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This paper studies the synchronization of a network with linear diffusive coupling, which blinks between the
variables periodically. The synchronization of the blinking network in the case of sufficiently fast blinking is
analyzed by showing that the stability of the synchronous solution depends only on the averaged coupling and
not on the instantaneous coupling. To illustrate the effect of the blinking period on the network synchronization,
the Hindmarsh-Rose model is used as the dynamics of nodes. The synchronization is investigated by considering
constant single-variable coupling, averaged coupling, and blinking coupling through a linear stability analysis.
It is observed that by decreasing the blinking period, the required coupling strength for synchrony is reduced. It
equals that of the averaged coupling model times the number of variables. However, in the averaged coupling,
all variables participate in the coupling, while in the blinking model only one variable is coupled at any time.
Therefore, the blinking coupling leads to an enhanced synchronization in comparison with the single-variable
coupling. Numerical simulations of the average synchronization error of the network confirm the results obtained
from the linear stability analysis.

DOI: 10.1103/PhysRevE.105.054304

I. INTRODUCTION

Complex dynamical networks have attracted much atten-
tion in recent years [1]. A universal phenomenon in these
networks is the synchronized behavior of the components
[2–4]. It has been shown that the structure of the network
plays a key role in synchronization [5]. For this reason, many
studies were focused on the influence of the network topology
on synchronization. Wang et al. [6] proposed that the syn-
chronizability of a homogeneous network can be enhanced
by considering weighted and asymmetric couplings, similar
to a scale-free network. Nishikawa et al. [7] reported that
networks with a homogeneous distribution of connectivity,
although having larger average path lengths, are more likely
to synchronize than those with heterogeneous connectivity.

Enhancing synchronization is of great importance in many
applications, including diverse brain functions [8,9]. For
example, synchronization is essential in many memory pro-
cesses such as working memory and long-term memory
by enhancing neural plasticity [10]. In the attention-related
process, the neurons receiving the attended stimuli exhibit
enhanced synchrony in the gamma band [11]. In contrast
to these desirable functions, some of the pathological brain
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states are caused by increased synchrony in special regions.
For instance, in patients with Parkinson’s disease, abnormal
synchronization is observed in the cortico-basal ganglia cir-
cuits [12]. In the past years, many efforts have been devoted
to enhancing synchrony in dynamic networks. Lin and Chen
[13] demonstrated that two chaotic oscillators could become
synchronous by applying white-noise-based coupling. It has
been shown that assigning the direction to the links of a
network, for example, by the residual degree gradient (RDG)
method or the residual edge-betweenness gradient method
[14,15] can improve the synchronization. Ramirez et al. [16]
proposed a dynamic coupling for a master-slave network and
showed the enhanced synchronization, which could not be
obtained with static coupling. Banerjee et al. [17] found that
applying a parameter mismatch to well-defined oscillators of
the network, such that the identical oscillators interact in-
directly, can help achieve synchronization. Sevilla-Escoboza
et al. [18] investigated the stability of synchronization by
considering multivariable couplings and extracted the opti-
mal scheme that resulted in maximum stability. Panahi et al.
[19] revealed that the optimal synchronization in circulant
oscillators is obtained by multivariable coupling with equal
coupling coefficients. Time delay is another factor impact-
ing synchronization [20,21]. Kyrychko et al. [22] examined
the stability of different types of synchronization in different
topologies considering distributed time delays in coupling.
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They considered uniform and gamma delay distributions and
found that the stability of the synchronization is improved
with increasing the width of a uniform distribution or decreas-
ing the mean of the gamma distribution. Gjurchinovski et al.
[23] studied a network of coupled limit-cycle oscillators with
time-varying delays in the coupling and self-feedbacks. They
analyzed the stability of synchronization and found that the
time-varying delay leads to the formation of amplitude death.
Liu et al. [24] considered a network with time-varying delay
and investigated local and global exponential synchronization.
By using the average dwell time method, delay-dependent
sufficient conditions were derived.

In realistic networks, the interactions between compo-
nents are dynamic and evolve in time [25]. The varying
communications between individuals in society or the inter-
actions between neurons in the brain are some examples.
In this context, many researchers have focused on synchro-
nization in time-varying networks in the last two decades.
Belykh et al. [26] proposed a small-world network with fixed
nonlocal connections and time-varying links between any
pairs of oscillators with the chaotic attractor. The blinking
connections were switched on and off with pre-defined prob-
ability. It was found that the addition of random links reduces
the effective path length and also enhances synchronization
with a lower cost. Hasler et al. [27] considered blinking ran-
dom connections in non-neighboring nodes in a multistable
network. They showed that for sufficiently small blinking pe-
riods, i.e., fast switching, the behavior of the blinking network
and the time-averaged network is almost the same. A compar-
ison of the fast switching network and its averaged network
has also been performed for finite time and infinite time in-
tervals considering different cases according to the invariance
or noninvariance of the numbers of attractors of the averaged
system [28,29]. Porfiri [30] established a method for finding
necessary and sufficient conditions for the stochastic synchro-
nization of a network of chaotic maps with blinking links.
Lu et al. [31] analyzed the synchronization of discrete-time
networks with time-varying topologies by using the Hajnal di-
ameter, which is equivalent to transverse Lyapunov exponents.
Besides blinking small-world networks, synchronization of
time-varying random networks has also been considered. Jeter
and Belykh [32] studied the global stability of the synchro-
nization in networks with time-varying random topology and
intrinsic parameters. In another study, they found an optimal
window of frequency in which the synchronization is stable
[33]. Barabash and Belykh [34] studied a random network
with time-varying connections and showed its equivalence
with the averaged network for fast blinking. They found
that synchronization is maintained even when increasing the
blinking period considerably. Furthermore, with an increas-
ing number of oscillators in the network, the synchronization
threshold becomes independent from the blinking period. The
effect of memory in the blinking links has also been stud-
ied. Liu et al. [35] proposed a novel approach for deriving
sufficient conditions for the synchronization of networks with
time-varying coupling structure and weight. They considered
two cases for stochastic switching processes where in the first
case, the sequences had an independent and identical random
distribution and in the second case, the sequences created
a Markov chain. Porfiri and Belykh [36] investigated two

one-dimensional coupled nonlinear maps under Markovian
switching with respect to memory effects. Lanza et al. [37]
analyzed synchronization in coupled memristor-based oscil-
latory circuits since memristors have represented a crucial
function in the emergence of synchronization in special cases
[38]. They showed the effects of blinking links on the invariant
manifolds of oscillators.

In the studies mentioned above, the topologies of the net-
works were considered to be time varying with fixed coupling
functions. However, there exists another configuration where
the network connections between the nodes are fixed, but the
coupling function is a time-varying function. The coupling
function determines which dynamic variables of different
nodes are connected with each other, i.e., it determines how
the interactions among two (or more) dynamical systems
evolve [39]. There are many applications in which the cou-
pling function is time varying such as the cardiorespiratory
system, transport grids and supply networks, and neural cross-
frequency coupling functions [40,41]. In general, a coupling
function is defined by its strength and its form. Some previous
studies have focused on networks with time-varying coupling
strength [42–44], while some have investigated the effects
of time-varying coupling forms [39,45–47]. For example,
Hagos et al. [45] reported synchronization transitions induced
by time-varying coupling functions in phase oscillators. They
indicated that the collective behavior of the oscillators de-
pends on the shape of the coupling function, and the net
coupling strength has a negligible effect. As an application
in machine learning, Stelzer et al. [47] discussed deep neural
networks with steplike switching functions between multiple
time-delayed feedbacks to achieve a better, more efficient
performance. These virtual networks consist of a single node
with multiple time-delayed feedback loops.

In this paper, we consider a network with fixed connections
and a special time-varying coupling function. The variable
through which the oscillators are coupled is assumed to al-
ternate between the system’s variables periodically. Thus,
the coupling function turns out to be blinking. The synchro-
nization of the network is analyzed under fast blinking. The
Hindmarsh-Rose neuron model is considered as the dynamics
of each node of the network. The synchronization stability
is investigated by computing the largest Lyapunov exponent
of the variational equation for different blinking periods. It is
found that by decreasing the blinking period, synchronization
is achieved for lower coupling strengths. Numerical simu-
lations are also performed, and the average synchronization
error is calculated.

II. THE BLINKING NETWORK MODEL

A time-varying dynamical network composed of N identi-
cal oscillators with linear diffusive coupling is considered. It is
assumed that the links are constant, but the variable used in the
coupling is switched periodically in time. Thus, the network
can be described by

Ẋi = F (Xi ) + σ

N∑
j=1

Gi jH (t )Xj, i = 1, ..., N, (1)
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where Xi = (xi1, xi2, ..., xid ) is the d-dimensional state vari-
able of the oscillators, F (Xi ) : Rd → Rd is the system’s
dynamics, and σ is the coupling strength. The network topol-
ogy is determined by the adjacency matrix GN×N with zero
row sum (i.e., the negative of the Laplacian matrix), where
Gi j = 1 if the ith and jth oscillators are connected and Gi j =
0 else, and Gii = −∑N

j=1, j �=i Gi j . The time-varying matrix
H (t ) : Rd → Rd is the internal-coupling matrix and deter-
mines which variables are considered in the coupling at each
time t . Here, the matrix H (t ) is assumed to blink between
variables with equal time intervals with period τ . Therefore,
the matrix H (t ) and its elements Hmn(t ) (m, n = 1, ..., d) can
be described as follows:

Hmm(t ) =
{

1 if (m−1)τ
d < t < mτ

d
0 otherwise

,

Hmn(t ) = 0,

H (t + τ ) = H (t ). (2)

This time-varying network can have a synchronous solution
s(t ) = Xi(t ), i = 1, ..., N . The stability of the synchronous
manifold is equivalent to the stability of the error vector
ηi(t ) = Xi(t ) − s(t ) with respect to perturbations around zero.
Substituting ηi(t ) into the network equation [Eq. (1)], one
obtains the linearized variational equation,

η̇i(t ) = DFs(t )ηi(t ) + σ

N∑
j=1

Gi jDHs(t )ηi(t ), (3)

where DFs : Rd → Rd and DHs : Rd → Rd are the Jacobian
matrices of F and H at s(t ). Note that since the coupling
is considered to be linear diffusion, we have DHs(t ) = H (t ).
Thus, the system of linearized coupled oscillators is given in
terms of the Nd-dimensional vector η(t ) = (η1, η2, ..., ηN ) by

η̇(t ) = (IN ⊗ DFs(t ) + σ (G ⊗ H (t )))η(t ), (4)

where ⊗ is the Kronecker product. The matrix G can be
diagonalized using Schur decomposition. Therefore, an upper
triangular matrix is formed with eigenvalues of G appearing
on its main diagonal. Finally, diagonalizing G, and since
the first term of Eq. (4) is block diagonal, the set of varia-
tional equations [Eq. (4)] can be transformed to the decoupled
system,

η̇(t ) = [DFs(t ) + σλkH (t )]η(t ), k = 1, ..., N, (5)

where λk are the eigenvalues of the adjacency matrix (G) and
η(t ) is a d-dimensional vector. For a network with a connected
graph, the first eigenvalue is always zero, and thus, the system
[Eq. (5)] for k = 1 evolves along the synchronous manifold.
Consequently, the stability of the system [Eq. (5)] needs to be
checked for k = 2, ..., N , which corresponds to the directions
transverse to the synchronous manifold. This method is called
the master stability approach and has been proposed by Pecora
and Carroll [5]. The master stability function (MSF) is defined
as the largest Lyapunov exponent (�) of the variational Eq. (5)
as a function of the complex parameter μ = λk . If �(μ) < 0
for all eigenvalues μ = λk , k = 2, ..., N , the synchronized
solution is stable. Huang et al. [48] systematically studied the
typical behavior of the MSF with different coupling schemes

for some well-known chaotic systems and categorized the
MSF behavior into four classes.

III. SYNCHRONIZATION UNDER FAST BLINKING

The stability of synchronization of the time-varying net-
work with a sufficiently fast blinking coupling function can
be estimated by the synchronization of the averaged network.
Stilwell et al. [49] proved this theory for the network with
time-varying topology. Here, we use the same approach for
the time-varying coupling function. In this regard, the follow-
ing theorem is given.

Theorem 1. It is supposed that the system of oscillators
with linear diffusive coupling and the static internal coupling
function (H̄) as

Ẋi = F (Xi ) + σ

N∑
j=1

Gi jH̄Xj, i = 1, ..., N (6)

has a stable synchronization manifold. Then, there exists a
small ε∗, such that the set of oscillators with time-varying
internal coupling function as

Ẋi = F (Xi ) + σ

N∑
j=1

Gi jH (t/ε)Xj, i = 1, ..., N (7)

reaches a stable synchronization manifold for 0 < ε < ε∗, if

1

τ

∫ t+τ

t
H (α)dα = H̄ . (8)

The above theorem can be easily proved according to
the following lemma, which is given for the fast switching
systems.

Lemma 1. Supposing ẋ(t ) = (A(t ) + Ē )x(t ) has a uni-
formly exponentially stable solution, where E is a matrix
function satisfying Ē = 1

τ

∫ t+τ

t E (α)dα for all t . Then, there
exists small ε∗ such that for 0 < ε < ε∗, ż(t ) = (A(t ) +
E (t/ε))z(t ) has a uniformly exponentially stable solution.

The proof of the lemma is presented in the Appendix [49].
Proof of Theorem 1. In the previous section, it was de-

scribed that the stability of synchronization of the network
[Eq. (6)] is equivalent to the stability of the linearized vari-
ational equation,

η̇ = [DFs + σλkH̄ ]η, k = 2, ..., N. (9)

Supposing that the network (6) achieves synchronization,
then the system (9) is exponentially stable. According
to the internal coupling matrix defined in the previous
section and Eq. (2), there exists an average matrix, H̄ =

1
τ

∫ t+τ

t H (α)dα =

⎡
⎢⎢⎢⎣

1/d 0 . . . 0

0 1/d . . . 0
...

. . .
. . . 0

0 . . . 0 1/d

⎤
⎥⎥⎥⎦, for all t . Thus,

according to the lemma, there is ε∗ such that the following
system is exponentially stable,

η̇ = [DFs + σλkH (t/ε)]η, k = 2, ..., N. (10)

The system (10) can be considered as the linearized varia-
tional equation of the network (7). Therefore, the time-varying
network [Eq. (7)] can achieve stable synchronization.
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From this theory, it can be concluded that when the
blinking of the internal coupling function is sufficiently fast,
i.e., the period of blinking is considerably smaller than the
period of the oscillators, the stability of synchronization of the
blinking network is determined by the synchronization stabil-
ity of the averaged network. Therefore, the synchronization
stability is not dependent on the coupling function H (t ) at
time t but on the average of H (t ).

IV. BLINKING NEURONAL NETWORK

It has been shown that the interactions in the brain are not
static and evolve in time [50–54]. The synaptic connections
and also the strength of the connections change temporally to
optimize the functionality of the neurons [55]. Since the focus
of our studies is the blinking coupling function and not the
network topology, we use a very simple network consisting
of two nodes in order to gain insight into the mechanism
of blinking coupling. Therefore, as an illustration of blink-
ing coupling, we choose a well-known dynamic model from
neuroscience, and investigate synchronization in a simple
network of two coupled Hindmarsh-Rose neurons where the
dynamics of each node (F (X )) is described by

ẋ1 = x2 + 3x2
1 − x3

1 − x3 + Iext,

ẋ2 = 1 − 5x2
1 − x2,

ẋ3 = r(s(x1 + 1.6) − x3), (11)

where x1, x2, and x3 denote the membrane potential, the
fast and slow recovery variables. The parameters are set to
Iext = 3.2, r = 0.006, s = 4, where each node exhibits chaotic
bursting. The time series of the Hindmarsh-Rose model with
these parameters is shown in Fig. 1(a). In our simplest ex-
ample, the network is assumed to be composed of two nodes

via G =
[−1 1

1 −1

]
with eigenvalues λ1 = 0 and λ2 = −2.

The synchronizability of the network is obtained by linear
stability analysis and numerical simulations considering dif-
ferent cases for the internal coupling function as (a) constant
coupling function on each state variable, (b) averaged cou-
pling function (H̄), (c) blinking coupling function as Eq. (2).
It is notable that the synchronous manifold in all cases is also
chaotic. An example of the time series of the synchronous
neurons is illustrated in Fig. 1(b).

A. Linear stability analysis

At first, the coupling function is considered to be constant,
with the coupling in one variable only. In this case, the stabil-
ity of synchronization can be obtained by finding the stability
of the variational equation [Eq. (5)] with constant H with
respect to the zero solution. If the master stability function, de-
fined as the largest Lyapunov exponent (�) of the variational
Eq. (5) as a function of the complex parameter μ, satisfies
�(μ) < 0 for all eigenvalues μ = λk of the adjacency matrix,
the synchronized solution is stable. For the considered cou-

pling matrix G =
[−1 1

1 −1

]
with eigenvalues λ1 = 0 and

λ2 = −2, we have to compute the largest Lyapunov exponent
(�) of the variational equation for μ = λ2 = −2.

FIG. 1. (a) Time series of the membrane potential x1 of the
single Hindmarsh-Rose neuron model [Eq. (11)] that exhibits chaotic
bursting. The parameters are set to Iext = 3.2, r = 0.006, s = 4.
(b) Synchronous time series of two neurons coupled through x1 vari-
ables and coupling strength σ = 1. The blue and red colors represent
the time series of the membrane potential of the first and second
neurons x11 and x21, respectively. The parameters are as in (a).

Figure 2 shows the largest Lyapunov exponent �(μ =
−2) for constant H as a function of the coupling strength.
In Fig. 2(a), the coupling of the oscillators is through the

x1 variables, i.e., H =
⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦. With this coupling,

synchronization can be attained for σ > 0.465. Figure 2(b)
represents �(μ = −2) for coupling in the x2 variables, i.e.,

H =
⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦. It is observed that for this coupling, the

network becomes synchronous for σ > 0.056. Finally, the
coupling is through the x3 variables [Fig. 2(c)], i.e., H =⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦. In this case, the synchronization is unstable

for any value of σ . Next, H =
⎡
⎣1/3 0 0

0 1/3 0
0 0 1/3

⎤
⎦ is con-

sidered, which is the average of the blinking network. The
largest Lyapunov exponent, which is illustrated in Fig. 2(d),
shows that the synchronization of the averaged network is
achieved for σ > 0.021. It can be clearly seen that the largest
Lyapunov exponent is a decreasing linear function of
the coupling strength σ , which follows from the diag-
onal coupling in all three variables [56,57], in contrast
to the coupling in only one variable in Figs. 2(a)–
2(c). The stability of the synchronized solution η = 0 is
governed by the linearized equation η̇ = [DFs + λ2σ I/3]η
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FIG. 2. The largest Lyapunov exponent � of the variational Eq. (5) for μ = −2 with constant coupling function (H ) in dependence on the
coupling strength σ . (a) Coupling in x1 variables, (b) coupling in x2 variables, (c) coupling in x3 variables, (d) averaged network. Parameters
as in Fig. 1.

with λ2 = −2 for perturbations of η = 0, where I is the
unity matrix. In fact, for a constant matrix A0 = DFs the
eigenvalues γ0 of A0 are related to the eigenvalues γ

of A = [DFs + λ2σ I/3] by γ = γ0 + λ2σ/3 which follows
from comparing the two eigenvalue equations. Since the
Lyapunov exponents correspond to the real part of the eigen-
values averaged along the attractor’s orbits, the eigenvalue
equation γ = γ0 + λ2σ/3 can be converted to the equa-
tion � = �0 + λ2σ/3, where �0 is the maximum Lyapunov
exponent of DFs. Therefore, the maximum Lyapunov expo-
nent � as a function of σ is given by a straight line � = �0 −
2σ/3. Consequently, the threshold for synchronization � = 0
can be calculated as σ = 3�0/2 which gives σ = 0.0207 for
�0 = 0.0138.

Next, we investigate the stability of the synchronous
solution of the blinking network. The largest Lyapunov ex-
ponent of Eq. (5) is calculated for the time-varying coupling
function, i.e.,

H (t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦ if 0 < t < τ/3

⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦ if τ/3 < t < 2τ/3

⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦ if 2τ/3 < t < τ

,

H (t + τ ) = H (t ). (12)

Figure 3 shows �(μ = −2) for different blinking
periods τ as a function of the coupling strength σ . Although
the coupling function is discontinuous in time, the linear
stability analysis is straight forward since the coupling is
linear. The master stability function has been extended to
nonsmooth (discontinuous) nonlinear coupling in [58]. The

time scale of the spikes in the chaotic bursting oscillations
of the single Hindmarsh-Rose model is approximately
equal to T = 30. We have chosen the periods of
blinking as τ = T, T/5, T/10, T/100, T/1000, T/10 000 =
30, 6, 3, 0.3, 0.03, 0.003. The time step for solving the
equations is set at dt = 0.0002. It can be seen that as the
blinking occurs faster (with decreasing the period of blinking
τ ), the threshold of the coupling strength at which the
synchronization is achieved is decreased. Furthermore, when
the blinking period decreases sufficiently, i.e., for τ < 0.03,
synchronization can be obtained for σ > 0.021. For fast
blinking the stability is the same as for the averaged coupling,
and hence the maximum Lyapunov exponent decreases
linearly with coupling strength as in Fig. 2 d. One can see
that the function becomes more and more like a straight line
with decreasing blinking period τ . For the smallest value of τ

FIG. 3. The largest Lyapunov exponent (�(μ = −2))
of Eq. (3) vs the coupling strength (σ ) for different
blinking periods τ . (Blue) τ = T = 30, (red) τ = T/5 = 6,
(orange) τ = T/10 = 3, (purple) τ = T/100 = 0.3,
(green) τ = T/1000 = 0.03. For faster blinking, the
largest Lyapunov exponent is the same as the green line with
threshold σ = 0.021. Other parameters as in Fig. 1.
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FIG. 4. The synchronization error vs the coupling strength σ

with a constant coupling in (a) x1 variables, (b) x2 variables, (c) x3

variables. Parameters as in Fig. 1.

(green line) the graph becomes identical to Fig. 2(d), with the
same critical coupling strength.

B. Numerical results

We have also solved the network dynamics of two coupled
Hindmarsh-Rose neurons numerically. To evaluate the syn-
chronization between two neurons, the temporally averaged
synchronization error [59] is computed as

Error = 〈‖X1(t ) − X2(t )‖〉t , (13)

where 〈.〉t denotes the time average. At first, the coupling
is assumed to be constant through one of the variables. The
synchronization error for the x1-variable coupling is shown
in Fig. 4(a). It can be seen that the neurons are synchronized
for σ > 0.48. When the coupling is only in the x2 variables,
the neurons become synchronous for σ > 0.05. The synchro-
nization error for this coupling is shown in Fig. 4(b). Finally,
when the neurons are coupled through the x3 variables, syn-
chronization is not achieved at all by increasing the coupling
strength [Fig. 4(c)]. Comparing Figs. 2 and 4 shows that the
critical coupling strengths found by the numerical solution are

almost the same as those obtained from the linear stability
analysis.

Now it is assumed that the coupling blinks between the
three variables. Therefore, in the interval 0 < τ < τ/3, the
coupling is in the x1 variables, in τ/3 < t < 2τ/3, the cou-
pling is in the x2 variables, and in 2τ/3 < t < τ , the coupling
is in the x3 variables. The synchronization errors for various
blinking periods as in Fig. 3 are shown in Fig. 5. It is observed
that when the period of blinking is long, the synchronization
threshold is large. With decreasing blinking period τ , syn-
chronization is achieved for smaller coupling strengths, such
that for τ = 0.03 the synchronization is stable approximately
for σ > 0.02. The numerically found thresholds for stable
synchronization are consistent with the results derived from
the linear stability analysis.

To obtain an overview of the effect of the blinking period
on the synchronization threshold, the parameter plane is pre-
sented in Fig. 6. The blinking period is considered to vary
in the range τ ∈ [0.01, 30] in a logarithmic scale to represent
the short periods better. The values of the largest Lyapunov
exponent of the linearized system [Eq. (5)] for μ = −2 are
shown in Fig. 6(a). The black curve in this figure marks
� = 0 and separates the regions of asynchronous and syn-
chronous behavior. Figure 6(b) represents the numerically
obtained synchronization error [Eq. (13)] of the network. Note
the nonmonotonic behavior of the synchronization thresh-
old as a function of τ which is visible both in Figs. 6(a)
and 6(b).

V. CONCLUSIONS

In this paper, the synchronization of a time-varying net-
work with blinking coupling variables was investigated. It
was assumed that the links of the network are fixed and time
independent, but the variable that participates in the coupling
switches between the system’s variables with a well-defined
periodicity. For the case of fast blinking, a theorem was pre-
sented which shows that the synchronization of the network
under fast blinking is equivalent to the synchronization of the
averaged network. Therefore, the instantaneous coupling con-
figuration does not affect the synchrony of the network. Thus,
in general, the blinking coupling function can enhance syn-
chronization of systems in which the coupling strength needed
for synchronization in single-variable coupling is higher than
that for averaged diagonal coupling. This is a significant result
and can be applied for enhancing the synchronization of any
physical systems such as chaotic electronic circuits in which
the coupling in all variables can be readily implemented [18],
if those systems satisfy the above condition.

As an illustration, the Hindmarsh-Rose model was used
to describe the dynamics of the nodes. At first, the synchro-
nization of the network with constant coupling was studied
by calculating the master stability function. It was observed
that the best case for synchronization is the coupling through
the x2 variables, which provides synchrony for σ > 0.056,
but synchronization is never achieved for coupling in the
x3 variables. Then, the necessary conditions for the stability
of the synchronization of the blinking network were ob-
tained for different blinking periods. It was found that a
smaller period of switching leads the network towards syn-
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FIG. 5. The synchronization error vs coupling strength σ with blinking coupling for different blinking periods τ . (a) τ = T = 30, (b) τ =
T/5 = 6, (c) τ = T/10 = 3, (d) τ = T/100 = 0.3, (e) τ = T/1000 = 0.03, (f) τ = T/10 000 = 0.003. Other parameters as in Fig. 1.

chronization at smaller coupling strengths. For sufficiently
fast blinking, the blinking network with coupling strength σ is
dynamically equivalent to fixed all-variable diagonal cou-
pling with coupling strength σ/3, and the coupling strength
needed for synchrony is considerably smaller than that needed
in constant single-variable coupling, namely σ > 0.021. It
is intriguing that the blinking coupling provides a better
synchronization for the systems, although being periodically
coupled in the x3 variable, which as a stand-alone coupling
cannot lead to synchronization. The network was also studied

numerically, and the time-averaged synchronization error was
computed. The numerical results agreed well with the condi-
tions found from the linear stability approach.
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FIG. 6. The region of stable synchronization in the parameter plane of coupling strength σ and blinking period τ . (a) The largest Lyapunov
exponent of the linearized system [Eq. (5)] for μ = −2; the asynchronous and synchronous states’ regions are separated by the black curve
(� = 0). (b) Numerically calculated synchronization error. Parameters as in Fig. 1.
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APPENDIX: PROOF OF LEMMA 1

Here, the proof of Lemma 1 is presented [49].
In this lemma, it is supposed that the system ẋ(t ) = (A(t ) +

Ē )x(t ) is uniformly exponentially stable. Therefore, there
exists a Lyapunov function v(x(t ), t ) = xT (t )Q(t )x(t ) with
symmetric matrix Q(t ) such that

η‖x(t )‖2 � v(x(t ), t ) � ρ‖x(t )‖2, (A1)

and

d

dt
v(x(t ), t ) � −μ‖x(t )‖2, (A2)

where η > 0, ρ > 0, and μ > 0.
To prove the exponential stability of ż(t ) = (A(t ) +

E (t/ε))z(t ), it is shown that v(z(t ), t ) is its Lyapunov function
and the following equation is negative definite.

�v(z(t + εT ), t ) ≡ v(z(t + εT, t + εT ) − v(z(t ), t ). (A3)

Equation (A3) can be expanded to

�v(z(t + εT ), t ) = zT (t + εT )Q(t + εT )z(t + εT )

−zT (t )Q(t )z(t ) = zT (t )(�T
E (t + εT, t )Q(t + εT ),

× �E (t + εT, t ) − Q(t ))z(t ), (A4)

where �E (t, τ ) denotes the transition matrix of
A(t ) + E (t/ε). Then, H (t + εT, t ) = �E (t + εT, t ) −
�Ē (t + εT, t ) is defined, where �Ē (t + εT, t ) denotes
the transition matrix of A(t ) + Ē ,

H (t + εT, t ) = �(t + εT, t ) − �Ē (t + εT, t )

= I +
∫ t+εT

t
A(σ1) + E

(σ

ε

)
dσ

+
∞∑

i=2

∫ t+εT

t
A(σ1) + E

(σ1

ε

) ∫ σ1

t

× ...

∫ σi−1

t
A(σi ) + E

(σi

ε

)
dσi...dσ1

− I −
∫ t+εT

t
A(σ1) + Ē dσ

−
∞∑

i=2

∫ t+εT

t
A(σ1) + Ē

∫ σ1

t
...

∫ σi−1

t
A(σi )

+ Ē dσi...dσ1. (A5)

With considering ∫ t+εT

t
E (

σ

ε
)dσ = εT Ē , (A6)

Eq. (A5) turns into Eq. (A7),

H (t + εT, t ) =
∞∑

i=2

∫ t+εT

t
A(σ1) + E

(σ1

ε

)

×
∫ σ1

t
...

∫ σi−1

t
A(σi ) + E

(σi

ε

)
dσi...dσ1

−
∞∑

i=2

∫ t+εT

t
A(σ1) + Ē

∫ σ1

t

× ...

∫ σi−1

t
A(σi ) + Ē dσi...dσ1. (A7)

Therefore, a bound for H (t + εT, t ) can be determined as

‖H (t + εT )‖ � 2(eεT α − 1 − εT α), (A8)

where

α ≡ sup
t�0

(max(‖A(t ) + Ē‖, ‖A(t ) + E (t/ε)‖)). (A9)

Substituting �E = �Ē + H in Eq. (A4) yields

�v(z(t + εT ), t ) = zT (t )(�T
Ē

(
t + εT, tbig)Q(t + εT ),

× �Ē (t + εT, t ) − Q(t ))z(t ) + zT (t )

× (
�T

Ē (t + εT, t )Q(t + εT ),

× H (t + εT, t ) + HT (t + εT, t )

× Q(t + εT )�T
Ē (t + εT, t )+

× HT (t + εT, t )Q(t + εT )

× H (t + εT, t )
)
z(t ). (A10)

To obtain an upper bound for �v(z(t + εT ), t ), we should
use some relationships which are derived from Eqs. (A1)
and (A2), as

‖Q(t )‖ � ρ, (A11)

∥∥�T
E (t, t0)

∥∥ �
√

ρ

η
e− μ

2ρ
(t−t0 )

, (A12)

v(x(t ), t ) � e− μ

2ρ
(t−t0 )

v(x(t0), t0), t � t0. (A13)

The first term of Eq. (A10), with considering x(t ) = z(t ) as
the initial condition, can be written as

zT (t )(�T
Ē (t + εT, t )Q(t + εT )�Ē (t + εT, t )

− Q(t ))z(t ) = v(x(t + εT ), t + εT ) − v(x(t ), t ), (A14)

and, using Eqs. (A13) and (A1) yields

v(x(t + εT ), t + εT ) − v(x(t ), t )

� (e− μεT
ρ − 1)v(x(t ), t )

� ρ(e− μεT
ρ − 1)‖x(t )‖2. (A15)

Therefore,

zT (t )(�T
Ē (t + εT, t )Q(t + εT )�Ē (t + εT, t )

− Q(t ))z(t ) � ρ(e− μεT
ρ − 1)‖z(t )‖2. (A16)

With combining Eqs. (A8), (A11), (A12), and (A16), the
upper bound can be obtained as

�v(z(t + εT ), t )

� (ρ(e− μεT
ρ − 1) + 4ρ(

√
ρηe− μεT

2ρ )(eεT α − 1 − εT α)

+ 4ρ(eεT α − 1 − εT α)2)‖z(t )‖2. (A17)

By describing the right-hand side of (A17) by a contin-
uously differentiable function g(ε, x), we have g(0, z) =
0, and ∂

∂ε
g(0, z) = −μT ‖z‖2 � 0. Then, since for ε → ∞,
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g(ε, z) → ∞, there is an ε∗ such that for 0 < ε < ε∗ and z �=
0, g(ε∗, z) = 0, and g(ε, z) < 0. Therefore, �v(z(t + εT ), t )
is negative definite.

Now it is shown that the negative definiteness of �v results
in the stability of ż(t ) = (A(t ) + E (t/ε))z(t ).

With finding ε and γ > 0 to satisfy

�v(z(t0 + εT ), t0) = v(z(t0 + εT ), t0 + εT ) − v(z(t0), t0)

� −γ ‖z(t0)‖2, (A18)

and rewriting (A1) as v(z(t0), t0) � ρ‖z(t0)‖2, we obtain

v(z(t0 + εT ), t0 + εT ) − v(z(t0), t0) � −(γ /ρ)v(z(t0), t0),

(A19)

or v(z(t0 + εT ), t0 + εT ) � (1 − γ /ρ)v(z(t0), t0) which
yields v(z(t0 + kεT ), t0 + kεT ) � (1 − γ /ρ)kv(z(t0), t0) for
positive integer k.

Therefore, for k → ∞, v(z(t0 + kεT ), t0 + kεT ) → 0,
and then z(t0 + kεT ) → 0. Thus, the exponential stability of
ż(t ) = (A(t ) + E (t/ε))z(t ) is proved.
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