β0 and γ0 are population-level intercepts, β0,m and γ0,m are group-level intercepts for month, and β0,v and γ0,v 
are group-level intercepts for inventory (which are excluded in the single-inventory models). Av is the footprint 
area of the inventory. The distribution of the group-level intercepts, which serve as adaptive priors for each indi-
vidual group-level intercept, are specified as normal distributions with zero means and standard deviations σ0,m 
and ψm, and σ0,v and ψv. Prior distributions must be defined for β0, γ0, σ0,m, ψm, σ0,v, and ψv. For all models, we used 
weakly informative Student's t priors that are implemented as widely applicable defaults in the R package brms, 
which we used to fit the models (Bürkner, 2017).

The landslide-precipitation negative binomial models follow the same structure, but include precipitation as a 
predictor.

��,�,� ∼ Negative Binomial (��,�,�, ��,�)
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where β1 is the population-level coefficient of precipitation, β1,m and β1,v are group-level coefficients with corre-
sponding group-level standard deviations σ1,m and σ1,v, and Pi,m,v is the spatially averaged precipitation over 
the inventory area for a specific month between 1991 and 2020, standardized to the mean precipitation across 
all inventories and all months. The correlations ρm and ρv between group-level intercepts and coefficients of 
precip itation are also learned. We chose a uniform prior for β1 and a non-informative Cholesky LKJ prior for the 
correlation matrix (Lewandowski et al., 2009; Stan Development Team, 2022).
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Besides estimating the number of landslides, we also used logistic regression to model the presence or absence 
of reported landslides. Logistic regression relies on a Bernoulli likelihood with parameter pm,v expressing the 
probability of having at least one landslide reported in a given month. We fit the logistic regression to data that 
indicate whether one or more landslides were recorded in an inventory in a given month (zi). Again, we fit a model 
to data from each inventory and a model to data from all inventories for the landslide-only models (Equation 3).

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∼ Bernoulli (𝑝𝑝𝑚𝑚𝑚𝑚𝑚)

log𝑖𝑖𝑖𝑖 (𝑝𝑝𝑚𝑚𝑚𝑚𝑚) = 𝛼𝛼0 + 𝛼𝛼0,𝑚𝑚 + 𝛼𝛼0,𝑣𝑣

𝛼𝛼0,𝑚𝑚 ∼ Normal (0, 𝜏𝜏0,𝑚𝑚)

𝛼𝛼0,𝑣𝑣 ∼ Normal (0, 𝜏𝜏0,𝑣𝑣)

� (3)

where pm,v is a function of a population-level intercept α0 and group-level intercepts α0,m for months and α0,v 
for inventories (excluded from the single-inventory models), and τ0,m and τ0,v are the standard deviations of the 
group-level intercepts.

The landslide-precipitation logistic regression models again include standardized precipitation as a predictor:

��,�,� ∼ Bernoulli (��,�,�)
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� (4)

where α1 is the population-level coefficient of precipitation, and α1,m and α1,v are group-level coefficients for 
months and inventories with corresponding standard deviations τ1,m and τ1,v. υm and υv are the correlations between 
group-level intercepts and coefficients of precipitation.

We fit all models with the R package brms version 2.17.0 (Bürkner,  2017). Brms calls Stan, a probabilistic 
programming language that uses Hamiltonian Monte Carlo to approximate the posterior parameter space (Stan 
Development Team, 2022). We ran the sampler for 2,000 iterations for four independent chains, discarding the 
first 500 draws as warm up, and checked that the chains converged. The single-inventory negative binomial model 
for WLC did not converge, likely because nearly all landslides recorded in this inventory happened in 2 months; 
we excluded this model from further analysis.

The model results are posterior parameter estimates conditional on the landslide inventory data, and, for the 
landslide-precipitation models, monthly precipitation (Figures  2, 3, and Figures S1–S4 in Supporting Infor-
mation S1). We defined parameter estimates to be credibly distinguishable, for example, between subsequent 
months, if their 95% highest-density-intervals (HDIs) did not overlap. Finally, we integrated over the posterior 
parameter estimates to characterize the distribution of landslide activity, thus naturally propagating all uncertain-
ties in our summarized simulated landslide counts and presences/absences (Figure 2). These are called posterior 
predictive distributions in Bayesian statistics. We also report posterior expectations across all precipitation values 
for November and February for the landslide-precipitation models (Figure 3).

4.  Results
Both our landslide-only multi-inventory models confirm a distinct seasonal pattern of landslide activity in the 
PNW (Figure 2). Expected monthly landslide intensity is highest in January and February, decreases from March 
to May, and is lowest in June (dark green points in Figure  2a). Posterior estimates remain low from July to 
October, before increasing in November and December. This trend is consistent across all inventories, despite 
differences in reporting protocols and sample size. We can credibly distinguish (95% HDI) mean landslide inten-
sity between subsequent months from February to April and from October to November in the NASA, Seattle, 
and SLIDOh inventories (Figure  2a). Landslide intensities per unit area are highest in the Seattle inventory 
and lowest in SLIDOd, with January landslide intensities in Seattle exceeding those in SLIDOd by more than 
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three orders of magnitude. Monthly variance is also seasonal: highest from November to February and lowest 
from May through October (Figure 2b). The amplitude of the seasonal intensity pattern in a given inventory is 
smaller than between inventories (Figure 2a and Figure S1 in Supporting Information S1). Simulated posterior 
distributions of landslide counts are consistent with the data. Depending on the inventory, the model estimates up 
to tens  to thousands of landslides in winter with 1% posterior probability, whereas median estimates range from 
zero to two landslides (Figure 2c).

Figure 2.  (a–e) Seasonal pattern of landslide activity from inventory-only models compared to (f) 30-year normal monthly precipitation. (a) Posterior parameter 
estimates for mean monthly landslide intensity, (b) variance, and (d) probability (median and 95% highest-density-interval [HDI]). Two months are considered credibly 
different when their 95% HDIs do not overlap. (c) Distribution of posterior simulated counts and (e) months with landslides from the multi-inventory models. (f) Mean 
monthly precipitation over the inventory areas from 1991 to 2020 PRISM climate normals (PRISM Climate Group, 2021).
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Considering that median estimated counts are zero for all inventories between April and November, we also 
modeled the probability of any reported landslide in a given month. Our landslide-only multi-inventory logis-
tic models show that landslides are most likely in January and become less so through June. The probabil-
ity of landsliding is low, but non-zero, from June to October and increases again in November and December 
(Figure 2c). We observed credible differences between October and November and March and April in the Seattle 
and SLIDOh inventories. Landslide probabilities and their seasonal amplitude throughout the year are highest in 
the NASA inventory and lowest in WLC; again, we found that estimated variability between inventories is higher 
than between months (Figure S1 in Supporting Information S1).

Both landslide-only multi-inventory models reveal a seasonality in landslide activity that some single-inventory 
models are unable to show (NASA, SLIDOd, and WLC; gray symbols in Figure  2). The negative binomial 
multi-inventory model smooths the disjointed November and February landslide intensity peaks in the separate 
SLIDOh model, for example, and raises winter intensities for the NASA inventory, in each case informed by seasonal 
trends from the other inventories. Monthly uncertainties in the multi-inventory models are also well below those in 
single-inventory models, especially for catalogs containing mostly months without reported landslides (SLIDOd).

Comparing these results to 30-year normal monthly precipitation (PRISM Climate Group, 2021) over the areas 
covered by these inventories shows an offset between the annual precipitation pattern and landslide activity 
(Figure 2f). Mean monthly precipitation increased markedly from September to October, but landslide activity 
did not credibly increase until November. Similarly, precipitation in these areas peaked in November or Decem-

Figure 3.  Monthly landslide response to precipitation from Bayesian regression. (a) Reported landslide count by month and inventory. Labeled points represent the 
highest counts reported in each inventory or months discussed in the text (month-year format). Posterior estimates of mean landslide (b) intensity, and (c) probability 
with average precipitation across inventory area for November and February.
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ber, whereas our results show that landslide probability peaked in January and intensity in February, lagging the 
annual peak in precipitation by one to two months.

Considering average precipitation as an additional predictor of both mean landslide intensity and probability 
shows a positive relationship between precipitation and both intensity and probability, regardless of month 
(Figure 3, Figures S3 and S4 in Supporting Information S1). However, across all precipitation values, landslide 
intensity is substantially elevated in February compared to November in all inventories (Figure 3); these differ-
ences are credible at the mean precipitation value for NASA GLC, SLIDOh, and Seattle (Figure S4 in Supporting 
Information S1). For example, in the NASA GLC, our model estimates an order of magnitude more landslides for 
200-mm average precipitation in February than for the same amount in November (Figure 3b). Landslide prob-
ability, on the other hand, remains indistinguishable between months for a given precipitation average (Figure 3 
and Figure S4 in Supporting Information  S1). In all inventory areas, an average of 200  mm of precipitation 
would produce a similar estimated probability in both November and February; at monthly rainfall means above 
200 mm, our models estimate that reported landslides are >95% probable in the SLIDOh and Seattle inventories.

5.  Discussion and Conclusions
We investigated patterns of monthly landslide activity in the PNW with Bayesian multi-level models that unite 
data from five heterogeneous landslide inventories. Our multi-inventory models combine data from inventories 
with differing spatial and temporal coverage, data density, and reporting protocols to learn a regional seasonal 
pattern that some inventories show less distinctly and with higher uncertainties. Multi-inventory model results for 
monthly landslide intensity and probability both show a distinct seasonal pattern, with landslide activity peaking 
in winter, declining to a summer low, and increasing again in the fall. Credible increases in average monthly 
landslide intensity, inter-annual variability, and probability between October and November objectively mark the 
onset of the landslide season. Landslide intensity and probability increase with precipitation in all months, but 
landslide intensity is much higher for a given precipitation average at the peak of the landslide season in February 
compared to the onset in November (Figure 3).

This landslide seasonality in the PNW is largely linked to precipitation (Godt et al., 2006; Mirus, Morphew, & 
Smith, 2018), and most documented triggers or types in the inventories refer to rainfall-triggered shallow transla-
tional slides or flows. Heavy precipitation in the PNW mostly occurs between late October and mid-March, often 
linked to atmospheric rivers (Neiman et al., 2008, 2011) (Figure 2). Flooding in the PNW is also highly seasonal, 
with annual discharge peaks from November to January (Dougherty & Rasmussen, 2019; Neiman et al., 2011; 
Villarini, 2016). Our results expand previous conceptual models by showing that landslide seasonality lags the 
annual precipitation pattern by one to two months. The November landslide season onset follows the October 
precipitation increase; peak landslide probability in January and intensity in February come after November 
and December peaks in mean monthly precipitation. This lag indicates that landslide activity is highest when 
hillslopes have become sufficiently saturated, consistent with studies that have shown antecedent rainfall and 
resulting excess groundwater to be key predictors of landslide hazard on shorter, that is, hourly to daily timescales 
in the PNW (Godt et al., 2006; Mirus, Becker, et al., 2018; Scheevel et al., 2017).

Besides pointing to monthly lags, our models also show that a given amount of rain is expected to initiate far 
more landslides in February than in November (Figure 3), likely because slopes are primed for failure after having 
accumulated moisture over the winter (Godt et al., 2006). For example, in both February and November 1996, 
large storms triggered widespread shallow landslides and debris flows that are reported in the SLIDOh inventory 
(Burns et al., 1998; Harp et al., 1997) (Figure 3). Despite similar mean precipitation totals in those months, the 
February storm triggered over 4,000 reported landslides by delivering heavy rain to already wet, and in some 
areas snow-covered, hillslopes, whereas the November storm triggered a still disastrous 645 reported landslides. 
The February 1996 storm resulted in estimated direct damages of $100 million USD in Oregon alone (Wang 
et al., 2002). Unlike landslide intensity, landslide probability conditioned on precipitation remains comparable 
between all months, suggesting that while antecedent conditions are important for initiating many landslides, 
sufficient rain in any month is likely to initiate at least one landslide (Figure 3).

Our models also highlight that landslide counts are more variable in winter than in summer, when landslides are 
less probable. Nevertheless, summer landslide probability exceeds 25% in the NASA inventory. In July 2015, for 
example, 10 landslides were reported along roads or rivers in the NASA GLC; those with reported triggers were 
initiated by downpours, showing the effects of summer convective storms on the seasonal pattern of landsliding.
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Overall, our multi-level modeling framework is able to learn more about regional landslide seasonality than 
models trained on individual inventories (Figure 2), but retains the data structure of all inventories. By design, a 
single seasonal pattern is learned from all of the inventories, but the amplitudes of monthly intensities or proba-
bilities within that pattern differ by inventory. We find that the effects of inventory on landslide intensity exceed 
the effects of seasonality (Figure 2 and Figure S1 in Supporting Information S1); the resulting estimated number 
of landslides per area in Seattle is much higher than in the region covered by WLC, for example, Similarly, 
estimated landslide probability in January is 8% in the WLC inventory and 69% in the NASA inventory, despite 
the spatial overlap between these inventories. This apparent mismatch could arise from the physics of landslide 
occurrence or from the details of the recording protocol. Landslide activity in urban areas and along roads may 
be higher than in rural areas (Johnston et al., 2021), spatial variations in landslide susceptibility may be captured 
by different inventory footprints, or average landslide intensities may have differed in the time periods covered by 
the inventories (Lombardo et al., 2020). A more likely explanation is reporting bias arising from more detailed 
observations in urban areas and along roads (Steger et al., 2017). The monthly time-stamped landslides included 
in our study are a subset of all reported landslides: nearly all landslides reported in Seattle have a time-stamp, 
whereas only 8% of landslides reported in WLC have a time-stamp (Table S1 in Supporting Information S1). 
Ninety-nine percentage of dated landslides in WLC occurred on three unique days during major storms, whereas 
landslides in the Seattle inventory represent 823 days over 125 years (Table S1 in Supporting Information S1). 
Even if landslide activity in Seattle and the area covered by WLC were identical in space and time, a higher prob-
ability of recording landslides in Seattle would lead to higher apparent intensities and probabilities.

Given the different recording protocols between inventories, estimates from multi-inventory models (Figure 3) 
have additional advantages (Figure S2 in Supporting Information S1). Shrinkage refers to the difference between 
the single-inventory model parameter estimates and the multi-inventory model estimates and demonstrates how 
the inventories learn from each other (McElreath, 2020). The NASA inventory records landslides mostly along 
highways and in urban areas, and less so regional episodes that are recorded in WLC or SLIDOh. Parameter 
shrinkage pulls January and February intensity estimates up for the NASA inventory, as it learns about regional 
landslide episodes from the other inventories (green and gray points in Figure 2a). Conversely, the single-inventory 
estimates for SLIDOh are dominated by the regional storms in November and February 1996 (Figure 2 and Figure 
S2 in Supporting Information  S1). Shrinkage pulls those estimates toward the global mean of the data, thus 
preventing overfitting. The same effect is observed when comparing the share of simulated months with land-
slides to the share of recorded months with landslides (Figure 3b and Figure S2 in Supporting Information S1). 
Single-inventory models tend to overfit the data, while the multi-inventory model generalizes better.

Altogether, our results show that Bayesian multi-level models are a useful and underexplored way to combine and 
reconcile information from multiple and seemingly incompatible landslide inventories. Potential further appli-
cations for combining inventory data or learning the variation between other groups are wide ranging: examples 
include intensity-duration thresholds for different seasons (Nikolopoulos et al., 2015; Peruccacci et al., 2012) 
or regions (Guzzetti et al., 2008), or combining multiple inventories in regression-based susceptibility models 
(Reichenbach et al., 2018).

Better understanding landslide activity at monthly to seasonal time-scales has the potential to improve emer-
gency preparedness. Our results show that PNW landslide activity peaks in January–February, lagging mean 
monthly precipitation, and that similar rainfall leads to substantially higher intensities at the landslide season 
peak than at the onset. Because our models flexibly learn landslide activity by month from inventory data, 
they could be used to investigate landslide seasonality in regions with patterns as diverse as the winter-summer 
bimodal pattern observed in the western Himalaya and Karakoram (Hunt & Dimri, 2021), the East Asian Summer 
Monsoon peak in Japan (Saito et al., 2010), or the Atlantic hurricane season fall peak in Central America and the 
Caribbean (Sepúlveda & Petley, 2015). An important next step in seasonal landslide research will be to predict 
monthly intensity or probability for specific years, potentially considering global-interannual climate variability 
(Emberson et al., 2021), and eventually leading to operational forecasts. Such efforts will also pave the way for 
studies of whether and how climate change alters landslide seasonality.

Data Availability Statement
•	 �NASA Global Landslide Catalog via https://data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-

neg4. Open Database License (NASA, 2018).
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•	 �Statewide Landslide Information Database for Oregon, release 4.2 (SLIDO-4.2) via https://www.oregongeol-
ogy.org/pubs/dds/p-slido4.htm. Public (Franczyk et al., 2020).

•	 �Seattle Historic Landslide Locations ECA: https://data-seattlecitygis.opendata.arcgis.com/datasets/6a-
c72973a5784d90bda0a5f8a001d9f3_22/explore?location=47.616250%2C-122.328600%2C11.91. PDDL 
License (City of Seattle, 2020).

•	 �Washington Landslide Compilation: https://gis-qa.dnr.wa.gov/portal/home/item.html?id=da4255f770f-
84144b01c54010d533f4d. Public (Washington Geological Survey, 2020).

•	 �PRISM 30-year climate normals 1991–2020 (Norm91m, v M3, Ppt, November 2021) are available at https://
prism.oregonstate.edu/normals/. Monthly PRISM AN81m (v M3, Ppt, July 2015) precipitation data is availa-
ble at https://ftp.prism.oregonstate.edu/monthly/ppt/ (PRISM Climate Group, 2021).

•	 �Models were fit using brms version 2.17.0, available at https://cran.r-project.org/web/packages/brms/index.
html (GPL-2) (Bürkner, 2017).

•	 �The Python Jupyter and R Markdown Notebooks used for this analysis are available from Luna (2022) and can 
be found at https://github.com/lvluna/landslide-seasonality.
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