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ABSTRACT: Reliable subseasonal forecasts of high summer temperatures would be very valuable for society. Although
state-of-the-art numerical weather prediction (NWP) models have become much better in representing the relevant sour-
ces of predictability like land and sea surface states, the subseasonal potential is not fully realized. Complexities arise
because drivers depend on the state of other drivers and on interactions over multiple time scales. This study applies statis-
tical modeling to ERA5 data, and explores how nine potential drivers, interacting on eight time scales, contribute to the
subseasonal predictability of high summer temperatures in western and central Europe. Features and target temperatures
are extracted with two variations of hierarchical clustering, and are fitted with a machine learning (ML) model based on
random forests. Explainable AI methods show that the ML model agrees with physical understanding. Verification of the
forecasts reveals that a large part of predictability comes from climate change, but that reliable and valuable subseasonal
forecasts are possible in certain windows, like forecasting monthly warm anomalies with a lead time of 15 days. Contribu-
tions of each driver confirm that there is a transfer of predictability from the land and sea surface state to the atmosphere.
The involved time scales depend on lead time and the forecast target. The explainable AI methods also reveal surprising
driving features in sea surface temperature and 850 hPa temperature, and rank the contribution of snow cover above that
of sea ice. Overall, this study demonstrates that complex statistical models, when made explainable, can complement
research with NWP models, by diagnosing drivers that need further understanding and a correct numerical representation,
for better future forecasts.
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1. Introduction

In the recent two decades Europe faced a multitude of
impactful heat extremes (e.g., Barriopedro et al. 2011; Russo
et al. 2014), that exceeded the modeled expectation (van
Oldenborgh et al. 2013). These were disasters that ended in loss
of life and a severe disruption of activities. If forecasts would
exist that reliably predict such events more than 2 weeks in
advance, then new forms of anticipatory risk management
can be realized (White et al. 2017). Hints of such predict-
ability have already been found at lead times ranging from
subseasonal (2–6 weeks) (Wulff and Domeisen 2019) to sea-
sonal (Weisheimer et al. 2011; Prodhomme et al. 2016,
2022), but the current time window to act upon operational
forecasting systems remains limited to shorter lead times
(Coughlan de Perez et al. 2018; Casanueva et al. 2019).

The complication with subseasonal lead times is that cli-
mate variables have time-varying contributions to predic-
tands. Involvement of a variable is conditional on the state of
other variables (Mariotti et al. 2020). Only occasionally do
windows of predictability appear in the larger background of

chaotic variation. These are conditions in which subseasonal
forecasts have a greater opportunity to succeed (Albers and
Newman 2019; Mariotti et al. 2020; Mayer and Barnes 2021).
Sahelian heatwaves are for instance more successfully fore-
cast during active modes of tropical variability (Guigma et al.
2021). But windows of predictability are hardly regular. Con-
tributions of key drivers of heat extremes do vary from event
to event (Wehrli et al. 2019). Also, interactions that lead
up to an event, take place over a range of time scales and
locations (Sillmann et al. 2017). Such complexities have ham-
pered our current understanding of the set of potential heat-
wave drivers, and of interactions between them (Perkins
2015). To therefore discover and leverage new opportunities
for European subseasonal forecasts, we need to learn what
methods of sufficient complexity learn. When we supply the
climate variables that we know are important, machine learn-
ing (ML) tools can help us to extract better driving features
from them (Cohen et al. 2018).

Clearly involved is atmospheric variability, more specifi-
cally the synoptic high pressure “blocking” systems that are
associated to high surface temperatures (Brunner et al. 2017;
Schaller et al. 2018). In the midlatitudes these systems are
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part of quasi-stationary Rossby wave packets (RWPs) (Schubert
et al. 2011; Röthlisberger et al. 2019). In transient state such
groups of waves travel eastward along the waveguide of the jet
stream, instigating low and high pressure systems downstream
(Wirth et al. 2018). But in quasi-stationary state the pattern
persists over a geographical location, leading to potentially
large temperature anomalies (Wolf et al. 2018). Air parcels
enter the stagnant high pressure system, descend and adiabati-
cally heat the lower atmosphere (Zschenderlein et al. 2019).

Variability in the land surface is also involved, and condi-
tionally enhances or negates high temperatures. When the
land surface is dry, the excess energy from atmospheric tem-
perature and clear-sky conditions will primarily go into dia-
batic sensible heating, but when the land surface is wet the
excess will be used for evapotranspiration too (Seneviratne
et al. 2010; Miralles et al. 2019). The potential feedback from
a dry land surface in summer can follow after winter and
spring precipitation deficits (Quesada et al. 2012). Antecedent
drought can also be driven by temporally enhanced transpira-
tion when vegetation greens anomalously in spring (Fischer
et al. 2007; Ma et al. 2016). Apart from inter-seasonal interac-
tions, the land surface is also involved in shorter-term interac-
tions that can amplify developing events (Schumacher et al.
2019). Fischer et al. (2007), Haarsma et al. (2009) and Zampieri
et al. (2009) find that drier soils can increase upper-level high
pressure, and could partially be responsible for stagnating the
RWP pattern.

The third type of variability involved at multiple time scales
comes from the global ocean. Two-way interaction with
anomalous sea surface temperatures (SSTs) can drive meridi-
onal jet stream position over the North Atlantic in June–
August (JJA) (Duchez et al. 2016; Ossó et al. 2020). More
specifically within the season, SST patterns can predictably
precede hot events by sourcing involved RWPs (McKinnon
et al. 2016), which might be the way the tropical Atlantic
influenced the 2003 heatwave (Cassou et al. 2005). SST pat-
terns can also reinforce and thereby stagnate existing RWPs
(Black and Sutton 2007; Della-Marta et al. 2007; Feudale and
Shukla 2011). At Arctic latitudes the ocean state is equally
important, with sea ice cover influencing summertime jet
stream position and quasi-stationary RWP amplitude in the
Euro-Atlantic region (Hall et al. 2017; Wolf et al. 2020). The
same effect, originating from Arctic landmass, is found for
snow cover.

Clearly, the features leading up to hot events are not lim-
ited to a single time scale or region. Part of this is due to inter-
action between climate variables, but the involvement of
multiple time scales is also just a fact of atmospheric dynamics
itself (Schneidereit et al. 2012). Numerical model experiments
can be used to disentangle different contributions (e.g., Koster
et al. 2010; Stéfanon et al. 2012a; van den Hurk et al. 2012;
Wehrli et al. 2019; Osborne et al. 2020). Through one-by-one
manipulation, a variable’s role in feedbacks or as source of
predictability can be diagnosed. In observations such causal
“what-if” manipulation is not possible (Runge et al. 2019).
Empirical analysis in observations is more likely to measure
“association.” The empirical approach, however, will include
mechanisms that are imperfectly represented in numerical

models. Successful statistical diagnosis has happened through
composite driver statistics conditioned on high temperature
events (e.g., Stéfanon et al. 2012b; Brunner et al. 2017), com-
posite temperature statistics conditioned on Euro-Atlantic cir-
culation (e.g., Cassou et al. 2005; Jézéquel et al. 2018), plain
predictive association like regression in a small set of variables
(e.g., Quesada et al. 2012; Hall et al. 2017; Suarez-Gutierrez
et al. 2020; Kueh and Lin 2020), analysis of dominant modes in
the full multivariate space (e.g., Della-Marta et al. 2007;
O’Reilly et al. 2018), or using a potential driver as covariate in
a modeled distribution of temperature (e.g., Whan et al. 2015).

What all empirical approaches have in common is a limited
scope in terms of variables and time scales. Subsets of varia-
bles are selected a priori and interaction between them is
often ruled out. This leads to a setup that is easy for humans
to understand, but that could falsely attribute underlying,
undiscovered features to ones that are only partially involved.
Such partial information, not representing the source of pre-
dictability itself, might vary from forecast occasion to forecast
occasion. When operationalized, we would not know whether
the forecasts can be trusted, and whether its learned patterns
are actionable, should they arise in real time.

This study presents a data-driven method to extract infor-
mation from nine important climate variables related to high
European temperatures in JJA, limiting a priori choices. Sub-
sequently, an ML method based on random forests recon-
structs the interaction between variables on a range of time
scales, and forecasts the exceedance of regional temperature
above a given threshold. The forecasts are verified in terms of
skill and potential value to users. Foremost we are interested
in the climate variable features that the method extracts and
leverages as sources of predictability. Usually such complex
“black box” ML methods are hard to understand, making
them untrustworthy in their own way. Here we demonstrate
how explainability tools, which have become more and more
mature in recent times (McGovern et al. 2019; Molnar et al.
2020), can be used to query the ML method for prior knowl-
edge. For instance for the theory that relevant information is
carried across variables and time scales, from oceanic RWP
sources and antecedent land surface conditions long before
the event, to the atmospheric state close to the event. Last, we
show how the method could behave in real time. To that end,
we study its predictions of the European heatwave in 2015
(Duchez et al. 2016; Ardilouze et al. 2017). Section 2 introdu-
ces the data processing steps and ML methodology. Section 3
presents the verification results, found sources of predictabil-
ity and 2015 case study. Section 4 provides a discussion and
the conclusions.

2. Data and methods

a. Reanalysis data

Nine climate variables and the target 2-m air temperature
(t2m) are obtained from the ERA5 dataset. This modeled
reality, based on assimilated observations (Hersbach et al.
2020), has the benefit of being multivariate, spatially dense
and temporally homogeneous. Atmospheric variability is
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represented by 300-hPa geopotential (z300), 850-hPa temper-
ature (t850), and total cloud-cover fraction (tcc). Respec-
tively, these capture upper-level wave patterns, lower-level
heating, and the clear-sky conditions of high pressure systems.
Oceanic states are represented by sea ice concentration
(siconc) and sea surface temperature (sst), also from ERA5.
Land surface variability is represented by snow-cover fraction
(snowc), transpiration (transp) and deep and shallow volu-
metric soil moisture (swvl4 and swvl13), all from ERA5-Land
(Muñoz-Sabater et al. 2021).

Since ERA5-Land starts in 1981, 2 years later than ERA5,
we extract the data from 1981 to 2019, at high spatial resolu-
tion (0.258 3 0.258 and 0.18 3 0.18 for ERA5 and ERA5-
Land, respectively). Domains are variable-specific (Fig. 1).
When teleconnections, like influence from the tropical Atlan-
tic, were expected, the domain was kept large enough for the
ML-method to use potential features from these regions. For
variables without expected global teleconnections we used
smaller domains, to ease the total computational load. Hourly
values at all grid cells were resampled to a daily resolution
(Table 1). For each variable we removed the seasonal cycle by
subtracting for each calendar date the average value of similar
calendar dates (65 days), found in the period 1981–2019.

At this point in the data processing we grouped the resulting
gridded fields of daily anomalies into 5 distinct datasets or
“folds.” The 39 summer seasons were repeatedly split into a 31-
or 32-season subset for training and a 7- or 8-season subset for
verification. The verification sets consist of consecutive and com-
plete summers. Temperature evolution in one part of summer

can depend on the evolution in other parts, and information leak-
age between training and verification sets needs to be avoided.

b. Target variables

After resampling from ERA5, the gridded t2m anomalies
are at daily temporal resolution. A target at such resolution
would appear unpredictable at subseasonal lead times. Sub-
seasonal signals can only be extracted from the total variabil-
ity by aggregating multiple days or even weeks (Hoskins
2013). However, the optimal level of temporal aggregation as
well as the level of spatial aggregation is hard to establish a
priori (van Straaten et al. 2020). For summer temperatures,
spatial domains smaller than the continent are preferred
(Jézéquel et al. 2018), because hot spell types and their rela-
tion to subseasonal drivers vary across Europe (Sousa et al.
2018; Stéfanon et al. 2012b). Besides, subcontinental domains
are also preferable from a forecast user perspective.

We obtain our sub-European target region by means of
agglomerative hierarchical clustering. This algorithm groups
grid cells that are similar, starting strict, with single-cell groups
only, but gradually allowing more and more dissimilarity,
merging those groups that comply. First we let binary time
series indicate whether local t2m anomalies exceed the grid
cell’s 95th climatological percentile. A high synchronicity
between two such series, i.e., two grid cells sharing many daily
exceedances, indicates that they are governed by the same
regional hot spells. We therefore measure the number of non-
shared daily exceedances relative to the number of shared
ones, with the Jaccard dissimilarity (as in McKinnon et al.
2016). We compute it between all gridcell pairs, and cluster
them hierarchically. At the level where on average, in each
cluster, 10% of the exceedances are shared, a suitable central-
west European cluster emerged. This region is selected as tar-
get for this study (Fig. 2b). A similar geographic region
appeared when climatological percentiles like the 66th were
used to define dissimilarity.

From the spatially averaged t2m anomalies over this region,
binary prediction targets can be defined. These targets have a

FIG. 1. Spatial domains used to extract climate variables from
ERA5. See Table 1 for the meaning of variable abbreviations.

TABLE 1. Nine climate variables related to high summer 2-m air temperatures in Europe. Resampled to daily values from the hourly
ERA5 dataset.

Variable Abbreviation ERA-5 Daily resampling Unit

2-m temperature t2m Single level 24-h mean K
300-hPa geopotential z300 Pressure level 1200 UTC m2 s22

850-hPa temperature t850 Pressure level 1200 UTC K
Total cloud cover tcc Single level 24-h mean }

Sea surface temperature sst Single level 24-h mean K
Sea ice concentration siconc Single level 24-h mean }

Snow cover snowc Land 2400 UTC }

Transpiration transp Land 24-h accumulation m
Shallow volumetric soil water swvl13 Land 24-h mean, depth-

weighted average of
upper three layers
(0–100 cm)

m3 s23

Deep volumetric soil water swvl4 Land 24-h mean, bottom
layer (100–289 cm)

m3 s23
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value of 1 when the weekly (7-day), biweekly (15-day) or
monthly (31-day) average temperature exceeds the 50th, 66th,
or 90th climatological percentile (Fig. 2b), otherwise they are
0. The thresholds are computed for each temporal averaging
window separately. In addition, we want the ML method to
detect at which time scales the climate variables relate to the
weekly, biweekly and monthly temperature target. The eight
possible relation time scales are set to 1, 3, 5, 7, 11, 15, 21 and
31 days. Each time scale is defined as a rolling time window
applied to the spatially averaged t2m and climate variables
simultaneously, when climate variable features belonging to
the time scale get extracted (Fig. 2c) (section 2c).

c. Data-driven features

The climate variable features related to high temperatures
will likely depend on the lead time at which they are sought.
We allow for this possibility without assuming it a priori, by
always supplying all nine variables on all eight time scales to
the feature extraction in each lead time. Eight time scales are
available because the rolling windows provide an average
value each day, regardless of the applied window size. Cru-
cially, this allows the complex ML method (described later
and also fitted per lead time) to let features from multiple
time scales interact. Chosen lead times mirror the eight

cluster
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N x
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cluster
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temporal
averages (8x)

>95th
perc.

spatial
clustering > 66th

perc.
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time

time

longitudelatitude
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A) data-driven dimension reduction

time
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spatial
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output from (B)

time

target region

temporal
averages (8x)

8x
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8x
example correlation field

1. 2.

3.

FIG. 2. Method for data-driven feature extraction from gridded climate variables. (a) Example
of reducing the dimensionality of 3D gridded anomalies to 1D feature time series. (b) Extraction
of three target time series: average regional temperature, also averaged in time, exceeding a
given threshold, resulting in the red binary series (see also section 2b). Eight intermediate contin-
uous time series, the result of averaging with windows of varying length, are used in the next
step. (c) The extraction of potentially predictive features from a climate variable (blue; total
cloud cover in this example), through correlation with temperature across a lead time gap, at
eight different time scales. Multiple discovered feature regions, with two-dimension reduction
steps each (covariance and mean) lead toN time series (see also section 2c).
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aggregation time scales (1, 3, 5, 7, 11, 15, 21, and 31 days) and
are defined as the number of days between the end of input
information and the start of (predicted) output information.
The rolling windows are thus applied in backward mode to the
climate variables (timestamp at the end of each period) and in
forward mode to the predicted 2-m temperatures (timestamp
at the start of each period). Also short lead times (up to
7 days) are examined to confirm whether our method shows
the expected high skill under fairly deterministic conditions.

The extraction applied per lead time is a dimensionality
reduction of the gridded variable data (Fig. 2a), that differs
from conventional tools for dimension reduction. Principal
component analysis for instance, reduces variability to a few
dominant components (e.g., Kämäräinen et al. 2019), but
without guarantee that the variables projecting highly into
those components contain information relevant to a particular
forecasting problem (Lakshmanan et al. 2015). Theoretically,
the same issue occurs when upper-level (e.g., 300-hPa) geopo-
tential is reduced to a set of regimes first, from which temper-
ature is predicted at second instance. Although such methods
have established conceptual modes of variability, like the
summer North Atlantic Oscillation (Folland et al. 2009; Bladé
et al. 2012), that proved insightful for heatwave research (e.g.,
Cassou et al. 2005; Kueh and Lin 2020), this study deliberately
uses a dimension-reduction that ensures direct relevance to
the target variable (e.g., Kretschmer et al. 2017). This choice
penalizes simplicity and interpretability in terms of well-estab-
lished modes, but serves the goal of discovering (potentially
new) sources of predictability in nine climate variables.

First, we compute for each lead time and each climate vari-
able grid cell c a partial rank correlation rpartial,c between the
time series of the climate variable xt,c and the spatial mean tem-
perature yt in the target region, where the time dimension for
each entity is aggregated to one of the eight time scales (Fig. 2c,
largest gray box). For example, at a lead time of 15 days we cor-
relate 31-day cloud cover with 31-day temperature, and we cor-
relate 1-day cloud cover with 1-day temperature. The rank
correlation is called partial because we remove common drivers
that can inflate the correlation (Runge et al. 2014). Seasonality
was already removed in the creation of anomalies, so at each
time t we use linear regression to further remove the long-term
climatic trend and the influence of autocorrelation from values
at t2 t:

ŷt �b1yt2t1 b2t, (1)

x̂t;c �b3;cxt2t;c1 b4;ct, (2)

rpartial;c � r yt2 ŷt;xt;c2 x̂t;c
( )

; (3)

where t is the rolling window size and where b1, b2, b3, and b4

are regression coefficients. b3,c and b4,c are estimated for each
grid cell separately, in order to apply the detrending proce-
dure for every grid cell separately.

Each correlation value is tested for significant two-sided
difference from zero, with a confidence level a that becomes
increasingly strict with window size: a = 5 3 10242 0.3(t21).

This relation was found experimentally, and provides good
correction for the increase in dependence by rolling window
aggregation. The joint result of all correlation values is a cor-
relation field (example in Fig. 2c) to which we apply an extra
false discovery rate correction (Benjamini and Hochberg
1995). This corrects for the inclusion of grid cells that are sig-
nificant by chance and results in a single field per lead time,
climate variable and time scale. And a single field per cross-
validation fold, because we repeat the computation for each
training set, as it is known that correlation patterns depend on
the years in which they are computed (Garcia-Serrano and
Frankignoul 2014).

The number of features extracted from each field is data-
driven and therefore variable. The cloud cover example (Fig. 2c)
illustrates that multiple contiguous groups of significantly corre-
lated cells can be present in a single field. The patterns of nega-
tively and positively related anomalies need not arise at the
same time. More likely, especially at larger distances between
cell-groups, is that each group arises as an independent regional
feature. We use the hierarchical density-based spatial clustering
of applications with noise (HDBSCAN) algorithm (McInnes
et al. 2017) to identify these features. HDBSCAN is preferred
over standard clustering methods like k-means to better handle
the large grid cell density differences pertaining to the regular
latitude-longitude grid (Saunders et al. 2021). Variants of
HDBSCAN have also been applied by e.g., Zhang et al. (2019)
and Tilloy et al. (2021). Here we use haversine to measure the
geographical distance between all grid cell pairs.

In the example HDBSCAN leads to three distinct clusters
(Fig. 2c). We call these clusters “feature regions” to distinguish
them from the “target region” produced by the hierarchical clus-
tering procedure for the target. A close look at region 1 reveals
how it can comprise both negatively and positively related
anomalies (blue and red in the correlation field, respectively).
Though not necessarily the case in this cloud cover example,
such dipoles are common driving features, for instance in Atlan-
tic SST (Ossó et al. 2020), but also in the sequence of low and
high pressure systems that constitute an RWP (Schubert et al.
2011; Wolf et al. 2018). In these cases we allow a larger geo-
graphical distance to exist within the cluster, such that all nega-
tive and positive constituents become a single regional feature.
While the complex model could in principle learn the depen-
dency between such constituents, we prefer to treat well-known
dipole or wave features as one, which gives room for the
model to learn unknown links. To this end, we experimentally
established a specific set of HDBSCAN parameters for each
climate variable (Table 2). These parameters are minimum size of
the feature region, minimum number of samples for a subregion
to not be considered noise, and the distance « below which a
region is not split up any further. The different parameter values
reflect differences in a variable’s characteristic length scale, e.g.,
z300 being a much smoother atmospheric field than tcc, and the
higher gridcell density of ERA5-Land as compared to ERA5.

After clustering, we extract two time series per feature
region. First is the mean anomaly at each time step. Second
is the covariance between the time-varying anomalies xt,c
and the static correlation values rc from the correlation
field:

V AN S T RAAT EN E T AL . 1119MAY 2022

Brought to you by BIBLIO DES WISSENSCHAFTSPARKS | Unauthenticated | Downloaded 01/24/23 02:42 PM UTC



covariancet � 1
n

∑n
c�1

xt;c2
1
n

∑n
c�1

xt;c

( )
rc2

1
n

∑n
c�1

rc

( )
; (4)

where n is the number of grid cells in the cluster. This covari-
ance expresses the spatial coherence of anomalies with the
corresponding correlation field. If anomalies are an exact
copy (inverse) of the correlation pattern, that time step would
be assigned a high positive (negative) value. Covariance thus
ensures that dipole features, whose positive and negative
anomalies would cancel in a cluster mean, are extracted, too.
As the number of regions is data-driven, the feature extrac-
tion results in a total of N feature time series per lead time
and training fold (Fig. 2c).

d. Machine learning model

Per lead time and cross-validation fold one ML model is fitted
to predict either the weekly, biweekly or monthly binary target.
Because of the way we defined the target, this prediction is
simplified by climate change. The frequency with which temper-
ature exceeds a fixed threshold increases with time due to ther-
modynamic effects (Vogel et al. 2020). Forecasts can make
reliable use of this (Suarez-Gutierrez et al. 2020). Climate
change is thus the simplest prediction a model can make, as it
does not need to understand or leverage any other driver of
high temperatures. Therefore, we define our “base” model as
the Logistic Regression of climate change–driven probability
pbase against time t (Julian day):

pbase � 1
1 1 e2 g01g1t( ) ; (5)

where g0 and g1 are regression coefficients (see also Fig. 3a).
Subseasonal windows of predictability, being sourced from

the features and interactions that we wish to research, would
exist on top of this climate change signal (Hamill and Juras
2006). Our “full” machine learning model is thus defined as
the complex function g(X) with which a random forest

regressor (Breiman 2001) lowers or heightens the base proba-
bility, by leveraging the set of N data-driven features X:

pfull � pbase 1 g X( )with p ∈ 0; 1[ ]: (6)

A combination of a random forest on top of a base model has
been applied earlier (Kirkwood et al. 2021). However, as seen in
Fig. 3b, the target variable of this random forest regressor is not
fully continuous. Instead it is the residual between (trended)
binary observations o and the base probability that increases
with time: o 2 pbase, where o is either 0 or 1, so the regression
target is bounded by [21, 1]. This approach is not elegant,
because after addition any final negative probabilities need to be
transformed to 0, but it works in practice. Other reasons for this
approach, and possible alternatives, are discussed in section 4.

The set of about N ≈ 300 input features at each lead time is
large compared to the number of independent observations.
Although daily resolution was retained by the rolling window
averaging, the actual amount of non-overlapping observations
ranges from about 3000 for forecasts of the 1-day average tar-
get, to about 100 for forecasts of the 31-day average target.
Many statistical models are prone to overfitting with such low
observation-to-feature ratios (100/300 at worst). Random for-
ests, however, consist of an ensemble of decision trees (Fig. 3c)
and are suited for this task (Wei et al. 2015). Each tree uses a
random subset of data and features to split its target values into
collections (also “nodes”) with maximum homogeneity. Split-
ting rules are combinations of a feature and a threshold (see
example rules in Fig. 3c). The trees then keep partitioning the
data into smaller and smaller nodes until a stopping criterion is
reached. As an ensemble, the trees converge to stable average
estimates of the target, and have proven useful for meteorologi-
cal applications (e.g., Taillardat et al. 2016; Whan and Schmeits
2018; van Straaten et al. 2018; Bakker et al. 2019; Hill et al.
2020; Mecikalski et al. 2021).

Individual trees are tuned by setting their maximum tree
depth, the minimum number of samples required to split a
node, and the number of features considered per split. The
ensemble size is determined by setting the number of trees.
These hyperparamaters are usually tuned during the training
process and then kept fixed when the final model is trained. For
each and every lead time, we constrained the tree depth to a
maximum of 5, required a minimum number of 30 samples, set
a random pick of 35 out of 300 features, and used 2500 trees
(Fig. 3c). The first two settings are known to limit model capa-
city, resulting in shallower trees, which avoids overfitting in
datasets where overfitting is possible (Segal 2004).

The first three hyperparameters were found by iteratively
testing different combinations for performance in terms of the
Brier score (section 2e), measured on the verification folds.
This introduces the risk of selecting hyperparameters that
may overfit the same verification folds, also used for final veri-
fication (section 2e). However, this risk was reduced by
accepting only combinations that display a low generalization
error (similar performance in both the training and the verifi-
cation set). A test of our approach with an unseen dataset
(a backward 1950–79 ERA5 extension) demonstrated the
robustness of found hyperparameters (not shown).

TABLE 2. Parameters in feature extraction: clustering gridded
correlation patterns on a sphere. The Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN)
considers three parameters. Minimum final cluster size, minimum
number of samples for a sub-clusters to not be considered noise,
and the spherical distance « below which clusters are not split up.

Variable
Min cluster size

(cells)
Min samples

(cells)
«

(radians)

t850 3000 1000 0.17
z300 6000 2000 0.17
tcc 400 200 0.09
sst 1000 300 0.20
siconc 400 200 0.10
swvl13 450 200 0.08
swvl4 450 200 0.08
transp 600 200 0.08
snowc 3000 1000 0.11
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Our fourth hyperparameter, i.e., 2500 for the number of
trees, was chosen for practical reasons. The random pick of
35 (out of 300) features implies a 35/300 chance to be avail-
able for one of the top-most splits in a decision tree. The
first splits dominate the predictions, which means that any
feature has little chance to be important in a single tree
(Wei et al. 2015). To distribute feature selection probabil-
ity equally, we choose a large but computationally feasible
number of 2500 trees.

e. Verification

The existence of subseasonal predictability can be evalu-
ated by comparing full- to base-model performance. Both

models produce probability forecasts for which we com-
pute the Brier score (BS) over all forecast–observation
pairs:

BS full;base[ ] �
∑K
i�1

(
oi 2 pi; full;base[ ]

)2
, (7)

where K is the total amount of pairs present in the five verifica-
tion folds. The BS is then converted to a Brier skill score:
BSS = 1 2 (BSfull/BSbase). Besides BSbase we also compare
against the BS of the climatological frequency o observed over
all data, which is a reference probability forecast that is com-
monly used. Uncertainty in the BSS can be large due to depen-
dence between samples, and due to the relatively small number

FIG. 3. Method for fitting the sources of predictability with an ML model that forecasts a tem-
perature exceedance target (red-brown) from climate variable features (blue; see also Fig. 2).
(a) Base model predicting the increased probability of events due to climate change [Eq. (5)].
(b) Full model predicting deviations from the base, by leveraging the large set of N data-driven
features available at a single lead time [Eq. (6)]. (c) Random forest component of the full model,
fitted per lead time and cross-validation fold, consisting of 2500 decision trees with a maximum
depth of 5, each using a random selection of 35 features in its splits. The predicted value for g(X)
is the average over the trees. The table on the left side of (c) illustrates some of the N available
features, for instance the three cloud cover features illustrated in Fig. 2c. Random forest diagram
after Mecikalski et al. (2021).
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of positive cases when the most extreme temperature threshold
(90th percentile) is used to define the target variable. We there-
fore repeatedly recompute BSS on K forecast–observation pairs
that are drawn at random with replacement, i.e., bootstrapping.
The dependence between samples due to rolling window aggre-
gation would cause uncertainty to be underestimated when we
draw day-by-day. Therefore we draw in consecutive blocks,
with sizes ranging from 1 to 60 days.

A single verification metric is often not enough to under-
stand performance (Gneiting et al. 2007). We complement the
BSS with reliability diagrams and an evaluation of forecast
value. Reliability diagrams are graphic tools to assess a fore-
cast’s reliability and resolution (Wilks 2011). The potential
economic value (PEV) is the value that a forecast has to a
hypothetical decision-maker, compared to having no forecast
available (Richardson 2000). The user’s decision problem is
characterized by a cost–loss ratio c, being the cost of taking
action over the potential loss if no action is taken. PEV
becomes

PEV� min c;o( ) 2 Fc 1 2 o( ) 1 Ho 1 2 c( ) 2 o
min c;o( ) 2 co

; (8)

where hit rate H and false alarm rate F are obtained from a
contingency table after binarizing the forecast with probabil-
ity thresholds 0.1, 0.3, 0.5, 0.7, and 0.9, and where o is the
observed frequency of the event. We evaluate PEV for a
range of cost–loss ratios between 0 and 1.

f. Explainability

Enhanced full model performance as compared to the base,
can only occur when the full model has learned to leverage
some of its input features as sources of predictability, either

direct, or as an interaction on multiple time scales. We investi-
gate what the model has learned in two ways, one being the
permutation importance of each feature for the overall cor-
rectness of full-model predictions (Fig. 4a), the other being the
contribution of each feature to a low or high forecast probabi-
lity, as quantified by TreeSHAP, an application of SHapley
Additive exPlanations specifically designed for tree-based
methods (Lundberg et al. 2020) (Fig. 4b).

Permutation importance quantifies the decrease in perfor-
mance over all predictions when a feature is wrongly assigned
(i.e., permuted) (Breiman 2001; Lakshmanan et al. 2015). This
means it results in one “global importance” per feature,
“global” meaning “over all samples.” We express the decrease
in performance in terms of BS. These BS values depend on lead
time, so to equalize situations far-before and close to the event,
we rank importance within each model from 0 to 1 (from least
important, lowest increase in BS, to most important, highest
increase in BS). We permute in a repeated “multipass” man-
ner, which, as opposed to “single-pass,” can better discrimi-
nate between correlated features (Lakshmanan et al. 2015;
McGovern et al. 2019). It involved iteratively searching and
permuting the next-most important feature, given a set of
already permuted features, until a total number of n = 30 fea-
tures were found (Fig. 4a). We also found little difference in
the results of “multipass” and “single-pass,” when evaluated
on training data.

The application of TreeSHAP to our random forest produ-
ces a different, “local”measure of importance (Lundberg et al.
2020). In each sample, the random forest receives N feature
values, and produces a single prediction g(X) [see Eq. (6) and
Fig. 3c]. TreeSHAP is a method originating from game theory
that can attribute a game’s single outcome to the contributions
from each player. In this case it computes the set of positive

FIG. 4. Explainability tools to interpret fitted source of predictability. (a) Explanation of the
full model with permutation importance. Sources of predictability are identified iteratively. They
are the first n features that after random reordering of their time series result in the worst fore-
cast scores. (b) Explanation of the full model’s random forest regressor with TreeSHAP
(see also section 2f).
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and negative contributions from all features, that together add
up to the predicted probability (more details in Lundberg et al.
2020). When repeated for all samples, we obtain a time series
of contributions for each feature. We use these series in our
case-study of summer 2015, but also extract a measure of
global importance by averaging the absolute values of all con-
tributions in each series.

3. Results

a. Verification and predictability

We consider the performance of the full machine-learning
model, fitted to forecast different types of target events at
multiple lead times. Events are mean temperatures in a given
averaging window (columns in Fig. 5), exceeding a given tem-
perature threshold (rows in Fig. 5). Since the threshold is fixed
in time, we expect a big part of the total predictability of

events to come from climate change. We compare the full
model BSS computed with two different reference forecasts
(Fig. 5).

The first reference forecast is the commonly used climato-
logical event frequency over all samples in the verification
sets. It assumes that the probability of occurrence is fixed, and
not low in the beginning and high toward the end, as in real-
ity. Relative to this reference, the full model shows positive
BSS at many lead times (gray shading in Fig. 5). At extended
lead times (15–31 days) the monthly target shows larger BSS
values than other targets, presumably because noise has been
suppressed by a larger averaging window, increasing the
usability of the climate change signal in forecasts (e.g., Fischer
et al. 2013). We confirm the contribution of climate change to
predictability with BSS relative to the base reference. This
reference does model the gradual change in probability. Skill
at extended lead times is hardly different from zero (green
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FIG. 5. BSS-based identification of skillful lead-time windows. Full model machine learning forecasts are made for different target events,
being mean temperature in a given averaging window (columns), exceeding a given climatological quantile threshold (rows). Performance
is measured as a function of lead time and relative to two different reference forecasts. Gray: relative to the event’s fixed probability of
occurrence over all samples. Green: relative to the gradual change in probability due to climate change, as forecast with the base model.
Values above the zero line indicate positive skill. Uncertainty in the metric is illustrated with the 5th–95th-percentile uncertainty bounds,
obtained by bootstrapping available samples with different block sizes (see legend, 5000 repeats).
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shading in Fig. 5), meaning that when we define subseasonal
predictability as “the ability to forecast deviations from the
climate change signal at extended lead times,” it is low.

The low amount of apparent subseasonal predictability can
be expected. First, it is characteristic of the target region
(Prodhomme et al. 2022). Second, the occasional part of pre-
dictability that exists in forecasts of opportunity might be
masked by the fact that we use all samples to compute BSS
(Mariotti et al. 2020). Still, BSS does indicate a skillful lead-time
window in forecasting median-exceedance in the monthly target.
The full model BSS is higher at a lead time of 15 days than at
other, also shorter lead times (Fig. 5a). Usually we expect fore-
casts to be more skillful for shorter lead times, as events extend
less far into the future. The situation gets for instance increas-
ingly certain from a 5- to 1-day lead time (Fig. 5c). But this is
not the case for the monthly target (Fig. 5a).

Differences in skill relate to the discriminatory power of
the forecasts. The skillful window at a lead time of 15 days
suggests that at 15 days before the event a physical link from
input features to the target can be leveraged and distinguishes
high probabilities from low probabilities of monthly exceed-
ance. In verification terms, the model would temporarily show
a better “resolution” at this lead time (for a mathematical def-
inition of resolution see Wilks 2011).

In Fig. 6 we plot reliability diagrams for the skillful monthly
exceedance of the median, 66th and 90th percentiles, forecast
with a 15-day lead time. The higher quantiles are of interest to
explore the predictability of upper tail-events with metrics that
provide a more complete picture than BSS (as in Dorrington
et al. 2020). The reliability diagrams show that the upper-
tail forecasts of the full model outperform the base model
(Figs. 6d,e,g,h). A reliability diagram compares the forecast
probability with the observed frequency: for a forecast proba-
bility p (0# p$ 100 percent), the event should be observed in
p percent of the cases. Forecasts that are reliable in that sense
lie on the diagonal 1:1 line. Panel D shows that the base model
probabilities range from about 0.1 to 0.6 and are close to the
1:1 line. This implies that the forecasts are reliable, but not
that the forecasts are perfect (which would only be realized
when binary probabilities of either 0 or 1 were issued). The
full model’s range is wider than the base model, with for exam-
ple probabilities of 0 or 0.8 being more frequently issued
(Figs. 6d,e). Since the full model remains close to the 1:1 line
and has widened the probability range, we can conclude that it
has reliably increased the resolution of forecasts, on top of the
climate change signal.

That the full model adds value to the base model is visible
in the vertical difference between their PEV curves (Fig. 6f).
Base model upper tercile forecasts are valuable for decision-
makers with cost–loss ratios ranging from 0.1 to 0.6. The full
model widens this range, and especially adds value for users
with cost–loss ratios , 0.2 (typical for many real-world users).
Also for predictions of extremer events, namely, exceedance
of the 90th percentile, value is added (Fig. 6i). We see that the
full model has learned to issue probability forecasts up to 0.6,
compared to the maximum of 0.3 in the base model (Fig. 6h).
This extension is not perfectly reliable (Fig. 6g shows

deviations from the perfect reliability curve), but is still adding
value to users with cost–loss ratios of 0.2–0.5 (Fig. 6i). The use-
ful increase of the resolution shown in Figs. 6d,e also extends
to monthly forecasts at different lead times (not shown). This
performance improvement cannot be derived from BSS values
alone.

The ability to leverage features for forecasting is expected
to not only depend on lead time but also on the properties of
the target. The full model BSS at a 15-day lead time is higher
for the monthly target (Fig. 5a) than for the biweekly target
(Fig. 5b). The former event extends 46 days into the future
(15-day lead time and 31 days of event), while the latter event
extends 30 days into the future. Again we could expect the
shortest extension into the future to be the most certain.
However, in Fig. 7 we see that forecasts of the monthly (solid
green) get closer to perfect reliability, and with a wider range
of probabilities, than forecasts of the biweekly (dashed
green), using the exact same set of features extracted on eight
time scales. It needs saying that the monthly target, due to the
larger averaging window, enables the full model to use a more
apparent climate change signal in its base (not shown). But
still the results suggest that driving features exist and are lev-
erageable in especially this skillful lead-time window. Predict-
ability in a monthly target thus does not need to stem from
successful prediction of its first 2 weeks.

b. Sources of predictability

The convincing resolution enhancement in the reliability
diagrams at a 15-day lead time, and the moderate enhance-
ment at other lead times, lead to a logical question: which of
the features has the ML model learned to leverage as sources
of predictability? We consider this question over a range of
lead times.

We expect the learned relations to depend on lead time in
two ways. Physically we expect a transfer of predictability
across variables, from oceanic RWP sources and antecedent
land surface conditions long before the event, to the atmo-
spheric state close to the event. Second, we expect a transfer
of predictability across time scales: Multiple time scales are
involved in lead up to the event, and close to the event we
expect the short time scales, representing the state closest in
time to the event, to become dominant in the interaction. If
per the second expectation, all forecasts would be dominated
by a time scale equal to the lead time, then all panels in Fig. 8
would look like the top-left example. Unused features are in
blue and leveraged features are in orange and black (permu-
tation importance and TreeSHAP, respectively).

We first discuss the forecasts of monthly temperature,
exceeding the 66th-percentile threshold (left columns, Fig. 8).
Judging by the amount of black and orange dots, and the pat-
terns that both metrics agree on, SST is the largest source of
predictability, followed by snow cover, 850-hPa temperature,
and sea ice concentration. Of the antecedent land surface con-
ditions, deep soil moisture is a more important source than
shallow soil moisture and transpiration. Interestingly, we also
see that the black dots are distributed horizontally, along the
21- and 31-day feature time scale, instead of diagonally like in
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the example. It means that the model prefers the longer time
scales despite getting closer to the event with decreasing lead
time. The likely reason is that the monthly target still extends
far into the future. The necessary long-term information is
not sufficiently present in the short-term states. With t850

being an exception, this statement applies to atmospheric
features at all time scales. Especially TreeSHAP shows that
z300 and tcc do not contribute to forecasts of the 31-day
target (almost no black dots in the left atmospheric column
of Fig. 8).
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are for monthly temperature exceeding the (top) 50th, (middle) 66th, or (bottom) 90th percentiles made with a 15-day
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This changes when we look at predictions of the shorter
weekly target (right columns, Fig. 8). SST, snow cover and
deep soil moisture still are dominant sources of predictability
at lead times longer than 5 days. The model, however, does
not use the 21- and 31-day feature time scales exclusively. The
black and largest orange dots now lie in the window range of
10 to 31 days for SST, 5–21 days for snow cover and deep soil
moisture. At lead times shorter than 5 days, when the event
gets closer, features from z300, followed by t850 and transpi-
ration, become the dominant sources of predictability: they
increase or decrease the chance of weekly high temperature
events. In other words, the ML models confirm, by being able
to pick and learn freely, that information transfers from lon-
ger-term oceanic and land surface conditions to the atmo-
spheric state.

Before further physical interpretation, we consider the dif-
ference between the two importance measures. Usually, the
highest ranking variables according to permutation impor-
tance, i.e., the largest orange dots, are also important accord-
ing to TreeSHAP and accordingly accompanied by a black
dot (Fig. 8). The two methods often do not agree on lower
ranking variables. It appears from Fig. 8 that average absolute
TreeSHAP is a stricter measure of global importance,
whereas permutation importance admits a more wide-spread
set of important features and time scales. Part of the reason
lies in the difference between rank and TreeSHAP contribu-
tion. A feature that is conditionally the n-most important vari-
able, might not contribute noticeably to forecast probability
in each and every sample. Qualitative differences in empha-
sized features can also follow from permutation importance
itself. As permutation breaks dependencies between features,
it can move the model to situations it was not trained for,
leaving one to interpret extrapolation behavior instead of

normal predictive links (Hooker and Mentch 2019). Conse-
quentially, we have most confidence in the patterns that both
measures agree on.

The visualized importance in Fig. 8, like the surprising
usability of 31-day average atmospheric t850, are linked to
specific regions. Each dot is, namely, the maximum global
importance of the multiple possible feature regions with two
time series each, i.e., one for the mean and one for the covari-
ance, that were all at the full model’s disposal. So in Fig. 9 we
map where the 31-day average input features of SST, t850,
snowc, and siconc are important for predicting monthly tem-
perature exceedance of the 66th-percentile threshold at a
15-day lead. Features from SST are present in a large portion
of its domain, as many grid cells correlate significantly to tem-
perature, even after autocorrelation and linear trends have
been accounted for (Fig. 9a). Only a selection of these cells
are robust and present in at least 4 of the 5 sets of training
data (orange to yellow). Robust groups of cells for instance
appear east of the Maritime Continent, suggesting that Pacific
SST variability in that region can be important. However,
such a potential relation does not imply that a feature will be
a useful source of predictability. So for SST and the other var-
iables (in rows), we plot each feature’s permutation and
TreeSHAP importance, for the robust cells only, averaged
over at least 4 of the 5 cross-validation sets (Fig. 9, middle and
right column). Consequentially, the plotted shapes do not per-
fectly resemble the feature regions of a single subset.

Features from SST (Fig. 9b) are stronger sources of predict-
ability than features of other variables (Figs. 9e,h,k). But not
all SST cells will be of equal relevance. Especially smaller
patches are often part of a feature region like the whole
Indian Ocean, and therefore share the importance of a predic-
tive signal coming from large patches that dominate a fea-
ture’s mean or covariance. Focusing for that reason on large
contiguous patches, we notice that besides the mentioned
Pacific features, the Indian Ocean provides an extensive
source of predictability, and that a lesser source of predictabil-
ity lies off the east coast of South America (Figs. 9b,c).

One of T850’s predictive features is collocated with an SST
feature over the Indian Ocean (Figs. 9e,f). Their coincidence
off India’s west coast hints at monsoon dynamics, which previ-
ously have been found to affect Euro-Atlantic summer circu-
lation (Beverley et al. 2019). The most surprising T850
feature is the region extending from the tropical Atlantic into
the western Sahara. In T850, the feature mean is more predic-
tive than feature covariance, which in combination with cli-
mate change, gives the impression that the feature is
leveraged to explain a thermodynamic trend. However, our
full model learns deviations from the climate trend (i.e., devi-
ations from the base model), so this is likely not the case.
Without a causal framework it remains speculative how this
source of predictability, present at the relatively low level of
850 hPa, affects western and central European temperature.
Given its location a link to upper-level disturbances in the
tropical Atlantic and Sahel region is expected (Cassou et al.
2005; Nakanishi et al. 2021). Crucially, it would not have been
discovered, had we not applied a data-driven dimension
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reduction and let our ML model process many features with
little a priori selection.

The location of snow-cover features differs from fold to
fold. This is visible in the minor extent to which they overlap
(Fig. 9g). Still, these are important sources of predictability
(Figs. 9h,i). Importance of Eurasian snow-cover anomalies
trumps that of the North American ones (Hall et al. 2017).
And within Eurasia the regions located farther east are more
important than those located in the west. The most eastern
snow-cover feature is also more important than any of the fea-
tures in sea ice concentration (Figs. 9h,k), which is the reverse
of the order suggested by Zhang et al. (2020). Nonetheless,
within sea ice concentration, the ML model has diagnosed the
relative importance of the Kara Sea, whose decreased ice con-
centration is known to relate to a more southern and stronger
polar front jet (Hall et al. 2017), inhibiting stagnant high pres-
sure systems over the target region.

c. Summer of 2015

Physical interpretation of sources of predictability remains
limited when, like above, emphasized features are seen, but
the sign of their predictive relations are not. One needs to
know whether a specific emerging anomaly inhibits or
increases the likelihood of an event, by how much, and what
the state of the other features is, since links can be condi-
tional. This information is usually hard to extract from com-
plex ML models. With so-called local explanations of
individual forecasts we can uncover such details (see also
Lundberg et al. 2020; Gibson et al. 2021). When a feature’s
TreeSHAP value shows increased forecast contribution from
one point in time to the next, we can trace that in real time to
a specific set of shifting anomalies, that for instance has
started to resemble the feature’s underlying correlation pat-
tern. We demonstrate such a breakdown of contributions with
forecasts of the hot summer in 2015.

FIG. 9. Geographic distribution of sources of predictability, learned by the full model. (from top to bottom) Visible are the feature
regions in SST, T850, snow cover, and sea ice concentration that the model leverages to predict monthly average temperature exceedance
with a lead time of 15 days (threshold is q0.66). The climate variables’ grid cells, belonging to distinct regional features, are colored (mid-
dle) with each feature’s average permutation importance and (right) with the average absolute TreeSHAP contribution to the forecast
probability. (left) The importance values are presented only for grid cells that are found significant in at least four of the five cross-valida-
tion folds. The type of time series used by the model is annotated (mean or covariance). Time scale of the features is also monthly.
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The summer of 2015 was characterized by exceptional tem-
peratures in western and central Europe that were clustered
in two intense periods. Duchez et al. (2016) found that a cold
North Atlantic SST anomaly from the months before might
have displaced the subtropical jet to a stationary southern
position, favoring buildup of heat over the continent. They
find that the displacement commenced in the last days of June
and persisted into September. High temperatures followed on
1–6 July. Despite the claim that the temperatures were driven
by the cold SST anomaly, this first period was hard to predict
by an operational ensemble (Ardilouze et al. 2017). The high
temperatures were followed by a rainy intermission, before a
second temperature peak started on 16 July, for which Wehrli
et al. (2019) found that SST was of low importance. Their
analysis also showed that although soil moisture (on a
monthly scale) was decreased during the event, no significant
feedback to atmospheric heat was found.

For both peak periods, we examine the features contribut-
ing most to the probability forecasts of the ML model. A hori-
zontal bar (Fig. 10a) shows contributions to the probability
that monthly temperature exceeded the 66th percentile, from
6 June to 6 July, a period that encompasses the first heatwave
period at its end. Below is the forecast that encompasses the
second period at its beginning (Fig. 10f). The forecasts were
made with a 15-day lead time, which was shown to have pre-
dictive value in section 3a.

For both periods the full model raises forecast probability
above the 59% that we expect from the climate change base
model (Figs. 10a,f). The increase occurs because the joint
state of all driving features produces larger positive contribu-
tions (pink), than negative inhibitory contributions (blue,
Figs. 10a,f). In both Figs. 10a and 10f the largest positive con-
tributions come from the state of 21-day average SST, in fea-
ture region 4, and from 31-day average SST, in feature region
1. This suggests the influence of a long-term SST anomaly
(Duchez et al. 2016). However, region 1, where the 31-day
covariance signal originates, encompasses more than just the
Atlantic. When we look at the respective SST anomaly
(Fig. 10c) we see the cold North Atlantic temperatures south
of Iceland. A close look at the underlying correlation pattern
(Fig. 10e) shows that at this location, no significantly negative,
even slightly positive SST anomalies are associated to higher
target temperatures, for a driving effect at this lead time. The
positive contribution of covariance (resemblance to an under-
lying correlation pattern), has thus to be sought elsewhere,
for instance in the positive anomalies extending from the Gulf
of Mexico eastward. Not shown for the 31-day state, but
shown for the 21-day state, is the feature east of the Maritime
Continent (Fig. 10b). The correlation pattern here (Fig. 10d),
in SST’s feature region 4, is partly resembled by the SST at
this point in time. Seeing the model put forward such an
emergent feature from a relatively small region, human fore-
casters can study its trustworthiness. The influence of the fea-
ture does remain the second largest factor also for the second
part of the summer (Figs. 10g,j)

What does change from the first to the second high-temperature
period, according to our model, is the strength of inhibiting
drivers, that together decrease forecast probability from 0.74

to 0.68 (Figs. 10a–f). The state of 31-day average sea ice con-
centration is dominant in this. We see that during the first
predicted period (10 June–30 June), a negative sea ice con-
centration anomaly was present in the Kara Sea (Fig. 10i)
which, as discussed in the last section, can project negatively
on the target temperatures (Fig. 10l). Accordingly the full
model lowered probability slightly, though still kept it ele-
vated with respect to the base model. Exceedance of the
threshold did happen in both high-temperature periods of the
summer of 2015.

4. Discussion and conclusions

It is understood that there is a large number of climate varia-
bles and time scales involved in lead up to high summer temper-
atures. In this study we have extracted data-driven features
from nine variables, varying on eight time scales. Interactions in
such a set can source subseasonal predictability, but often at a
complexity level that is beyond direct human understanding.
We have explored whether an ML model can integrate and dis-
cover the sources of predictability for us. To our knowledge this
has been the first attempt using such a large set of features.

Relative to the amount of features, the ERA5 dataset pro-
vides a low amount of samples. Whereas the use of ERA5
helps to account for processes that are inadequately captured
in numerical simulations, a full integration of important sub-
seasonal interactions is a great challenge for machine learning
models (He et al. 2021). Combined with the limited samples
to train on, a machine learning model does not attain the max-
imum skill possible. In certain lead time ranges, operational
numerical models in combination with statistical postprocess-
ing, will probably do better (e.g., Ferrone et al. 2017; van
Straaten et al. 2020). But as this study has demonstrated, even
purely statistical forecasts for west and central Europe, can be
reliable and valuable in certain windows, like forecasting
exceedance of monthly summer temperature with a lead time
of 15 days (Fig. 6). We have further shown that this long-term
predictability is not due to successful prediction of its short-
term (2-week) constituents (Fig. 7).

Limited data makes certain types of statistical association
hard to estimate. In feature extraction we correlated climate
variables with temperatures (Fig. 2c). This appears suboptimal,
as the features are later supposed to predict only the upper tail
of the temperature distribution, namely, binary exceedance of
a relatively high threshold. Rank correlation remains usable
because nonlinear associations specific to the upper tail are
accounted for, as long as they are monotonic. Better suited
quantities like extremal-dependence metrics (Coles et al. 1999)
and Kendall’s Tau weighted toward the tail of the distribution,
were also tried, but their estimates were found to be too unsta-
ble for this amount of data. An interesting alternative to our
correlation-based dimension reduction is to directly apply a
predictive ML model to the raw input data (e.g., He et al.
2021). In our setting with large domains, and nine climate vari-
ables for eight time scales, that will be challenging, as even
after dimension reduction a low observation-to-feature ratio
was obtained.
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A suitable ML model to identify sources of predictability in
a set with a low observation-to-feature ratio is a random for-
est (Wei et al. 2015). The resulting picture of importance
might, however, be more diffuse than the importance in real-
ity. We had to mitigate the large number of features by draw-
ing 35 at random. This can make single dominant sources of

predictability (e.g., from 31-day SST) unavailable at prime
splits in the decision trees, a role that is then taken by corre-
lated features (e.g., from 21-day SST). This is also the reason
that TreeSHAP contributions have small values. After com-
putation of contributions, even the most important source of
predictability alters the forecast probabilities by a mere 5%

FIG. 10. Summer 2015. Explaining the forecast probability that monthly temperature exceeds the 0.66 quantile (top) from 6 Jun to 6 Jul
and (bottom) from 16 Jul to 15 Aug, made with a lead time of 15 days. (a),(f) TreeSHAP explanation of the full model forecast, i.e., the
decomposition of the forecast probability (boldface) into additive contributions from all driving features. Features increasing the probability
are in pink, features decreasing the probability are in blue. The type (i.e., covariance) and time scale of the largest contributors are anno-
tated. (b),(c) Anomalies leading to the two largest contributions. (d),(e) Correlation patterns underlying the contributing features. (g)–(i) As
in (b) and (c), but including the largest negative contributor. (j)–(l) As in (d) and (e), but including the largest negative contributor.
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on average (Fig. 8). Clear importance patterns have neverthe-
less emerged. The importance of long-term variability in SST
is in line with physical understanding. Surprising is the domi-
nance of deep soil moisture over shallow soil moisture, at all
targets and time scales, and that of snow cover over sea ice.

An inherent challenge for subseasonal forecasts is the non-
stationarity of driving features. For sea ice it is known that a
link to European temperature can exist at certain moments in
time (Kolstad and Årthun 2018). When such a potential for
predictability is not systematic over all possible samples, it can
happen that empirical models are trained on a subset with its
presence and will make false forecasts on a set without. Tree-
SHAP can show in real time whether such features keep con-
tributing to the forecasts (Fig. 10). A later computation of
permutation importance can then reveal whether the impor-
tant TreeSHAP contributions were valid or not. This needs a
series of observed outcomes first, but features that have
already started to degrade the scores will show no importance
after further permutation. We expect that differences between
TreeSHAP and permutation importance (Fig. 8) might inform
one about potential non-stationarity.

We have treated subseasonal predictability as “deviations from
a changing climatology that are predictable at extended lead
times.” As in other studies (Dole et al. 2014; Prodhomme et al.
2022), this separation from the trend is influential (Fig. 5), because
climate change provides a large part of total predictability, and is
even valuable to certain users (Fig. 6). Our first attempt at separa-
tion involved detrending average temperature before creating the
binary (threshold-exceedance) target. This distributes events uni-
formly over time, and thus supposes that moderate temperatures
of the past and current more extreme temperatures comprise a
homogeneous class with similar dynamics. Depending on the defi-
nition of extremity, this is likely not the case (Vogel et al. 2020). It
led to bad performance in the last decade. We therefore modeled
the probabilistic deviations as additions to a base model [Eq. (6);
Fig. 3b]. More elegant tools than subtraction and addition exist,
like logarithmic transformations (e.g., Scheuerer et al. 2020)
and Bayesian methods. But unfortunately those were not (yet)
compatible with the random forests we needed to handle the
low observation-to-feature ratio.

There is good reason to keep applying complex ML-
methods to subseasonal prediction. First, we have shown that
such a method can reliably increase forecast resolution by
leveraging features from reanalysis data. Second, we demon-
strated that an explainable method gives conceptual grip on
the complexity. It confirmed many physical expectations, like
the weighing of time scales and the transfer of information
across variables with lead time. It also discovered surprising
features like the long-term predictability originating from
850-hPa temperature. Overall, the associative learning of an
ML-method will complement research with NWP models
(e.g., Quinting and Vitart 2019). It shows which links need
further understanding, and which variables need correct rep-
resentation in NWP models for better future forecasts.
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Schär, 2007: Soil moisture–atmosphere interactions during
the 2003 European summer heat wave. J. Climate, 20, 5081–
5099, https://doi.org/10.1175/JCLI4288.1.

}}, U. Beyerle, and R. Knutti, 2013: Robust spatially aggre-
gated projections of climate extremes. Nat. Climate Change,
3, 1033–1038, https://doi.org/10.1038/nclimate2051.

Folland, C. K., J. Knight, H. W. Linderholm, D. Fereday, S. Ine-
son, and J. W. Hurrell, 2009: The summer North Atlantic
oscillation: Past, present, and future. J. Climate, 22, 1082–
1103, https://doi.org/10.1175/2008JCLI2459.1.

Garcia-Serrano, J., and C. Frankignoul, 2014: Retraction note:
High predictability of the winter Euro–Atlantic climate from
cryospheric variability. Nat. Geosci., 7, E2, https://doi.org/10.
1038/ngeo2164.

Gibson, P. B., W. E. Chapman, A. Altinok, L. Delle Monache,
M. J. DeFlorio, and D. E. Waliser, 2021: Training machine
learning models on climate model output yields skillful inter-
pretable seasonal precipitation forecasts. Commun. Earth
Environ., 2, 159, https://doi.org/10.1038/s43247-021-00225-4.

Gneiting, T., F. Balabdaoui, and A. E. Raftery, 2007: Probabilis-
tic forecasts, calibration and sharpness. J. Roy. Stat. Soc. Ser.
B Stat. Methodol., 69, 243–268, https://doi.org/10.1111/j.1467-
9868.2007.00587.x.

Guigma, K. H., D. MacLeod, M. Todd, and Y. Wang, 2021: Pre-
diction skill of Sahelian heatwaves out to subseasonal lead
times and importance of atmospheric tropical modes of vari-
ability. Climate Dyn., 57, 537–556, https://doi.org/10.1007/
s00382-021-05726-8.

Haarsma, R. J., F. Selten, B. V. Hurk, W. Hazeleger, and X.
Wang, 2009: Drier Mediterranean soils due to greenhouse
warming bring easterly winds over summertime Central
Europe. Geophys. Res. Lett., 36, L04705, https://doi.org/10.
1029/2008GL036617.

Hall, R. J., J. M. Jones, E. Hanna, A. A. Scaife, and R. Erdélyi,
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