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Abstract

Achieving the goals outlined in the Paris agreement requires significant reduc-
tions in national carbon emissions. To fairly distribute the burden of mitigation, a
detailed understanding of the social realities of emitters is needed.This sector-specific
and sub-regional study was carried out to examine housing energy emissions in the
UK and to obtain detailed information about the socioeconomic profiles of emitters.
To account for the embedded nature of individuals in social groups and the social
context, we applied the conceptual approach of socio-metabolic class theory. This
theory posits that carbon emissions and the level of human agency are unequally
distributed within the society. As a first attempt, the theory is operationalised
using CO, emission quartiles as central units of descriptive analysis. We find sig-
nificant differences between these classes, and particularly in terms of cohabitation
type, home ownership, and social vulnerability factors. Complementary results from
a multivariate regression analysis indicate that the main determinants of housing
carbon emissions are living space, household size, and the use of heating oil. We
conclude by describing the contribution of our findings to socio-metabolic class the-
ory, outlining future directions for research at the intersection of social class and
ecology, and policy implications related to a low-carbon transition.
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1. Introduction

Scenarios that limit global warming to 1.5 °C describe strong transformations of
the energy system, which require the decarbonisation of energy production as well
as a significant reduction in energy consumption. Current research reveals that,
despite population growth, global energy use in 2050 could be reduced to levels
seen in the 1960s 'through drastic changes to contemporary human society and the
global economy’, providing an optimistic outlook [1]. Countries and regions around
the world display large levels of inequality, as do European citizens, both in terms
of their contributions to climate change and their ability to mitigate and adapt.
Reductions in greenhouse gas emissions from high-emitting individuals are needed
to avoid the Planetary Boundary (PB) [2] climate change from being pushed still
further into unprecedented territory. Different emission patterns are directly related
to income [3] and affected by the place of abode, type of occupation, and possessions.
Thus, these patterns are related to social class and status [4]. For instance, the top
ten percent of (consumer) expenditure groups account for more than one-third of
individual global GHG emissions [5]. In the European Union, emissions cuts that
have been made since 1990 have been achieved principally by lower- and middle-
income EU citizens, while the total emissions from the richest ten percent of the
population have actually grown [6].

However, the dominant global human-environment interaction modeling approaches
|7, 8] use world-region and national CO, emission averages; thus, they neglect the
existing classes. In addition, the factors of the inequality and agency of different cit-
izen groups in lowering their CO4 emissions are masked. Agency refers to the ability
of an individual to shape their life circumstances, future choices, and action plans
[4]. Understanding different levels of agency in conjunction with emission hot spots,
where high amounts of human-induced emissions occur, is fundamental to identifying
levers of low-carbon transitions and to deriving effective policy solutions.

The European Green Deal is a set of policy initiatives intended to transform
the EU into a fair and prosperous society with a resource-efficient and competitive
economy that reaches net-zero emissions of greenhouse gases by 2050 [9, 10]. As
a consequence of Brexit, the UK has withdrawn from EU agreements; however, it
is obliged to adhere to the commitments it made under the Paris Agreement and
to develop its own national strategy. The Climate Change Committee, an inde-
pendent non-departmental public body, recommends that the UK demonstrate ’a



world-leading’ level of commitment and has proposed a Sixth Carbon Budget. This
requires a reduction in UK greenhouse gas emissions of 78 percent by 2035 as com-
pared to 1990 and a 63 percent reduction as compared to 2019 [11]. The "Ten Point
Plan for a Green Industrial Revolution"[12] should accelerate movements toward a
net-zero society, placing a focus, inter alia, on greener buildings and green public
transport. These policy plans target diverse areas, ranging from energy production
and supply to households and individual behavior and consumption patterns. In the
UK, Moll et al. [13] estimate that 70 to 80 percent of national energy use is gener-
ated by household activities. Nonetheless, the discourse tends to be dominated by
attempts to green existing structures by using technological innovations rather than
by challenging different realities of life and encouraging people to transform their
lifestyles by reducing their energy and resource consumption.

Previous research carried out in industrialised countries highlights the strong
within-country differences regarding lifestyle COy emissions. For instance, in Ger-
many, the energy consumption in the lowest- and highest-emitting households can
differ by a factor of ten [14]. Inequalities in household emissions, however, are over-
looked by most existing approaches used to model human-environment interactions,
including Integrated Assessment Models (IAMs). These tend to be based on the sim-
plifying assumption that the consumption of natural resources and waste emissions is
evenly distributed across the human population or within specific regions. National
level indicators such as the GDP are applied to represent global inequalities between
countries. A straightforward improvement over the use of national averages would
be to consider household level indicators. However, the inclusion of a large number
of households per country would increase the complexity of such models, challenging
the capacity of modern computers. Furthermore, the interactions among different
households are difficult to model.

Social class theory divides societies based on different attributes into groups to
shed light on constellations of actors with common interests, whereby their interac-
tion may result in societal conflicts (for a most recent application, see [15]). Insights
from class theory could provide a framework of intermediate complexity that allows
researchers to take a more refined approach than that of national averages, but that
is not as complex as the approach of considering each household individually.

In this study, we propose a first step towards an operationalisation of the concept
of ‘socio-metabolic classes‘ by Otto et al. [4] and use it to describe energy and resource
use patterns in the UK housing sector. Furthermore, we analyze determinants of
household carbon emission (heating and electricity). Using a cross-section (wave
9) of the UK ’'Understanding Society’ household panel study, we identified distinct
carbon emission quartiles and associated demographic, socioeconomic, and household



characteristics to obtain ‘household emission profiles. In this study, we asked the
following three questions: Is the method of quartile analysis a suitable method to
operationalise socio-metabolic classes? Can this method be used to derive emission
profiles? What are the drivers of carbon emissions in the housing sector in the UK?

The paper is structured as follows: Section 2 positions this study within the
umbrella framework of the Planetary Boundaries and Earth System Targets. We
review the literature on social metabolism theory, placing an emphasis on research
on strong disparities in individual and household CO, emissions. We then introduce
the theoretical foundation of this work, namely, the socio-metabolic class theory.
In section 3, the ‘Understanding Society’ data set and the methods underlying the
quantitative analysis are introduced. This includes a detailed regression model that
was applied to identify important drivers of household emission, which we address
in section 4. Section 5 introduces the analytical tool of emission quartiles, which we
used to operationalise socio-metabolic classes, as well as household emission profiles.
Finally, section 6 describes the limitations of the methodological procedure and future
research implications as well as the relation of our work to the Planetary Boundaries.

2. Conceptualizing inequalities in human energy use

2.1. Carbon budgets, allocation approaches, equity and fairness

The widely used Planetary Boundaries (PB) framework and its latest reincarn-
ation [16] as the Earth System targets [17] were developed to define a safe (and
just) operating space for humanity [18, 2]. To be operational, however, this must be
’apportioned and assigned to the actor or activity that is being studied (i.e. down-
scaling)’, for example, to the level of 'countries, companies, industry sectors, persons
or products’ [19]. Thus, PBs are translated into fair shares of Earth’s safe operat-
ing space on a national level [20]. This translation increases their applicability and,
therefore, the policy relevance [21]. Equity considerations are included when deriving
national carbon budgets [22], for example, and attempts are made to fairly assign
the remaining resource budgets but without reference to a globally accepted prin-
ciple [21]. Different allocation approaches can be found [23, 24, 25, 26]. Equal per
capita shares (apportioning the remaining permissible carbon budget according to
population) are particularly significant regarding this work [21]. The equal national
per capita allocation of the remaining global carbon budget sets a limit for future
individual emissions, limiting the emissions scope of individuals. In the context of cli-
mate justice and historical emissions, however, 'the developing world should receive
higher per capita emission rights than the developed world (...) which is justified



by the fact that the latter already owns a larger share of benefits associated with
emission generating activities because of its past record of industrialisation’ [27]. In
the EU, per capita CO, emissions should range prospectively between —3.9 and 1.4
t COq/cap/yr based on emission reduction targets of the Paris Agreement [21], in-
cluding negative emissions. This work demonstrates that this boundary is exceeded
by the housing emissions alone in the UK.

However, nations consist of emitting individuals who make different energy and
resource-use decisions to meet their needs. These individuals can be divided into
groups that have competing interests based on their resource-use patterns. Several
studies have pointed out the large current carbon inequalities [3, 28, 29, 5, 30|. The
factors responsible for these inequalities must be clearly understood to resolve them
and to make necessary policy adjustments.

2.2. Distinct emission patterns and socio-metabolic class theory

Distinct CO4 emission patterns are related to lifestyles and frequently associated
with income disparities. An Oxfam study [6] concludes that, in 2015, the richest ten
percent of the population was accountable for more than 50 percent of individual
COy emissions globally. Rich and super-rich households are characterized by ex-
tremely high levels of household emissions, estimated at about 130 tCOy [28|, which
differ greatly from the global average of 4.5 tCOy per capita (in 2018) [31]. In the
EU, the richest 10 percent segment was responsible for over a quarter (27 percent) of
emissions, the same amount as the poorest half of the EU population [29]. Another
study considering sub-national data found that the EU within-country differences in
per capita GHG and land-based biodiversity footprints could reach factors of 3.0 to
3.5 [32], showing fairly smaller, but noteworthy differences. However, the reported
inequality is thus quite low because the regional comparison does not consider suf-
ficiently different relevant aspects like income levels or household types. Although
EU-wide emissions have decreased in recent decades [33] (e.g. due to efficiency gains),
the decrease has only been recorded among poorer citizens [29]|. Importantly, many
national and global assessments that refer to the Planetary Boundaries report that
a good life within the limits of the planet can only be achieved by reducing the affiu-
ence of the rich countries [34, 35|, an action that is evidently aligned with restricting
over-consumption in Northern countries [16, 36].

Previous scientific studies have filtered out high-emitting individuals or house-
holds, analyzing them primarily on the basis of socio-demographic factors such as
income [37, 38, 39, 40, 41, 42, 43, 5|, age, gender, education [37, 39, 44, 45, 46|,
household size [37, 47, 39, 44, 48, 49|, urban rural typology [50, 51, 46, 48, 42, 52|, or
climatic conditions [48, 42, 53, 52|. Recently, the perspective has been widened by in-



vestigating the effects of time-use and urban form [54], health status [55], well-being
[56], happiness [57], and more routine forms of behavior [58, 59].

Above all, the influence of income on housing emissions has been heavily dis-
cussed. On the one hand, the total energy or carbon footprint per capita grows
as a function of income [46, 60]. Especially luxury consumption (energy-intensive
consumption categories) has a high income elasticity [3]. On the other hand, direct
home energy emissions are only weakly correlated with income [61, 39, 62|, which
led Oswald et al. [3]| to the conclusion that housing energy is a basic good that is
income-inelastic.

To understand social processes and conflicts, it is helpful to group individuals of
societies into social classes. Most social differentiation theories apply either the Marx-
ist or the Weberian approach, which differentiate classes on the basis of inequalities
in ownership and income [4]. Schuster and Otto [14] applied Pierre Bourdieu’s cap-
ital theory to identify ecological impacts in terms of per capita emissions. To provide
a theoretical background for our research question, we applied socio-metabolic class
theory described by Otto et al. [4] to disentangle ecological inequalities and respons-
ibilities. In this study, we define classes based on emissions, i.e. on a dimension
of environmental impacts. Social metabolism refers to energy and material flows in
human societies and to how societies exchange energy and materials with the envir-
onment [63, 64]. Individuals and social groups, including households, regions, and
countries, consume energy and materials in highly unequal ways [65|. To reflect these
differences, Otto et al. [4] suggested dividing societies into six socio-metabolic classes
based on individuals’ metabolic profiles, which are related to how they use resources
and energy to maintain their lifestyles, rather than on their wealth, work condition,
or social status [64]. In this paper, the classes are defined as the socio-metabolic un-
derclass, energy-poor class, lower class, middle class, upper class and super-rich class.
Additionally, a level of human agency is assigned to the classes to delineate ways to
reduce their ecological impact. Since the super-rich class is not recorded in the data
set, and the socio-metabolic underclass cannot be expected to be found in industrial-
ised nations, we focused on the remaining four classes. We operationalised these by
assigning households to four emission quartiles. The advantages and limitations of
this approach are described in sections 3.4 and 6. Based on this operationalisation,
we described household emission profiles which summarize the socio-demographic
and housing characteristics of the socio-metabolic classes. In this study, we focused
specifically on the emissions from the housing sector.

Our results lead us to question how much citizens can influence their own emis-
sions or whether the observed differences are due to structural factors. Considering
the previously mentioned fair allocation of the remaining resource budgets and the



goal to reduce the excessive shares that individual consumption contributes to na-
tional emissions, the proposed classification and analysis can help stakeholders to
develop targeted policies.

3. Data and Methods

3.1. UKHLS data set

The UK Household Longitudinal Study (UKHLS) is a large and representative
multi-topic survey that covers a range of social, economic, and behavioral factors
at the individual and household levels in all four UK countries. Both the sample
size and the number of exploitable variables are remarkable, opening up many pos-
sibilities for research - and even more so if housing CO, emissions are added to
the data set, which can easily be done with the open source code provided with
this article (see Code Availability Statement). The present study was designed as
an initial attempt to operationalise socio-metabolic classes. Therefore, we analyzed
commonly studied household characteristics, including locality, demographic charac-
teristics, socio-economic characteristics, and family background of the households. A
recently taken cross-section of the data set, namely, the sampling Wave 9 (2017-19)
with a sample size of 20,047 households was selected. The complex survey design
required the application of the cross-sectional sampling weights provided for UKHLS
to estimate standard errors correctly. Each sample was given a carefully constructed
weighting factor based on its characteristics, ensuring that the weighted statistics of
the data set would be representative of the population at the national level. These
weights must be taken into account for all descriptive and inferential statistics and
when conducting an analysis of a subset of the data (e.g., on all residents of Northern
Ireland).

3.2. Estimating housing CO, emissions based on expenditure data

CO, footprints may be either based on production emissions, which are alloc-
ated to the nation (or household) that produces them, or on consumption emissions,
which are allocated to the entity that consumes a product or service, wherever these
emissions arise along the supply chain in the world [66]. Here, we study emissions
associated with household energy consumption, some of which are directly produced
(burning of heating fuels) and some of which arise elsewhere (electricity consump-
tion).

COg emissions due to energy consumption are not reported directly in the survey;
thus, they must be estimated. Figure 1 outlines our approach for estimating CO,
emissions, which is inspired by Buchs and Schnepf [39] and Buchs et al. [67]. We



Energy prices
(Region, Year, Contract)

Units of energy Conversion factors Carbon emissions

Figure 1: Schematic view of how the CO; emissions were estimated: The household expendit-
ures were divided by specific energy prices to compute how much units of energy were consumed.
These units were multiplied by conversion factors from official sources to obtain the household CO,
emissions.

Energy expenditures

first converted the energy expenditure into units of consumption using price data
for each energy source and for each survey year, government region, and payment
method. The resulting units of energy in kWh for gas and electricity and litres
for oil were subsequently converted into kg CO, of emission by applying an energy
source-specific conversion factor. Applied fuel prices and CO, conversion factors are
provided by the UK’s Department of Energy and Climate Change (DECC)!. Gas
prices for Northern Ireland (NI) are available from the Annual Transparency Report
of Northern Ireland’s Utility Regulator (UREGNI) [68|.

We applied national average conversion factors to transform consumption met-
rics into COq emissions. The approach can be developed further by considering more
energy-related variables that were not available for this study due to data limitations.
These variables could include information about the use of renewable energy, insu-
lation, type of house, and consumption practices or routines [69]. For example, if a
household purchases renewable energy, its electricity-based emissions should be con-
sidered as zero. This is a shortcoming of the data set and will be addressed in parts
in the upcoming sampling wave 10.

One unique aspect of the data set is that electricity and gas expenditure are
combined for households that purchase gas and electricity from the same supplier
(i.e., the "dual-fuel deal"). For these households, a direct conversion of expenditure to
units of consumption was not feasible, since the ratio of electricity to gas expenditure
is unknown. To incorporate these samples into our analysis, we impute the ratio
with predictive mean matching, taking into account the pre-computed electricity-to-

IThese tables give average prices at the national level. Large differences between the exact prices
each household pays are to be expected, depending on the exact contract and energy supplier of
each household, but such information is not included in the data set.



gas ratio of households with separate bills and a range of other variables, such as
the household income and use of heating o0il>. Notably, more than half (=53.9 per
cent) of the studied households used dual fuel; thus, the imputation was carried out
for a large fraction of the data set. A comparison between our analytical results
and the results obtained from a simple mean imputation of the electricity-to-gas
ratio (conditioned on the use of heating oil) did not reveal substantive differences,
indicating that the results are robust with respect to the imputation method. This
outcome is not surprising, because the variance in the electricity-to-gas ratio is small
compared to the variance in the electricity and gas expenditures (cf. Fig. A.4 in the
Appendix). Thus, while individual households may end up with very different total
CO; emissions, the distribution of emissions in the sample population apparently
does not change much?.

UKHLS contains samples with missing variables. Missing information for the
survey year, government region, or payment method of a household made it difficult
to select energy prices from the respective price tables. Therefore, a mean imputa-
tion was applied, substituting the mean prices other households paid in the same
government region, in the same year, or with the same payment method. In total,
the energy prices of 524 households were imputed in that way.

While the original data set is representative for the UK, we restricted our analysis
to a suitable subset for which all required variables were available. It was necessary
to exclude households that had incomplete energy expenditure data or that relied on
other fuels such as wood, was inevitable, since in these cases the CO5 emissions could
not be reliably estimated. Furthermore, we disregarded all households in the top and
bottom half percentiles of the estimated carbon emissions (top 99.5% and bottom
0.5%, respectively) to regularize the data, thereby removing households that had
either no or implausibly large carbon emissions (which may be due to misreporting).

The remaining (survey-weighted) subset contains 15,345 out of 20,047 households
(13,109 out of 16,808 regarding survey weights). Summary statistics for the used
and dropped subsets in comparison to the complete population are found in the
Appendix A.5.

2For detailed information, see the source code. For the imputation the R package mice|70] was
used.

30Omitting these households from the analysis as done in [67] would introduce other types of
inaccuracies, because the groups of households with and without the dual-fuel deal differ significantly
(e.g., with respect to mean household income). For more detailed information about households
with the dual fuel deal, please see Appendix A.3.



3.3. Statistical methods applied

We fitted (generalised) linear models with model-robust, design-based standard
errors using the svyglm function [71]. By assuming a Gaussian error distribution
and an identity link function, this approach corresponds to ordinary least squares
regression for survey data. We cautiously applied a shift and log-transformation to
the variable net monthly household income to consider skewed data. By checking for
multicollinearity by using the variance inflation factor (VIF), we assessed how much
the variance of an estimated regression coefficient increased when the predictors were
correlated [72].

Equivalised income was computed by applying a conversion factor according to a
modified OECD scale. This assigns a weight of 1 to the first adult (person 14 years
of age or older) in the household, a weight of 0.5 to each additional adult, and a
weight of 0.3 to each child (person 0-13 years of age). It is a measure of household
income that takes into account the differences in a household’s size and composition;
thus, it is equivalised or made equivalent for all household sizes and compositions.

Descriptive and inferential statistics at the household level were computed with
the package survey [71] for the programming language R [73|, which takes the com-
plex survey design into account.

3.4. Operationalizing socio-metabolic classes and household emission profiles

Socio-metabolic class theory describes six classes that differ in terms of their COq
emissions and their agency. Of these classes, the underclass is not expected to be
present in post-industrialised countries like the UK, and the super-rich class is not
recorded in the data set. We focused on the remaining four socio-metabolic classes
and operationalised them by assigning households to emission quartiles. The quartile
analysis method [74] is a method used to form four groups for a data set. Between
the minimum and maximum values of the data set, the quartiles divide a set of
observations into four sections, each representing 25% of the observations. Carbon
emission quartiles are based on estimated household energy-use carbon emissions.
These can be understood as clusters of households with similar patterns of resource
and energy use. Thus, our data set is partitioned into four equally sized groups
with increasing emissions, and each group corresponds to a socio-metabolic class.
Figure 2 shows how we operationalised the socio-metabolic classes and outlines some
important attributes of the corresponding emission profiles, which are described in
detail in the following sections. The differences between the middle and higher class
are less pronounced; therefore, we highlight the distinctions between the lower and
top class to emphasize key patterns of CO5 emissions.

10



Emission quartiles operationalization Single households
Unequal House owned outright
contribution to
Top Class

carbon

emissions
Vulnerable groups
Rural areas

l Heating oil usage

super-rich class

3

2 Higher Class
S upper class

§ middle class

£ lower class

E energy-poor class

8 underclass Middle Class

Females & children

Larger household size
Lower Class
Higher qualification
Carbon emissions in kg
Renters or on mortgage

Figure 2: Overview of the research approach: The six socio-metabolic classes with unequal CO4
emissions are operationalised as CO, emission quartiles. Their characteristics can be summarized
in a corresponding emission profile (examples of the lower and top class shown). The quartile range
of emissions that belong to the classes is plotted in the corresponding color.

Frequency

Clustering-based approaches |75, 14] are a practical alternative method that can
be used to capture differences between groups. However, the relative cluster size and
even the number of clusters depends on both the algorithm and the specific data set
these approaches are applied to. Emission-based quartiles are defined regardless of
a specific data set. This ensures that the selected approach taken to operationalise
socio-metabolic classes can easily be transferred between cross-sections of a panel
study and distinct data sets, which may differ in terms of methodology or sampling
region. The approach developed to operationalise these socio-metabolic classes in
this study is a simple initial attempt; limitations of this approach are addressed in
the discussion in Section 6.

We refer to the quartiles as lower, medium, high, and top emission quartiles. The

11



basic group characteristics are described in section 5. These then serve as a basis
for summarizing their main socio-demographic and housing attributes in so-called
"’household emission profiles’, see Section 5.2. To account for the large influence of
household size (number of persons) on household emissions, we defined the emission
quartiles in two different ways, i.e. based on the total household emissions or on
average per capita emissions in a household. The emission profiles resulting from
these competing definitions align for some variables and differ for others, providing
complementary perspectives of the social circumstances of emitters. Whether the
household or the per capita level accounting is preferred depends on the research
question and on normative considerations of equity and justice

3.5. Variables studied as potential determinants of carbon emissions

The explanatory variables for the emission profiles, linear models, and descriptive
statistics were selected on the basis of an extensive literature review. First, we exam-
ine traditional socio-demographic factors of households that have been found to have
an important impact on COy emissions, such as gender and education. We further
investigated household size and composition. Additionally, we included important
determinants in the context of time use, namely, the number of people unemployed
in a household, pensioners, and members with long-standing illnesses or disabilities.
At the second level, we considered housing characteristics, i.e. rented or owned,
region, urban/rural, and heating technology. These determinants are considered to
be significantly associated with carbon emissions in the literature. The inclusion of
other variables linked to heating and electricity would be desirable, e.g. the use of
and access to green energy, but are not provided in the used data set. Prospectively,
the UKHLS data sets will allow researchers to conduct more detailed studies, for
example, by addressing the relationship between carbon footprints and well-being,
climatic conditions, or urban form measures. Such research is enabled by our pre-
liminary work of computing emissions and providing CO, emission data.

3.6. Effect sizes

In Section 5.2 we compute within-quartile proportions of binary outcomes. To
get an account of how much these proportions differ between quartiles, we report the
odds ratio as a measure of effect size. For an outcome occurring with probability p
the odds are defined as »

odds := - (1)
where 1 — p is the probability that the outcome does not occur.

Now assume the outcome is observed for two groups A and B, with probabilities
pa and pp respectively. Then their odds ratio is

12



OR(pa,pp) = % = Pa(l _pB>. (2)
7 2= pp(l —pa)

We use the odds ratio to quantify how much the proportion of cases with a given
attribute within a quartile deviates from the same proportion in the total population.
We choose group A to include all cases within a quartile and group B to include all
other cases in the data set. In Tables 5 and A.6 we report within quartile proportions,
the standard error of the proportions estimate, and the odds ratio as effect size. The
exact definition, of which OR indicates a large effect, depends on the context of the
study and different cutoffs have been proposed in the literature. Sullivan and Feinn
[76] classify OR values of 1.5, 2 and 3 as ‘small’, ‘medium’ and ‘large’ effects (see also
[77]). We follow their convention and employ the following notation: * for OR > 1.5,
t* for OR > 2, ™t for OR > 3 as well as ~ for OR < 2/3, =~ for OR < 1/2 and
~——~ for OR < 1/3. For a more comprehensive discussion of other measures of effect
size, see Ferguson [78| and Lakens [79].

3.7. Multivariate regression analysis

Conducting a multivariate regression analysis enables us to understand associ-
ations between an independent variable and a dependent variable, accounting for the
(linear) influence of other independent variables. To identify differences in emission
patterns, we developed six different linear models (Table 1).

The dependent variable in the models (1) to (3) is household CO5 emissions, which
is the object of interest for socio-metabolic analyses. To assess the carbon footprint of
individual members of the households more precisely, models (4) to (6) are provided,
which use the per capita COs emissions of each household member as the response
variable*. To support these complementary points of view, the models (1) & (4),
(2) & (5) as well as (3) & (6) use the same explanatory variables.

Models (1) & (4) include a large number of predictors that are commonly em-
ployed in the literature or are thought to be relevant regarding the COg emissions.
These are: household net income (log-transformed to account for skewed data), own-
ership status of accommodation, academic qualification of any household member,
government region, and rural setting. We also included the number of persons in the
household (household size) with an additional dummy variable for single households®,

4We computed per capita emissions by dividing household CO, by the number of persons in the
household.

5The dummy variable accounts for a possible nonlinear change in the per capita emissions from
one- to two- or more-person households.

13



Table 1: Regression Results

Dependent variable:

Household COx3 in kg

Per Capita CO2 in kg

(1) (2) (3) (4) (5) (6)
Log Income 479%** 328" 216" 70**
(68) (56) (41) (33)
Accommodation owned outright 180*** 136***
(59) (44)
Owned on mortgage -39 —62
(60) (42)
Shared ownership —288"** —204**
(111) (80)
Rented —76 —96™*
(58) (42)
Academic degree —71* —T75**
(42) (25)
Other higher degree —44 —28
(46) (27)
Upper secondary education —49 —24
(42) (24)
Lower secondary education 103** 54*
(50) (31)
Other qualification 41 6
(58) (42)
No qualification 8 —-21
(50) (40)
North West 142*** 81%**
(46) (29)
Yorkshire and the Humber —23 —26
(48) (30)
East Midlands 90 75"
(65) (40)
West Midlands 116* 59
(61) (37)
East of England —36 —22
(60) (35)
London 66 36
(58) (39)
South East —81 —67""
(50) (32)
South West —259%** —188***
(53) (32)
Wales 34 2
(59) (40)
Scotland 337 151**
(55) (36)
Northern Ireland —361*** —107
(120) (78)
Rural region 80* 50*
(47) (29)
Number of persons 284*** 199*** 221%** —451*** —406*** —401***
(45) (32) (29) (23) (17) (16)
Single household —44 —229%** —333*** 1,024*** 993*** 971%™
(81) (61) (61) (44) (41) (41)
Number of children —58 124%**
(47) (19)
Number of lone parents 233** —15
(114) (45)
Number of couples —-35 —55
(75) (35)
Number of pensioners 35 45**
(39) (21)
Number of unemployed 141*** 7T
(36) (17)
Number of female adults 11 54"
(38) (25)
Number with long-standing illness or disability 7T 58***
(26) (14)
One or more not born in UK —36 —25
(59) (33)
Number of bedrooms 462*** 502%** 529%** 303*** 335%** 340***
(24) (23) (23) (16) (16) (15)
Number of other rooms 288*** 307 330%** 125™** 141*** 145***
(25) (24) (25) (13) (14) (14)
Heating Oil 3,322%%* 3,218%** 3,200"** 1,786** 1,771%* 1,769%**
(143) (119) (120) (89) (75) (76)
Central heating —150*** —105***
(55) (36)
Constant —2,551*** —1,145*** 1,393*** —149 909*** 1,448***
(536) (425) (95) (324) (245) (55)
Observations 15,158 15,336 15,336 15,158 15,336 15,336
R? 0.352 0.333 0.330 0.441 0.423 0.422
adjusted R? 0.339 0.332 0.328 0.429 0.421 0.421

Note:

emissions divided by household size.

*p<0.1; **p<0.05; ***p<0.01
Estimated with OLS with inverse-probability weighting. Design-based standard errors in brackets. The dependent variables
(annual household and per capita CO2 emissions) are estimated from expenditure data. Per capita emissions are household



numbers of children, lone parents, couples, pensioners, unemployed individuals, fe-
male adults, persons with a long-standing illness or disability, migration background
(if a person in the household was born outside of UK), number of bedrooms and
other rooms, and use of heating oil or central heating.

To identify a reduced set of covariates that have (almost) the same explanatory
power, we constructed models (2) & (5) and (3) & (6). In a step-wise process, all
insignificant predictors were first removed from the initial models. Second, further
predictors that only marginally affected the explanatory power of the model as meas-
ured by the adjusted R? value were also removed. This process is illustrated by the
removal of the variable income in the models (3) & (6). The reduced models have
almost the same explanatory power without employing any socio-demographic vari-
ables such as gender, education, or even income which was identified as a driver of
emissions for other sectors in previous studies. According to models (3) & (6), we
conclude that the most important determinants of energy-based carbon emissions
are household size, number of rooms (as a proxy for living space), and the use of
heating oil.

Omitted variable bias occurs when additional predictors, i.e. those that are not
included in a model, influence the outcome variable as well as one or more of the
included predictors. Consequently, their effect may be (mis-)attributed to the in-
cluded variables. To address this issue, models (1) to (3) include many variables
that potentially influence emissions. During the model reduction process, we know-
ingly excluded significant predictors; thus, we introduced some omitted variable bias.
This can be observed with respect to the covariate "single household" in models (1),
(2) and (3). However, between the per capita emission models (4), (5) and (6), the
model coefficients do not vary greatly. This is a necessary condition for the absence of
large bias and supports the interpretation of the remaining predictors in model (6) as
key determinants of housing energy emissions. Below, we provide a clear illustration
of housing CO, emissions.

4. Determinants of energy use-based carbon emissions in the housing sec-
tor

4.1. Wealth, income and house ownership

As described in Chapter 2.2, previous research noted that income can drive carbon
emission [80, 81|. Otto et al. [4] assumed an outstanding emitting class based on high
amounts of wealth, namely, the super-rich. We also tested household net income as an
independent variable and found that housing-based carbon emissions weakly depend
on it in linear models (Section 3.7) and in the defined emission quartiles (Section 5).
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Equivalised income is a measure of household income that takes into account
differences in household composition (see Section 3.3). Its application was motivated
by the observation that households with two or more persons benefit from synergies
like the common use of household equipment or heating (see e.g. [82]). As a result,
those households spend a smaller fraction of their income on some basic goods, such
as heating and electricity. Thus, equivalised income is a more appropriate measure
when comparing how rich in income different households are. In Figure 3, Table 3
and Table 4 net household, per capita and equivalised income are shown.

Sometimes the OECD scale is used to equivalise carbon emissions as well [83].
This would assign a proportionally higher carbon footprint to households with many
members. However, such an increase in accounted emissions would not be consistent
with actual emissions. Since we would like to identify drivers of actual emissions, we
decided against an equivalisation of emissions.

In our data set, households with an equivalised net monthly income above £6,000
emitted on average 5.50t CO,, while households below that limit emitted only 3.94t
COg3. According to official data, these households belong to the top 3 per cent of
earners in the UK (2016/2017) [84]. Compared to other emission sectors such as
mobility, where differences on the order of nearly 20 are to be expected [39, 28], this
gap is small. Like previous researchers, we agree that ’home energy emissions are
more regressively distributed than transport or total emissions’ [39].

Referring to the results in Buchs and Schnepf [39], we investigated the mean
CO4 emission for each income decile 'to compare the proportional change for CO4
emissions and hence to judge whether emissions [...| are more or less responsive
to changes in income’ (Figure 3). At the household level, we used deciles based on
equivalised income and household net income and found a weak, linear trend for
both, indicating that household CO, emissions increase steadily with the income
level (left panel). For per capita COy emissions, the income deciles are based on
equivalised income and per capita income. For the latter, a similar trend as for the
total household CO, emissions could be observed. Interestingly, no such trend is seen
for equivalised income and per capita COy emissions. While the emissions from the
top decile remain markedly above average, all other deciles deviate only slightly from
the average. The bottom equivalised income decile even shows the second highest
per capita emissions. This suggests that the influence of increased financial resources
on per capita emissions for the basic goods of electricity and heating is negligible .

Affluence has multiple dimensions. Therefore, to complement the analysis of in-
come, we studied the relation between house ownership and CO, emissions. Aside
from the variables referring to the household composition, Table 2 shows the mean
values of household and per capita CO, emissions, as well as the equivalised income
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Figure 3: Average household and per capita COs emissions per income deciles. The deciles are
computed with respect to net household, per capita (PC) and equivalised income. The lines are a
linear interpolation of the mean values (circles) per decile. The dotted lines represent the survey
mean.

in households with a different ownership status. Households that own their accom-
modation or live rent-free have significantly higher levels of household emission and
emit on average about one tonne CO, more per year than tenants.

4.2. Household size and composition

When considering household size and per capita emissions, a different picture
emerges. In this case, households who own their accommodation outright have the
highest footprints. At the household level, the average carbon footprint of households
which have a mortgage on their house is similar to those who own their accommod-
ation outright; however, they have considerably smaller per capita footprints, since
their average household size is larger and includes more children. On the other hand,
people who own their accommodations outright are predominantly pensioners who
do not live with children. Our results show that the ownership, future ownership, or
tenancy affects household carbon emissions due to the associated amount of living
space per person. These differences are arguably due to age group-related lifestyle
choices.

CO, emissions caused by additional persons living in a household steadily decrease
as the household size increases. Regression results show that adding an additional
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HH COq PC COq eq. income # persons  # kids # pensioners rooms p.p.

Owned outright 4278 (34) 2639 (24) 1918 (30)  1.85 (0.01) 0.07 (0.01) 1.02 (0.01) 3.15 (0.02)
Owned on mortgage 4292 (38) 1799 (21) 2247 (43)  2.86 (0.02) 0.72 (0.02) 0.10 (0.01) 2.20 (0.02)
Shared ownership 3065 (166) 1559 (120) 1640 (74)  2.47 (0.18) 0.59 (0.11) 0.18 (0.05) 1.76 (0.12)
Rented 3350 (37) 1892 (26) 1427 (15)  2.23 (0.03) 0.57 (0.02) 0.32 (0.01) 2.03 (0.02)

Rent-free 4180 (280) 2601 (231) 1316 (73)  2.12 (0.21) 0.42 (0.11) 0.50 (0.09)  2.63 (0.18)

Table 2: Mean values (standard deviations) of household (HH) and per capita (PC) annual CO2
emissions in kg, equivalised annual household income in £, household size, number of kids, number
of pensioners, and rooms per person with respect to ownership status of accommodation.

household member (above two-person households) generates just 0.2 to 0.3 tonnes
more in emissions, which could be considered as the marginal carbon cost of living
together. An economy-of-scale effect is observed.

On average, single pensioner households emit about half a tonne CO, more
than single-person households, where the individuals are under the pensionable age.
COy emissions also increase when the households contain more people without a
paid job or with longstanding illnesses or disabilities (Table 1). The latter was
also stated by Ivanova and Middlemiss [85] who show that disabled households
have higher consumption patterns than other households in terms of energy use
at home (gas and electricity). Pensioners, unemployed people, and individuals with
illnesses/disabilities are more likely to spend time at home, for example, because they
do not work outside the home. The number of female adults is a (weak but) signific-
ant predictor in per capita regression models, indicating a need for further research
on their daily lives, for example, in relation to care work provided. It would also
be desirable to conduct a more comprehensive footprint analysis to consider energy
use-based emissions outside the home, e.g. at the workplace, to elucidate respons-
ibilities (employer versus employee). Unfortunately, household data are limited to
on-site data; due to the scope of this data set, it was not possible to comprehensively
account for all emissions generated (e.g. at work, while travelling, and during leisure
activities).

4.3. Regional differences and urban-rural typology

Average household and per capita CO4 emissions differ between the 12 regions in
the UK (Table A.7 in the Appendix). For the North West, South West, Scotland,
and Northern Ireland, regression coefficients differ significantly from the average of all
regions. Causes may include distinct available energy infrastructure or the modernity
of areas. Most households in Northern Ireland utilise central heating with oil (68 per
cent) and only 24 per cent use gas [86]. In the UK, only 5 per cent use oil and 85
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per cent use gas (ibid). Our data set analysis reveals that 66 per cent of households
in Northern Ireland utilise heating oil as opposed to only 2.7 per cent of households
in the rest of UK. The strong influence of heating oil on COy emissions is clearly
visible in the corresponding regression coefficient which is by far the largest of any
factor variable. On average, more affluent regions do not necessarily generate higher
emissions. The analysis of the urban and rural settings revealed less than expected.
The regression coefficient for rural settings is only weakly significant (p < 0.1).

5. Emission quartiles and household emission profiles

5.1. Querview of household characteristics in the quartiles

The differences between household carbon emissions in the UK are striking. The
annual average COy emissions for household energy use in our data set are 3.96t
COs, with a minimum of 0.27t CO5 and a maximum of 16.2t CO,. Some households
consume 60 times more than others, concerning only the housing sector, i.e. emissions
generated from heating and electricity.

In this section, we describe the social realities of emitters within the emission
quartiles, based on either the total household emissions or on the average per capita
emissions from a household (cf. Section 3.4). Table 3 and Table 4 display basic
characteristics of households belonging to each of the emission quartiles, namely,
the mean values of household and per capita CO, emissions, net and equivalised
monthly household incomes, household size, number of bedrooms and other rooms
(per household and per person, respectively), and the percentage of single households
and households with oil heating within a quartile. Both household and per capita
CO4 emissions increase from quartile to quartile, reaching a value up to five times
higher in the top quartile than in the lower quartile.

To account for the strong influence of household size, we provide summary stat-
istics for per capita (PC) emission quartiles in Table 4. In particular, household size
increases and the share of single households decreases from quartile to quartile for
the household quartiles. However, for the per capita quartiles, the household size
decreases and the share of single households increases. The opposing trends for these
variables result in striking differences between the top quartiles.

Equivalised income, that adjusts household income to account for the different
financial requirements of different household types [87], displays an increasing trend
for both types of quartiles, but the overall variation is small (~ 30%), and no sig-
nificant difference between the high and top quartiles is detected at the per capita
level.

We used the number of rooms per household and per person, respectively, as
proxies for living space. The strong association between more living space and higher
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COg emissions indicates that a high transformative potential exists in households rich

in living space, regardless of their economic status.

lower middle high top
Household CO9 in kg 1752 (14) 3140 (6) 4192 (7) 6742 (37)
Per capita COz in kg 1350 (15) 1949 (20) 2200 (25) 3038 (36)
Net income in £ 2193 (67) 2540 (33) 3033 (46) 3912 (77)
Equivalised income in £ 1662 (45) 1705 (20) 1830 (27) 2162 (40)
Number of persons 1.65 (0.02) 2.11 (0.03) 2.48 (0.02) 2.87 (0.03)
% of single households  0.61 (0.01) 0.37 (0.01) 0.23 (0.01) 0.15 (0.01)
Number of bedrooms 2.14 (0.02) 2.62 (0.02) 2.97 (0.02) 3.33 (0.02)
Number of other rooms 1.38 (0.01) 1.59 (0.02) 1.84 (0.02) 2.15 (0.02)
% using heating oil 0.0 (0.00) 0.01 (0.00) 0.02 (0.00) 0.13 (0.01)

Table 3: At the household level, household size (persons and rooms) and equivalised net income
naturally increase. The numbers stated as well as in Table 4 are means (standard deviations) of

important variables for emission quartiles.

lower middle high top
Household CO5 in kg 2750 (34) 3726 (34) 4101 (39) 5242 (46)
Per capita CO9 in kg 826 (5) 1487 (4) 2207 (5) 4018 (27)
Per capita income in £ 1141 (33) 1295 (15) 1520 (27) 1701 (26)
Equivalised income in £ 1734 (43) 1809 (20) 1914 (37) 1902 (31)
Number of persons 3.36 (0.04) 2.53 (0.02) 1.87 (0.02) 1.34 (0.01)
% of single households 0.12 (0.01) 0.17 (0.01) 0.36 (0.01) 0.71 (0.01)
Bedrooms per person 0.96 (0.01) 1.23 (0.01) 1.62 (0.01) 2.24 (0.02)
Other rooms per person 0.60 (0.01) 0.77 (0.01) 1.05 (0.01) 1.47 (0.02)
% using heating oil 0.01 (0.00) 0.02 (0.00) 0.03 (0.00) 0.11 (0.01)

Table 4: On the per capita level high emissions are associated with a high proportion of single
households, thus smaller living arrangements but more living space.

5.2. Deriving household emission profiles

To operationalise socio-metabolic classes, we grouped the UK housing sector into
emission quartiles, then derived household emission profiles from these. These pro-
files may inform targeted policy decisions to reduce COy emissions (Figure 2 and
Section 3.4).

Tables 5 (based on per capita emission) and A.6 in the Appendix (based on
household emissions) describe the households belonging to each emission quartile in
detail and how the quartiles differ. The percentage of households belonging to a
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certain quartile is listed for each of the variables previously analyzed as potential
predictors of carbon emissions (cf. Sections 3.5 & 3.7). Quartiles that deviate by
a large margin from the population average are also indicated (cf. Section 3.6).
Ordinal variables, e.g. the number of children in a household, were converted to
binary variables (‘no children’, ‘one or more children’). Continuous variables could
not be transformed in this way; hence, we report their mean values per quartile in
tables 5 and A.6. Large differences were observed for many variables between the
quartiles based on the household and per capita emissions.

By jointly examining the attributes with high (or low) prevalence in a given
quartile, either with respect to absolute shares or to their relative deviation from
the population mean, we arrived at an understanding of the social circumstances
associated with carbon emissions. Our findings for the top and lower per capita
emission quartiles are reported below.

For the top quartile, a higher-than-average probability exists that household
members have no professional qualifications and that they do not include female
adults or members born outside the UK. Households in the top quartile frequently
have one or more household member who is unemployed or pensioned. The average
household size is small, and most (71 per cent) are single households. In addition,
these households are unlikely to include children; the proportion with children (2.9
per cent) is much lower than the population mean (nearly 24.5 per cent). Fur-
thermore, the members own their accommodation outright more frequently than on
average and are less likely to rent or to hold a mortgage. In fact, the households
with the highest emissions are more than two times more likely to include members
that own their accommodations than rent them. In addition, households in the top
quartile are more likely to be found in rural areas or in Northern Ireland. At el-
even per cent, the use of heating oil is much more prevalent in the top quartile than
in the entire population. These households have slightly higher equivalised income,
although the overall variation of equivalised income between per capita quartiles is
small.

We find the opposite results in the lower emission group, and Table 5 provides a
detailed overview. These households are less likely to include pensioners or unem-
ployed people but are more likely to include at least one female adult and at least
one household member with a professional qualification. The average household size
is large (3.36); only a few of these households are single households, and more than
half of them include children. As many as 85 per cent either hold a mortgage or rent
their accommodation, and less than one per cent utilise heating oil.

These household properties should be seen as an initial attempt at deriving house-
hold emission profiles from consumption data. The insights gained increase our
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understanding of the characteristics of emitting groups and how they can be distin-
guished.
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Per Capita Quartiles lower middle high top

Academic degree  35.7 (1.0) 34.5 (1.0) 28.6 (0.9) 25.1 (0.9)
Other higher degree 15.6 (0.8) 15.0 (0.7) 13.8 (0.7) 14.0 (0.7)
Upper secondary education  22.5 (0.9) 21.5 (0.9) 19.9 (0.8) 16.2 (0.8)
Lower secondary education 15.0 (0.8) 15.2 (0.7) 16.5 (0.8) 16.6 (0.8)
Other qualification 4.5 (0.5)™~ 6.5 (0.5) 8.5 (0.6) 11.4 (0.7)*
No qualification 4.3 (0.5)~~ 5.5 (0.5~ 122 (0.7) 16.4 (0.8)**
Missing ‘qualification‘ 2.3 (0.3)"" 1.8 (0.3)*" 0.5 (0.1)~"~ 03 (0.1)~—
One or more persons not born in UK 14.2 (0.7)" 11.1 (0.7) 7.2 (0.5) 5.5 (0.4)~~
Single household 11.9 (0.8)"~~ 16.8 (0.9)"~~ 36.3 (1.0) 71.0 (0.9)t++
No female adults 10.1 (0.7)~~ 13.3 (0.8)~ 20.8 (0.9) 30.2 (1.0)*F
One or more children  56.2 (1.0)™++  28.7 (1.0) 10.1 (0.6)"=~ 2.9 (0.3)"
One or more lone parents  10.9 (0.7)™* 8.1 (0.6)" 3.9 (0.4)~ 1.6 (0.3)"—~
One or more couples  72.0 (1.0)**  66.3 (1.1)" 52.9 (1.0) 24.1 (0.8)"—~
One or more unemployed 48.5 (1.1)~ 54.0 (1.1) 64.7 (1.0) 67.7 (1.0)*
One or more pensioners 14.4 (0.7)"~~ 29.5 (0.9)~ 47.7 (1.0)* 55.8 (1.1)*
One or more with long-standing illness  48.5 (1.1) 53.8 (1.1) 56.9 (1.0) 56.8 (1.1)
or disability
Accommodation owned outright 13.9 (0.6)=~~  30.6 (0.9) 45.9 (1.0)* 52.0 (1.1)*+
Owned on mortgage 39.8 (1.0)* 33.6 (0.9) 23.5 (0.8) 19.1 (0.8)~~
Shared ownership 1.1 (0.2)" 1.4 (0.3)*+ 0.4 (0.1)~~ 0.4 (0.1)~~
Rented 44.8 (1.1)*  33.7 (L.1) 29.6 (1.0) 27.6 (1.0)
Rent free 0.4 (0.1)~ 0.7 (0.2) 0.6 (0.1) 0.9 (0.2)F
Rural area  16.2 (0.8) 18.7 (0.9) 20.6 (0.9) 27.1 (1.0)*
North East 5.1 (0.4) 4.4 (0.4) 4.6 (0.4) 5.1 (0.4)
North West  10.1 (0.7) 11.6 (0.7) 12.6 (0.7) 12.4 (0.8)
Yorkshire and the Humber 9.5 (0.6) 10.0 (0.7) 9.6 (0.7) 8.2 (0.6)
East Midlands 7.2 (0.6) 7.7 (0.5) 7.2 (0.5) 8.0 (0.6)
West Midlands 8.6 (0.6) 9.0 (0.6) 8.3 (0.6) 8.6 (0.6)
East of England  10.5 (0.7) 9.6 (0.7) 9.3 (0.6) 9.1 (0.6)
London 13.7 (0.8)*  10.2 (0.7) 9.7 (0.7) 8.0 (0.6)
South East 13.7 (0.8) 13.6 (0.7) 13.1 (0.7) 13.2 (0.7)
South West 9.8 (0.6) 8.4 (0.6) 8.5 (0.5) 7.0 (0.5)
Wales 3.8 (0.3) 4.8 (0.3) 5.0 (0.4) 5.3 (0.4)
Scotland 6.6 (0.5)~ 8.9 (0.6) 9.8 (0.6) 10.4 (0.6)
Northern Ireland 1.2 (0.2)~~ 1.7 (0.2)~ 2.2 (0.2) 4.5 (0.3)*T
Heating oil 0.7 (0.1)~~~ 1.8 (0.3)™~ 3.4 (0.3) 10.9 (0.6)*
Central heating  11.7 (0.7) 9.9 (0.6) 9.1 (0.6) 9.0 (0.6)

Table 5: Estimated mean (and standard error) of household and housing related attributes within
per capita emission quartiles and the total population (pop.). As a measure of effect size an odds
ratio of 1.5, 2 and 3 is designated with ¥, ** and *** and an odds ratio of 2/3, 1/2 and 1/3 is
designated with =, =~ and ~~~ (cf. Section 3.6).
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6. Discussion and Conclusion

This study was carried out to increase our understanding of the social context
of CO4 emitters in the UK housing sector. A comprehensive multivariate regression
analysis was performed, and oil heating, living space, and household size were iden-
tified as the main drivers of housing CO, emissions. Income and house ownership,
which are indicators of wealth, are significant predictors in the regression models;
however, their explanatory power is small. Thus, our findings match results of pre-
vious studies which conclude that housing energy is a basic good that is inelastic to
income [39, 61, 62, 3.

As a starting point for further research, we operationalised the concept of socio-
metabolic classes by conducting a quartile analysis of COy emissions. The average
per capita emissions from households in the lowest and highest quartiles differ by a
factor of five, underlining stark within-country carbon inequalities which have been
emphasized by previous authors [6]. We identified socio-demographic characteristics
of the classes which can be summarized as distinct emission profiles: Households
in the top emission quartile are more likely to be single households, the members
generally own their accommodation, and a higher than average share of these house-
holds includes individuals who belong to vulnerable groups, e.g. pensioners or people
with disabilities or illnesses. Like Wiedenhofer et al. [54], our findings highlight the
need to further investigate time-use patterns and the social realities of high-need
households [67, 55]. However, large data gaps exist that impair more exact assess-
ments. As an example, if we examine only household emissions, neglecting emissions
from the work place, we find that unemployed persons have much larger CO4 foot-
prints. In addition, more data are needed to conduct more detailed analyses by
including enhanced energy-related variables (e.g. the use of renewable energy), data
for super-rich households, or emissions that occur in other sectors like mobility or
consumption.

Limitations of the operationalisation of socio-metabolic classes. To operationalise
the socio-metabolic class theory, we initially chose a method that could be easily
applied to data sets of diverse range (e.g. varied sectors of emissions) and origin
(e.g. different countries/regions). However, the approach taken in this study differs
from the theoretical basis. Otto et al. [4] defined socio-metabolic classes dually
on the basis of agency and carbon emissions, and increasing trends for both were
found. This study operationalised the theory on the basis of carbon emissions only,
i.e. without measuring and incorporating the level of human agency; thus, in this
context, further methodological development is needed. If agency is treated as a
dependent variable that emerges due to certain socio-demographic characteristics of
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the emission groups, our findings do not provide a clear picture of its distribution.
On the one hand, house owners, who are typically wealthier and thus have more
agency, are most abundant in the top emitting class. On the other hand, people
who are unemployed, pensioned, have a longstanding illnesses or disability, or do
not have a professional qualification are more commonly found in the top quartile as
well. These groups can be perceived as more vulnerable and as having a lower level
of agency. This result leads us to ask whether it is possible to assign a particular
agency level to the emission groups at all. Our results shift the question from who
emits the most’ to 'who needs the most’, changing the narrative to actual needs and
the energy required to support a decent life [88|.

Our operationalisation was based on emissions in the housing sector rather than
total emissions due to the lack of comprehensive consumption information. Finally,
we applied a nation-wide perspective instead of a global one due to the need to
downscale the Planetary Boundaries framework to national scales.

Future research directions. The UKHLS is a panel study that allows us to observe
trends over periods of years, i.e. to study the effects of social, political, or envir-
onmental changes on emission patterns and profiles. In this study, we focused on
one yearly cross-section of the data to obtain a detailed understanding of emissions
profiles at one point in time. We assume that socio-metabolic classes are mostly
stable over time and exist regardless of the individuals that compose them. If and
how they change could be studied by leveraging the longitudinal aspect of the data
set.

With regard to the decarbonisation of the energy system, the term ’carbon tun-
nel vision’ [89] was coined recently, drawing attention towards the environmental
impacts of oil and gas extraction. In a similar vein, to avoid tunnel vision regarding
environmental inequalities, the scope of socio-metabolic classes might be broadened
by incorporating further ecological markers related to the Planetary Boundaries, e.g.
a phosphorus, nitrogen, or water footprint.

Additionally, looking beyond the social-metabolic class theory, other ways of con-
ceptualising social class may help determine how carbon emissions are embedded in
social constellations. For example, Lindner et al. [90] operationalised Reckwitz’s
class theory [15], which diagnoses a split middle class in post-industrial societies.
The authors measured the ecological impact of those classes and provided import-
ant insights into the effects of economic and cultural capital on emission patterns.
However, the long-term goal of operationalising socio-metabolic classes is to improve
Earth System Modeling [4], which combines world-region and national CO5 emission
averages with a more complex and realistic picture of emission patterns and social
differentiation within nations. Our study contributes to our understanding of en-
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vironmental inequalities; therefore, the findings may improve our ability to model
distinct emission patterns.

Planetary Boundaries and policy implications. Regarding the guiding framework,
our methods and results contribute to the application of the Planetary Boundaries,
the just-Earth System Targets, and the related downscaling attempts in two ways:
First, by focusing on a (historically) strongly emitting country, i.e. the UK, and
its national contribution to increasing GHG emissions and, second, by revealing
excessive COy emissions from a majority of households in only one sector, as well as
remarkable inequalities within the country that significantly complicate compliance
with the planetary boundary on climate change [18].

Our findings contribute to our understanding of emission inequalities and the
variables driving these differences, supporting the design of more targeted policy
interventions. For households to reduce their emissions, we consider the following
options as valuable: Switch to renewable energy providers, reduce the size of liv-
ing space, and invest in more energy-efficient technological equipment. The latter
is certainly easier for high-income households, especially when they own their ac-
commodation, as they have more financial resources and planning security. Ivanova
et al. [91] estimated the mitigation potentials of retrofitting and renovations as hav-
ing medians of 1.6 and 0.9 tCO, per capita, revealing high potentials to reduce CO,
emissions. Regarding the living space, Cohen [92] stated that the globally ’sustain-
able’ amount of living space per person in a ’safe and just’ corridor may only be
14 to 20 sqm. In the UK, Foye [93] found that moving to a larger accommodation
had no positive impact on subjective well-being. Please note that emissions in other
sectors (transportation and secondary consumption) are constituted differently (see
[3]). Nevertheless, our work shows that subtle aspects of the sectors require sector-
specific political sensitivity. For example, Owen and Barrett [62] also addressed this
issue by analysing how the low-carbon policy could be implemented differently in the
UK to prevent low-income households from having to pay disproportionately higher
costs.

We complement the fact that "our house is on fire" stated by Greta Thunberg
(World Economic Forum 2019 in Davos, Switzerland), and propose an approach that
allows researchers to disentangle emissions generated within our societies to specific
social groups, lifestyles, and infrastructures. We analysed emissions from the housing
sector, but similar research could also be carried out in other sectors, including the
transportation, food and non-food consumption sectors, if data were available.
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Appendix A.
Appendiz A.1. Total household emission-based quartiles

Household Quartiles lower middle high top pop.
Academic degree 27.1 (1.0) 28.0 (0.9) 30.5 (0.9) 38.2 (0.9)" 31.0
Other higher degree  11.8 (0.7) 150 (0.7)  16.0 (0.7)  15.6 (0.7)
Upper secondary education 18.3 (0.8) 20.6 (0.9) 22.4 (0.8) 18.8 (0.8) 20.0
Lower secondary education 17.0 (0.9) 16.2 (0.7) 15.4 (0.8) 14.8 (0.7)
Other qualification  10.5 (0.7)" 8.0 (0.6) 7.1 (0.6) 5.4 (0.5)~ 7.7
No qualification  14.2 (0.8)™ 10.8 (0.7) 7.4 (0.5) 6.1 (0.5)~ 9.6
Missing ‘qualification’ 1.1 (0.3) 1.4 (0.3) 1.2(0.2)  1.1(02)
One or more persons not born in UK 8.7 (0.6) 8.9 (0.6) 9.0 (0.5) 11.4 (0.6) .
Single household  60.6 (1.1)"**  36.9 (1.0) 23.2(0.9)- 153 (0.7)"~— 34.0
No female adults  30.7 (1.1)""  19.7 (0.8) 13.0 (0.7)~ 11.0 (0.6)~—  18.6
One or more children 13.9 (0.7)~~ 22.9 (0.9) 28.2 (0.9) 32.9 (0.9)" 24.5
One or more lone parents 4.5 (0.5)~ 6.9 (0.6) 6.4 (0.5) 6.7 (0.6)
One or more couples 29.8 (0.9)"~~ 49.5 (1.1) 63.7 (1.0)T 722 (0.9)Tt  53.8
One or more unemployed 54.3 (1.1) 58.5 (1.0) 59.0 (1.0) 63.0 (0.9)
One or more pensioners 36.5 (1.1) 38.8 (1.0) 36.5 (1.0) 35.6 (0.9) 36.8
One or more with long-standing illness  53.1 (1.1) 53.8 (1.1) 54.4 (1.0) 54.7 (1.0)
or disability
Accommodation owned outright 25.1 (0.9)~ 36.5 (0.9) 40.4 (1.0) 40.6 (0.9)
Owned on mortgage 21.5 (0.9)~ 27.2 (0.9) 31.7 (0.9) 35.6 (0.9)" 29.0
Shared ownership 1.3 (0.3)" 1.0 (0.2) 0.7 (0.2) 0.2 (0.1)=—— 0.8 (0.1
Rented 515 (L.1)*+  34.7 (1.0) 26.7 (1.0)~  22.8 (0.9
Rent free 0.6 (0.2) 0.6 (0.2) 0.5 (0.1) 0.9 (0.2)
Rural area 159 (0.8)"  18.0 (0.9)  20.2 (0.9)  28.6 (0.9)*  20.7
North East 5.0 (0.5) 5.1 (0.5) 54 (0.5) 3.7 (0.4)
North West 9.8 (0.7) 12.3 (0.7) 13.2 (0.7)  11.4 (0.6) 11.7
Yorkshire and the Humber 9.1 (0.7) 9.9 (0.6) 10.6 (0.7) 7.6 (0.5)
East Midlands 6.0 (0.5) 7.9 (0.6) 88 (0.6) 7.5 (0.5)
West Midlands 7.3 (0.6) 8.4 (0.6) 9.9 (0.6) 9.0 (0.6)
East of England 9.9 (0.7) 8.9 (0.5) 9.2 (0.6) 10,5 (0.7) 9.6
London 14.0 (0.9)* 9.2 (0.7) 8.7 (0.7) 9.7 (0.6)
South East 14.8 (0.8) 13.6 (0.7) 12.1 (0.7)  13.1(0.7) 13.4
South West  10.2 (0.7) 9.1 (0.6) 75(05) 7.0 (0.5) .
Wales 4.0 (0.3) 5.0 (0.3) 46 (0.4)  5.2(0.4)
Scotland 8.6 (0.6) 9.4 (0.6) 81(0.5) 9.7 (0.6)
Northern Ireland 1.2 (0.2)"~ 1.2 (0.1)"~  1.7(0.2)~ 5.4 (0.3)++F 24
Heating oil 0.4 (0.1)~=~ 0.8 (0.1)~=— 2.1 (0.3)~~ 13.4 (0.6)*** 4.2
Central heating 11.0 (0.7) 9.3 (0.6) 9.7 (0.6) 9.7 (0.5)

Table A.6: Estimated mean (and standard error) of household and housing related attributes within
household emission quartiles and the total population (pop.). As a measure of effect size an odds
ratio of 1.5, 2 and 3 is designated with ¥, ** and *** and an odds ratio of 2/3, 1/2 and 1/3 is
designated with =, =~ and ~~~ (cf. Section 3.6).



Appendiz A.2. Regional differences

HH CO2 in kg PC COs in kg income in £ % oil heating

North East 3665 (83) 2126 (57) 1563.18 (32.54)  1.07 (0.44
North West 3999 (56) 2179 (44) 1748.85 (30.59)  0.91 (0.25
Yorkshire and the Humber 3728 (58) 2018 (40) 1654.97 (37.34)  1.00 (0.30
East Midlands 4058 (72) 2166 (51) 1750.00 (36.42)  2.30 (0.59
West Midlands 4084 (72) 2116 (47) 1770.08 (46.74)  2.05 (0.40
East of England 4047 (84) 2115 (53) 1881.18 (54.27)  5.98 (0.72
London 3740 (75) 1939 (46) 2231.56 (75.81)  0.02 (0.02

South East 3900 (64) 2113 (40) 2101.38 (89.36)  2.64 (0.54
South West 3717 (71) 1962 (39) 1837.54 (42.89)  4.40 (0.79
Wales 4079 (76) 2254 (51) 1662.58 (32.33) 5.9 (1.12
Scotland 4034 (74) 2290 (46) 1730.26 (33.12)  4.59 (0.77
Northern Ireland 5667 (120) 3194 (96) 1522.81 (40.24)  65.84 (2.32

Table A.7: Mean values (standard deviations) of household (HH) and per capita (PC) annual CO2
emissions in kg, equivalised annual household income in £, and utilisation of heating oil for each
government region.

Appendiz A.3. Detailed information about households with the dual fuel deal

Table A.8 summarises relevant variables for households with the dual fuel deal or
with separate bills for gas and electricity. For the imputation, only the further subset
of households that reported expenditures for both electricity and gas was used.

eq. income # pax # kids # bedrooms % oil heating
Separate Bills 1705 (33)  2.25 (0.03) 0.44 (0.02) 2.68 (0.02) 2.36 (0.21)
Dual Fuel 1988 (20) 2.37 (0.02) 0.44 (0.01) 2.99 (0.01) 0.20 (0.05)

Table A.8: Comparison of relevant characteristics of households with and without dual fuel deal,
excluding households using ‘other fuels’.

The mean equivalised monthly household income is £1840, but households that
pay for their gas and electricity with one bill have higher average incomes (£1988)
than those who pay for these with separate bills (£1705). In the UK, accepting a
dual fuel deal, i.e. purchasing gas and electricity from the same supplier, results
in cheaper energy bills in many cases [101]|. It appears, therefore, as though poorer
households pay higher prices than their richer counterparts. This could be related to a
time factor or information constraints in low-income households. In addition, poorer
households pay higher energy prices, because they use more expensive methods of



payment. In the data set, the electricity and gas prices for households in the bottom
and top income deciles differ by approximately two per cent, since poorer households
are less likely to use direct debit payment.5

Appendiz A.4. Ratio of electricity to gas expenditure
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Figure A.4: Histogram of the ratio of electricity expenditure to combined gas and electricity ex-
penditures for households with separate bills. These are the data used for the imputation.

Appendiz A.5. Summary statistics of subset used for analysis

Summary statistics for some of the most important determinants of household
energy carbon emissions for the subset used as compared to the dropped households
(Table A.9). Most notably, the subset we used for the analysis differs from the
complete data set regarding the use of heating oil. Since oil heating typically gener-
ates high carbon emissions, we may have underestimated the mean emissions for the
whole population, and in particular for the top emitting quartile, to some degree.
Since the total number of households using heating oil in the whole population is
rather low (6.55 %), however, we expected the overall deviations to be small. All

61f only households with split bills are considered, for which non-imputed consumption data are
available, the difference between the top and bottom deciles increases to almost four per cent.



other differences observed for the studied variables are small. Hence, the reduced
data set may be considered as highly valuable for analysis. The pre-processing steps
can be reproduced with the publicly available source code.

eq. income # pax # bedrooms % oil heating
Dropout 1955 (28)  2.25 (0.03) 2.98 (0.03)  15.04 (0.61)
Used Subset 1840 (18)  2.28 (0.01) 2.77 (0.01)  4.18 (0.19)
Complete Survey 1865 (15)  2.27 (0.01) 2.81 (0.01)  6.55 (0.21)

Table A.9: Mean (standard deviation) of important variables for the subset of dropped households,
the subset of used households, and the whole data set.



