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Abstract: Volcanoes can be extremely damaging to the environment, human society, and also impact
climate change. During volcanic eruption, massive amounts of gases and dust particles are thrown
into the atmosphere and propagated instantaneously by the stratospheric circulation, resulting in
a huge impact on the interactive pattern of the atmosphere. Here, we develop a climate network-
based framework to study the temporal evolution of lower stratospheric atmosphere conditions in
relation to a volcanic eruption, the Hunga Tonga-Hunga Ha’apai (HTHH) volcano, which erupted
on 20 December 2021. Various spatial-temporal topological features of the climate network are
introduced to analyze the nature of the HTHH. We show that our framework has the potential to
identify the dominant eruption events of the HTHH and reveal the impact of the HTHH eruption.
We find that during the eruption periods of the HTHH, the correlation behaviors in the lower
stratosphere became much stronger than during normal periods. Both the degree and clustering
coefficients increased significantly during the dominant eruption periods, and could be used as
indications for the eruption of HTHH. The underlying mechanism for the observed cooperative mode
is related to the impact of a volcanic eruption on global mass circulations. The study on the network
topology of the atmospheric structure during a volcanic eruption provides a fresh perspective to
investigate the impact of volcanic eruptions. It can also reveal how the interactive patterns of the
atmosphere respond to volcanic eruptions and improve our understanding regarding the global
impacts of volcanic eruptions.

Keywords: climate network; impact of volcanic eruption; the Hunga Tonga-Hunga Ha’apai (HTHH)
volcano; stratospheric circulation

1. Introduction

An undersea volcano at Hunga Tonga-Hunga Ha’apai (HTHH, 20.54◦ S, 175.38◦ W, as
shown in Figure 1) began eruption on 20 December 2021 and reached a violent climax on
15 January 2022. The eruption intensity, represented by volcanic explosivity index (VEI), is
estimated approximately as a level 5–6 and is one of the largest volcanic activities since the
1991 eruption of Mount Pinatubo [1,2]. It has been reported that about 0.4 million tons of
emissions were sent into the stratosphere by this eruption [3]. Due to its massive eruption,
extensive discussions have been aroused and focused on its climate impacts [4].

Massive volcanic eruptions have significant impacts on weather and climate variabil-
ity [4]. For example, during massive volcanic eruptions, large amounts of emissions are
ejected. Once these emissions enter the stratosphere, they rapidly get distributed around
the globe and influence the radiation balance immediately. As a result, precipitation and
temperature patterns may be influenced on a global scale. Super-powerful eruptions can
even trigger long-lasting climate disruptions and corresponding societal impacts [5–10]. For
example, the 1815 Tambora eruption produced the “year without a summer” in 1816. Since
volcanic eruptions are an important natural cause of changes in climate variability on many
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time scales, a lot of studies have focused on the different impacts of these events. Based
on historical climate records, effects such as decreased temperature [11] and reduction of
the diurnal cycle [12,13] following the large explosive volcanic eruptions are observed.
Together with remote sensing measurements, related chemical and dynamical processes
are studied and simulated in climate models to discuss the long-term responses in the
climate system. By applying numerical modeling methods, phenomena such as suppressed
global water cycle [4,14] and anomalous winter Eurasian warming [4,15] are identified. In
recent studies, the long-term impact of the HTHH eruption on the global mean surface air
temperature is also quantitatively estimated by climate models [16]. Since the ejection of
unprecedented water vapor into the stratosphere is a significant feature of this eruption,
the potential trajectory and long-term impact of ejected water vapor is also the focus of
researchers [17] and is estimated in climate models [18].

45°S

0°

45°N

0° 60°E 120°E 180° 120°W 60°W0°

Location of HTHH
(20.54 S, 175.38 W)

Figure 1. The location of the Hunga Tonga-Hunga Ha’api volcano (HTHH, 20.54◦ S, 175.38◦ W).

Although numerical models can give good predictions about future scenarios under
the background of volcanic eruptions, they usually contain a huge number of coupled
dynamical equations. This makes the models extremely complex and time consuming.
Most importantly, it is inconvenient and impractical in such models to figure out how
climate variables cooperate to respond to the external forcing by volcanic eruptions. In the
process by which a volcanic eruption propagates its emissions and spreads its influence,
it is thus necessary to consider how atmospheric variables in different regions negotiate
in response to the influence. This requires a new perspective, such as climate network, to
analyze the collective behaviors of the atmosphere. However, as far as we know, there is
still lack of the framework required to study the impact of volcanic eruptions from such a
point of view. To fill this gap, we apply the complex networks approach to focus on the
atmospheric correlation patterns, which formed during the massive eruption of the HTHH.

Network theory is a powerful tool used to study and understand the collective behav-
ior of complex systems [19–21]. During the past decades, network theory has demonstrated
its power and potential in the study of a wide range of real-world complex systems for both
nature and society [19,22–27], e.g., the Internet, ecological network, power grid systems,
science collaboration networks, disease spread, etc.

Recently, network theory has also been successfully applied towards the under-
standing of complex climate phenomena [28]. Climate networks are constructed from
spatio-temporal datasets, where the spatial locations are regarded as nodes, and connec-
tions are established between nodes that exhibit significant statistical similarity [29–37].
This way, the climate network becomes a very effective tool to detect significant telecon-
nection patterns and identify critical nodes in the climate system. In particular, it is a very
promising approach used to identify and predict large scale climate phenomena such as
El Niño [36,38,39], the Indian Summer Monsoon [37,40,41], and tropical cyclones [42].

In climate networks, the local and global structural properties of climate phenomena
are characterized by a variety of network measures. For instance, the local clustering
coefficient can be associated with the spatial homogeneity of a rainfall field [43,44]. The
regions of high betweenness centrality can reveal a flow of energy and information that can
be related to transport phenomena such as global surface ocean currents and winds [33,44].
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The degree and clustering coefficients can exhibit signatures for the occurrence of tropical
cyclones and show their tracks [42].

However, as far as we know, the climate network framework has not yet been applied
to measure the impacts of volcanic eruptions. In this study, we apply the climate networks
approach to investigate the impacts of the massive eruption of the HTHH on the atmosphere.
Climate networks that evolve in time during the eruption of the HTHH, are constructed on
a global scale. Network measures such as degree and clustering coefficient are adopted to
characterize the influence of volcanic eruptions on atmospheric variability. Our analyses
show that the cooperative mode of the lower stratosphere atmosphere is exhibited in the
degree field and clustering coefficient field as a response to the eruption of the HTHH.

2. Data and Methodology
2.1. Data

In this study, we use the ERA5 reanalysis temperature data with 3-hourly temporal
resolution at 200 hPa [45] to construct the climate network. Since the massive eruption
began on 20 December 2021 and ended on 15 January 2022, we chose the period spanning
from 15 November 2021 to 15 February 2022 as the focused period. This period starts about
one month ahead of the eruption and ends about one month after the eruption. Considering
that the impact of the eruption may not be localized, we take the region between 45◦ S–45◦

N as the focused area. A spatial (zonal and meridional) resolution of 2◦ × 2◦ is used,
which proves to be sufficient for our analysis and results in N = 46 × 180 = 8280 nodes in
the network.

2.2. Methods

We consider overlapping short time windows and construct the climate network for
each given window. The length of the time window is taken to be 10 days. The climate
network evolves in daily steps, which means that the successive time windows have 9 days
of overlap. The link strength rt

ij between each pair of nodes, i and j for time window t is
measured by the maximum value of the absolute cross-correlation between the two nodes.
The cross-correlation between i and j is defined by

Rt
i,j(τ) =

〈Tt
i (d)T

t
i (d + τ)〉 − 〈Tt

i (d)〉〈Tt
i (d + τ)〉√

〈(Tt
i (d)− 〈Tt

i (d)〉)2〉 ·
√
〈(Tt

i (d + τ)− 〈Tt
i (d + τ)〉)2〉

, (1)

where t indicates the middle date of the time window with 0 day shift, τ ∈ [0, τmax] is the
time lag, with τmax =5 days. Therefore, the link strength rt

i,j is defined as

rt
i,j = max

τ∈[0,τmax ]

∣∣∣Rt
i,j(τ)

∣∣∣. (2)

We use the average of the top 5% thresholds of link strengths for all sliding windows
as rc

rc = 〈rt
c〉, (3)

where rt
c indicates the top 5% threshold of link strengths for the sliding window t. Only

links whose link strengths exceed rc are considered as significant links, and the adjacency
matrix At

ij for each sliding window t is defined as

At
i,j =

{
1, rt

i,j ≥ rc

0, rt
i,j < rc

. (4)

2.3. Network Measures

In this study, the topology of the interaction patterns in the climate network are defined
as network measures such as the degree and clustering coefficient. The degree ki of a node
i in a network is the number of connections attached to it from all other nodes:
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ki =
N

∑
j=1

Ai,j, (5)

where N is the total number of nodes in the network, and Aij is the adjacency matrix.
Regions with higher connectivity have larger values of degree and indicate more interac-
tivity with other regions; while regions of low degree values are isolated and have little
interaction with the surrounding area.

The clustering coefficient is the measure of degree to which nodes in a network tend
to cluster together. The local clustering coefficient [46] of a node i in a network quantifies
how close its neighbors are to being a clique (i.e., the nodes are all connected to each other),
that is, the average probability that a pair of node i’s connected neighbors, j and h, are also
connected. Mathematically, we calculate the number of connected pairs among a node i’s
neighbors, and divide it by the total number of possible pairs between these neighbors,

Ci =

{
∑j,h Ai,j Ai,h Aj,h

ki(ki−1) ki > 1
0 ki ≤ 1

. (6)

The local clustering coefficient, Ci measures the interactive relationship among node
i’s neighbors. If the local clustering coefficient of a node i is high, then its neighbors are
also closely coupled.

The global clustering coefficient C, also known as transitivity [19], measures the
average probability that two neighbors of a node are themselves neighbors for the whole
network. It measures the density of connection triangles in the network and is defined as
the fraction of paths of length two in the network that are closed. This is equivalent to the
number of closed triplets over the total number of triplets. For an undirected network with
an adjacency matrix Aij, the global clustering coefficient is mathematically expressed as

C =
∑i,j,h Ai,j Ai,h Aj,h

∑i ki(ki − 1)
(7)

This global clustering coefficient gives an indication of the clustering in the whole
network. If C = 1, perfect transitivity occurs in the network, i.e., all nodes of the network are
connected. The global clustering coefficient is of interest because a higher C than expected
by chance indicates the formation of structures of high connectivity in a network, e.g., the
presence of tightly-knit groups characterized by a high density of ties in a social network.

3. Results

In the following, we show how the massive volcanic eruption at the HTHH (from
20 December 2021 to 15 January 2022) impacts the atmosphere system by using our network-
based approach. There are two main dominant eruptive activities during this period. The
first dominant one began on 20 December 2021 and ended on 21 December 2021. The
second one began on 13 January 2022 and ended on 15 January 2022. The evolution of the
average temperature around the eruption location at lower stratosphere (200hPa level) and
surface level (2 m) are shown in Figure 2a,b, respectively. The averaged region is centered
at the eruption location (20.54◦ S, 175.38◦ W) and extends from 177.88◦ W to 172.88◦ W
and from 23.04◦ S to 18.04◦ S. The two dominant eruptions’ staring dates are marked by
red dashed lines. We find that local temperature series at the 200 hPa level exhibits a
more significant response to the dominant eruptive events compared to the surface level.
Remarkable declining trends that last for several days are observed after the dominant
eruptive events for the local 200 hPa temperature series (Figure 2a), while for the local
surface temperature series, these responses are not so sensitive as the diurnal cycle plays a
major role. This result is consistent with the fact that a huge amount of volcanic emissions
was blasted into the lower stratosphere, which led to transient cooling due to an increase of
planetary albedo. Due to the higher sensitivity to the volcanic eruptions, the temperature
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field at the 200 hPa level is used to construct the climate network, which can thus better
reveal the volcanic eruptions’ transient impacts on the atmosphere.

Figure 2. The average temperature series at (a) 200 hPa and (b) 2 m around the HTHH. The averaged
region is centered at the eruption location (20.54◦ S, 175.38◦ W) and extends from 177.88◦ W to 172.88◦

W and from 23.04◦ S to 18.04◦ S. The start dates (20 December 2021 and 13 January 2022) of the two
dominant eruptions of the HTHH are highlighted by two dashed vertical red lines.

We first examine how link strength r (before setting the threshold rc) evolves with the
volcanic eruptions. The probability density function (PDF) of link strength r for different
climate networks (with different periods) are presented in Figure 3a. We find that the aver-
age link strength 〈r〉 is higher during the dominant eruption periods (16–25 December 2021
and 9–18 January 2022) than other normal periods, as shown in Figure 3b. Our results
indicate that during the eruption periods of the HTHH, the correlation behaviors between
each pair of nodes become stronger than during normal periods.

In the following, we construct climate networks by setting a fixed threshold rc for all
sliding periods, i.e., if the link strength ri,j > rc, then the nodes i and j are connected by an
edge; otherwise, i and j are disconnected. In this study, the average of the top 5% thresholds
of link strengths for all sliding windows is defined as rc, and the value of rc is 0.765 for the
constructed networks.

For each constructed climate network, we consider the degree and the clustering
coefficient as the measures to analyze the topology and correlation patterns of the networks
and reveal the impacts of the HTHH eruption. Figure 4a,b depict the average degree

〈k(t)〉 = 1
N

N

∑
i=1

ki(t) and global clustering coefficient C(t), Equation (7), as a function of

time, respectively. Here, the time t corresponds to the middle date of each time window.
We observe that both 〈k(t)〉 and C(t) are increasing during the dominant eruption periods
compared to the normal times, which indicates a large-scale cooperative mode—linking the
HTHH and the rest during the volcanic events. The underlying mechanism for the observed
cooperative mode is due to the volcanic eruptions potentially affecting the global/localized
regions through teleconnection/short-range paths.
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Figure 3. (a) The probability density distribution function of link strength r for all climate networks
(with different periods). The distribution for the dominant eruptions of the HTHH are remarked by
red and black solid lines, respectively. The distribution for the other periods are shown in dashed
lines. (b) The average link strength 〈r〉 as a function of time is presented by the blue line. Here, the
start dates of the two dominant eruptions correspond to the middle day of the two periods.

In order to analyze the spatial cooperative pattern of the climate network, we consider
the spatial features of the degree and the local clustering coefficient fields, which can reveal
the cooperation pattern of the temperature filed at the lower stratosphere as a response to
the massive eruption of the HTHH. Figure 5 depicts the evolution of the spatial structure of
the degree fields before (Figure 5a), during (Figure 5b,c), and after (Figure 5d) the eruption
events of the HTHH. Compared with normal periods, we find that the intensity of the
degree fields exhibit an enhanced modality during the eruption periods. In particular, these
enhanced regions are spreading widely over the extratropical region for both hemispheres
and exhibit roughly zonal symmetry (see Figure 5b,c). This corresponds to the downward
transport area of the global mass circulation in the stratosphere. Our results indicate that
the interaction of the nodes in these regions become more enhanced due to the impact of
the volcanic eruption, and we associate the underlying mechanism with the impacts of the
volcanic eruption through global mass circulations.
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Figure 4. (a) The average degree 〈k(t)〉 and (b) the global clustering coefficient C(t) for each evolving
climate network are presented.

In addition, we present the evolution of the local clustering coefficient fields before
(Figure 6a), during (Figure 6b,c), and after (Figure 6d) the eruption events of HTHH.
In similarity, we uncover that the intensity of the local clustering coefficients becomes
prominent almost throughout the entire focused region (45◦ S–45◦ N) during the dominant
eruption periods. The areas with a smaller clustering coefficient (cavity in Figure 6) that are
located near the equator also shrunk remarkably. It indicates that due to the effect of the
volcanic eruptions, the nodes become more coherent. Notably, we find that the density of
the local clustering coefficient in the west side of the HTHH is slightly higher than the east
during the dominant eruption periods. The underlying mechanism may be related to the
constantly westward force in the stratosphere.
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Figure 5. Network degree fields over the period (a) before the eruption, (b) the first dominant
eruption, (c) the second dominant eruption, and (d) after the eruption of HTHH are presented. The
corresponding periods are marked at the top of each subplot. The degree of nodes in the extratropics
increases greatly during the eruption periods, which may be related to the impacts of volcanic
eruption on global mass circulation.
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Figure 6. Network local clustering coefficient fields over the period (a) before eruption, (b) the first
dominant eruption, (c) the second dominant eruption, and (d) after the eruption of the HTHH. The
corresponding periods are marked at the top of each subplot.

4. Discussion

The eruption of the HTHH in early 2022 ejected enormous quantities of ash, volcanic
gases, and water vapor into the stratosphere. According to remote sensing measurements,
about 0.4 million tons of emissions were sent into the stratosphere and propagated rapidly
around the globe. These processes influenced the radiation balance and resulted in changes
in the atmospheric dynamics.

Most previous studies estimated the impact of the HTHH by using climate models.
For example, Zhang et al., used the radiation equilibrium model to give a quantitative
estimation of the decrease in global average temperature [16]. The possible trajectory and
potential climate impact of water vapor are also simulated and estimated [17,18]. Although
numerical models can give good predictions about future scenarios under the background
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of a volcanic eruption, the extremely coupled dynamical equations in these models makes it
difficult to figure out how atmospheric variables in different regions cooperate in response
to the eruption of the HTHH. Since the propagation of volcanic emissions and the spread
of volcanic influence are not a localized isolated process, the dynamic correlation patterns
and its cooperative modes could provide a fresh perspective to understand the impacts of
volcanic eruptions.

In this study, the climate network paradigm is introduced to study the temporal
evolution of lower stratospheric atmosphere conditions in relation to the eruption of the
HTHH. The cooperative mode and interactive patterns are investigated. We found that
the correlation behaviors in the lower stratosphere become much stronger in the eruption
periods of the HTHH. The network structure acts more interactive and transitive than norm
periods. Both mean degree and global clustering coefficients increase significantly during
the dominant eruption periods, and exhibit as indications for the eruption of the HTHH.
The intensity of the degree fields exhibits enhanced modality during the eruption periods.
The enhanced regions spread widely over the extratropical regions for both hemispheres
and exhibit zonal symmetry. The local clustering coefficient become prominent almost
throughout the global scale.

5. Conclusions

The climate networks approach is an effective tool for studying interactive patterns for
climate phenomena [29]. It has been applied successfully to study the impacts of large-scale
extreme climate events such as El Niño, Indian Monsoon, and more [28]. It also has the
potential to study the evolution of weather conditions before, during, and after the outbreak
of extreme events by using evolving climate networks. In this work, we have applied this
approach to study the impact of the massive eruption of the HTHH from 20 December 2021
to 15 January 2022.

Based on the temperature filed over the region between 45◦ S and 45◦ N in the lower
stratosphere, insightful information about collective interaction patterns and underlying
dynamical organization during the eruption period were extracted. We employed sliding
time windows with 10-day to construct evolving climate networks.The sliding windows
shifted successively by 1 day from 15 November 2021 to 15 February 2022, i.e., sliding
day-by-day from the period before the eruption to the end of the eruption.

We found that during the eruption periods, the temperature fields in lower strato-
sphere were more interactive and transitive. Both degree and clustering coefficients in-
creased significantly during the dominant eruption periods. The degree of nodes in the
extratropics increased during the eruption periods, which is closely related to the impacts
of the volcanic eruption on global mass circulation. The local clustering coefficients become
prominent almost throughout the global scale, which indicates that under the influence of
volcanic eruptions, nodes on the global scale tend to be more coherent.

Our approach developed here offers us a deeper insight into the understanding of
the changes in the interactive structure of the lower stratosphere under the influence of
the volcanic eruption. It has the possible potential to detect the eruption events and their
direct impacts.
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