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Particulate matter (PM2.5 and PM10) and ozone (O3) are the twomajor air pollutants in China in
recent years. The fluctuations of PM2.5, PM10 and O3 strongly depend on the weather
processes and anthropogenic emission. These processes may lead to the existence of short-
and long-term memory behaviors in air pollutants. Hence, here we use the autoregressive
parameter a of the first-order autoregressive process [AR (1)] to characterize the short-term
memory effects of pollutants. We estimate the scaling exponent α using detrended fluctuation
analysis (DFA) for the long-term memory effects of air pollutants (PM2.5, PM10, and O3) in
summer and winter for different cities in China. Our results show that PM2.5, PM10, and O3

have strong short-term and long-term memory characteristics both in summer and winter.
Furthermore, both the short- and long-term memory effects are stronger in winter than
summer for most cities associated with stronger and longer persistent weather systems in
winter. In general, the scaling exponent α of PM2.5 and PM10 are smaller for northern cities than
those of southern cities in China. The long-termmemory patterns ofO3 are stronger in northern
cities and weaker in southern cities in relative to those of PM2.5 and PM10 in winter. Our results
show that the short- and long-term memory behaviors of air pollutions are dominated by the
weather systems with different time scales.
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INTRODUCTION

In recent decades, air pollution as a by-product of increased industrialization and urbanization, has
been highly valued by the public and local government agencies in China. Air pollution regulation,
air quality forecast and other related works have become critical issues to scientific researchers [1].
The sources of atmospheric pollutants are divided into natural and anthropogenic [2].
Anthropogenic sources include carbon and organic compounds emitted from heavy industries
such as electric power, metal smelting and non-metallic mineral products, or emitted from the motor
exhaust gas and coal combustion [3]. During 2013–2017, Beijing and other cities in north China
suffered severe and persistent haze events caused by high fine particulate matter (PM2.5)
concentrations [4]. The Chinese State Council issued powerful policies to restrict pollution
emissions [5]. So far, PM2.5 concentrations have been reduced by 30% in China [5]. However,
ozone (O3) concentrations show an increasing trend in recent years [6]. PM2.5 and O3 have been the
two major air pollutants in most Chinese cities. Direct or indirect exposure to air pollutions PM2.5

and O3 can seriously damage our physical and mental health, causing respiratory infections, various
contact allergies and other diseases [7].

Time dependence and temporal predictability of time series are associated with memory behavior
of time series. Nature time series such as earthquake and climate records have been found to widely
exit the memory behavior [8–10]. A short-term memory process can be expressed by a first-order
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autoregressive process and quantified by fitting the parameter of
AR (1) [11]. For nature time series, usually both short and long-
term memory processes exit. Yuan et al. [12] showed that
Antarctic sea ice extent is not a simple short-term persistence
time series, but is actually a combination of short- and long-term
memory processes. To quantify such long-term memory of time
series, Peng et al. [13] proposed Detrended Fluctuation Analysis
(DFA) under the fractal theory [14, 15] for the first time to study
the memory behavior of internal molecular chains of DNA. This
method can filter out the trend component of its own evolution,
and the remaining deviation sequence is the component of its
own fluctuation [16–19]. Thus, it can eliminate the unreal
correlation caused by the non-stationary characteristics of time
series [20]. The DFA method has been successfully applied to
seismology, stock market, biology, climate and environment, etc.
[21–24]. For example, Lennartz et al. [25] and Fan et al. [23] used
the DFA method to find that the memory exists in inter-
occurrence seismic records. Yang et al. [26] estimate the
persistence of precipitation over a wider range of scales and
show that precipitation persistence can be described as a varying
by DFA. Yuan et al. [27] observed temperature records of 12
stations from Antarctica island, coastline, and continental areas
are analyzed by means of DFA and they found different long-
term climate memory (LTM) behaviors.

Also, previous studies have found significant long-term (short-
term) memory in air pollutant concentrations in some regions
[28–30]. Liu et al. [31] found that there are different
self–organized criticality process for pollutions SO2, NO2, and
PM10 and the daily air pollution indices (API) associated with
different power–law relations in Shanghai by using DFA and
multifractal method. Also, Shi et al. [32] showed that the time
series of three pollution indexes (SO2, NO2, and PM10) and the
daily air pollution indexes (APIs) in China have a strong long-
term memory within a year by three different methods. For other
countries, the similar long-term memory behaviors of air
pollution were also found i.e., Nikolopoulos et al. [33] used
DFA to analyze PM10 time series in the Athens area (GAA)
and found the long-memory patterns. Windsor et al. [34]
examined the statistical characteristics of United Kingdom
pollution time series and found evidences of high persistence
and long-term memory of pollutant fluctuations up to 400 days.
PM10 and O3 pollutants in the Caribbean region showed the
multifractal nature with the significant Hurst parameter [35]. Wu
et al. [36] studied the long-term persistence characteristics of
several air pollutants (PM2.5 and O3) during the epidemic
situation of COVID-19 by using multifractal detrended
fluctuation analysis (MFDFA) and they found that the
concentrations of three cities (Changsha, Zhuzhou, and
Xiangtan) showed strong long-term persistence characteristics
and multifractal structures. Shi et al. [37] comparatively analyzed
the long-term persistence characteristics of PM2.5 evolution for
eight air monitoring stations of Chengdu and the results showed
that the spatial and temporal evolution of PM2.5 exhibit a long-
term persistence. However, the above studies did not involve the
spatial and temporal distribution characteristics of short- and
long-term memory of air pollutants over China. In this paper, the
DFA method is introduced to study the spatial evolution

characteristics of memory of three pollutants (PM2.5, PM10,
and O3) in 366 cities of China. Moreover, we compare the
memory behaviors between short- and long-term scales.

The structure of this paper is as follows: in Section 2, the
source of air pollution data and the data processing method are
described. In Section 3, we give the specific steps of eliminating
DFA method. Section 4 shows the results. Section 5 further
summarizes our findings and draws the conclusion.

DATA

Hourly time series of three air pollutants concentrations (PM2.5,
PM10, O3) in 366 Chinese cities are downloaded from the website
(https://quotsoft.net/air/). The time period is from 2015 to 2020.
In this paper, we focus on air pollution concentrations in winter
and summer over China. Here, we define November, December,
January, and February as winter; and May, June, July, and August
are defined as summer. The lengths of PM2.5, PM10, and O3 time
series in winter and summer are shown in Table 1.

METHODS

First of all, we remove the seasonal and daily trend from the
original data, which can be represented as X (h, d, y) as a function
of hour h, day d , and year y. The method to obtain detrend data
X ’(h, d, y) is as follows:

X′(h, d, y) � X(h, d, y) − �X(h, d) (1)
�X(h, d) � 1

66
∑ 5

d0�−5 ∑ 2020
y�2015X(h, d + d0, y) (2)

where �X(h, d) represents the averaged seasonal and daily trend at
day d and hour h. Since there are some missing data in the
original data, we use the linear interpolation method to fill the
missing data. The arithmetic mean of the previous and next
neighbors’ concentration to the vacancy position is used to
supplement the missing data to ensure the integrity and
continuity of the data.

Short- and long-term correlated time series can be well
described as a generalized AR (1) [12]:

X′H � aX′H−1 + εα (3)
where H is order of time step and a is the parameter of the first-
order autoregressive process. The short-term memory of time
series can be characterized by the parameter a. We can obtain the
parameter a according to the least square method to estimate the
AR (1) process of the detrended time series of pollution data [38].
εα is the long-term correlated noise with Hurst index α, which
characterizes the long-term memory of time series. The
parameter is the DFA scale exponent can be obtained as follows.

In general, the DFA algorithm can be divided into five
steps [26]:

1) For the detrended time series Xi′ (i � 1, 2..., N), we calculate
its cumulative deviation sequence y(k):
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y(k) � ∑ k
i�1(X′

i − (X′)), k � 1, 2, ..., N (4)
where N is the total length of the time series, X′ is the average of
the time series.

2) Then we divide the sequence y(k) into n new data segments j
(j � 1, 2, ..n), where n � int(N/t) (the “int” means to obtain
integer processing for the value of N/t) and t is the length of
each segment j. Since N is not always divisible by t, the same
segmentation operation is performed on the time series y(k)
from back to front as well as from front to back, so that 2n
segments (length t) are obtained.

3) We then obtained the regression of fitting trends Vm
j (k) by

least square method for each segment, wherem is the order of
regression trend. Here we take the regression trend order
m � 2. Then we calculate the sequence of each segment after
eliminating the trend, expressed as: yj(k) � y(k) − Vm

j (k).
The mean variance of each segment after yj(k) segmentation
can be calculated by the following Eqs. 5, 6. The variance of
each segment j obtained for dividing the time series y(k) from
front to back is:

F2(j, t) � 1
t
∑t

i�1[y((j − 1)t + i) − Vm
j ((j − 1)t + i)]2

j � 1, 2, ..., n
(5)

and from back to front is:

F2(j, t) � 1
t
∑t

i�1[y(N − (j − n)t + i) − Vm
j (N − (j − n)t + i)]2

j � n + 1, n + 2, ..., 2n

(6)

4) The fluctuation function F(t) is obtained by averaging the
variance for both from front to back and from back to front as:

F(t) � ⎡⎢⎢⎣ 1
2n

∑2n

j�1 F
2(j, t)⎤⎥⎥⎦

1/2

(7)

5) Taking different time scales t and repeating steps 2 to 4, we
can obtain F(t) under different time scales t. The fluctuation
F(t) as a function of t is assumed to satisfy a power-law
relation: F(t)∝ tα, where α is a scale exponent (also known as
the DFA index). Scale exponent α is an important index to
reflect the long-term correlation characteristics of time series
and a quantitative index to measure the “balance” degree of
time scale [39]. When 0< α< 1/2 , the sequence shows anti-
correlation, and this correlation will increase with the decrease
of α. When 1/2< α< 1, the sequence shows a persistent long-

range power-law correlation, and the correlation is stronger
with the increase of α. When α � 1/2 , the sequence has no
correlation and is random. When α> 1 , the sequence is long-
range correlated, but not power-law correlated.

RESULTS

First, we show samples of the detrended times series of PM2.5,
PM10, and O3 concentrations as Eq. 1 for Beijing, Shanghai,
Chengdu, and Guangzhou in Figure 1. There are larger
fluctuations for PM2.5 and PM10 than other cities, especially in
winter as shown in Figure 1A. Due to the implementation of
environmental protection policies of China in recent years, we
can clearly see that the fluctuation of PM2.5 is smaller in recent
years in comparison to that of the earlier years. In Figure 1C,
Guangzhou shows the smallest fluctuation for the PM pollution
than other cities. This fluctuation can be strongly affected by
meteorological factors [40–43]. The meteorological field is
generally more intense in Northern China than Southern
China. For the O3 times series, it shows completely different
features with PM. The largest O3 fluctuation appears in summer
related to the product of photochemical reactions. Furthermore,
the O3 fluctuation seems to be more intense in Guangzhou than
other cities. Also, the detrended O3 fluctuation does not show a
significant increasing or decreasing trend with time for these four
cities in Figure 1. Though the seasonal and daily cycles have been
removed for the times series, we can still observe the large
different characteristics between winter and summer such that
we consider below the memory behaviors for winter and summer,
respectively.

Next, we use the least square method to estimate the AR (1)
process of the detrended time series of PM2.5, PM10, and O3 to
obtain the autoregressive parameter a in Eq. 3. We show the
spatial distribution of the autoregressive parameter a of 366
Chinese cities for summer and winter respectively in Figure 2.
By comparing the autoregression parameters a of PM2.5, PM10,
and O3, we find that the short-term memory effects of pollutants
have seasonal and regional differences. And the short-term scale
is hour-to-hour. For summer, particulate matters in central and
eastern China show stronger short-term memory behavior,
especially around the Sichuan Basin and Hubei Province. The
values of individual cities are as high as 0.98. For most winter
cites, the short-term memory effects of PM2.5 and PM10 were
stronger than those shown in the summer. Compared with PM2.5

and PM10, the short-term memory of O3 varies less, and the a
value is stable at around 0.9 or lower in different regions and
seasons. The results suggest that compared with O3, PM2.5, and

TABLE 1 | Summary of PM2.5, PM10, and O3 concentration data.

Species Years City numbers Time length of summer
(hours)

Time length of winter
(hours)

PM2.5 2015–2020 366 17,688 17,136
PM10 2015–2020 366 17,688 17,136
O3 2015–2020 366 17,688 17,136
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FIGURE 1 | Samples of detrended time series of hourly PM2.5, PM10, and O3 concentrations for (A) Beijing, (B) Shanghai, (C) Guangzhou, and (D) Chengdu,
respectively. The time span is from 2015.01.01 to 2020.12.31.

FIGURE 2 | (color online) Spatial distributions of the autoregression parameter a for AR (1) process for (A) PM2.5, (C) PM10 and (E) O3 in summer. (B), (D), and (F)
are same as (A), (C), and (D) but in winter.
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PM10 are more dependent on the local meteorological conditions,
which strongly influenced by the short-termmemory behavior. In
winter, the meteorological conditions are stronger and the
boundary layer is lower than in summer leading to the
stronger short-term memory behaviors of PM2.5 and PM10.
The higher value of a with stronger short memory in PM2.5

and PM10 over southeast China corresponds to higher intrinsic
predictability [44]. Studies also show that other meteorological
variables over southeast China exhibit higher intrinsic
predictability [45]. The results also show the contrast
performance of a-values in South and North China, which will
be discussed further in later chapters.

Then, we study the long-term memory of pollutions and
implement the DFA analysis to the detrended time series of
PM2.5, PM10, and O3 for the four cities. And the long-term scale is
month-to-month. According to Eq. 7, we can obtain the
fluctuation F(t) as a function of time scale t for summer (see
Figure 3). Previous studies [46, 47] pointed out that due to the
effect of limited length of time series, the beginning part of F(t)
may be affected by short-term memory effect and lead to a
overestimated DFA index. For the AR (1) process, the reliable
time scale t to fit scale index α should be above the crossover
sx � 15a

(1−a)(1+a) (a is the parameter of AR (1) process) theoretically
[46]. We calculate the crossover sx and plot in Figure 2 (Red
dashed lines). Indeed, the short time scale range below sx shows
some different scale behaviors with that above sx in Figure 2
which is affected by the short-term memory effect. Thus, we only
fit scale exponent α for the time scale t above the crossover sx.
Here we show the results of four typical cities, and further
summarize the DFA scaling exponent α in Table 2. For the
four cities, they all show 1/2< α< 1 with the strong long-term

memory. In summer, all DFA index α are higher than 0.7, except
for Beijing α � 0.66 for PM2.5. In summer, the boundary lay is
high so that it benefits to the diffusion of air pollution, especially
in Beijing.

We show the results of winter in Figure 4. There are clear
differences between the time scales below and above sx. The index
α values of four cities show stronger long-term memory effect in
winter. We find that except for PM2.5 and PM10 in Shanghai, the α
values of the other three cities are higher than 0.7 in winter (see
Table 2). The memory of pollutants in winter is stronger
associated with more persistent weather systems in general.
But Shanghai is different, which is located on the west coast of
the Pacific Ocean and belongs to the subtropical marine monsoon
climate. Compared with summer, the persistent low temperature
and northerly wind in winter in Shanghai [48]. They couple with
the increase of local emission sources and frequent cold air

FIGURE 3 | (color online) The DFA analysis in summer for (A) Beijing, (B) Shanghai, (C) Guangzhou, and (D) Chengdu. Black dashed lines are fitted power-law
curves. Red dashed lines represents the location of the crossover point sx of AR (1) processes with different parameters a.

TABLE 2 | The DFA scale index α of PM2.5, PM10, and O3 for Beijing, Shanghai,
Guangzhou, and Chengdu in summer and winter respectively.

City Type PM2.5 PM10 O3

Beijing Summer α 0.66 ± 0.08 0.759 ± 0.03 0.802 ± 0.05
Winter α 0.71 ± 0.1 0.708 ± 0.09 0.977 ± 0.09

Shanghai Summer α 0.755 ± 0.08 0.832 ± 0.03 0.848 ± 0.05
Winter α 0.665 ± 0.1 0.636 ± 0.09 0.941 ± 0.09

Guangzhou Summer α 0.863 ± 0.08 0.813 ± 0.03 0.738 ± 0.05
Winter α 0.894 ± 0.1 0.838 ± 0.09 0.86 ± 0.09

Chengdu Summer α 0.788 ± 0.08 0.824 ± 0.03 0.768 ± 0.05
Winter α 0.857 ± 0.1 0.802 ± 0.09 1.08 ± 0.09
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activities and other meteorological factors, leading to the
intensification of pollutant concentration changes. Therefore,
these factors may lead to lower persistent characteristics of
PM concentrations in winter for Shanghai.

To comprehensively understand spatial patterns of the
memory of pollutants in China, we further study the spatial
distribution of the DFA index α for PM2.5, PM10, and O3 in 366
Chinese cities. We repeat the above DFA analysis to obtain the
index α for each city. The spatial distributions of α are presented
in Figure 5 for summer and winter respectively. We find that the
scale exponent α of most cities is between 0.7 and 1 in summer
and winter, indicating that the three pollutants in Chinese cities
have strong long-termmemory. There are largest α values located
in Central and Eastern China for PM2.5 and PM10 in Figures
5A–D. Moreover, Northern China has a smaller α value than
Southern China for PM2.5 and PM10 and summer has a smaller α
value than winter for PM2.5, PM10, and O3. The cause of long-
term memory difference between north and south might be the
influence of long-term meteorological factors. For winter, the
largest α value with strongest memory locates in the Sichuan
basin for Figures 5B,D of PM2.5 and PM10. In the basin, the stable
temperature inversion and low boundary layer are easy to be
formed in winter leading to the accumulation of PM2.5 and PM10

on surface and causing the long-persistent haze Meteorological
conditions related to PM2.5 and PM10 have been found to be
different between Northern China and Southern China,
i.e., Zhang et al. found that the Rossby waves can influence
PM2.5 in Northern China but not Southern China [43];
relative humidity in Northern and Southern China is positive
and negative correlated with PM2.5 respectively [49]. Moreover,
strong northwest winds and cold fronts can rapidly disperse the
PM pollutants leading to the lower memory in Northern China.

In general, the memory of PM pollutants in winter is stronger
than in summer. The temperature decreases significantly due to
nighttime radiation. If the surface atmospheric temperature is
lower than the upper atmospheric temperature, the inversion
layer will form [50]. This prevents convection up and down the
air, making it difficult for pollutants to accumulate in winter. And
the air pollution caused by coal consumption is more serious in
winter.

However, the seasonal differences could be affected by the
monsoon system. In winter, China is controlled by Siberian high,
and the air mass is dry, which is not conducive to precipitation.
The atmospheric stratification is relatively stable, and it is easy to
accumulate aerosols in the lower atmosphere, which is not
conducive to pollutant diffusion. We find that the α values
significantly increase in Eastern and Northern China for O3 in
Figure 5F. It indicates that there is a strong long-term memory
for winter there in contrast to PM2.5 and PM10. It is well known
that O3 is a photochemical oxidant formed by a series of
photochemical reactions of nitrogen oxides and volatile
organic compounds in the atmosphere [51]. There are more
sunny days in winter of Eastern and Northern China. We find
that some places, e.g., Sichuan Basin with the short-term memory
in Figure 2 also are associated with the long-term memory in
Figure 5 in winter. We calculate the spatial correlation coefficient
between short (Figure 2) and -term memory (Figure 5) for
China, and find that the coefficients are 0.273, 0.226, and
0.164 in summer and 0.303, 0.319, and 0.041 in winter for
PM2.5, PM10, and O3 respectively. There are more similarities
in space between the short- and long-term memory in winter
than that of summer for PM2.5 and PM10. For O3, the short- and
long-term memory are very different and the spatial correlation
coefficients are smallest.

FIGURE 4 | (color online) The DFA analysis in winter for (A) Beijing, (B) Shanghai, (C)Guangzhou and (D)Chengdu. Black dashed lines are fitted power-law curves.
Red dashed lines represents the location of the crossover point sx of AR (1) processes with different parameters a.
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DISCUSSIONS AND CONCLUSION

In this study, we use the AR (1) process and the DFAmethod to
quantify the memory characteristics of the time series of three
air pollutants (PM2.5, PM10, O3) in China. According to the AR
(1) process, we obtain the spatial distribution of the
autoregressive parameter a of 366 Chinese cities for summer
and winter respectively which is associated with the short-term
memory behavior. The short-term memory of particulate
matter in most parts of southern China is stronger,
especially in the Yangtze River Basin, while the short-term
memory of O3 is slightly different between the north and the
south. Moreover, the short-termmemory of PM2.5 and PM10 in
winter are stronger than in summer related to the stronger
short-term and local meteorological field. In the previous
studies [31, 32], they found two different scaling exponents
of DFA in short- and long-term scales for PM10 in Shanghai in
consistent with us. However, our results suggest that using the
scaling exponent of DFA in short-term scale to quantify
memory is problematic, since the DFA index can by
strongly affected by the limited length of time series

[46, 47]. Thus, it is better to use the autoregressive
parameter of the AR (1) process.

To quantify the long-term memory behavior, we study the
DFA index of different pollutants in Beijing, Shanghai,
Chengdu and Guangzhou in winter and summer. We find
that the three pollutants in four representative cities have
strong long-term memory (the DFA index α greater than
0.5). In comparison to previous studies on the memory
analysis of some regions or cities in China [31, 32, 36, 37],
our results show the similar long-term memory behaviors.
Furthermore, our results suggest that the long-term memory
behaviors strongly depend on seasons and locations in China,
which are lost in previous studies. To show the spatial pattern
of long-term memory in China, we further analyzed the DFA
index of pollutant time series in 366 cities across China in
summer and winter. It is found that the long-term memory of
air pollutants in southern cities is generally higher than those
of northern cities for PM pollutions. The long-term memory of
O3 does not show significant differences between southern and
northern. The spatial differences of long-term memory of PM
pollutions are mainly related to different long-term

FIGURE 5 | (color online) Spatial distributions of the DFA scale exponent α for (A) PM2.5, (C) PM10, and (E)O3 in summer. (B), (D), and (F) are same as (A), (C), and
(D) but in winter.
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meteorological conditions in Southern and Northern China.
Also, the long-term memory measures of air pollutants in
Chinese cities are higher in winter than in summer associated
with the longer persistent weather system in winter. There are
some spatial similarities between the short- and long-term
memory measures for PM2.5 and PM10. But for O3, the spatial
similarity is very low and irregular. In our further work, we will
consider relationships of the memory between air pollution
and meteorological factors or human activities from the
perspective of dynamic characteristics.
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