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We consider an adaptive network, whose connection weights coevolve in congruence with the dynamical states
of the local nodes that are under the influence of an external stimulus. The adaptive dynamical system mimics
the adaptive synaptic connections common in neuronal networks. The adaptive network under external forcing
displays exotic dynamical states such as itinerant chimeras whose population density of coherent and incoherent
domains coevolves with the synaptic connection, bump states, and bump frequency cluster states, which do not
exist in adaptive networks without forcing. In addition, the adaptive network also exhibits partial synchronization
patterns such as phase and frequency clusters, forced entrained, and incoherent states. We introduce two measures
for the strength of incoherence based on the standard deviation of the temporally averaged (mean) frequency
and on the mean frequency to classify the emergent dynamical states as well as their transitions. We provide
a two-parameter phase diagram showing the wealth of dynamical states. We additionally deduce the stability
condition for the frequency-entrained state. We use the paradigmatic Kuramoto model of phase oscillators, which
is a simple generic model that has been widely employed in unraveling a plethora of cooperative phenomena in

natural and man-made systems.
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I. INTRODUCTION

The paradigm of complex networks hosts a plethora of
complex collective dynamical states observed in a wide vari-
ety of natural and technological systems [1,2]. Investigations
of the dynamics on and of complex networks have been an
active area of research for more than a decade [3-5]. In
particular, adaptive networks are sophisticated complex net-
works, a basis for smart systems that self-adapt, in which
the connection weights coevolve along with the dynami-
cal states of the network. For instance, neurophysiological
experiments have revealed that spike timing differences be-
tween pre- and postsynaptic neurons determine the evolution
of synaptic connections [6]. Other examples include the re-
action rate evolving as a function of the state variable in
chemical systems [7], state-dependent plasticity in epidemics,
and biological and social systems [8—10]. Such coevolution
of (synaptic) network connections is thought to provide a
basis for higher order brain functions. Recently, adaptive
networks have been intensively investigated and shown to
exhibit exotic intriguing dynamical states, including chimera
states [11-25].
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In particular, phenomena such as self-organization of hi-
erarchical multilayered structures resulting in multifrequency
clusters or chimera states are peculiar to the adaptive net-
works [18,23]. Specifically, a slow adaptation mechanism is
identified as pivotal for the emergence of stable multiclusters.
A special type of metastable cluster states called double an-
tipodal clusters have been shown to play an important role in
achieving the asymptotic dynamics of the adaptive networks
[24]. Very recently, partial synchronization patterns like phase
clusters and more complex stable clusters such as splay states,
antipodal states, and double antipodal states have been found
to emerge due to the delicate balance between adaption and
multiplexing complex networks, which are otherwise unstable
in single layer networks [25]. The results provide exclusive
evidence that network adaptation provides a mechanism giv-
ing rise to a variety of novel dynamical scenarios that are,
however, far from our current understanding. Therefore, there
is a need for much in-depth investigations.

External stimuli are an inevitable factor to be accounted
for along with the adaptive networks as there exist a plethora
of phenomena evoked by the external force. For instance,
synaptic connections themselves evolve in response to the ex-
ternal stimulus in brain networks [26]. Other examples include
circadian rhythms [27-29], resonances [30-36], event-related
desynchronization and synchronization [26]. Hence, it is very
natural to extend the study on adaptive networks to systems
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with external stimulus. Phase diagrams of the forced Ku-
ramoto model have been studied in great detail [37-39]. In
this paper, we consider an adaptive network of phase oscilla-
tors, where the coupling weights coevolve along with phases,
mimicking the spike-timing-dependent synaptic connections
between neurons. Under the influence of an external forcing,
we will show the existence of several exotic self-organizing
dynamical states such as conventional chimera states char-
acterized by static coherent and incoherent groups, an only
recently discovered type of adaptive chimera termed an itiner-
ant chimera of two distinct types, characterized by coevolving
coherent and incoherent groups along with the adaptive
coupling, bump states characterized by a localized inactive co-
herent and coexisting incoherent group, and a bump frequency
cluster among other intriguing collective dynamical patterns.
We use the Kuramoto order parameter, spatiotemporal plots,
instantaneous phase profiles, and mean frequency profiles of
the oscillators to illustrate the various self-organizing dynam-
ical states. We also introduce the strength of incoherence S,
based on the standard deviation of the mean frequencies, and
S, based on the mean phase frequencies along with the Ku-
ramoto order parameters to classify the dynamical states and
their transitions in two-parameter phase diagrams. We also de-
duce the stability condition for the frequency-entrained state.

The structure of the paper is as follows. In Sec. II, we
introduce our model and discuss its constituents in detail.
We unravel the different dynamical states exhibited by the
globally coupled identical phase oscillators under the influ-
ence of the external forcing in Sec. III. We introduce the
strength of incoherence to quantify and classify the different
dynamical states in Sec. IV. Dynamical transitions in one-
and two-parameter space are discussed in Sec. V. Finally, we
provide a summary and conclusion in Sec. VI.

II. MODEL

We consider a network of globally coupled identical phase
oscillators under the influence of an external forcing repre-
sented by

, 1 &

Yi=o- ; Lij(i = ¥) + G @), (1)
where, i = 1,2,3,..., N, ¢; € [0, 2r) is the phase of the ith
oscillator, o is the identical natural frequency of the oscil-
lators, and f and 2 are the strength and frequency of the
external drive, respectively. When a coupled oscillator model
with external forcing term is reduced to a phase oscillator
model, the forcing term will turn out to depend on the phases
of the oscillators. The latter form corresponds to the active
rotator model that can be regarded as a paradigmatic model
for neurons with type-1 excitability similar to Morris-Lecar
models [40]. The coupling function is given by I';;(¥) =
kij sin(yy + o), where k;; is the coupling weight from the jth
to ith oscillator and « quantifies the phase-lag induced by a
small coupling delay [41]. It is to be noted that « is maybe also
seen as the manifestation of the nonisochronocity parameter
of the Stuart-Landau oscillator in the reduced phase model
[42]. The adaptation rule for k;; is given by

kij = eNij(Yri — ¥r)), 2

where we restrict the coupling values to the region |k;;(¢)] < 1
and the timescale £~! is considered to be very much longer
than that of the phase oscillators. We choose 2w -periodic
functions for the evolution of k;; and G(y, 2). For simplic-
ity, A(Y¥) and G(y, 2) take the form A(y) = sin(¥) and
G(yr, Q) = sin(y — Q) with the lowest-order Fourier mode.

Note that the evolution of the coupling strength has been
chosen as

kij = esin(y; — ¥; + B) 3)

to account for the coevolution of the coupling weights and
the dynamical states of the nodes of the network [11]. Specifi-
cally, neurophysiological experiments indicate that the change
in strength of the synaptic coupling between neurons depends
on the relative timing of the pre- and postsynaptic spikes
[43]. Hence, it is natural that the dynamics of the coupling
weights depend on the relative timing of the oscillators. In
particular, models of phase oscillators have been successfully
used to explain a variety of dynamical mechanisms induced
by spike-timing dependent plasticity [16,22].

Depending on the value of g, the dynamics of the cou-
pling weights mimics a Hebbian-like function, spike-timing
dependent plasticitylike function, and anti-Hebbian-like func-
tion [11]. In particular, when 8 = 0, k;; = & sin(3y; — ¥;), this
situation is essentially the same as that in the case of spike-
timing dependent plasticity. We consider the case of § =0
and investigate the effect of external stimuli in terms of an
external forcing on the emerging dynamical states.

A two-cluster state, a coherent state with a fixed phase
relation, and an incoherent state with frustration have been
reported with the above evolution equation for the coupling
weights in the Kuramoto model in the appropriate ranges of
B [11]. When the connection weights are fixed and simply
provide heterogeneity in the interaction strength between the
Kuramoto oscillators without any specific evolution rule, it
was shown that synchronization can be completely inhibited
when the weights are strongly anticorrelated, otherwise the
synchronization transition observed in the standard Kuramoto
model has been generalized to this case of heterogeneous
coupling [44].

Introducing v; = 6; + ¢, the globally coupled identical
phase oscillators with the external forcing can be represented
in the rotating frame as

N
6 = x— zlv > kijsin(®; — 0; + ) + fsin(@). (4
j=1
with A = o — Q. The latter form of the phase oscillator model
is also known from studies on active rotators [45]. Through-
out the paper, we consider N = 100 oscillators, and initial
conditions for which 6; and k;; are uniformly distributed in
the interval [0, 2r) and (—1, 1), Vj, respectively, A = 1 and
e = 0.005.

III. DYNAMICAL STATES

The Kuramoto order parameter

N
1 .
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Jj=1
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FIG. 1. First and second rows depict the order parameters
Ra.2)(t) and space-time plot in the range ¢ € (26400, 26 500),
while the third and fourth rows depict a snapshot of instantaneous
phases taken at t = 26475, and temporally averaged mean fre-
quencies, respectively. The mean is taken over ¢ € (24 000, 26 500).
(a)-(d) Two-cluster state for « = 0.40 and f = 0.0, (e)—(h) chimera
state for « = 0.40 and f = 0.78, and (i)—(I) incoherent state for
o = 1.54 and f = 0.20. Parameters: A = 1, ¢ = 0.005.

characterizes the nature of the dynamical states. R; = 1 holds
for the completely synchronized state, while R, = 1 char-
acterizes two-cluster (antipodal) states, the latter including
the completely synchronized state. The order parameters,
spatiotemporal evolution, instantaneous phases, and mean fre-
quencies of all oscillators are depicted in the first to fourth
rows, respectively, of Figs. 1, 2, and 6. The unity value of
R, in Fig. 1(a) for « = 0.4 and f = 0.0 elucidates that the
network exhibits a cluster state, here a two-cluster state. How-
ever, a small but nonvanishing value of R; indicates that the
two-cluster states are not of equal size, which is also corrobo-
rated by the space-time plot and the snapshot of instantaneous
phases in Figs. 1(b) and 1(c), respectively. Note that their
mean frequency profile w; = (6;), where (-) represents a long
time average, depicted in Fig. 1(d), shows that the oscillators
are frequency entrained. The instantaneous phases are ob-
tained att = 26 475 in all figures of the paper unless otherwise
specified. The network of globally coupled phase oscilla-
tors also exhibits a chimera state upon increasing the forcing
amplitude to f = 0.78 for the same o (see middle column of
Fig. 1). The order parameters R(; ) in Fig. 1(e) vary within a
small range, which is attributed to the coexistence of coher-
ent and incoherent domains, characterizing the chimera state.
Distributed frequencies among the oscillators constituting the
incoherent domain result in the time-dependent variations of
the order parameters. The coherent and incoherent domains of
phase oscillators are well visible in the space-time plot and the
snapshot of the instantaneous phases depicted in Figs. 1(f) and
1(g), respectively. The mean frequency profile [see Fig. 1(h)]
showing distinct groups of phase oscillators with distributed
and entrained frequencies is yet another evidence for the
existence of chimera in the network of phase oscillators. In
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FIG. 2. Same plots as in Fig. 1 for different parameters « and f.
(a)—(d) itinerant chimera of first kind fora = 1.54 and f = 0.78, (e)-
(h) bump state @ = 0.10 and f = 0.90 and (i)—(1) itinerant chimera
of second kind for @ = 1.54 and f = 0.99.

addition, we have further analyzed the emergence of chimera
states with respect to the number of coupled oscillators N. Re-
markably, we observe chimera states even for a small number
of oscillators, see Appendix C.

Random evolution of the instantaneous phase of the os-
cillators is observed for « = 1.54 and f = 0.20. Fluctuating
values of R(j 2 near zero in Fig. 1(i) confirm the incoherent
nature of the phase evolution. Further, the space-time plot and
the snapshot of the instantaneous phases in Figs. 1(j) and 1(k),
respectively, corroborate the random nature of the phase os-
cillators. Randomness is also observed in the mean frequency
profile [see Fig. 1(1)] corroborating the chaotic distribution of
their mean frequencies.

The chimera states reported so far in the literature are
mostly characterized by coexisting coherent and incoherent
domains with constant population density. However, turbulent
and rotating chimeras are characterized by irregular and peri-
odic temporal evolution of the coherent domains [46,47]. In
this paper, we show the emergence of a recently discovered
and thus rather less understood type of chimera characterized
by coexisting coherent and incoherent groups, whose pop-
ulation densities coevolve with the connection weights and
the phase of the oscillators. In general, a chimera state refers
to a coexisting group of coherent and incoherent dynamical
states arising out of an ensemble of identical systems. Various
types of chimera states including frequency chimera, ampli-
tude chimera, spiral chimera, traveling chimera, breathing
chimera, etc., have been reported in the literature [47,48]. The
coherent and incoherent groups characterizing the chimera
state can be qualitatively identified from the snapshot of the
instantaneous phases of the oscillators, snapshot of the mean
frequency, and even from their spatiotemporal patterns. Qual-
itative measures such as local order parameter and strength of
incoherence have also been in use to identify and characterize

034312-3



S. THAMIZHARASAN et al.

PHYSICAL REVIEW E 105, 034312 (2022)

cos 0;

cos 0

FIG. 3. Phase snapshots for an itinerant chimera of the first kind
(IC1) at different instants of time. (a) t = 24 004, (b) t = 24007,
(c) t =24013, and (d) t = 24034. The parameter values are the
same as in Fig. 2 for IC1.

the various chimera states. More discussion on the specific
types of chimera states, their physical relevance, experimental
realizations, and their characterizations can be found in recent
reviews on chimera states [48—50]. The small variations of
the order parameters R; and R, in Fig. 2(a) for f = 0.78
indicate the coexistence of coherent and incoherent domains
characterizing a chimera state. Phases evolving in concurrence
with the adaptive coupling are evident from the space-time
plot in Fig. 2(b). Evolution of connection weights is included
in the Appendix. Randomly distributed phases without any
phase correlation may be observed from the snapshot of the
instantaneous phases in Fig. 2(c). Nevertheless, there exists
a set of oscillators with nearly identical phases at any given
point of time constituting the coherent group while the rest
of the oscillators with a drift in their phases constitute the
incoherent group which can be best observed for a suitable
sorting of the indices i = 1, ..., N as illustrated in Figs. 2(b)
and 2(c). The sorting is chosen according to increasing mean
frequencies [see Fig. 2(d)]. It is to be noted that the oscillators
spontaneously switch between the coherent and incoherent
domains as the oscillators self-organize in accordance with
the adaptive coupling. Such a self-organizing pattern is re-
ported as “traveling of the oscillators from one domain to
another or as traveling of the chimera core across the net-
work” and is referred to as “itinerant chimera” [51]. Since
the dynamical nature of the self-organizing patterns in the
first column of Fig. 2 exactly resembles that of the itinerant
chimera, we call it an itinerant chimera of first kind. The
existence of coherent and incoherent domains of the itin-
erant chimera of first kind is also evident from the mean
frequency profile depicted in Fig. 2(d). Phase snapshots of
the itinerant chimera of first kind at four different instants
are illustrated in Figs. 3(a)-3(d). The oscillators constituting
the coherent domain are depicted as a filled triangle, while
the oscillators constituting the incoherent domain are indi-
cated by filled circles. Further, the temporal evolution of the

coherent incoherent
100 100
(b)
~ 50 50
0 0
0 50 100 0 50 100

time time

FIG. 4. Evolution of the coherent and incoherent groups of the
itinerant chimera. Red (light gray) corresponds to the coherent and
blue (dark gray) to the incoherent groups. The parameter values are
the same as in Fig. 2. (a) itinerant chimera of the first kind and
(b) itinerant chimera of the second kind.

oscillators constituting coherent (marked in red/light gray)
and incoherent (marked in blue/dark gray) groups of the itin-
erant chimera of the first kind is depicted in Fig. 4(a), which
resembles the characteristics of the itinerant chimera reported
by Kasatkin et al. [51].

We observe a bump state upon increasing the forcing to
f =0.9, where a majority of the oscillators are entrained
to the external forcing for o = 0.1, while the rest evolve
independently displaying an active state. The coexistence of
a coherent quiescent state and an incoherent desynchronized
oscillating state is known as a bump state [52-55]. The cor-
responding order parameters are depicted in Fig. 2(e), which
oscillate near unity as a majority of the oscillators are locked
to the external forcing. The spatiotemporal evolution of this
dynamical state with coherent domain constituted by the os-
cillators entrained with the external forcing and incoherent
domain constituted by independently evolving phase oscilla-
tors is shown in Fig. 2(f). The snapshot of the instantaneous
phases [see Fig. 2(g)] and the mean frequency profile [see
Fig. 2(h)] also corroborate the coexistence of two distinct
domains. Note that the phase oscillators with near zero mean
frequency and the oscillators with a finite value of average fre-
quencies together constitute the bump state. Let 6§, = 6°, i =
1,2, ..., N, be the oscillators locked to the external force and
0, = Gfl,i =N;+ 1,N;+2,..., N be the oscillators evolving
independently, then the instantaneous angular velocity corre-
sponding to the coherent quiescent state and the incoherent
desynchronized oscillating state can be written as

N .
6 =k~ hising — Z Ky sin (6° — 6% + )
J=N;+1
+fsin6°, (6a)

. Nv .
0 =1 — —kysin (67 — 0° + @)
N
1 N
-5 > kijsin (6 — 0 + ) + fsin6f, (6b)
J=Ne+1
where ki = - Y0 kij, Vi={1,2,...,N;} and k=

ﬁv leél kij, Vi={Ny;+1,N;+2,...,N}. Indeed, we have
confirmed from the numerical analysis that the entrained
oscillators as well as those evolving independently satisfy the
above equations.
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FIG. 5. Phase snapshots of the itinerant chimera of the second
kind at different instants of time. (a) t = 24 040, (b) t = 24055,
(c) t =24280, and (d) r+ = 24317. The parameter values are the
same as in Fig. 2 for the itinerant chimera of the second kind.

The itinerant chimera of the second kind is depicted in
the third column of Fig. 2 for « = 1.54 and f = 0.99. The
essential difference between itinerant chimera of the first and
second kind is that the latter is characterized by a high degree
of phase-synchronization at certain intervals of time as quan-
tified by the epochs of the order parameters R; » near unity in
Fig. 2(i). We can speculate that such a chimera state with a
large-scale phase entrainment may be related to neuropatho-
logical states with characteristic large-scale synchronization
(epochs of abnormal/massive synchronization) such as in
epileptic seizures [50,56,57]. Small range variations of the
order parameter in Fig. 2(i) indicate the chimera state. Rel-
atively high degree of phase coherence coexisting with a low
degree of phase coherence, compared to that of the itinerant
chimera of the first kind, is evident from the space-time plot
in Fig. 2(j) and from the snapshot of the instantaneous phases
in Fig. 2(k). The indices of the globally coupled oscillators
are reordered suitably to visualize the coherent and incoherent
domains clearly according to increasing mean frequency. It is
to be noted that the range of the mean frequency distribution is
rather narrow in the range (0, 0.2) for the itinerant chimera of
the second kind [see Fig. 2(1)], whereas that of the itinerant
chimera of the first kind is distributed in a much broader
range (0, 1.0) corroborating their degree of phase coherence.
The plots of phase snapshots of the itinerant chimera of the
second kind at four different instants of time are illustrated
in Figs. 5(a)-5(d). The oscillators constituting the coherent
group are depicted by a filled triangle, while the oscillators
constituting the incoherent group are indicated by filled cir-
cles. It can be seen from these figures that the number of
oscillators constituting coherent and incoherent groups vary as
they self-organize in concurrence with the adaptive coupling.
Further, the temporal evolution of the oscillators constituting
coherent (marked in red/light gray) and incoherent (marked in
blue/dark gray) groups of the itinerant chimera of the second
kind is depicted in Fig. 4(b). The network of globally coupled
phase oscillators with external forcing exhibits a frequency
cluster state for « = 0.40 and f = 0.83. The order parame-
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FIG. 6. Same characteristic plots as in Fig. 1 for different pa-
rameters « and f. (a)—(d) frequency cluster state for « = 0.40 and
f =0.83, (e)—(h) frequency cluster state with bump frequency clus-
ter state = 0.60 and f = 0.95, and (i)—(1) forced entrainment state
for @ = 0.40 and f = 1.40.

ters R; and R, corresponding to the frequency cluster vary
between the values 0.25 and 1 [see Fig. 6(a)]. The oscillators
split into two-cluster states of different frequencies of oscil-
lations [see Fig. 6(b)] constituting the frequency cluster state,
which is also evident from the snapshot of the instantaneous
phases in Fig. 6(c) and from the mean frequency profile de-
picted in Fig. 6(d). Similar partially synchronized patterns like
phase clusters and more complex stable clusters are shown to
emerge due to the delicate balance between adaptation and
multiplexing in complex networks [19,25].

In Figs. 6(e)-6(h), we show another frequency cluster for
o = 0.60 and f = 0.95. Here, both order parameters R; and
R, are uniformly oscillating between 0.5 and 1 as shown
in Fig. 6(e). The spatiotemporal plot [see Fig. 6(f)] eluci-
dates the coexistence of a cluster with fully pronounced spike
oscillations and a cluster with small amplitude subthresh-
old oscillations induced by the other cluster, which we call
the bump frequency cluster state. The instantaneous phases
[Fig. 6(g)] and the mean frequency profile [Fig. 6(h)] illus-
trate that phases of one group of oscillators are nearly locked
with the frequency of the external forcing, while those of the
second group undergo a complete cycle indicating the bump
frequency cluster state.

A forced entrained state is observed for o = 0.40 and
f = 1.40, where all the oscillators are entrained by the ex-
ternal forcing. Both order parameters acquire unity values
[see Fig. 6(1)] corroborating the forced entrained state. The
oscillator phases acquire the same phase as that of the external
forcing as depicted in the space-time plot in Fig. 6(j) and in
the snapshot of the instantaneous phases in Fig. 6(k). The
mean frequency profile in Fig. 6(1) also confirms the frequency
entrained state.

The coupling weights reach the frozen states asymp-
totically for two-cluster and forced entrained states (see
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Appendix A), while for all other states the coupling weights
evolve with time. The time variation of the coupling weights
are larger in the chimera, incoherent state, and itinerant
chimera of the first and second kinds, but we found very neg-
ligible variations in frequency cluster, bump state, and bump
frequency cluster state. Further one-to-one correlation of the
dynamical states with its corresponding evolution of the cou-
pling weight matrices require more in depth statistical analysis
of the latter. In the following, we will introduce the strength
of incoherence [58] to quantify the different dynamical states
and to classify them in one- and two-parameter space plots.

IV. STRENGTH OF INCOHERENCE

To define a measure of incoherence, we divide the N oscil-
lators into M (even) bins each of size n = N/M. We estimate
the local standard deviation (o,,) of the frequencies at each
bin as

mn

1 = 12
Om = - i — Wml
D o
j=n(m—1)+1
m=1,2,....M, 7)

with @, = 13" . ;. Note that ; is the time av-
eraged frequency of the jth oscillator. Now, the strength of
incoherence S is calculated using the formula [58]

M
Zm:l Sm

VIR
where ® is the Heaviside step function and § is a predefined
threshold. The local standard deviation o,, becomes zero if the
network of oscillators is frequency-entrained as in the two-
cluster state [see Figs. 1(a)—(c)]. Since o, < §, s, becomes
unity for all m. As a consequence, the strength of incoherence
for the phase clusters with frequency entrainment will be
S = 0. In contrast, for the evolution of phases with random
frequencies such as the incoherent state [see Figs. 1(1)-1(1)],
o, takes a finite value larger than the predefined threshold
6 and hence s, = 0 for all m resulting in the strength of
incoherence S = 1 (refer to Appendix B for more details). On
the other hand, for the case of conventional chimera states,
frequencies of the phase oscillators that constitute the coher-
ent domain are entrained, whereas those of the incoherent
domain are completely uncorrelated, and hence S takes a value
between zero and unity depending on the number of oscilla-
tors constituting the coherent domain. Since the phases evolve
with random frequencies for the itinerant chimera states, S
for these states also takes the value unity similar to the in-
coherent state. However, S for the mean frequency profile of
the itinerant chimera of the first kind [see Fig. 2(d)] and of
the second kind [see Fig. 2(1)], where the oscillator indices
are reordered appropriately, takes a value between zero and
unity in analogy with the chimera state. In the bump state,
the coherent domain is entrained with the frequency of the
external forcing while the oscillators of the incoherent domain
evolve with random frequencies and hence the strength of
incoherence for the bump state is given by 0 < S < 1. For the
frequency cluster states, there is a discontinuous jump in the
frequency and s, = 0 only in the bin where such discontinuity
exists, while s,, = 1 in the other bins. Hence the strength of in-
coherence takes the value 1/M close to zero due to frequency

S=1- Sm= 0@ —0oy), ®)

FIG. 7. Time-averaged order parameters ({R;) and (R;)) and
the strength of incoherence (S and 8) as a function of the exter-
nal forcing strength f elucidating the dynamical transitions for the
parameter values (a) o = 0.30 and (b) o = 1.54. Abbreviations:
TC—-two cluster state, CHI-chimera state, ICS—incoherent state, IC1—
itinerant chimera states of first and IC2—second kind, BS—bump state,
FC—frequency cluster state, BFC—-bump frequency cluster state, FE—
forced entertainment state.

entrainment in the M — 1 bins [59]. For a suitable choice of M
the value of S might be exactly zero. In any case, S depends on
the choice of M), whereas in the case of the bump and chimera
states, S takes a large value between O and 1 as there is an
appreciable number of bins with a large standard deviation.
The natural frequencies of the phase oscillators are completely
entrained to that of the stimulus in a forced entrained state [see
Figs. 6(g)-6(1)], and hence s,, = 1 in all the M bins and, as a
consequence, this state is characterized by § = 0.

15 —

1.0
- (

0.5

FIG. 8. Two-parameter phase diagram in the («, f) parameter
space depicting various collective dynamical states of the adaptive
network with external periodic forcing obtained from one initial con-
dition. The dynamical states in the parameter space indicated by TC,
ICS, IC1, CHI, FC, BS, BFC, IC2, FE corresponds to two-cluster, in-
coherent state, itinerant chimera of the first kind, chimera, frequency
cluster, bump state, bump frequency cluster, itinerant chimera of the
second kind, and forced entrained state, respectively. The dashed
line corresponds to the condition f > A with A = 1 for the forced
entrained state.
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States that are entrained to the external stimulus such as
forced entrained and bump frequency cluster states are char-
acterized by near zero mean of the time-averaged frequencies
and can be more clearly distinguished using the mean of the
time-averaged frequencies in each bin. In particular, the con-
ventional chimera state, where the strength of the incoherence
takes a value 0 < S < 1, can be clearly distinguished using
the mean of the time-averaged frequencies in each bin instead
of their standard deviation in Eq. (8). For this purpose, we
define a modified strength of incoherence using the mean of
the time-averaged frequencies in each bin as

it S
M

where @,, in each bin for the two-cluster state has a finite value
and hence the corresponding §,, = 0. As a consequence, § = 1
for the two-cluster state, whereas S = 0 for this state. For the
same reason, S = 1 for the chimera, incoherent, and itinerant
chimera of the first and second kinds, and forced entrained
states. Note that for the forced entrainment states, S = S = 0
because of the complete entrainment with the stimulus. Bump
and the bump frequency cluster states are characterized by
intermediate values between 0 and 1 for S and § as a fraction
of the phase oscillators are entrained with the stimulus while
the rest have a finite time-averaged frequency.

In the next section, we classify the dynamical states using
the time-averaged order parameters (R;), (R;), along with the
strengths of incoherence S and § in one- and two-parameter
phases.

S =1- B §m == ®(8 - (I)m)» (9)

V. MAP OF REGIMES

Transitions in parameter space among the different dynam-
ical states are depicted in Figs. 7(a) and 7(b) as a function of
the strength of the external stimulus for two different o« = 0.3
and o = 1.54, respectively. The degree of the strength of
incoherence and that of the time-averaged order parameters
have been used to clearly distinguish the dynamical states and
their transitions. TC state exists in the range of f € (0, 0.38)
[see Fig. 7(a)] and there is a transition from two-cluster to
itinerant CHI states of the first kind (IC1) which prevails in
the range f € [0.38,0.73). Upon increasing f further, there
is a transition from IC1 to a FE state via CHI, FC, BFC,
and BSs. CHI states exist in the range f € [0.73, 0.84), fre-
quency cluster states in the range f € [0.84,0.89), bump
frequency cluster states in the range f € [0.89,0.98) and
f €[1.24,1.30), BSsin therange f € [0.98, 1.24) and forced
entrainment states in the range f € [1.30, 1.5). The transi-
tion from incoherent to forced entrainment states via itinerant
CHIs of the first (IC1) and second kinds (IC2) is depicted
in Fig. 7(b) for « = 1.54. Complementing the analysis in
Fig. 7, the dynamical scenarios in the («, f) parameter space
are shown in Fig. 8. Here the initial conditions are distributed
such that for all i, j = 1..., N the coupling weights k;; are
uniformly distributed between —1 to 1, while the phases are
uniformly distributed between [0, 277) in the entire explored
range of o and f. For low values of f, that is approximately
f € (0, 0.38), there is a transition from TC state to incoherent
state (ICS) as a function of «. An itinerant chimera of first
kind is observed in the entire explored range of « in a narrow
range of f € (0.38, 0.56). Moreover, the itinerant chimera of
first kind reemerges in the range of f € (0.56, 0.96) via the

1.5 —————
: BS FC FE BFC IC2
1.0 < —
¢ CHI
S
IC1
0.5 ~ ICS
A TC
0 h h h | A f f f
0 /4 /2
o

FIG. 9. Same as Fig. 8 but for different initial conditions.

CHI for larger values of «. The spread of the BS increases as
a function of @ and f until ¢ = 0.42, which then decreases
until f = 1.20. In a narrow range of f € (0.75, 0.79), there
is a transition from the BS to an itinerant chimera of first
kind via a CHI state for increasing «. In the range of o €
(0.11, 0.81), there is a very fine region of frequency cluster
states separating the CHI state and bump frequency cluster
state. Then there is a transition from a BS to an itinerant CHI
of the first kind via bump frequency and CHI state, which is
then followed by a transition from a BS to an itinerant CHI of
the second kind via a bump frequency cluster and CHI state
as a function of « in the appropriate ranges of f. There is
also a transition from a BS to forced entrainment state as a
function of « for larger values of f. The forced entrainment
state prevails in the entire parameter space for f > 1.4. The
dashed line corresponds to the stability condition of the FE
state above which this state is stable, and it can be deduced as
shown in the following. In the FE state, all the oscillators are
entrained to the same phase 6; = 6* given by

ki sin(a) — NA
9*=sin_1<ZJ j sinfe) ) (10)

Nf

which possesses two solutions only if the corresponding cou-
pling weights fulfill the condition that - Z?]:l ki =mn is
independent of i and further the condition |7 sin(x)/N — A| <

[1TC [ICS (1IC1 [CHI
[CJFC [TBS [ZZBFC [ZAIC2 [JFE
15—

1.0
S

0.5

N
AN

FIG. 10. Two-parameter phase diagram in the («, f) parameter
space depicting various multistable states of the adaptive network
with external periodic forcing. The dynamical states are the same as
in Fig. 8, illustrating a wealth of multistability among the distinct
dynamical states for ten different initial conditions.

NN

/4
a

/2
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t = 1000 t = 4000

t = 10000

t = 20000

£ = 30000 ki,

FIG. 11. Coupling weight matrix at different times. First row represents the two-cluster state for « = 0.40 and f = 0.00, second row
represents the chimera states o« = 0.40 and f = 0.78, and third row represents the incoherent states for « = 1.54 and f = 0.20.

f is met. With sin~!:[=1,1] > [-m/2, /2], the two soO-
lutions are given by 6 = 6* and 6; = = — 6*. Note that for
the FE state, we have k; ; =0 for all 7, j. The stability of the
fixed point can be deduced using linear stability analysis. The
diagonal components (DF;;) of the Jacobian matrix J are

D, = (% o
i =5 —n)cosa+ feos®).

The off-diagonal components (DF;;) of the Jacobian matrix J
are
*
DF;; = L cosa.

The characteristic equation of the Jacobian matrix J is given
by

(u+ ncosa — fcos(8*)Y =0,

t = 1000 ¢t =4000

t = 10000

which leads to the N-degenerate eigenvalues

nsina — A 2
Uy = —ncosa £ f./1— f ,

fork=0,...,N — 1 and + and —, corresponding to the solu-
tions 6] and 65, respectively. The forced locked states emerge
via a fold bifurcation at

V(ncosa)? + (nsina — 1)> = +f. (11)

Note that for a suitable choice of initial conditions, one
may observe 11\, > ; k;‘j = n = 0. Hence, the condition for the
existence of a stable FE state simplifies to |A| < f. To show
the validity of the derived condition, the dynamical scenarios
in the («, f) parameter space for uniformly distributed initial
conditions that lead to n = 0 are explored and the results
are depicted in Fig. 9. The dynamical transitions are almost

z’jl

FIG. 12. Coupling weight matrix at different times. First row represents the itinerant chimera of the first kind for « = 1.54 and f = 0.78,
second row represents the bump states « = 0.10 and f = 0.90, and third row represents the itinerant chimera of the second kind for o = 1.54

and f = 0.99.
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t = 1000

t = 4000

BFC

FE

t = 10000

pu—

t = 30000 Kk;;

t = 20000

pu—

5
1

100

FIG. 13. Coupling weight matrix at different times. First row represents the frequency cluster state for « = 0.40 and f = 0.83, second
row represents bump frequency cluster state « = 0.60 and f = 0.95, and third row represents the forced entrainment state for « = 0.40 and

f = 1.40.

similar to those in Fig. 8 except for an increase or decrease in
the spread of the observed dynamical states. It is to be noted
that the stability condition given by f > |A| with A = 1 (indi-
cated by the dashed line), above which the FE state is stable,
exactly matches with the simulation results for the chosen set
of initial conditions, in accordance with the condition derived
from the stability analysis.

The multistability between the observed dynamical states
is depicted in the two-parameter phase diagram in the (c,
f) parameter space in Fig. 10 for ten different initial con-
ditions. The dynamical states are the same as in Fig. 8.

Distinct dynamical states are represented as shades and pat-
terns as shown in Fig. 10. It is evident from the figure that the
adaptive network with external periodic forcing exhibits rich
multistability.

VI. CONCLUSION

Using the order parameters R; and R, along with the
space-time plots, snapshots of instantaneous phases, and mean
frequencies of the collective dynamical states of an adaptive
network under the influence of an external periodic forcing,

0.4 . 0.4 03
0 50 100 0 50 100 0 50 100
J J J
10 Ttededed E 10 Ttedededed 10 Tedebeebend T
n=>5 n=>5 n=>5
S =0.55 S =0.45 S=04
COE 0.5 L 1 05 1L 1 05} ]
0 Lc) csesesesesd o Ld) toeseses o L4) pesgen
1 20 1 20 1 17 20
m m m

FIG. 14. Chimera states for different f. First row depicts the time evolution of phases in the range ¢ € (26400, 26 500). Second and third
rows depict the time-averaged frequencies in the range ¢ € (24 000, 26 500) and the strength of incoherence, respectively. (a)—(c) f = 0.73,
(d)—() f =0.77, and (g)-(1) f = 0.81. Other parameter values are fixed as « = 0.4 and ¢ = 0.005.
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we have unraveled exotic types of the chimera state, namely,
itinerant chimera states including bump states and bump fre-
quency cluster states. The population density of the oscillators
constituting the coherent and incoherent groups of the itin-
erant chimera coevolves along with the connection weights,
which in turn coevolve locally, and contribute to the diversity
of the frequency distribution of the resulting collective dy-
namical state. In addition, the adaptive network is also found
to admit synchronization patterns such as phase and frequency
clusters and forced entrained state including the incoherent
nature of the phase dynamics. We have also defined two
versions of the strength of incoherence to quantify and cor-
roborate the distinct dynamical states and their transitions. An
analytical stability condition for the forced entrained state is
also found to agree well with the simulation results for appro-
priate initial conditions of the coupling weight matrix. In view
of the recent profound relevance of chimera states in complex
neuronal patterns [49,50,57,60—62], we speculate that the ob-
served chimera states may provide clues about the underlying
dynamical mechanism of several neuronal and neuropatho-
logical states because of their dynamic frequency distribution
depending on the coevolving connection weights and phases.
Further, as a major motivation for the employed model hails
from neuroscience, it is important to investigate the emer-
gence of the observed dynamical patterns in relevant biologi-
cal models and to explore their role in the self-organization of
adaptive dynamical patterns of neuronal assemblies.
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APPENDIX A: EVOLUTION OF COUPLING WEIGHTS

Coupling weights of distinct dynamical states at different
time instances are depicted in Figs. 11-13. Evolution of cou-
pling weights for two-cluster, chimera, and incoherent states
are depicted in Fig. 11. Evolution of coupling weights for
itinerant chimera of the first kind, bump state, and itinerant
chimera of the second kind are shown in Fig. 12, while that of
the frequency cluster, bump frequency cluster state, and forced
entrained state are illustrated in Fig. 13. Note that except

6 IIIIIIIIIIII

n hl‘l}n" (i JII

&‘- T
|| Il

tzme

100

FIG. 15. Chimera states for different N. (a) N =6, (b) N = 12
(¢) N = 30, and (d) N = 50. Other parameter values are fixed as @ =
0.4, f =0.73 and ¢ = 0.005.

for the entrained states such as a two-cluster state, frequency
cluster and frequency entrainment state (where the structure
of the coupling matrix does not change qualitatively), the in-
tercluster coupling weights of all other observed states evolve
in time.

APPENDIX B: ESTIMATION OF THE STRENGTH OF
INCOHERENCE

Spatiotemporal plots of the chimera state for three different
values of the strength of the external forcing f = 0.73, 0.77,
and 0.81 are depicted in the first row of Fig. 14. Other pa-
rameters are fixed as « = 0.4 and ¢ = 0.005. Time-averaged
frequencies of the oscillators, averaged over the time interval
t € (24000, 26 500) are depicted in the second row of Fig. 14.
Both the spatiotemporal plot and the time averaged frequen-
cies clearly illustrate the co-existing coherent and incoherent
groups of the chimera states. Now, N = 100 oscillators, in-
dexed in the same order as in the spatiotemporal and the time
averaged frequencies plots, are divided into m = 20 bins with
n = 5 oscillators in each bin. The standard deviation o, for
each bin is calculated using Eq. (4). s,, = ©(6 — 0,,,) in each
bin depicted in the third row of Fig. 14. Since, s, = 1 for
the coherent groups and s, = 0 for incoherent groups and,
consequently, the strength of incoherence take values S = 0
and 1 for coherent and incoherent groups, respectively, which
is estimated using Eq. (8). The strength of incoherence for the
chimera states in Fig. 14 are also included in the bottom row.

APPENDIX C: CHIMERAS FOR SMALLER N

Chimera states for N = 6, 12,30 and 50 are depicted in
Figs. 15(a)— 15(d), respectively, to illustrate the emergence of
chimera states even for smaller N. Other parameter values are
fixedasa = 0.4, f = 0.73 and ¢ = 0.005.
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