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• We review the main mathematical models present in the literature that aim at explaining the origin and emergence
of urban scaling.

• We identify similarities and connections between these models.
• The models treated in this paper explains urban scaling from different premises: from gravity ideas, passing

through densification ideas and cites’ geometry, to a hierarchical organization and socio-network properties.
• Regarding the gravity idea, we propose a general framework that includes all gravity models analyzed as

particular cases.
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A B S T R A C T
The quest for a theory of cities that could offer a quantitative and systematic approach to
managing cities represents a top priority. If such a theory is feasible, then its formulation must
be in a mathematical way. As a contribution to organizing the mathematical ideas that deal
with such a systematic way of understanding urban phenomena, we review the main theoretical
models present in the literature that aim at explaining the origin and emergence of urban scaling.
We intend to present the models, identify similarities and connections between them, and find
situations in which different models lead to the same output. In addition, we report situations
where some ideas initially introduced in a particular model can also be introduced in another
one, generating more diversification and increasing the scope of the original works. The models
treated in this paper explain urban scaling from different premises, i.e. from gravity ideas,
densification and cites’ geometry to a hierarchical organization and social network properties.
We also investigate scenarios in which these different fundamental ideas could be interpreted
as similar – where the similarity is likely but not obvious. Furthermore, concerning the gravity
model, we propose a general framework that includes all analyzed models as particular cases.
We conclude the paper by discussing perspectives of this field and how future research designs
and schools of thought can build on the ideas treated here.
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Figure 1: Log-log plot of the gross domestic product (GDP) as a function of population 𝑁 , for USA and Brazilian cities
(blue and green, respectively). The solid lines represent regressions to the points and reveal power law properties. Both
countries have similar scaling exponents 𝛽 > 1 (super-linear) despite the socio-economic differences between these two
countries. The dashed lines indicate linearity (𝛽 = 1) and serve as guides to the eye.

1. Introduction
For the first time in human history, the urbanised population surpasses the rural population, and United Nations

estimate that until 2050 more than 70% of the people around the world will live in cities1. To deal with all the problems
that come with this urban intensification, like extreme density, traffic, infrastructure saturation, it is urgent to develop
a quantitative theory in order to understand the urban phenomena and to govern our cities systematically [1, 2]. This
theory will involve an interdisciplinary effort and could better predict scenarios to be explored by decision-makers
and suggest new observations about the cities’ growth and their organisation [3]. This theory, if successful, can point
out where the data is missing and what we need to measure to obtain a deeper understanding of this phenomenon.
Besides, if we expect this theory gives a quantitative description of cities, it must be formulated mathematically. With
the purpose of providing a perspective, we organize and present mathematical ideas that aim at understanding cities
systematically, concentrating on one aspect that is central to the new science of cities [3]: urban scaling.

Urban scaling analysis proposes that some quantity, say 𝑌 , grows free-of-scale and non-linearly with the population
size 𝑁 of a city, following the form

𝑌 = 𝑌0𝑁
𝛽 , (1)

where 𝑌0 is a constant and 𝛽 is the scaling exponent [4]. To a great extent, empirical evidence reveals three distinct
scaling regimes.

Variables related to socio-economic activities (e.g. GDP, Patents, AIDS cases) scale in a super-linear manner with
the population size (𝛽 > 1). Empirical evidence for economically and culturally different countries and also for different
urban metrics suggest a numerical value of the scaling exponent around 𝛽 = 1.15 for socio-economic variables [4, 5]. It
means the per-capita quantity of these socio-economic variables tends to increase with the size of a city – the so-called
increasing returns to scale [6]. Fig. (1) presents an example of super-linear scaling of the GDP with the city population

1https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
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size. Typically, one large city generates more wealth than two cities of half the size together. We can intuitively say
that the bigger the city is, the more wealth it generates [7, 8].

On the other hand, variables associated with basic individual services (e.g. number of houses, water consumption)
scale linearly with city population (𝛽 = 1). And infrastructure-related variables (e.g. electrical cables, number of gas
stations) scale in a sub-linear manner (𝛽 < 1). Empirical evidence suggests a numerical value of the scaling exponent
around 𝛽 = 0.85 for infrastructure variables [4, 9, 5]. This means that bigger cities demand less infrastructure per-capita
[10], which allows to say that: bigger cities do more with less [7, 8]. There is also evidence for some kind of constraint
on the numerical value of the scaling exponents, such that these super- and sub-linear exponents add up to ≈ 2 [11, 12].

A special form of urban scaling is the scaling relation between city area and population
𝐴 ∼ 𝑁𝛽FA . (2)

It takes a fundamental role because both – area size 𝐴 and population size 𝑁 – are measures of city size. As such,
it relates to population density which is also an important characteristic of cities [13, 14, e.g.]. Therefore, we call it
“fundamental allometry” [15]. Early results go back to [16] and [17], reporting 𝛽FA ≃ 3∕4 and 𝛽FA ≃ 2∕3, respectively.
There is a set of papers empirically analyzing the fundamental allometry and [18] collected the exponents estimated
in many such studies. Mostly 𝛽FA < 1 is reported, i.e. large cities exhibit higher population density. Plotting 𝛽FA as
a function of the year, a gradual shift can be seen [15, Fig.3], which is likely due to altering city definitions over the
years. The topic gained new interest in the context of archaeology [19, 20, e.g.]. In a recent study, it was reported that
18 out of 38 countries (47 %) support 𝛽FA = 5∕6 while for 17 out of 38 the scaling is indistinguishable from linearity
[21].

Batty [3, p.41] argues, following [17], that in cities also the third dimension is being used, i.e. population in space
𝑁 ∼ 𝑟3, where 𝑟 is the length scale. The area size of the city is in a plane, i.e. 𝐴 ∼ 𝑟2. Eliminating 𝑟 we obtain
𝐴 ∼ 𝑁2∕3, corresponding to 𝛽FA = 2∕3. Coffey [22, footnote 7] even argues that 𝛽FA = 2∕3 represents the isometric
reference value. Of course this is a very simple consideration and in particular, the vertical dimension is very different
from the horizontal ones. But it indicates that we can expect 𝛽FA < 1 and higher densities (population per area) in large
cities.

But why does urban scaling emerge at all? This paper tries to answer this question and focuses on works explaining
non-linear urban scaling by some sort of model that goes beyond empirical characterization. Many (but not all) of the
models discussed here are built on the idea that urban scaling results from a multiplicative combination of population,
density, geometry, and hierarchical organization that enhance or disfavour the interaction between people. The premise
is that interaction, and consequently the exchange of knowledge, generates ideas that result in innovation, economic
growth, increasing returns, and economies of scale. In some models, the geometrical and network properties of the
cities also play an essential role to explain the observed scaling laws, given that human interactions depend strongly
on the city’s spatial structure. Natural factors, such as rugged relief or the presence of physical barriers (mountains,
rivers, lakes, etc.), promote or intensify the isolation of certain parts of the city. In addition, artificial factors, e.g. the
geometry of the street networks or the city’s shape, should also affect such human interactions.

We are aware that an enormous number of papers have been dedicated to presenting empirical and theoretical
evidence about urban scaling in the last few years. Of course, it will not be possible to organize in a single paper all
the results and ideas contained in those works. We opt to present only models that explain or derive urban scaling
properties as an emergent phenomenon, giving special attention to those that derive it mathematically.

With the purpose of gaining insights from relating and comparing the models, we present them in a more
straightforward manner than in the original publications. The intention is to focus only on what is strictly essential
to explain urban scaling quantitatively. Some models are rewritten using a different notation from the original to get
homogenization and coherence among the models. Most of the models’ mathematical deductions are presented in a
self-contained manner in this paper. However, in some cases, we opt to omit very extensive mathematical passages to
preserve the text’s dynamic and flux.

The paper also aims at synergies by relating all those models. That is, what emerges from the interconnection
between different models to explain urban scaling? Is it possible to see some common properties in different
approaches? In which direction could future research develop? Also, writing the models in a standard notation allows
us to identify what hypotheses and results they have in common. Therefore, we organize the models in a taxonomy,
identifying groups of models that share the same fundamental ideas, as organized in Figs. (2) and (3), and Tab. 1. For
instance, we find that a set of models differs only in how the interactions between people are estimated, i.e. how the

Fabiano L. Ribeiro and Diego Rybski: Preprint submitted to Elsevier Page 4 of 48
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Figure 2: Taxonomy of models explaining socio-economic urban scaling. Whether processes take place within or between
cities is the first distinguishing factor. Most models are based on required human interactions within cities.Only a small
number of models are based on inter-city processes.

probability of interaction is derived. In the case of models based on gravity processes, this organization allows us to
formulate a general framework with these models as particular cases.

The models that are presented here are divided into two categories: intra- and inter-city models. The intra-city
models, which can be found in Sec. (I), refer to models that consider only city internal factors to explain the scaling
laws. In these models, the interaction between people, and how geometry and the city spatial distribution affect it, is the
main component to explain the laws of scales. We also propose general formulations from which some models could
be derived as particular cases. In this category, all gravity models represent special cases of a general formalization.

The second category is about inter-city models, and it can be found in Sec. II. They consider the exchange of
some kind of information between cities to explain the scaling laws. Not all of the models are based on derivations
as a backbone and not all lead to the emergence of urban scaling, but they have been included to better represent
the somewhat less developed group of inter-city models. The main mechanisms this category of models proposed to
explain the scaling laws are: Zipf’s law, hierarchical organization, and interaction among people of different cities.

We conclude with a discussion of perspectives for future research. Without anticipating too much of Sec. 7, we see a
clear need for more sophisticated inter-city models – and ultimately for unification with their intra-city counterpart. At
the same time, there is a strong presence of gravity models and, while being well linked to urban scaling, the connection
to other gravity contexts, such as population flows or morphological growth, remains unknown territory. These and
further perspectives are discussed in more detail at the end of the paper.

Fabiano L. Ribeiro and Diego Rybski: Preprint submitted to Elsevier Page 5 of 48
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Figure 3: Taxonomy of models explaining fundamental allometry and infrastructure urban scaling.

Part I

Intra-city models
In the last years, we have seen a large number of works that consider (with empirical justifications) that urban variables
are dependent on the population size 𝑁 , without the necessity of incorporating other variables or even information
from neighbouring cities. Indeed, the main idea behind it is that the outcome of an urban variable is a consequence
of only the city’s internal processes. However, we know that cities are in constant interaction with each other, and the
dependence of urban variables solely on the city size may be a manifestation of a successful first-order approximation.
This section is dedicated to presenting the ideas of the mathematical models that explain urban scaling and deriving
an interpretation for the scaling exponent, using only endogenous factors.

2. Required Human interaction
Most publications on the topic consider human interaction as the primary mechanism to explain the origin of

urban scaling. This fact obviously reflects in a larger space dedicated to this approach in the paper in hand. We begin
the description by introducing some quantities common to the models that belong to this category. In addition, we
present which properties a model based on interaction must have to be compatible with the empirical data.
2.1. General framework of human interaction models

Consider that the city is composed of 𝑁 individuals (population size of the city) that live in an area 𝐴 of the
considered city. When two individuals meet in the city they generate ideas that correspond to a quantity 𝑔 of socio-
economic activity. For instance, 𝑔 could represent the number of patents, the amount of wealth, etc., that this encounter
contributes to. If each individual, say 𝑖, meets with 𝑘𝑖 persons, then the total wealth generated by these meetings is
𝑔 ⋅ 𝑘𝑖. The number 𝑘𝑖 can represent, depending on the model and without loss of generality, the number of contacts
(friends, colleagues, or random encounters) of this individual, or the number of interactions that he/she has in a specific
period of time, or even the node degree in a complex network.

What distinguishes the models presented below, is the way they propose to compute/determine the average number
of contacts of the individuals, and consequently the production of socio-economic wealth generated by these contacts.
The considered models essentially obey the following description. The city-wide total outcome 𝑌 of a specific socio-
economic variable can be understood as the sum of all individual socio-economic output. In turn, the individual socio-
economic production, namely 𝑦, is the result of the socio-economic output generated by a single interaction, multiplied
by the total number of interactions of each individual, 𝑦 = 𝑔 ⋅ 𝑘𝑖. This idea is summarized in the diagram presented in
Fig. (4) and yields the relation

𝑌 = 𝑔𝑁2𝑛𝑐 , (3)

Fabiano L. Ribeiro and Diego Rybski: Preprint submitted to Elsevier Page 6 of 48
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Figure 4: Diagram illustrating the models that consider urban scaling as a result of knowledge exchange via human
interactions. The idea is that the total outcome 𝑌 of a specific socio-economic variable can be understood as the sum of
all individual socio-economic outputs of the city, that is 𝑌 = 𝑁𝑦. In turn, the individual socio-economic production 𝑦 is the
result of the socio-economic output generated by a single interaction (𝑔), multiplied by the total number of interactions of
each individual (𝑘𝑖). This idea yields the relation 𝑌 = 𝑔𝑁⟨𝑘𝑖⟩ = 𝑔𝑁2𝑛𝑐 , where 𝑛𝑐 , the average density of contacts, is what
defines the models.

where
𝑛𝑐 ≡ ⟨𝑘𝑖⟩∕𝑁 (4)

is the average density of contacts, also related to the probability of interaction. Essentially, the models differ in the way
the authors propose to estimate this density.

If we consider that 𝑔 is scale-independent (i.e. 𝑔 ∼ 𝑁0, as suggested by [11]), one obtains
𝑌 ∼ 𝑁2𝑛𝑐 . (5)

This means we are looking for 𝑛𝑐 that leads from Eq. (5) to the empirical evidence

𝑌 ∼ 𝑁𝛽super , (6)
where 𝛽super ≡ 1.15 is (approximately) the empirical value of the socio-economic scaling exponent. Equaling Eqs. (5)
and (6), implies that the average density of contacts must follow the power-law

𝑛𝑐 ∼ 𝑁𝛽super−2 (7)
in order to be compatible with the empirical findings.

Let us also use 𝛽sub ≡ 0.85 to represent (approximately) the empirical value of the infrastructure scaling exponent.
As it was suggested in [11, 12], there is some kind of complementarity between these two scaling exponents that can
be expressed by the constraint

𝛽super + 𝛽sub = 2 . (8)
It suggests that the exponent in Eq. (7) is, in fact, 𝛽sub, which allows us to write

𝑛𝑐 ∼ 𝑁−𝛽sub . (9)
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This consideration is speculative at this point, but the following sections will provide some justification. The
expressions Eqs. (7) and (9) represent a “rule of thumb” that the models based on interactions need to comply when
quantitatively explaining scaling laws. The take-home message here is that the density of contacts and consequently
the probability of interaction of any proposed model based on interaction must result in Eqs. (7) and (9) in order to be
empirically consistent.

Table 1 summarizes the models that will be presented in the next sections, organizing their main mechanism, as
well as the scaling exponents predicted by them. Specific to the models based on interaction, all of them consist of
computing the average number of contacts of the people; and this quantity, in turn, will depend on the parameters used
in each model. The following sections are dedicated to presenting these mathematical models in more detail.
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Kind of
model

model  model
mechanism 

nc=⟨ k i ⟩ /N  Interaction
Probability

βsubb βsuper βFA  obs. Urban
Variable

Human
Interaction

Bettencourt
(2013)

 travel cost proportional
to the soc.-econ. output

  c∼ y

nc=a/An pintt∝nc D f+1/2

Df+1
2−

(D f+1/2)
Df+1

Df

D f+1
-

Urbanized area,
infrastructure
network, and

socio-economic
activities

Human
Interaction

 Yang et al.
(2019)

 It is necessary q
partners to do a socio-

economic activity 
- - - 1+q

Δ log ⟨k i ⟩

Δ log (N )
-

 similar to other  models
when  q=1 

socio-economic
activities

Gravity
model

Ribeiro et al.
(2017) 

- interaction among
indiv. decay with the

distance;
- city as a fractal

structure 

nc∼N
−

γ
D p pintt(r)∼

1
r γ - 2−

γ

D p
- ⟨ k i⟩=c1 N

1−
γ
D p+c2

socio-economic
activities

Gravity
model

 Actrativess
model

Yakubo et al.
(2014)  

Actractivess of the indiv.
is power-law distributed nc∼N

−
m(α−1)+η

Dp pintt(r)∼
1

rm(α−1) - 2−
m
D p

(α−1)+
η
D p

-
When one considers the average

degree is scaling invariant, then the

model predicts Eq. (51) 

socio-economic
activities

Gravity
model

Social Network
Arbesman et al.

(2009) 

Population in a  tree-
shaped social network

nc∼N−ϕ+λ
 pintt(d)∼b−ϕd

-
  2−ϕ+λ

- -
socio-economic

activities

Gravity
model

Amenities
distribution 
Ribeiro et al.

(2017)

People buy products
 in closer amenities - f (rik)∼

1
r ik
γ

γ

Dp
- - - amenities

Gravity
model Pan e al. (2013)

Rank model and
population uniformly

distributed

nc∼1
pintt(r)∼

1

r 2 - - -
Conducts to 

Y∼N ln(N)
socio-economic

activities

Human
Interaction

and
Infrastructure

network

Molinero and
Thurner (2019) 

Relation between 
population distribution
and   street newtwork 

nc∼N
−

Dinfra

D p

p intt(r )∼
1

rDinfra

D infra

D p

2−
D infra

D p

- ⟨ k i⟩∼N
1−

Dinfra

D p

Urban
Infrastructure
and  socio-
economic
activities

Infrastructure
network

Bettencourt
(2013)

Hierarchical
infrastructure network

properties
- - α - -

α is a constant related to the
way the width of the hyper-

roads changes from one
hierarchical level to the next.

Infrastructure
network Area

Infrastructure
network

Louf and
Barthelemy
(2013/2014)

   Traffic congestion and
city’s activity centres - -

μ
2μ+1

+
1
2

μ

2μ+1
+1 2μ

2μ+1

μ: resilience of the transport
network to congestion

City's Area and
activity centres

number

Required
Factors

Gomez-Lievano
et al.  (2016) 

urban socio-economic
phenomenon occurs when a

number of necessary
complementary factors are

available in the city.

- - - 1+Mbq -
It is necessary that the probability
that a given factor be provided by

the city be logarithmically
dependent on the population size

socio-economic
activities

Extreme
Values

Gomez-Lievano
et al.  (2021) 

Selection process acting on
independent randon variables

- - - σ
√2 ln N

- Superlinear scaling only 
for small N

socio-economic
activities

Inter-Urban
process

Pumain et al.
(2006)

Hierarchical diffusion
process of innovations 

- - - - - - socio-economic
activities

Inter-Urban
process

Gomez-Lievano
et al.  (2012) 

  urban scaling and   
city size distributions

- - α
αY

α
αY

- predicted β only
represents an upper limit 

Infrastructure and
socio-economic

activities

Inter-urban
process

H.Ribeiro et al.
(2021)  

country-wide urban
scaling     and city size

distributions

- - - Eq. (157) - - socio-economic
activities

Human
Interaction

Altmann et al.
(2020)  

Tokens are randomly  
assigned to the people    - - - - -

This model introduce ideas
about integrating  intra- and

inter-city aspects 

socio-economic
activities

Table 1
Overview of the main features of models that explain the non-linear urban scaling. This table also presents each model’s
mechanisms and their predicted scaling exponents.

2.2. Bettencourt model – human interaction as cross section
Probably the most influential model proposed to explain the origin of urban scaling is the one by Bettencourt

[11]. The model shares similarities with the concept of the cross section as used in physics. It considers that each
individual moves throughout the city prescribing, with an interaction radius 𝑙0, a trajectory of length 𝑙. It implies that
this individual accesses in his/her trajectory an area 𝑎 = 𝑙0 ⋅ 𝑙 of the city.
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The density of contacts can be considered to be the ratio

𝑛𝑐 =
Area accessible to the individual

Area of the city = 𝑎
𝐴

. (10)

Using Eq. (5) and keeping in mind that the area accessible 𝑎 is an intrinsic property of individuals, and therefore
scale-independent (𝑎 ∼ 𝑁0), one obtains the relation

𝑌 ∼ 𝑁2

𝐴
. (11)

Before continuing, lets to focus initially on the fundamental allometry (𝐴 as a function of 𝑁). To do that,
Bettencourt assumes that each individual has a cost 𝑐 to move around in the city, which is proportional to the transversal
length 𝐿 of the city, that is 𝑐 ∼ 𝐿. Then the total transport cost of the city is 𝑇 = 𝑁𝑐 ∼ 𝑁𝐿. Considering that area
is a fractal structure with dimension 𝐷𝑓 , and therefore it scales with the transversal length as 𝐴 ∼ 𝐿𝐷𝑓 , then the total
transport cost can be written as

𝑇 ∼ 𝑁𝐴
1

𝐷𝑓 . (12)
Bettencourt also explores the hypothesis that the individual socio-economic production 𝑦 must be sufficient for

each person to travel through the city. That is, 𝑦 must be sufficient to pay the transportation cost, which means 𝑦 ∼ 𝑐,
ensuring a territorial unity of the city. As a consequence of this hypothesis, and of 𝑦 = 𝑌 ∕𝑁 , one has 𝑇 ∼ 𝑌 . This
result, together with Eqs. (11) and (12), yields

𝐴 ∼ 𝑁
𝐷𝑓

𝐷𝑓+1 , (13)
and consequently, one has the fundamental allometry (FA) scaling exponent

𝛽FA =
𝐷𝑓

𝐷𝑓 + 1
, (14)

revealing a sub-linear regime between area and city population, as supported by empirical evidence [23], where the
city fractal dimension determines the scaling.

As a next step, Bettencourt also used those ideas to find the scaling (𝛽sub) of the infrastructure network area,
namely 𝐴𝑛. To do this, he suggests considering the average distance between individuals, namely 𝜆, and the density of
individuals, say 𝜌. These two quantities are related to each other via 𝜌 = 𝑁∕𝐴 = 1∕𝜆2, which means that, on average,
we have one single individual inside a square of size 𝜆. It implies that 𝜆 =

√

𝐴∕𝑁 , and given the result (13), we obtain

𝜆 ∼ 𝑁
− 1

2(𝐷𝑓+1) , (15)
and

𝜌 ∼ 𝑁
1

𝐷𝑓+1 . (16)
That is, the average distance between individuals decreases with the increase in city size. In other words, bigger cities
are denser than smaller ones, as empirical studies suggest [23, 24].

Finally, one can write that 𝐴𝑛 ∼ 𝑁 ⋅ 𝜆 (given that 𝜆 is a kind of infrastructure per capita), and consequently, from
Eq. (15),

𝐴𝑛 ∼ 𝑁
𝐷𝑓+ 1

2
𝐷𝑓+1 , (17)
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implying in a smaller than 1 scaling exponent

𝛽sub =
𝐷𝑓 + 1

2
𝐷𝑓 + 1

(18)

for the infrastructure network area. The particular case 𝐷𝑓 = 2 leads to 𝛽sub = 5∕6 ≈ 0.83, very close to the empirical
value.

In relation to the socio-economic scaling (𝛽super), it can be determined by Eq. (11) and the fundamental
allometry (13), that implies

𝑌 ∼ 𝑁
2−

(

𝐷𝑓
𝐷𝑓+1

)

. (19)
That is

𝛽super = 2 −
( 𝐷𝑓

𝐷𝑓 + 1

)

, (20)

which shows that the socio-economic scaling exponent is greater than 1 (super-linear) and is governed by the city’s
fractal dimension. However, for this result to be compatible with the empirical finds 𝛽super ≈ 7∕6 ≈ 1.16, it is necessary
that 𝐷𝑓 = 5, which obviously is incompatible. Bettencourt, in order to solve this problem, proposes that Eq. (11) must
be written in terms of the infrastructure network area, that is

𝑌 ∼ 𝑁2

𝐴𝑛
. (21)

It means the density of contacts (𝑛𝑐) depends on the ratio between the area accessible to an individual and the
infrastructure network area: 𝑛𝑐 = 𝑎∕𝐴𝑛. Then, from Eq. (17), one gets

𝑌 ∼ 𝑁
2−

(

𝐷𝑓+1∕2
𝐷𝑓+1

)

(22)
leading to an alternative value for the scaling:

𝛽super = 2 −
(𝐷𝑓 + 1∕2

𝐷𝑓 + 1

)

. (23)

Note that if 𝐷𝑓 = 2 then 𝛽super = 7∕6, which is the empirical value [4, 5]. For more components and details about this
model and further development, we refer to [11, 25, 26, 27].

In conclusion, the result Eqs. (18) and (22) shows that Bettencourt’s considerations predict the empirical scaling
exponents quantitatively. This is remarkable, given that the model is based on rather specific hypotheses. For instance,
the model considers only the area as an infra-structure variable and does not take into account the number of amenities,
that also scales sub-linearly with the population size [28, 9, 12]. In addition, buildings are not taken into account by
the model, which would expand the interaction range from a two-dimensional area to a three-dimensional volume. The
following models shed some light on this discussion.
2.3. Yang et al. model – required collaboration

Yang et al. [29] explain super-linear scaling as the result of the likelihood of finding the required collaboration in
the city, necessary for an undertaking. Consider that the development of a certain prototype requires 𝑞 + 1 experts.
The case 𝑞 = 0 means that one single person can accomplish all the processes necessary for such activity. In the other
mathematical models presented here, as the Bettencourt model discussed in the last section and the gravity models
presented in the next, the activity and the productivity (that we call 𝑔) demand two persons, that is 𝑞 = 1.
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The authors introduce 𝑝𝑞
(

𝑘𝑖
) as the probability that an individual 𝑖 finds all 𝑞 collaborators required for an

undertaking, among 𝑘𝑖 contacts. The socio-economic production is then given by
𝑌 ∼ 𝑁𝑝𝑞

(

⟨𝑘𝑖⟩
)

. (24)
where ⟨𝑘𝑖⟩ is the average number of unique contacts for a person living in the city. They show that 𝑝𝑞

(

⟨𝑘𝑖⟩
)

∼ ⟨𝑘𝑖⟩𝑞and consequently
𝑌 ∼ 𝑁⟨𝑘𝑖⟩

𝑞 . (25)
Let us first define

Δ log(𝑁) ≡ log𝑁 − log𝑁 ′ , (26)
where 𝑁 and 𝑁 ′ are the populations of two different cities. The same definition can be applied to Δ log(𝑌 ) and
Δ log⟨𝑘𝑖⟩ in an analogous way. With this definition and given that 𝑌 = 𝑌0𝑁

𝛽super , where 𝑌0 is a constant (the intercept),
one gets

Δ log(𝑌 ) ≡ log 𝑌 − log 𝑌 ′ (27)
= 𝛽super log𝑁 + log 𝑌0 − 𝛽super log𝑁 ′ − log 𝑌0 ,

and consequently

𝛽super =
Δ log(𝑌 )
Δ log(𝑁)

. (28)

Returning to Eq. (25), applying the logarithm, and using the definition above yields
Δ log 𝑌 ∼ Δ log𝑁 + 𝑞Δ log⟨𝑘𝑖⟩ , (29)

in which dividing all the terms by Δ log𝑁 and identifying Eq. (28), one obtains the following expression for the scaling
exponent

𝛽super ∼ 1 + 𝑞
Δ log⟨𝑘𝑖⟩
Δ log𝑁

. (30)

Some implications can be inferred from this result. First of all, a necessary condition for super-linear scaling is that
the number of contacts is greater in larger cities, that is Δ log⟨𝑘𝑖⟩

Δ log𝑁 ≥ 0, which is supported by empirical data [30]. The
second necessary condition for the super-linearity is that more than 1 person is necessary (that is 𝑞 > 0) to implement
the undertaking. In this sense, an undertaking that can be done alone (𝑞 = 0) generates a liner scaling (𝛽super ∼ 1)
which falls into the category of individual needs variables. Eq. (30) also implies that if one does not need connections
to realize something, the aggregate volume of this activity will scale linearly, without increasing returns to scale. In
this sense, increasing returns can be attributed to enterprises that exceed 𝑞 = 0. In contrast, Eq. (30) suggests that
urban outputs requiring more participants should lead to more pronounced super-linear scaling.
2.4. Gravity Models

This section presents a set of models that explain urban scaling laws using the idea that the interaction between
any pair of individuals within a city decays with the distance separating them – similar to the Newtonian gravity of
two massive bodies. For a review of the application of gravity ideas in urban phenomena see [31, 32, 33, 34]. Before
presenting these models in more detail, let’s define some quantities and introduce some concepts that are common to
them.

First of all, we denote 𝑑𝑁(𝐫) as the number of people inside a hyper-volume element 𝑑𝐫 embedded in a 𝐷
dimensional space. For instance, this hyper-volume element is an area if 𝐷 = 2; or a volume if 𝐷 = 3. Moreover,
𝐫 is a vector directed from one particular individual, say 𝑖, to the individuals that are in the hyper-volume element 𝑑𝐫.
The vector 𝐫 can be interpreted in two ways, (i) as position vector in 𝐷 dimensions, and consequently its modulus
is the Euclidean distance 𝑟, conform illustrated in Fig. (5); or (ii) as a non-Euclidean distance that separates any two
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Figure 5: Illustration of the particular case that the vector 𝐫 represents the Euclidean distance between the individual 𝑖 and
the hyper-volume element 𝑑𝐫 (as used in the context of gravity models). All individuals inside this hyper-volume element
(𝑑𝐫) are at distance 𝑟 = |𝐫| from 𝑖. The population (of the entire city) is completely embedded in the hyper-volume 𝑉𝐷.

individuals inside a complex network. With the definition of theses quantities, one can compute, for instance, the total
number of individuals in the city as 𝑁 = ∫ 𝑑𝑁(𝐫)𝑑𝐫 or the density of individuals at 𝐫 as 𝜌(𝐫) = 𝑑𝑁(𝐫)∕𝑑𝐫, which
characterize how the population arranges itself in space.

The gravity idea enters when we consider the probability, say 𝑝int(𝐫), of the 𝑖-th individual interacting with – or to
be a contact of – someone who is at 𝐫. Then 𝑝int(𝐫)𝑑𝑁(𝐫) is the (average) number of contacts that this individual has
in 𝐫, and consequently the total number of contacts of this individual, say 𝑘𝑖, will be given by the integral

𝑘𝑖 = ∫ 𝑝int(𝐫)𝑑𝑁(𝐫) = ∫ 𝑝int(𝐫)𝜌(𝐫)𝑑𝐫 , (31)
where the integral cover all the space, that is, the hyper-volume 𝑉𝐷 where the city is embedded (see Fig. (5)).

Moreover, let’s denote 𝑔(𝐫) as the socio-economic production generated by the interaction between 𝑖 and another
individual located at 𝐫. It is plausible to assume that the interaction between two more distant individuals can
be more productive than the interaction between closer individuals (“The strength of weak ties” [35, 36, 37]),
since distant individuals are exposed to different experiences. With these considerations, it makes sense to interpret
𝑝int(𝐫)𝑑𝑁(𝐫)⋅𝑔(𝐫) as the socio-economic production generated by the interaction between 𝑖 and all the other individuals
at 𝐫. Then the total socio-economic production of this individual is

𝑦𝑖 = ∫ 𝑝int(𝐫)𝜌(𝐫)𝑔(𝐫)𝑑𝐫 . (32)
Finally, the total socio-economic production of the city, that is 𝑌 = 𝑁𝑦𝑖, can be written as

𝑌 = 𝑁 ∫ 𝑝int(𝐫)𝜌(𝐫)𝑔(𝐫)𝑑𝐫 . (33)
This is the generic formulation of the models based on the gravity idea. What differentiates these models is the way
the authors propose to define:

1. the metric associated with the vector 𝐫;
2. the probability of interaction 𝑝int(𝐫) and its dependence (decay) with 𝐫;
3. the spatial distribution of the population, characterized by 𝜌(𝐫);
4. and the socio-economic production 𝑔(𝐫) generated per encounter/contact.
In the following, we present the gravity models, from the simplest version to more complex ones. Table 1

summarizes the main findings of these models.
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2.4.1. F.Ribeiro et al. model – simple gravity
The model studied by Ribeiro et al. [12] considers that the probability of interaction between two individuals decays

with the Euclidean distance 𝑟 that separates them according to a power-law

𝑝int(𝑟) =
1
𝑟𝛾

, (34)

where 𝛾 , the decay exponent, is a parameter of the model which measures the interaction range. Some empirical
evidence that support the hypothesis Eq. (34) can be found in [38, 39, 40].

The model also considers that the population space distribution forms a fractal structure with fractal dimension
𝐷𝑝 embedded in a hyper-volume with Euclidean dimension 𝐷 (holding 𝐷𝑝 ≤ 𝐷). This assumption allows writing the
density of individuals at 𝐫 as

𝜌(𝐫) = number of individuals
hyper-volume = 𝜌0

𝑟𝐷𝑝

𝑟𝐷
= 𝜌0𝑟

𝐷𝑝−𝐷 , (35)

where 𝜌0 is a constant. Finally, they consider that all interactions have the same socio-economic production, that is
𝑔(𝐫) = const . (36)

Combining all assumptions [Eqs. (34), (35) and (36)], the total socio-economic production of the city can be
determined by solving the integral Eq. (33). This can be done by transforming the integration element from Cartesian
to hyperspherical coordinates, that is using

𝑑𝐫 = 𝑟𝐷−1𝑑𝑟𝑑Ω , (37)
where 𝑑Ω is the solid-angle, which leads to

𝑌 = 𝑐1𝑁
2− 𝛾

𝐷𝑝 + 𝑐2𝑁 , (38)
where 𝑐1 and 𝑐2 are constants. A similar calculus using polar coordinates is presented in [41]. Using similar ideas one
can calculate the average number of contacts using Eq. (31), which yields ⟨𝑘𝑖⟩ = 𝑐1𝑁

1− 𝛾
𝐷𝑝 + 𝑐2, and the density of

contacts using Eq. (4), which yields 𝑛𝑐 ∼ 𝑁
− 𝛾

𝐷𝑝 .
This result allows the following interpretation. The case 𝛾 > 𝐷𝑝 characterizes a short-range interaction regime

where the linear term in Eq. (38) dominates for sufficiently large 𝑁 ; that is, the system converges to 𝑌 ∼ 𝑁 , i.e. a
linear relation between urban metrics and population. The case 𝛾 < 𝐷𝑝 characterizes a long-range interaction regime
where the non-linear term in Eq. (38) dominates for sufficiently large 𝑁 . That is, the system behaves in a super-linear
way, characterized by 𝑌 ∼ 𝑁

2− 𝛾
𝐷𝑝 . This means when there are long-range interactions between the individuals, then

the super-linear scaling exponent emerges, and is given by
𝛽super = 2 −

𝛾
𝐷𝑝

. (39)

This result also suggests that the scaling exponent is determined by the ratio of two geometrical parameters, the decay
exponent and the population fractal dimension. Some recent works [42, 43] applied the same approach adopted here to
study tumour growth, reaching similar results. It allows some kind of analogy between urban systems and the dynamics
of cancer cells.

According to this model, the super-linearity of the socioeconomic variables, expressed by Eq. (39), is a consequence
of the integrity of the city, in the sense that the super-linear behaviour of the socio-economic activity should only
appear when there are interactions within the entire city (long-range regime). Otherwise, if the city is formed by
isolated regions (short-range regime), the number of interactions and consequently the socio-economic metrics will
depend linearly on the population size, without increasing returns to scale. It is interesting to note that this result is in
accordance with an argument used by Bettencourt (see Sec. 2.2), namely that the per-capita socio-economic production
must be sufficient to pay the transportation cost (𝑦 ∼ 𝑐), ensuring a territorial unity of the city. Remarkably, two different
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approaches use the same argument to explain urban scaling, i.e. the interconnection between the parts that constitute
the city.

In addition, the result Eq. (39) also allows us to conclude that the smaller the 𝛾 , that is, the larger the access of the
people to more distant parts of the city, the more pronounced is the socio-economic scaling. That is, the larger the region
of people’s access, e.g. due to an efficient transport system, the better the city’s socio-economic metrics and the more
pronounced are the increasing return to scale2. Obviously, an efficient transport system only represents a necessary
condition to increasing return to scale. Further conditions – as the presence of influential people integrating distant
parts of the city or the interaction between socially distant people – are discussed in the following sections (other gravity
models). The decay exponent 𝛾 rather represents a compound value of the influence of distance [44, 45]. This leads to
the question about the role of information and communication technology (ICT). With the establishment of the Internet
and e.g. video conference systems, physical vis-à-vis meetings might become less important, which would reduce the
influence of the distance [45, 46]. However, the temporal evolution of 𝛾 remains to be proven empirically. With the
following models and the introduction of further concepts, we present some insights and possible interpretations for
this parameter 𝛾 once it is only an arbitrary parameter at this point.
2.4.2. Yakubo et al. model of individual attractiveness

Yakubo et al. [47, 48] consider an additional ingredient in the gravity approach, namely that people exhibit different
attractiveness to one another depending on how influential an individual is. To model this aspect, the authors consider a
set of random variables {𝑥𝑖}𝑖=1..𝑁 , each one associated with a given individual and following a power-law distribution
(a pdf)

𝑠(𝑥) ∼ 𝑥−𝛼 , (40)
where 𝛼 is a parameter of the model. The higher the value of 𝑥 the more attractive the individual is.

Any two individuals, say 𝑖 and 𝑗, are connected to each other if
𝑥𝑖𝑥𝑗
𝑟𝑚𝑖𝑗

> Θ , (41)

where Θ is a threshold constant, 𝑟𝑖𝑗 is the Euclidean distance between them, and the exponent 𝑚 is a parameter of the
model. The probability that the 𝑖-th individual is connected to another individual at a distance 𝑟 can be computed by

𝑝int(𝑟) =

⎧

⎪

⎨

⎪

⎩

1, if 𝑟 ≤ 𝜉

∫𝑥>Θ𝑟𝑚∕𝑥𝑖 𝑠(𝑥)𝑑𝑥, if 𝑟 > 𝜉
, (42)

where 𝑥 = Θ𝑟𝑚∕𝑥𝑖 is the lower limit of the 𝑥 values necessary for an individual at 𝑟 to interact with 𝑖, and

𝜉 ≡

(

𝑥2min
Θ

)
1
𝑚

(43)

is a distance below which any two individuals are connected regardless of 𝑥. Here 𝑥min is the smallest value assumed
by 𝑥, i.e. 𝑥min ≡ min{𝑥𝑖}. A condition for convergence of the integral in Eq. (42) is 𝛼 > 1, and if this is the case, then
the solution of this integral, using the distribution (40), is

𝑝int(𝑟) ∼
1

𝑟𝑚(𝛼−1)
, (44)

for 𝑟 > 𝜉. Note that if we identify
𝛾 = 𝑚(𝛼 − 1) , (45)

then we recover Eq. (34), as used in Ribeiro et al. model (Sec. 2.4.1).
2It is worth mentioning that a larger 𝛽super does not automatically imply a wealthier urban system. It can also be a result of an economic

imbalance between smaller and larger cities.
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The authors also consider a more generic shape for the socio-economic production generated by each interaction,
namely

𝑔(𝑟) ∼ 𝑟𝜂 , (46)
where 𝜂 is a parameter, in the sense that the productivity increases with the distance when 𝜂 > 0 and decreases with the
distance when 𝜂 < 0; 𝜂 = 0 means that all connections have the same socio-economic contribution as considered in the
previous model. The authors also consider that the population spatial distribution is a fractal structure with dimension
𝐷𝑝 and therefore Eq. (35) is also valid in this context.

Combining all ingredients of the model, i.e. using Eqs. (44), (46), and (35), it is possible to compute the average
degree (average number of contacts), namely ⟨𝑘𝑖⟩, via

⟨𝑘𝑖⟩ = ∫ ∫ 𝜌(𝑟)𝑝int(𝑟)𝑠(𝑥)𝑑𝑥𝑑𝑟 , (47)

(from (31) and considering the average from the distribution 𝑠(𝑥)) and the socio-economic output with Eq. (33). It
results, respectively, in

⟨𝑘𝑖⟩ = 𝑐1𝜉
𝐷𝑃 + 𝑐2𝜉

𝑚(𝛼−1)𝑁
1−𝑚(𝛼−1)

𝐷𝑃 (48)
and

𝑌 = 𝑐3𝜉
𝜂+𝐷𝑃𝑁 + 𝑐4𝜉

𝑚(𝛼−1)𝑁
2+ 𝜂−𝑚(𝛼−1)

𝐷𝑃 , (49)
where 𝑐1, 𝑐2, 𝑐3 and 𝑐4 are constants.

For the interpretation of this result, it is necessary to distinguish two situations concerning the distance 𝜉 (or Θ
parameter in Eq. (43)) and its scaling properties. If 𝜉 is scale-invariant (i.e. 𝜉 ∼ 𝑁0), and 𝑁 sufficiently large, then

1. 𝑌 ∼ 𝑁 when 𝑚 > (𝐷𝑝 + 𝜂)∕(𝛼 − 1), i.e. the first right-hand term in Eq. (49) dominates, which characterize a
short-range interaction regime (see Sec. 2.4.1); and

2. 𝑌 ∼ 𝑁
2+ 𝜂−𝑚(𝛼−1)

𝐷𝑝 when𝑚 < (𝐷𝑝+𝜂)∕(𝛼−1), i.e. the second right-hand term in Eq. (49) dominates, characterizing
a long-range interaction.

This means the super-linear scaling behaviour happens in a long-range kind regime, with exponent
𝛽super = 2 − 𝑚

𝐷𝑝
(𝛼 − 1) +

𝜂
𝐷𝑝

. (50)

According to the model, the super-linearity of the socio-economic scaling exponent can occur even when the
productivity generated by the interaction is independent of the distance (i.e. when 𝜂 = 0). In fact, the main factor
that controls this super-linearity is the ratio between the interaction range (expressed by 𝛾 = 𝑚(𝛼 − 1)) and the fractal
dimension of the city (𝐷𝑝), as it was already suggested in the previous section. Indeed the Yakubo et al. model and the
gravity model studied by Ribeiro et al. are equivalent when 𝜂 = 0 and 𝛼 = 2.

In addition, the result Eq. (45) gives some insights for the parameter 𝛾 . It suggests that this parameter, which
controls the interaction range, depends not only on the geometric properties – expressed by the parameter 𝑚 – but also
on the degree of influence of the people who compose the city, expressed by the parameter 𝛼. Moreover, when the
parameter 𝛼 is sufficiently large, representing the situation where the influence is distributed around a typical value, a
short-range interaction regime is observed. It corresponds to a more homogeneous population in terms of influence.
A larger 𝛼 – which can also be thought of as an absence of a concentration of influence – leads to a smaller 𝛽super, i.e.
it reduces the increasing returns to scale. Conversely, suppose 𝛼 is sufficiently small, representing the situation where
some people exert a considerable influence on the population. In that case, a long-range interaction regime is observed,
where the city behaves in a more integrated way. To sum up, the result Eq. (50) suggests that to improve the urban
socio-economic metrics (larger 𝛽super), it is essential not only to provide good access to other parts of the city – as it
was discussed in the previous subsections – but also to have influencers in the population who can establish interaction
between distant parts of a city.
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The result described above holds for ⟨𝑘𝑖⟩ scaling with 𝑁 according to Eq. (48). However, the result of the
scaling exponent changes drastically when we consider an average degree that is scale-invariant, i.e. ⟨𝑘𝑖⟩ ∼ 𝑁0,
as proposed originally [48]. According to Eq. (48), this implies that 𝜉 scales with the population size 𝜉 ∼ ⟨𝑘𝑖⟩

1
𝐷𝑝 when

𝑚 > 𝐷𝑝∕(𝛼 − 1) and 𝜉 ∼ 𝑁
1
𝐷𝑝

− 1
𝑚(𝛼−1) . Inserting such result in Eq. (49) yields the following scaling exponents:

𝛽 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1, if 𝑚(𝛼 − 1) ≤ 𝐷𝑝and 𝑚(𝛼 − 1) ≤ 𝐷𝑝 + 𝜂

2 − 𝑚(𝛼−1)−𝜂
𝐷𝑝

, if 𝐷𝑝 ≤ 𝑚(𝛼 − 1) ≤ 𝐷𝑃 + 𝜂

2 + 𝜂
𝐷𝑝

− 𝐷𝑝+𝜂
𝑚(𝛼−1) , if 𝑚(𝛼 − 1) < 𝐷𝑝

and 𝑚(𝛼 − 1) > 𝐷𝑝 + 𝜂

1 + 𝜂
𝐷𝑝

, if 𝑚(𝛼 − 1) < 𝐷𝑝

and 𝑚(𝛼 − 1) < 𝐷𝑝 + 𝜂 .

. (51)

Figure (6) synthesizes these results, revealing many possibilities of regimes (sub-linear, super-linear, and linear)
for the scaling exponents according to the parameters of the model. It is important to note the role of the parameter 𝜂
in this context. The non-linearity (super- or sub-linear regimes) only happens for 𝜂 ≠ 0. The value of this parameter
can also change the regimes, from sub-linear (𝜂 < 1) to super-linear (𝜂 > 1). The parameter 𝜂 also changes the region
of parameters that we are interpreting as a long-range interaction (blue part of Fig. 6) and the short-range interaction
(light-red part of Fig. 6). The main results of this model are summarized in Tab. (1).
2.4.3. Arbesman et al. model – Tree-shaped social network

Up to now, the models that we presented are based on the idea that the interaction between people needs to overcome
geographical distance. However, the work developed by Abersman et al. [36] shows that urban super-linear scaling can
also emerge when a hierarchically organized social network is considered.

The authors propose that the population is organized in a tree-shaped social network, as the one sketched in Fig. (7).
The 𝑁 individuals of the population are in the 𝑁 leaves of this tree, and every branch in this hierarchical network splits
into 𝑏 new branches. The social distance 𝑑 between two individuals is defined as the height of their lowest common
ancestor. In relation to the general gravitational framework that was presented at the beginning of this section, the
distance vector becomes a scalar, that is 𝐫 → 𝑑, and it does not represent the physical distance, but rather the social
distance.

One can demonstrate that the number of leaves that are at social distance 𝑑 from a given individual, say 𝑁(𝑑),
grows exponentially

𝑁(𝑑) = 𝑏𝑑 . (52)
The exponential structure of this relation motivates us to model the other quantities necessary to compute Eq. (33)
with other exponential functions. For instance, the authors considered that the probability of interaction between two
nodes drops off exponentially with the network distance as

𝑝int(𝑑) ∼ 𝑏−𝜙𝑑 , (53)
where 𝜙 is the parameter that controls the range of interaction inside this network. Finally, the authors propose that
the social productivity of the interaction between two individuals also depends exponentially on the social distance
between them

𝑔(𝑑) = 𝑏𝜆𝑑 . (54)
Here 𝜆 is a parameter, in the sense that the productivity increases with the social distance when 𝜆 > 0 and decreases
with the social distance when 𝜆 < 0. All interactions have the same productivity when 𝜆 = 0. This parameter is similar
to the parameter 𝜂 in the context of the Yakubo et al. model of individual attractiveness (see Sec. 2.4.2).
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Figure 6: Phase diagram of the possible regimes (super-linear, sub-linear, and linear) according to the Yakubo et al. model
of individual attractiveness, Eq. (51), and the model parameters 𝜂, 𝑚, 𝐷𝑝 and 𝛼, assuming ⟨𝑘𝑖⟩ ∼ 𝑁0 (scale-invariant).
In this case, the non-linearity (sub or super-linear) only happens when 𝜂 ≠ 0. The diagram also presents the parameter
configuration that yields a long-range interaction regime (blue filling) and a short-range interaction regime (light-red filling).
The super-linearity only occurs in the presence of long-range interaction (sufficiently small 𝑚) and with 𝜂 positive; that is,
when the productivity among pairs increases with the distance. Source: modified after Yakubo et al. [48].

We determine the total productivity inserting these tree relations Eqs. (52), (53), and (54) in the general relation
Eq. (33). Given that 𝑑 is a discrete variable, implying 𝑑𝐫 → Δ𝑑 = 1, the integral in Eq. (33) becomes the sum

𝑌 = 𝑁
log𝑏 𝑁
∑

𝑑=1
𝑏−𝜙𝑑𝑏𝑑𝑏𝜆𝑑 , (55)

where log𝑏𝑁 is the maximum social distance in the network. The sum in Eq. (55) is in fact a geometric progression
which can be solved analytically, yielding 𝑌 ∼ 𝑁2−𝜙+𝜆, from which

𝛽super = 2 − 𝜙 + 𝜆 (56)
follows.

This result shows that the socio-economic scaling exponent is larger when socially distant people interact
(characterized by smaller values of 𝜙 and positive values of 𝜆). This means the city improves its socio-economy when
the interaction among socially different people is possible – in a similar way as it was discussed previously in the
context of geographic distance. As argued in [36], “rich interconnectivity between communities creates better cities”,
implying that socially distant ties can be a socio-economic force.

For the sake of completeness, given the probability of interaction Eq. (53), together with Eq. (52), one can calculate
the average number of contacts of this model using Eq. (31), which yields ⟨𝑘𝑖⟩ = 𝑁1−𝜙+𝜆, and the density of contacts
using Eq. (4), which yields 𝑛𝑐 ∼ 𝑁−𝜙+𝜆. These results are summarised in the Tab. (1).
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Figure 7: Tree-shaped social-network – as used by the Arbesman et al. model – composed by 𝑁 = 8 individuals, named
𝐴,𝐵, ...,𝐻 , disposed in 𝑁 leaves. In this particular case, all branches are split into 𝑏 = 2 other branches. The distance 𝑑
between any two individuals in this network is the height of their lowest common ancestor. For instance, the social distance
between 𝐴 and 𝐵 (𝐴𝐵) is 𝑑 = 1; 𝐴𝐶 and 𝐴𝐷 are 𝑑 = 2; 𝐴𝐸, 𝐴𝐹 , 𝐴𝐺 and 𝐴𝐻 are 𝑑 = 3. Source: [36].

2.4.4. Connection between Euclidean and social distance
We have discussed the gravity ideas in two versions, considering the physical distance and social distance. However,

we would also like to show that under certain circumstances these two versions can be understood as equivalent. First of
all, if we consider that the two models are compatible, then the probability of interaction between any two individuals
must be the same, that is

𝑝int ∼ 𝑏−𝜙𝑑 ∼ 𝑟−𝛾 (57)
if we combine Eqs. (34) and (53). Moreover, if both model-versions are compatible, then also the scaling exponent
must be the same, i.e. combining Eqs. (39) and (56), and considering 𝜆 = 0 without loss of generality leads to
𝛽super = 2 − 𝜙 = 2 − 𝛾∕𝐷𝑝, which implies

𝜙 =
𝛾
𝐷𝑝

. (58)

Inserting Eq. (58) in Eq. (57) one can conclude that the two approaches are similar – i.e. they lead to the same
results – when the Euclidean and social distances (𝑟 and 𝑑, respectively) are related by 𝑑 ∼ 𝐷𝑝 log𝑏(𝑟) or

𝑟 ∼ 𝑏
𝑑
𝐷𝑝 . (59)

This result indicates that according to the models, Euclidean and social distances should be correlated, which is
plausible since we live close to people we know [38]. Moreover, if Eq. (59) holds, then the two approaches, in fact,
represent the same urban system.

If we solve Eq. (59) for the fractal dimension 𝐷𝑝, one gets
𝐷𝑝 ∼

𝑑
log𝑏(𝑟)

. (60)
The network distance 𝑑 must be proportional to the logarithm of a “mass” since otherwise Eq. (60) would not comply
with the definition of the fractal dimension [49]. Interestingly, in the social-network model the number of nodes and the
distance are related via 𝑁(𝑑) = 𝑏𝑑 , Eq. (52), and consequently 𝑑 ∼ log𝑏(𝑁); that is, 𝑑 is proportional to the logarithm
of a “mass”. Inserting in Eq. (60) yields 𝐷𝑝 ∼ log(𝑁)∕ log(𝑟), which makes sense in terms of fractal geometry.

This means if the fractal dimension 𝐷𝑝 relates population and space – where population takes the role of mass and
Euclidean distance the role of scale – then the gravity models in both versions are equivalent. This is remarkable since
the various authors [12, 48, 36] developed their models independently employing different ideas and approaches. Under
this condition, the population is spatially located in a fractal manner and follows a hierarchical social network. From
Eq. (58) we conclude that the decay exponent 𝛾 also relates to social ties, expressed by the parameter 𝜙, which gives
one more insight about the 𝛾 parameter and consequently how the interaction between people behave. The following
subsection presents additional alternative interpretations for the 𝛾 parameter.
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2.4.5. F.Ribeiro et al. supply-demand model
The infrastructure scaling exponent 𝛽sub can also be deduced using the gravity approach. However, different from

the Bettencourt model (Sec. 2.2), which focuses on the area to explain the sub-linear urban scaling, Ribeiro et al. [12]
focus on the number of amenities in the city necessary to satisfy the people needs. They use the idea that people tend
to choose close places to buy products.

The model considers that the individual 𝑖 consumes 𝑢𝑖 quantities of a given individual need product (e.g. bread)
per period of time and, consequently, the city, as a whole, consumes 𝑈 =

∑𝑁
𝑖=1 𝑢𝑖 units of this product during this

period. It is assumed that the demand is always fully provided by the city. Suppose that the consumers can buy this
product in 𝑃 amenities (e.g. bakeries, if the product is bread) distributed throughout the city, but these consumers
choose, preferentially, the amenities that are close. In order to model this fact and using the same idea discussed
around Eq. (34), the total supply (per time) by the 𝑘-th amenity for the person 𝑖 will be given by

𝑓 (𝑟𝑖𝑘) ∝
1
𝑟𝛾𝑖𝑘

, (61)

where 𝑟𝑖𝑘 is the Euclidean distance between them. Equation (61) can also be understood as the number of products the
individual 𝑖 bought in the 𝑘-th amenity during a period of time. As 𝛾 > 0, this person buys more products in closer
amenities. The total demand of 𝑖 can then be computed by

𝑢𝑖 =
𝑃
∑

𝑘=1
𝑓 (𝑟𝑖𝑘) , (62)

and consequently the total provision of the city is

𝑈 ≡
𝑁
∑

𝑖=1
𝑢𝑖 =

𝑁
∑

𝑖=1

𝑃
∑

𝑘=1
𝑓 (𝑟𝑖𝑘) , (63)

which can also be written as

𝑈 =
𝑃
∑

𝑘=1

( 𝑁
∑

𝑖=1
𝑓 (𝑟𝑖𝑘)

)

. (64)

If we consider that the population is homogeneously distributed in a fractal structure, as considered before (in
Sec. 2.4.1), then the inner sum of Eq. (64) can be transformed into an integral that can be solved as before using
Eqs. (35), (37), and (61)

𝑁
∑

𝑖=1
𝑓 (𝑟𝑖𝑘) ∼ ∫ 𝑓 (𝐫)𝜌(𝐫)𝑑𝐫 ∼ 𝑁

1− 𝛾
𝐷𝑝 . (65)

It reveals that this sum, on average, is the same for all amenities, because the right-hand side of this proportionality
does not depend on the index 𝑘. Inserting this result in Eq. (64), the second sum transforms into a multiplication by
the total number of amenities (𝑃 ), leading to

𝑈 ∼ 𝑃𝑁
1− 𝛾

𝐷𝑝 . (66)
As we are dealing with individual need products, the empirical evidence suggests that the total consumption must

scale linearly with the population size, that is 𝑈 ∼ 𝑁 . Under this condition, Eq. (66) can be rewritten as

𝑃 ∼ 𝑁
𝛾
𝐷𝑝 , (67)

and therefore one gets the scaling exponent
𝛽sub =

𝛾
𝐷𝑝

, (68)
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which governs the scaling properties of the number of amenities – an infrastructure variable – as a function of the
population size. It is worth mentioning that Eq. (68) together with Eq. (39) fulfill the rule of thumb 𝛽sub + 𝛽sub = 2
(see around Eq. (8).

In conclusion, this model suggests that sub-linear exponent of the infrastructure occurs only if 𝛾 < 𝐷𝑝. This
𝛾-range in fact characterizes the long-range interaction regime, which is a consequence of the city acting as an entire
coupled system, as mentioned in Sec. 2.4.1 in the context of the gravity model and comparison to the Bettencourt
model. In addition, the bigger the interaction range is, the bigger the economy of scales and consequently the lower
the infrastructure costs.
2.4.6. Alternative interpretations of 𝛾 parameter

Previously [see Yakubo et al. (2.4.2) and Abersman et al. (2.4.3) models], we presented some possible interpretation
for the gravity model parameter 𝛾 [introduced in Eq. (34)]. However, are there other possible explanations, or better, is
there a more fundamental way to explain the origin of this exponent? Following this idea, and given that the previous
models suggest the dependence between the scaling and gravity model exponents, we present in this sub-section some
physical interpretations for the numeric value of 𝛾 .

We start this discussion from the so-called Rank model [50], which considers that the probability of one person
choosing another person to interact with depends on the number of people closer to 𝑖 than 𝑗 is to 𝑖. The main idea
is that, as illustrated in Fig. (8-a), everybody that lies inside the circle of radius 𝑟𝑖𝑗 , that separates 𝑖 from 𝑗, is closer
to 𝑖 than 𝑗 is to 𝑖. In this sense, and if the probability of interaction 𝑝𝑖𝑗 between two individuals is a distant-depend
function, then any person inside the circle of Fig (8-a) must have a probability of interaction with 𝑖 greater than 𝑝𝑖𝑗 .That is, 𝑝𝑖𝑘 ≥ 𝑝𝑖𝑗 if 𝑟𝑖𝑘 ≤ 𝑟𝑖𝑗 or, in a more general way, one can say that 𝑝𝑖1 ≤ 𝑝𝑖2 ≤ ⋯ ≤ 𝑝𝑖,𝑗−1 ≤ 𝑝𝑖𝑗 , if 1, 2,⋯ , 𝑗 − 1
are individuals inside the circle of Fig. (8-a). One way to capture this idea is to consider that 𝑝𝑖𝑗 obeys a rank rule of
the type

𝑝𝑖𝑗 =
1

Rank𝑖(𝑗) , (69)

where Rank𝑖(𝑗) is the rank position of 𝑗, in terms of distance, in relation to 𝑖. The function Rank𝑖(𝑗) is numerically
identical to the number of individuals that lie inside the circle centered in 𝑖 and with radius 𝑟𝑖𝑗 ; that is,

Rank𝑖(𝑗) = 𝑁(𝑟𝑖𝑗) . (70)
This Rank idea found applications in migrations [51] – with the so-called intervening opportunities model –, urban
mobility [52], and social-network friendship [50].

If we consider that the population is distributed spatially as a fractal object with dimension 𝐷𝑝, then the number of
people inside a circle of radius 𝑟 will be given by 𝑁(𝑟) = 𝑁0𝑟𝐷𝑃 , and consequently 𝑝𝑖𝑗 can be written, from Eq. (69)
and (70), as

𝑝𝑖𝑗 ∼
1
𝑟𝐷𝑝

. (71)
From the rank population idea, in comparison with Eq. (34), it follows 𝛾 = 𝐷𝑝 and that 𝛾 can be interpreted as the
fractal dimension of the population distribution.

However, it may be more natural to consider that 𝑖 accesses 𝑗 not according to the closer individuals but instead
according to places/infrastructure that are closer to 𝑖 than the place that 𝑗 is. In this case, the rank function Rank𝑖(𝑗) is
indeed relative to the number of places/infrastructure inside the circle centered in 𝑖 and with radius 𝑟𝑖𝑗 , as illustrated
in Fig. (8-b). In other words, 𝑖 has more chance (probability) to interact with people living in places closer than the
place where 𝑗 lives. In this situation, Rank𝑖(𝑗) is then the distance rank position of the place/infrastructure where 𝑗 is
in relation to place/infrastructure where 𝑖 is. That is, the function Rank𝑖(𝑗) is numerically identical to the number of
places/infrastructure inside the circle centered in 𝑖 and with radius 𝑟𝑖𝑗 . If the infrastructure/place has a fractal shape
whose number of units scales as ∼ 𝑟𝐷infra then, analogous to the idea above, one gets

𝑝𝑖𝑗 ∼
1

𝑟𝐷infra
. (72)

The 𝛾 parameter is now interpreted as the fractal dimension of the city’s infrastructure. We will explore more about
this interpretation when we present the Molinero & Thurner model [53] in sec (2.5).
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a)

b)

Figure 8: Illustration of the spatial distribution of population and infrastructure places. Panel (a) shows the spatial
population distribution. All people inside the circle centred in 𝑖 and with radius 𝑟𝑖𝑗 (distance between 𝑖 and 𝑗) are closer to
𝑖 than 𝑗 is to 𝑖. Panel (b) represents the spatial distribution of spaces/infrastructure. All places/infrastructure inside the
circle are closer to 𝑖 than the place where 𝑗 is.

Alternatively to the Rank model, Simini et al. [54] proposed the radiation model. The name comes from the fact
that this model is inspired by the radiation processes in physics. Suppose that the individual/location 𝑖 emits particles
that can be absorbed by other individuals/locations, according to the following rule. Every particle emitted from 𝑖
has a random number which represents its absorption threshold. Any other individual/location, for instance 𝑗, also
has a random number that represents its absorbance. The particle will be absorbed by the closest individual/location
where the absorbance (receiver) is greater than the absorption threshold (sender). Some examples of radiation model
applications include [55, 56, 57].
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Analytical derivation of this model [54, supplementary material] shows that the probability of a particle emitted
from 𝑖 to be absorbed by 𝑗 is given by

𝑝𝑖𝑗 =
1

(1 + 𝑠𝑖𝑗)(2 + 𝑠𝑖𝑗)
= 1

𝑠2𝑖𝑗 + 3𝑠𝑖𝑗 + 2
, (73)

where we consider that every place is occupied by just one person. Here 𝑠𝑖𝑗 is the population or place/infrastructure
inside a circle centered in 𝑖, and with radius 𝑟𝑖𝑗 ; that is, 𝑠𝑖𝑗 is the very rank function described above, that can be
interpreted in two scenarios, in a similar way that was described above. In the first scenario, 𝑠𝑖𝑗 represents the population
that is closer to 𝑖 than 𝑗 is (Fig. (8-a); in the second scenario, 𝑠𝑖𝑗 represents the places that are closer to the place where
𝑖 is than the place where 𝑗 is (Fig. (8-b).

In the first scenario we have 𝑠𝑖𝑗 = 𝑁(𝑟𝑖𝑗) ∼ 𝑟
𝐷𝑝
𝑖𝑗 , then the radiation model [Eq. (73)] is analogous to a form of

gravity model

𝑝𝑖𝑗 ∼
1

𝑟2𝐷𝑝
. (74)

Comparing this result to with Eq. (34), leads to 𝛾 = 2𝐷𝑃 . Similar to the Rank model, the gravity exponent can be
interpreted as a quantity related to the fractal dimension of the spatial population distribution 𝐷𝑃 . In the particular
example presented by Simini et al. [54], a two-dimensional uniformly distributed population, i.e. 𝐷𝑝 = 2, yields 𝛾 = 4.

Analogously, for the second scenario we obtain 𝑠𝑖𝑗 ∼ 𝑟𝐷infra
𝑖𝑗 and the radiation model relates to the gravity model

via
𝑝𝑖𝑗 ∼

1
𝑟2𝐷infra

, (75)

and 𝛾 = 2𝐷infra. In this scenario, the gravity exponent is related to the fractal dimension of the space/infrastructure of
the cities 𝐷infra.

Another work that can give insights about the interpretation and determination of the 𝛾 exponent is the empirical
study published by Dong et al. [58]. The authors analyze empirically urban scaling within a city (“mesoscale” in
their terminology). Therefore, they divided a considered city into 𝑛 cells, for which they have geographic position
and population data at cell resolution. The authors report that socio-economic activity scales super-linearly and
infrastructure volume scales sub-linearly for various cities in China. Conceptually, they explore the set {𝑁𝑘}𝑘, where
𝑁𝑘 is the population in the 𝑘-th cell, and the set {𝑟𝑘,𝑙}𝑘,𝑙, where 𝑟𝑘,𝑙 is the distance between any two cells 𝑘 and 𝑙. With
this empirical data, they compute the quantity

𝑞𝑘𝑙 = cte ⋅
𝑁𝑘𝑁𝑙

𝑟𝛾𝑘𝑙
, (76)

where 𝑞𝑘𝑙 is interpreted as related to the number of interactions between the cells 𝑘 and 𝑙. From this quantity it is
possible to numerically get the “total interaction” of the cell 𝑘 via the sum 𝑄𝑘 =

∑𝑛
𝑙≠𝑘 𝑞𝑘𝑙, i.e.

𝑄𝑘 = cte ⋅𝑁𝑘

( 𝑛
∑

𝑙≠𝑘

𝑁𝑙

𝑟𝛾𝑘𝑙

)

. (77)

Then, given a specific value of 𝛾 and the empirical data ({𝑁𝑘}𝑘 and {𝑟𝑘𝑙}𝑙) it is possible to compute numerically 𝑄𝑘by Eq. (77).
As a next step, and for a specific 𝛾 value, the authors plot 𝑄𝑘 as a function of 𝑁𝑘 for all the cells that compose a

specific city, trying to fit the data using the power law hypothesis 𝑄𝑘 ∼ 𝑁𝛽
𝑘 . They show that this power law fits the

data very well for many Chinese cities, and then it is possible to get 𝛽 as a function of the gravity exponent 𝛾 , i.e. 𝛽(𝛾).
Numerically, they find a linear dependence between 𝛽 and 𝛾 when 𝛾 ≈ 1, and saturation for 𝛽 when 𝛾 is sufficiently
large. More precisely, for 𝛾 ∼ 1 they report

𝛽(𝛾) ≈ 𝑎 + 𝑏(𝛾 − 1) , (78)
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Figure 9: Comparison of 𝑌 ∼ 𝑁 ln𝑁 and the power law 𝑌 ∼ 𝑁𝛽 to fit USA cities’ data (GDP as a function of the
population). Note that there is no apparent difference between these two regressions to describe the data.

where 𝑎 = 1.153 and 𝑏 = 0.186 [58]. Note that when 𝛾 = 1, 𝛽 approaches to the empirical value of the scaling exponent
(𝛾 = 1 ⟹ 𝛽 = 1.153).

This numeric approach provides a link between the gravity exponent 𝛾 the scaling exponent 𝛽. In addition, it
emphasizes the importance of tree effects on urban scaling: (i) The spatial structure of the city (expressed by the
distance between cells), (ii) the population size, and (iii) how these two mechanisms convert into interaction.

To summarize, we present here some alternative explanations and interpretations for the gravity model decay
exponent 𝛾 . In the context of the Yakubo et al. model, this exponent is related to the degree of influence of the people
(parameter 𝛼), while, in the context of the Arbesman et al. model, it is related to the social ties in the social network.
However, in the context discussed in this subsection, we present some insights suggesting that 𝛾 could also be related to
the fractal configuration of the population distribution in space or of the spatial infrastructure distribution, both being
characterized by their respective fractal dimensions.
2.4.7. Pan et al. model

Pan et al. [59] proposed an alternative to the power Eq. (1) to describe the relationship between socio-economic
variables and city population size. They suggest that a function of the form 𝑌 ∼ 𝑁 log𝑁 could describe the empirical
data. Figure (9) presents data from the US and a comparative plot using the power-law equation and the alternative
equation proposed. There is no apparent difference between the fit of these two equations.

The authors justify this alternative equation using the rank model (see Sec. 2.4.6) to define the probability of
interaction between the people. They also considered, for simplicity, that the population is uniformly distributed in
a two-dimensional space in such a way that the density 𝜌 = 𝑁∕𝐴 is always constant. In this way, the number of
individuals inside the circle of radius 𝑟𝑖𝑗 , that is the rank function, will be simply

𝑅𝑎𝑛𝑘𝑖(𝑗) ∝ 𝑟2𝑖𝑗 . (79)
Using the idea that the probability of interaction 𝑝𝑖𝑗 between two persons, 𝑖 and 𝑗, is given by the inverse of the rank
function (see details in Sec. 2.4.6), one has 𝑝𝑖𝑗 ∼ 1∕𝑟2𝑖𝑗 , or simply

𝑝(𝑟) ∼ 1
𝑟2

. (80)
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This consideration, i.e. the rank rule and uniformly distributed population, yields the gravity model with 𝛾 = 2.
Proceeding with the general Eq. (33) using (i) 𝑔 = 1 (same weight for all interactions), (ii) 𝜌 = cte, (iii)

transformation from Cartesian to polar coordinates 𝑑𝐫 ∼ 𝑟2𝑑𝑟 (in two-dimensional space), and (iv) the probability
of interaction given by Eq. (80), yields

𝑌 ∼ 𝑁 ln𝑁 . (81)
This function is steeper than linear scaling once the number of contacts per individual (𝑦 = 𝑌 ∕𝑁 = ln𝑁) grows with
𝑁 (logarithmically). This result challenges the power law equation as a candidate to describe increasing returns. In
fact, in [60] other functions are presented that can also describe the super-linear urban scaling as well as the power law
equation (e.g. logistic scaling relationship). It is worth mentioning that Eq. (81) does not have any scaling parameter.
The only parameter is the pre-factor controlling the 𝑌 in absolute terms, i.e. vertical adjustment in Fig. (9).
2.4.8. Findings and conclusions from gravity models

At least three groups of authors independently employ gravity ideas to explain urban scaling – here we show that
they lead to consistent results. This observation emphasizes the importance of the gravity approach to understanding
urban phenomena, as it was already suggested qualitatively by Tobler with his first law of geography3 [61].

A novelty of the present work is the organization of these ideas in a single and general framework that permits
the identification of similarities and common results. The various gravity models are equivalent in special cases,
outside this overlap they represent variants. However, from consolidating the models we conclude that urban scaling
is essentially a consequence of spatial distribution imposed by the geometry and the social ties that enhance or reduce
interactions. Specifically, we make the following interpretations.

• Good access to all parts of the city. Increasing returns to scale require a geographically well-connected city,
allowing interactions within the entire city and permitting integrity of the city. In practice, this can be achieved
by an efficient transport system.

• Influencers reaching distant parts of the city. The presence of outstanding influential people can integrate distant
parts of the city and promote interconnectivity, resulting in a more pronounced urban scaling.

• Interaction between socially distant people. The socio-economic scaling exponent is larger when socially distant
people can interact better. We have demonstrated that under certain circumstances social and geographic distance
are related.

2.5. Molinero & Thurner model – infrastructure geometry
This section presents the model proposed by Molinero and Thurner (M&T) [53] which, as some of the models

presented in the previous section, also employs geometrical considerations as the main factor responsible for urban
scaling. The authors introduce new ingredients to the discussion, like the city verticalization and the distinction between
the fractal dimension of the population (𝐷𝑝) and the fractal dimension of the infrastructure (𝐷infra), represented by the
street network. M&T argue that the distinction between population and infrastructure fractal dimensions is essential to
the scaling laws observed across cities.

As the street network rests on the two-dimensional earth surface, its dimension is constrained by 𝐷infra ≤ 2 [62].
The population is located in houses and buildings, which are situated along the streets. The authors argue, that if we
neglect the vertical extent, then the fractal dimension of the population would be very similar to the fractal dimension
of the street structure. However, as they argue, the cities have a vertical component that cannot be disregarded, which
constrains 𝐷𝑝 to the interval 𝐷infra ≤ 𝐷𝑝 ≤ 𝐷infra +𝐷ℎ, where 𝐷ℎ is the dimension associated with the city building
height. If one considers that people fulfil all three-dimensional embedded components of the infrastructure, then

𝐷𝑝 = 𝐷infra +𝐷ℎ . (82)
The population fractal dimension 𝐷𝑝 is defined by the power-law relation between the population and a linear

metric 𝑟, that is
𝑁 ∼ 𝑟𝐷𝑝 . (83)

3“Everything is related to everything else, but near things are more related than distant things.”
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In the same way, the street network fractal dimension 𝐷infra is defined by the power-law relation between the street
network total length 𝐿tot and a linear metric

𝐿tot ∼ 𝑟𝐷infra . (84)
In addition, as proposed by the authors, the number of individuals can be written using these two dimensions
𝑁 ∼ 𝐶𝑐 ⋅ 𝑟

𝐷𝑝 (85)
and

𝑁 ∼ 𝐶infra ⋅ 𝑟
𝐷infra . (86)

In Eq. (85), 𝐶𝑐 can be understood as the number of people living in a cube of size 1 (in any units). This means 𝑟𝐷𝑝 is
the number of non-empty cubes of size 1 in the city. Such a cube can be, for instance, a house, an apartment, or a floor.
Theoretically, 𝐶𝑐 must be scale-invariant, that is, 𝐶𝑐 ∼ 𝑁0, because of the physical limit to accommodate a maximum
number of people in a house/apartment/floor. The authors verified that 𝐶𝑐 increases with the city size for cities smaller
than 100.000 inhabitants, but it indeed saturates and stabilises for cities larger than that. Similarly, the other quantity,
𝐶infra in Eq. (86), can be understood as the number of people living in a square of size 1. This means 𝑟𝐷infra is related to
the number of non-empty squares of size 1 (in any units). Indeed 𝐶infra represents the projection of the three-dimension
space population into a two-dimensional plane (vertical projection). In contrast to 𝐶𝑐 that is constant for a sufficiently
large population, 𝐶infra grows with the population size obeying a power-law relation 𝐶infra ∼ 𝑁0.09 in the UK and the
authors observe similar results in other countries. It reveals an absence of a typical size value for 𝐶infra.The relation between 𝐶infra and 𝐶𝑐 can be obtained equalling Eqs. (85) and (86) to get

𝐶infra = 𝐶𝑐𝑟
𝐷𝑝−𝐷infra . (87)

Using Eq. (83) in this relation and considering that 𝐶𝑐 ∼ 𝑁0, leads to

𝐶infra ∼ 𝑁
1−𝐷infra

𝐷𝑃 . (88)
The saturation of 𝐶𝑐 for sufficiently large cities and the power-law relation between 𝐶infra and 𝑁 implies that

the densification of the “cube” of size 1 happens until the city population reaches a limit (around 𝑁 = 100.0000
inhabitants). For cities larger than this, the number of people in this cube is stabilized, but to increase the number of
people per square meter (that is, to continue increasing 𝐶infra with 𝑁), the city starts to grow vertically.

Defining such quantities, one can derive the urban scaling exponents. Using Eqs. (84) and (85) one can show that
𝐿tot ∼ 𝑁

𝐷infra
𝐷𝑝 , i.e.

𝛽sub =
𝐷infra
𝐷𝑝

. (89)

This result implies that the urban scaling exponent is the result of the relationship between the two fractal structures,
namely the population and infrastructure (street) network. In addition, the emergence of non-linearity (𝛽 ≠ 1) happens
because of the difference of the fractal dimensions of these structures, and the sub-linearity (𝛽 < 1) is due to
𝐷infra ≤ 𝐷𝑝.

The authors also consider that the socio-economic variable must be dependent on the number of interactions in the
city. To estimate this number they consider, by hypothesis, that the number of interactions inside a square of size 1 will
be proportional to the maximum number of interactions 𝐶infra(𝐶infra−1)∕2 ∼ 𝐶2

infra. With this consideration, the total
number of interactions in the city (𝑁int) is given by the number of interactions inside a square of size 1 multiplied by
the number of squares of this size, that is

𝑁int ∼ 𝐶2
infra𝑟

𝐷infra . (90)
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Using Eqs. (87) and (85) one can show that 𝑁int ∼ 𝑁
2−𝐷infra

𝐷𝑝 , and therefore, considering that 𝑌 ∼ 𝑁int,

𝛽super = 2 −
𝐷infra
𝐷𝑝

. (91)

It shows, which role fractal structures (population and street networks) play in urban scaling. Urban scaling emerges
as a result of an imbalance between where people live and the structure on which they move. It is also important to
stress that, as demonstrated by the authors, while the population and infrastructure fractal dimensions (𝐷𝑝 and 𝐷infra)
vary largely for the individual cities, the empirical ratio 𝐷infra∕𝐷𝑝 is remarkably robust (for thousands of cities) and
around 𝐷infra∕𝐷𝑝 ≈ 0.86 [53, Fig. 2]. The closeness of this numeric value to the empirical value of the infrastructure
scaling exponent (𝛽sub ≈ 0.85) is remarkable and puts this theory (conform Eq. (89)) as one of the most successful in
explaining urban scaling in the context of infrastructure.
Conection with the gravity models

Apparently Eqs. (39), 𝛽super = 2 − 𝛾
𝐷𝑝

, and Eq. (91), 𝛽super = 2 − 𝐷infra
𝐷𝑝

, have a very similar form and only differ
in the numerator, implying 𝛾 = 𝐷infra [63]. Indeed, comparing these two independent results, together with what
was discussed in sec. (2.4.6), provides an additional interpretation of the gravity exponent 𝛾 and suggests a more
fundamental explanation for the M&T result.

In the gravity model context – Section (2.4) – the super-linear scaling exponent in Eq. (91) emerges when the
probability of interaction between two individuals separated by the Euclidean distance 𝑟 is given by

𝑝int(𝑟) ∼
1

𝑟𝐷infra
, (92)

where we have replaced 𝛾 with 𝐷infra in Eq. (34). This result indicates how space – or the street network structure,
here represented by its fractal dimension 𝐷infra, – affects the connection between the people. If Eq. (92) holds, then the
more compact the street network is (larger 𝐷infra), the smaller the interaction range. In other words, with increasing
density fewer parts of the city can be accessed by individuals. Remains to interpret what 𝑟𝐷infra means or what quantity
it represents. There are at least two candidate quantities that scale as 𝑟𝐷infra , and that could be responsible for this
impedance on the individuals’ interaction. First, the total length inside a circle of radius 𝑟, which according to the
definition Eq. (84) scales as ∼ 𝑟𝐷infra . Second, the number of sites/places/houses inside a circle of radius 𝑟; as the
houses are coupled to the streets, this number must also scale as 𝑟𝐷infra ). Indeed, conform presented in the sec. (2.4.6),
the rank and radiation model can explain how 𝛾 and the infrastructure fractal dimension are related one each other (see
around eq. (72) and (74)). In this sense, Eq. (92) suggests a quantitative way to understand how the structure of the
streets affects the interaction of the people and, consequently, how it reverberates on urban scaling.

3. Bettencourt infrastructure network model
In the second part of his 2013 paper [11], Bettencourt proposes a more detailed model to explain the scaling laws

of urban infrastructure. The model was inspired by West, Brown, and Enquist (WBE)’s theory [64, 65, 66, 67], which
explains the allometric scaling in biology based on the hierarchical network properties of the distribution and allocation
of resources.

Bettencourt proposes that the urban network infrastructure system, for instance, the road network of a city, is
composed of ℎ hierarchical levels. In addition, every unit of specific hierarchical level branches into another 𝑏 units of
the following level. That is if 𝑁𝑘 is the number of infrastructure units of the hierarchical level 𝑘, then

𝑁𝑘+1 = 𝑏𝑁𝑘 . (93)
From this, one can show that

𝑁𝑘 = 𝑁0𝑏
𝑘 , (94)

where 𝑁0 is the number of units in the lowest level (𝑘 = 0). In the case of the road network system, 𝑘 = 0 (the lowest
hierarchical level) represents the highways, 𝑘 = 1 represents roads, and so on until 𝑘 = ℎ (highest hierarchical level),
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Figure 10: The geometry of a hyper-road (a highway/road/path at the 𝑘-th level), with length 𝑙𝑘 and width 𝑠𝑘, while 𝑎𝑘
is the area that this hyper-road serves, as used in the Bettencourt infrastructure network model.

which represents, for instance, the smallest paths. The number of units in a hierarchical level will always be larger than
the number of units in the previous hierarchical level, then 𝑏 > 1. In the case of a road network, 𝑁0 = 1 (number of
highways) and the number of small paths is equal (or of the order) to the population size 𝑁ℎ = 𝑁 – both by definition.
These considerations can be expressed by these inequalities

𝑁0
⏟⏟⏟

Numb. of Highways

< 𝑁1
⏟⏟⏟

Numb. of Roads

< ⋯ < 𝑁ℎ
⏟⏟⏟

Numb. of paths

≡ 𝑁
⏟⏟⏟

Population size
. (95)

In Fig. 10 the geometry of a hyper-road (a highway/road/path at the 𝑘-th level) is shown, which has length 𝑙𝑘 and
width 𝑠𝑘, while 𝑎𝑘 is the area that this hyper-road serves. It must be valid that 𝑠𝑘 > 𝑠𝑘+1, that is

𝑠0
⏟⏟⏟

Highways width

> 𝑠1
⏟⏟⏟

Roads width

> ⋯ > 𝑠ℎ
⏟⏟⏟

paths width

≡ 𝑠∗ , (96)

where 𝑠∗ is the width of the smallest network unit, considered to be scale-invariant (𝑠∗ ∼ 𝑁0) – inspired by the WBE
theory. Analogous to Eq. (93), the author assumes (by hypotheses) that

𝑠𝑘 = 𝑏𝛼𝑠𝑘+1 , (97)
where 𝛼 is a parameter representing the shrinkage/expansion of the hyper-roads width from one level to the next. If
𝛼 = 1, the increase of hyper- road’s width from one level to the next happens in the same quantitative way as the
decrease in the number of units of hyper-roads from one level to the next. Note that, in order to obey that 𝑏 > 1 and
𝑠𝑘+1 < 𝑠𝑘, it is required that 𝛼 > 0. From these definitions, one can show that 𝑠0 = 𝑏𝛼𝑠1 = 𝑏2𝛼𝑠2 = ⋯, and 𝑠0 = 𝑠∗𝑏𝛼ℎ,
then

𝑠𝑘 = 𝑠∗𝑏
𝛼(ℎ−𝑘) . (98)

Let us try now to infer the area 𝑎𝑘 that a hyper-road at level 𝑘 serves. For that, Bettencourt assumes that the
fundamental allometry 𝐴(𝑁) = 𝑎𝑁𝛽FA , where 𝑎 is a constant, must be valid for all hierarchical levels in such a way
that

𝐴𝑘 = 𝑎𝑁𝛽FA
𝑘 , (99)

where 𝐴𝑘 is the total area of all the hyper-roads of the level 𝑘. By definition, 𝐴ℎ = 𝐴 (area of the city). In addition, 𝑎𝑘(area served by a hyper-road at level 𝑘), which can also be understood as the area of the infrastructure level per unit of
infrastructure, can be written as

𝑎𝑘 =
𝐴𝑘
𝑁𝑘

. (100)

Consequently, from Eqs (94) and (99), one has
𝑎𝑘 = 𝑎𝑏𝑘(𝛽FA−1) , (101)
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when 𝑁0 = 1. For instance, 𝑎ℎ (for 𝑘 = ℎ) can be understood as the area occupied by a single person (𝑎ℎ = 𝐴ℎ∕𝑁ℎ =
𝐴∕𝑁).

Now, one needs to determine the hyper-road length 𝑙𝑘, and for this Bettencourt suggests that
𝑙𝑘 = 𝑙𝑎𝑘 (102)

where 𝑙 is a constant (scale-independent) defined as
𝑙ℎ =

𝑎ℎ
𝑙

= 1
𝑙
𝐴
𝑁

= 𝑎
𝑙
𝑁𝛽FA−1 . (103)

To summarize what we have so far are,
⎧

⎪

⎨

⎪

⎩

𝑁𝑘 = 𝑏𝑘
𝑎𝑘 = 𝑎𝑏𝑘(𝛽FA−1)
𝑙𝑘 = 𝑙𝑎𝑘
𝑠𝑘 = 𝑠∗𝑏𝛼(ℎ−𝑘) .

With these quantities, it is possible to compute the total length of the road network by

𝐿𝑡𝑜𝑡 =
ℎ
∑

𝑘=0
𝑙𝑘𝑁𝑘 ; (104)

and the total area of the road network by

𝐴𝑛 =
ℎ
∑

𝑘=0
(𝑠𝑘𝑙𝑘)𝑁𝑘 . (105)

Using P.G. sum, one can show that 𝐿𝑡𝑜𝑡 ∼ 𝑁𝛽FA , i.e. the total road length scales with the area of the city (i.e. according
to the fundamental allometry). It is also possible to show that the area of the total roads is 𝐴𝑛 ∼ 𝑁𝛼 , where 𝛼 is the
exponent defined in Eq. (97). Accordingly, the model explains the scaling of the area of the road network from the way
the width of the hyper-roads changes from one hierarchical level to the next.

4. Louf & Barthelemy Model
Louf & Barthelemy (L&B)[68, 69] present a model that aims to show how traffic congestion relates to the number

of city’s activity centers (and vice versa) and how it affects urban scaling, especially the fundamental allometry. The
model explains multi-centres’ emergence and the condition for mono-centric cities to exist or be maintained.

The starting point is the classical model by Fujita and Ogawa in spatial economics [70, 34], which states that the
individuals that live in place 𝑖 choose to work at a sub-center 𝑗 which maximizes some wage and location function.
L&B use the function

𝑍𝑖𝑗 = 𝑊𝑗 − 𝐶𝑖𝑗 (106)
where 𝑊𝑗 is the average wage paid by businesses located at the sub-center 𝑗, and 𝐶𝑖𝑗 is the commuting cost between 𝑖
and 𝑗.

The authors propose that 𝑊𝑗 is a random variable, given by 𝑊𝑗 = 𝑠𝜂𝑗 , where 𝑠 is a parameter which defines the
maximum wage and 𝜂𝑗 ∈ [0, 1] is a uniform random variable. Concerning the mobility cost, they assume that 𝐶𝑖𝑗depends on (i) the distance 𝑟𝑖𝑗 between 𝑖 and 𝑗 and (ii) the traffic between these two places. More specifically, they
consider

𝐶𝑖𝑗 = 𝜏𝑟𝑖𝑗

[

1 +
(𝑇𝑖𝑗

𝑐

)𝜇]

(107)

where 𝜏 is the transport cost, 𝑇𝑖𝑗 is the traffic between 𝑖 and 𝑗, 𝑐 (constant) is the typical capacity of a road, and 𝜇 is a
parameter representing the resilience of the transport network to congestion. The smaller the parameter 𝜇 is, the better
the transport network system is.
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To treat the model analytically, they propose some simplification to Eq. (107). Firstly, they consider that there are
no correlations between the workplace spatial distribution, so that

𝑟𝑖𝑗 ∼ 𝐿 ∼
√

𝐴 , (108)
where 𝐿 and 𝐴 are the diagonal extent and area of the city, respectively. Secondly, they only take the incoming traffic
to the workplace 𝑗 into account, which makes another simplification possible

𝑇𝑖𝑗 → 𝑇𝑗 . (109)
Then Eq. (106) becomes

𝑍𝑖𝑗 = 𝑠𝜂𝑗 − cte ⋅ 𝜏
√

𝐴
[

1 +
(𝑇𝑗

𝑐

)𝜇]

. (110)

As we are interested in 𝑗 that maximize 𝑍𝑖𝑗 , we can rewrite 𝑍𝑖𝑗∕𝑠 → 𝑍𝑖𝑗 without loss of generality. It allows us to
write

𝑍𝑖𝑗 = 𝜂𝑗 − cte ⋅

√

𝐴
𝑙

[

1 +
(𝑇𝑗

𝑐

)𝜇]

, (111)

where 𝑙 ≡ 𝑠∕𝜏. It is interesting to note that the unit of 𝑠 (maximum wage) is money, and the unit of 𝜏 (cost to travel) is
money per distance. Then, 𝑙, which has the unit of distance, can be interpreted as the maximum commuting distance
people can travel. Note also that if 𝑙 is too small, the system will always be in a poly-centric regime and never in a
mono-centric one. Here we consider only the situation that 𝑙 is sufficiently large, which guarantees the city’s integrity,
similarly to the previous models’ considerations, as the Bettencourt (sec. (2.2)) and Ribeiro et al (sec. (2.4.1)) models.

When the population increases, the traffic also increases, allowing new effective sub-centers to arise. For instance,
the second effective sub-center appears when, for a new individual 𝑖, we have

𝑍𝑖2 > 𝑍𝑖1 , (112)
where 𝑍𝑖1 is given by Eq. (111) in relation to the most attractive sub-center and 𝑍𝑖2 to the second most attractive
sub-center.

At this stage (mono-centric regime), we have 𝑇1 = 𝑁 (all previous individuals work at the sub-center 1) and 𝑇𝑗 = 0
for all the other 𝑁𝑐 − 1 (potential) sub-centers. However, when Eq. (112) is valid, then

𝜂2 − cte
√

𝐴
𝑙

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑍𝑖2

> 𝜂1 − cte
√

𝐴
𝑙

[

1 +
(𝑁
𝑐

)𝜇]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑍𝑖1

. (113)

It implies that the critical population size 𝑁∗ giving rise to the second sub-center is determined by

𝜂2 − 𝜂1 = −cte
√

𝐴
𝑙

(

𝑁∗

𝑐

)𝜇
. (114)

Given that the set {𝜂𝑗}𝑗 is generated from a uniform distribution, it is valid that 𝜂1 − 𝜂1 ∼
1
𝑁𝑐

, where 𝑁𝑐 is the number
of potential sub-centers, and consequently

𝑁∗ ∼ 𝑐

(

𝑙
√

𝐴𝑁𝑐

)𝜇

. (115)

This population size represents the transition from a mono-centric to a poly-centric (two effective sub-centers)
organization. Note that small 𝜇 or large 𝑐 (representing cities with good transportation infrastructure) can absorb large
traffic and maintain a mono-centric regime for a larger population.
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A natural question which comes out is: how many effective sub-centers are needed for a city of a given population
size? Or putting this question in another way, can the model predict the population 𝑁 for which the 𝑃 -th effective
sub-center appears? To answer those questions, suppose that 𝑃 − 1 effective sub-centers (from a total of 𝑁𝑐 potential
sub-centers) have emerged in 𝑡 − 1 time steps, and then it is valid that

𝜂1 ≥ 𝜂2 ≥ ⋯ ≥ 𝜂𝑃−1 . (116)
In the next time step (𝑡) the new worker 𝑖 will choose a new emergent effective sub-center 𝑃 , with random variable 𝜂𝑃 ,
if

𝑍𝑖𝑃 > max
𝑗∈[1,𝑃−1]

{𝑍𝑖𝑗} . (117)

Assuming that all sub-centers have approximately the same number of commuters, then 𝑇𝑗 ∼ 𝑁∕(𝑃 − 1), and that the
new sub-center has minimal traffic in comparison to the other sub-centers, we get

𝜂𝑃 − 𝜂1 > −cte
√

𝐴
𝑙

1
𝑐𝜇

𝑁𝜇

(𝑃 − 1)𝜇
. (118)

This is the condition for the 𝑃 -th sub-center to emerge, given a city with 𝑁 individuals.
Given a uniform random distribution of {𝜂𝑗}, it is possible to prove that

(𝜂1 − 𝜂𝑃 ) ∼
𝑃 − 1
𝑁𝑐 + 1

. (119)

Consequently, the critical condition for the emergence of the 𝑃 -th sub-center (from the above equations) is

𝑃 ∼ 𝐴
1

2(1+𝜇)𝑁
𝜇

1+𝜇 = 𝑓 (𝐴,𝑁) . (120)
This result suggests that the total number of effective sub-centers is an interplay between area 𝐴 and population 𝑁 .
One can also draw parallels between Eq. (120) and the Cobb-Douglas production function (see Sec. 4.2). This means
area and population can substitute each other, e.g. a lack of area can be compensated by population to achieve the same
number of sub-centers. Moreover, the city’s resilience to absorb transport congestion (represented by 𝜇) determines
the scaling exponents. In other words, according to this model, the capacity of the city to facilitate the flux of people
is the main responsible for the scaling economy.

The authors also argue that the model can predict fundamental allometry. In fact, they suggest that the total area
𝐴 of the city is directly related to the number of activity centers. This means, if 𝐴1 is the typical attraction area of one
sub-center, then

𝐴 ∼ 𝑃𝐴1 . (121)
In addition, 𝐴1 is related to the distance that the individuals can travel daily, namely 𝑙𝑐 , and consequently one can say
that

𝑙𝑐 =
𝐿travel
𝑁

∼
√

𝐴1 (122)

where 𝐿travel is the total daily distance travel of the population. Empirical findings [69] show that 𝐿travel scales linearly
with the population size, and consequently 𝑙𝑐 and 𝐴1 are scale-independent 4. It implies that 𝑃 ∼ 𝐴, and inserting such
result in Eq. (120) it is possible to write 𝐴 ∼ 𝐴

1
2(1+𝜇)𝑁

𝜇
1+𝜇 , which yields 𝐴 ∼ 𝑁

2𝜇
2𝜇+1 , and then

𝛽FA =
2𝜇

2𝜇 + 1
. (123)

4For instance, the authors have found that 𝑙𝑐 ≈ 23 miles.
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That is, the model predicts a sub-linear behaviour between area and population size, and the scaling (fundamental
allometry) is explained as a consequence of the city’s resilience to absorb traffic congestion (given by 𝜇). Note that
a large 𝜇 represents a city with a bad congestion resilience system, yields 𝐴 ∼ 𝑁 , i.e. the linear regime. The scaling
economy is more pronounced in cities that operate a better transport system, which is consistent with the other models
treated in this paper.

Based on this result, the authors also show how other urban metrics scale with 𝑁 . For instance, they show (see
details in [69]) that the total street length scales as 𝑁 𝜇

2𝜇+1+
1
2 (sub-linear regime), and then

𝛽sub =
𝜇

2𝜇 + 1
+ 1

2
, (124)

and also that the total carbon emissions scale as 𝑁 𝜇
2𝜇+1+1 (super-linear regime, as a consequence of the congestion),

and then

𝛽super =
𝜇

2𝜇 + 1
+ 1 . (125)

As in Sec. (2.4.4), where we discuss the connection between Euclidean and social distance, or in Sec. (2.5), where
we discuss the connection between Molinero & Thurner model with the gravity models, next we discuss similarities
of the Louf & Barthelemy expressions with those of another model.
4.1. Connection between the Louf & Barthelemy model and the Bettencourt models

If we compare the Louf & Barthelemy expressions with those of the Bettencourt 2013 models (Sec. (2.2) and (3),
and Tab. (1)), then it becomes apparent, that the expressions for 𝛽𝐹𝐴, i.e. Eqs. (14) and (123), are identical if

2𝜇 = 𝐷𝑓 (126)
holds true. If 2𝜇 = 𝐷𝑓 the expressions are also identical for 𝛽sub, i.e. Eqs. (18) and (124). However, for 𝛽super this
equivalence does not work. While in the Bettencourt model 𝛽super = 2 − 𝛽sub, in the Louf & Barthelemy model it is
𝛽super = 𝛽sub +1∕2. The disagreement can be attributed to the different nature of what the 𝛽super exponent describes in
both models. In the case of the Bettencourt model, it is socio-economic efficiency (e.g. GDP) with increasing city size,
while in the case of the Louf & Barthelemy model, it is increasing carbon emissions with city size, i.e. an inefficiency.
Thus, the two 𝛽super are not really comparable.

Nevertheless, it is remarkable that for two out of three predictions both models agree – given Eq. (126) – despite
their derivations stemming from very different arguments. Relating these two models we find a (not obvious) relation
between the fractal dimension 𝐷𝑓 , which characterizes the shape and structure of the city, and 𝜇, which represents
the city’s transport network efficiency. The comparison of these two models, thus, indicates a relation between these
seemingly unrelated quantities.

In front of this background, the Louf & Barthelemy model represents an interesting link between morphology
and mobility. It is consistent with other models, including the gravity approaches and the Bettencourt models, which
suggests that urban scaling is more pronounced the better the city is connected as a whole, i.e. when each individual
has potential access to any other. In other words, the facilitation of mobility and access is identified as an essential
ingredient to promoting a scaling economy.
4.2. Cobb-Douglas form generalizing urban scaling

The derivation by Louf & Barthelemy includes an interesting interim result. Equation (120) involves population
size and area size. Ribeiro et al. [71] investigate this extension of urban scaling. Specifically, instead of 𝑌 ∼ 𝑁𝛽 , they
propose

𝑌 ∼ 𝑁𝛽𝑁𝐴𝛽𝐴 , (127)
where 𝑁 is the population size, 𝐴 is the area size; 𝛽𝑁 , 𝛽𝐴 are exponents and in general different from 𝛽 [in [71] 𝑌
are urban CO2 emissions]. Equation (127) represents a form of Cobb-Douglas production function [72, 73], where
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the population and area are in analogy to labour and capital, respectively. An interesting property of Eq. (127) is
substitution, i.e. moving along so-called isoquants of constant 𝑌 , population and area can substitute each other.
Equation (127) implicitly also involves the density. Cities of high population and low area and cities of low population
and high area can exhibit the same 𝑌 but have completely different densities.

Including the relation between population and area, Eq. (1) and Eq. (2) in Eq. (127), leads to
𝛽 = 𝛽𝑁 + 𝛽𝐴𝛽FA (128)

and equivalently 𝛽𝑁 = 𝛽 − 𝛽𝐴𝛽FA and 𝛽𝐴 = 1
𝛽FA

(𝛽 − 𝛽𝑁 ). An additional equation is necessary to separate 𝛽𝑁 and 𝛽𝐴.
E.g. with constant returns to scale (𝛽𝑁 + 𝛽𝐴 = 1) we obtain

𝛽𝑁 =
𝛽FA − 𝛽
𝛽FA − 1

and 𝛽𝐴 =
𝛽 − 1
𝛽FA − 1

(129)

for 𝛽FA ≠ 1 [71]. Accordingly, without the constraint of constant returns to scale, Eq. (127) represents a generalization
of 𝑌 ∼ 𝑁𝛽 even under the constraint of the fundamental allometry Eq. (2) [71]. For 𝛽FA = 1 the original urban scaling
is recovered.

Following econometrics, one can extend Eq. (127) by including more independent variables 𝑋𝑖, i.e. 𝑌 ∼
𝑓 (𝑋1, 𝑋2, 𝑋3,…). This might lead to a better fitting when empirical data is analyzed e.g. by means of multi-linear
regression. However, the urban scaling paradigm relates city characteristics to size – while population and area both
represent measures of size, other independent variables might not.

5. Gomez-Lievano et al. – model of required factors
This section presents the Gomez-Lievano et al. 2016 model of required factors [74], which belongs to the intra-

city model category, but differs from the other models presented so far. While other intra-city models are based on
human interaction premises, this one is rather based on required factors within the city. Consequently, the general
framework introduced in Sec. (2.1) does not apply here. The model employs concepts of economic complexity and
cultural evolution to explain the origin of urban scaling. The main idea of the model is that an urban socio-economic
phenomenon occurs when a number of necessary complementary factors are available in the city.

Consider 𝑀 as the number of possible factors required for a particular socio-economic activity. For instance, if 𝑌
is the total number of patents in a city, 𝑀 can be the number of different skills and capabilities needed by an individual
to develop a patent. That is, 𝑀 is a measure of the “sophistication” (complexity, difficulty, etc.) of the phenomenon
in question [75]. Suppose that each one of these factors is provided by the respective city with probability 𝑧. Then,
if these factors are independent, the probability that the city provides 𝑚 of these 𝑀 factors, say 𝑝(𝑚), will follow the
binomial distribution

𝑝(𝑚) = 𝑀!
𝑚!(𝑀 − 𝑚)!

𝑧𝑚(1 − 𝑧)𝑀−𝑚 . (130)

According to the authors, the parameter 𝑧 can be interpreted as a measure of urban diversity.
One particular individual 𝑖 will only succeed to implement/develop this socio-economic activity if she/he only

needs factors that the city can provide. The authors introduce the binary random variable 𝑤𝑖 that is 𝑤𝑖 = 1 when
the individual succeeds or 𝑤𝑖 = 0 when the individual fails to implement this socio-economic activity. An analogous
proposition, but without scaling analysis, was studied in [76].

Let us call 𝑝(𝑤𝑖 = 1|𝑚) the probability of success given that the city provides 𝑚 factors. This probability is identical
to the probability that this individual does not need the (𝑀 − 𝑚) factors that the city does not provide. If we denote 𝑞
as the probability that 𝑖 needs any given factor – i.e. it is a measure of the ability of the individuals [75] – then we can
write

𝑝(𝑤𝑖 = 1|𝑚) = (1 − 𝑞)𝑀−𝑚 . (131)
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The total socio-economic activity in the city will be given by the expected value of the aggregate output 𝑌 =
∑𝑁

𝑖=1𝑤𝑖, that is

⟨𝑌 ⟩ = 𝑁
𝑀
∑

𝑚=0
𝑝(𝑤𝑖 = 1, 𝑚) , (132)

where 𝑝(𝑤𝑖 = 1, 𝑚) is the joint probability also given by
𝑝(𝑤𝑖 = 1, 𝑚) = 𝑝(𝑤𝑖 = 1|𝑚)𝑝(𝑚) . (133)

Then, using the probability distributions Eqs. (130) and (131), the expected value of the totality of this socio-economic
activity (from Eq. (132) and using binomial properties) will be

⟨𝑌 ⟩ = 𝑁
(

1 − 𝑞(1 − 𝑧)
)𝑀

. (134)
The term 𝑞(1 − 𝑧) represents the probability that a factor is neither possessed by the individual nor by the city, which
is likely to be very low. This can happen for sufficiently small 𝑞, e.g. if the number of skills per individual is large;
but also for 𝑧 → 1, e.g. cities tend to be very diverse places, in the sense that there are very few factors that cannot be
hired/found/bought therein. Then, for 𝑞(1 − 𝑧) sufficiently low Eq. (134) yields

⟨𝑌 ⟩ ≈ 𝑁𝑒−𝑀𝑞(1−𝑧) . (135)
As argued by the authors, this expression corresponds to a power law if 𝑧 is a logarithmic function of the population

size,
𝑧(𝑁) = 𝑎 + 𝑏 ln(𝑁) , (136)

where 𝑎 and 𝑏 are constants. It turns Eq. (135) into the power-law ⟨𝑌 ⟩ = 𝑌0𝑁
𝛽super , where

𝛽super = 1 +𝑀𝑏𝑞 . (137)
The authors argue that Eq. (136) can be explained by considering the way cities accumulate factors as they grow

in size. According to them, this relationship emerges if factors are added to cities as they increase their size and a
selection process occurs in which only the best or most useful factors survive. Such cumulative evolutionary processes
have been analyzed in the cultural evolution literature [77], and they give rise to factors accumulating with the logarithm
of population size.

To sum up, the model predicts that the super-linearity of the urban scaling exponent is due to (i) the number of
factors a given socio-economic activity requires to happen (expressed by 𝑀), (ii) the capacity of the city to provide
the necessary complementary factors (𝑏); and (iii) the dependence of individuals to get factors from their urban
environment (𝑞). The larger these quantities are, the more pronounced the super-linearity.

6. Gomez-Lievano et al. – extreme value model
Gomez-Lievano et al. 2021 [78] argue that the super-linear scaling may not be a consequence of increasing returns

to scale, as it is usually assumed. In this work, the authors propose a hypothetical situation where the non-linearity of
the urban scaling could emerge even without an interaction process between the agents. They show that non-linearity
can emerge by a selection process acting on independent random variables. In this sense, urban scaling would rather
represent an artefact.

To demonstrate this argument, the authors propose the following model. Assume that a given individual has a
productivity 𝑤, which is an independent random variable, and consequently, it does not depend on the size of the city
he/she lives in. Moreover, this productivity is log-normally distributed, following

𝑝𝑤(𝑤|𝑥0, 𝜎
2) = 1

𝑤
√

2𝜋𝜎2
𝑒−

(ln𝑤−ln𝑤0)
2

2𝜎2 , (138)
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where 𝑤0 and 𝜎 are positive parameters, such that ln𝑤0 = ⟨ln𝑤⟩ is the expectation value of ln𝑤, 𝜎2 = VAR[ln𝑤]

is the variance, and the productivity expectation value is given by 𝜇 = ⟨𝑤⟩ = 𝑤0𝑒
𝜎2
2 . The choice of a log-normal

probability density function (pdf) is justified by some empirical evidence suggesting that productivity across workers,
measured indirectly by wages, follows such distribution [79, 80].

The authors model the total socio-economic production of the 𝑐-th city as the sum of the productivity of all citizens
of the city, that is

𝑌𝑐(𝑁𝑐) =
𝑁𝑐
∑

𝑖=1
𝑤𝑐

𝑖 (139)

where 𝑁𝑐 is the population of the 𝑐-th city. The expectation value of this production can be computed as ⟨𝑌 (𝑁)⟩ =
∑𝑁

𝑖=1⟨𝑤𝑖⟩ which implies ⟨𝑌 (𝑁)⟩ = 𝑁⟨𝑤𝑖⟩. Similarly, for any other city with population 𝜆𝑁 , where 𝜆 is an increase
factor, one gets ⟨𝑌 (𝜆𝑁)⟩ = 𝜆𝑁⟨𝑤𝑖⟩. Consequently, it is possible to identify

⟨𝑌 (𝜆𝑁)⟩
𝜆𝑁

=
⟨𝑌 (𝑁)⟩

𝑁
, (140)

which means the per-capita socio-economic output remains unchanged in the face of an increase in population, which
shows that a basic situation of independent random variables yields 𝛽 = 1 (linear scaling).

However, scaling properties can appear if one considers the production 𝑌 as proportional to the maximum value
of the productivity in the city, i.e.

𝑌 (𝑁) ≡ max{w1,⋯ ,wN} . (141)
This represents the case where productivity is dominated by the most productive individuals.

For convenience, let’s rewrite 𝑤𝑖 as 𝑤𝑖 = 𝑒𝜎𝑧𝑖+ln𝑤0 , where 𝑧𝑖 is an independent random variable sampled from a
normal distribution with mean 0 and variance 1. The parameter 𝑤0 is choose to be ln𝑤0 = −𝜎2

2 , by convenience only,
to promotes ⟨𝑤𝑖⟩ = 𝑒ln𝑤0+

𝜎2
2 = 1. Then Eq. (141) can be rewritten as

𝑌 (𝑁) ∼ 𝑒𝜎𝑍(𝑁)− 𝜎2
2 (142)

for 𝜎 ≫
√

ln𝑁 . Here 𝑍(𝑁) ≡ max{z1,⋯ , zN}, and it is well known that it converges to the Gumbel distribution
[81, 82], leading to

𝑍(𝑁) ∼
√

2 ln𝑁 . (143)
Hence, from Eq. (142) one obtains
𝑌 (𝑁) ∼ 𝑒𝜎

√

2 ln𝑁− 𝜎2
2 . (144)

Considering the power law of the form 𝑌 ∼ 𝑁𝛽 holds, the scaling exponent is given by

𝛽 =
𝑑
𝑑𝑁 ln 𝑌
𝑑
𝑑𝑁 ln𝑁

. (145)

Applying such derivative to Eq. (144) yields
𝛽 = 𝜎

√

2 ln𝑁
, (146)

which is valid for 𝑁 ≪ 𝜎, implying super-linearity. Otherwise prevails 𝛽 = 1, as discussed previously.
The result of this model has at least two consequences. First, increasing super-linear scaling, and increasing returns

to scale, can be a mere artefact because it can happen from the selection process of independent random variables.
Second, it allows different regimes, linear and super-linear, depending on the relation between the size of the city and
the variance in the distribution of workers’ productivity. Small cities (𝑁 ≪ 𝜎) would exhibit super-linear scaling,
while larger cities (𝑁 ≫ 𝜎) would exhibit a linear regime.
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Part II

Inter-city Models
The models presented so far are based on city internal (intra-city) aspects. However, cities are not closed or isolated
objects and, indeed, cities are in constant interaction with each other, be it by relations among individuals/firms from
different cities [83], be it by the very migration flows between cities [84]. Consequently, processes taking place between
cities must, in some way, interfere with the productivity and the use of infrastructure. It is natural also to elaborate how
such interactions between cities, that is inter-city processes, could explain urban scaling or interfere with it, even if only
in a second-order approximation. This section presents models that can be assigned to the intra-city category. This line
of research is less advanced, as suggested by a smaller number of models and a wider range of concepts, and some of
them only comprise a qualitative approach.
6.1. Pumain et al. model of technological diffusion

Pumain et al. [85] argue that non-linearities are due to interactions within the system of cities. More specifically,
they propose that non-linearity emerges through a hierarchical diffusion process of innovations, from the largest to
the smaller cities. According to this proposition, the innovation process is disproportionately higher in larger cities.
Super-linear scaling of economic indicators represents a stage of the emergence of new technologies, which take place
in larger cities; linear scaling represents the diffusion stage, from larger cities to towns and small cities of the system,
and sub-linear scaling represents the mature stage of technologies, also characterised by decay or substitution processes.
The merit of this theory is that it brings the interconnection between cities to the forefront, evidenced, for instance, by
Zipf’s law which reveals some kind of hierarchical structure in urban systems [86, 87, 88, 89, 90, 91, 92, 93, 94].
6.2. Gomez-Lievano et al. relation

Gomez-Lievano et al. [95] propose a statistical framework to characterize urban scaling and city size distributions.
In simple terms, they derive the scenario under which the city population sizes 𝑁 follow Zipf’s law [94, 96, 34], i.e. a
power-law distribution according to

𝑃 (𝑁) ∼ 𝑁−𝛼 , (147)
with 𝛼 ≈ 1. Here, 𝑃 (𝑁) represents the (complementary) cumulative distribution function (ccdf). In addition, the
authors consider, based on empirical evidence, that the ccdf of a given urban indicator 𝑌 , namely 𝑃 (𝑌 ), also follows
a power-law

𝑃 (𝑌 ) ∼ 𝑌 −𝛼𝑌 , (148)
where 𝛼𝑌 is usually different from 1 for socio-economic and infrastructure urban variables.

While the authors use a probabilistic characterization of urban scaling, in the following we present a back-of-an-
envelop derivation. If 𝑝(𝑁) is the probability density function (pdf), in the sense that 𝑃 (𝑁) = ∫ 𝑝(𝑁)𝑑𝑁 , and similarly
for 𝑝(𝑌 ), then one distribution can be transformed into the other obeying the density transformation

𝑝(𝑁)𝑑𝑁 = 𝑝(𝑌 )𝑑𝑌 . (149)
If we use the distributions Eq. (147) and (148) then we can write the integrals

∫ 𝑁−𝛼−1𝑑𝑁 ∼ ∫ 𝑌 −𝛼𝑌 −1𝑑𝑌 , (150)

which leads to 𝑁−𝛼 ∼ 𝑌 −𝛼𝑌 and
𝑌 ∼ 𝑁

𝛼
𝛼𝑌 . (151)

Finally, comparison with Eq. (6) provides

𝛽 = 𝛼
𝛼𝑌

. (152)

Fabiano L. Ribeiro and Diego Rybski: Preprint submitted to Elsevier Page 36 of 48



Mathematical models to explain the origin of urban scaling laws

This means that the scaling exponent is directly related to the Zipf exponent and vice versa; Zipf’s law and urban
scaling are connected phenomena. Recently, various relations were proposed explaining the connection between the
Zipf and scaling exponents quantitatively [97] and qualitatively [98]. More specifically, urban scaling transforms the
Zipf distribution (𝛼 ≈ 1) into another power-law distribution with another exponent 𝛼𝑌 that differs from 𝛼 if 𝛽 ≠ 1.

However, Ribeiro et al. [97] argue that Eq. (152) only represents an upper limit. By permuting the values 𝑁 and
𝑌 from different cities, the association is destroyed so that correlations vanish (𝛽 ≈ 0) – but the distributions and the
exponents 𝛼, 𝛼𝑌 remain unaffected. This thought experiment leads to a situation where Eq. (152) is violated. However,
different degrees of correlations permit 𝛽-values up to 𝛼

𝛼𝑌
. In other words, Eq. (147) and 𝑌 ∼ 𝑁𝛽 imply Eq. (148) but

Eqs. (147) and (148) do not imply 𝑌 ∼ 𝑁𝛽 with 𝛽 = 𝛼
𝛼𝑌

.

6.3. H.Ribeiro et al. model – country scaling
Ribeiro et al. [97] empirically relate Zipf’s law for cities and urban scaling. Based on data from many countries,

they find correlations between the Zipf-exponent 𝛼 and the urban scaling exponent 𝛽 for GDP. In order to explain these
correlations, the authors argue that for a given total urban population the country-wide urban GDP is fixed and different
values of 𝛼 require an adjustment of 𝛽 so that the country-wide aggregate is preserved. The same argument is used
vice versa, i.e. the authors make no statement about the direction of a possible causality.

Combining Zipf’s law and urban scaling, the total country-wide output of a considered (additive) socio-economic
urban metric is given by

𝑌 ∗ =
𝑁max
∑

𝑁=𝑁min
𝑌 (𝑁)ℎ(𝑁) ∼ ∫

𝑁max

𝑁=𝑁min
𝑁𝛽ℎ1𝑁

−𝛼−1𝑑𝑁 . (153)

where ℎ(𝑁) is the frequency function, which according to Zipf’s law Eq. (147) is ℎ(𝑁) = ℎ1𝑁−𝛼−1; and ℎ1 is the
normalization constant from the city size distribution. The constant ℎ1 can be obtained from the total urban population

𝑁∗ =
𝑁max
∑

𝑁=𝑁min
𝑁ℎ(𝑁) ≈ ∫

𝑁max

𝑁min
𝑁ℎ1𝑁

−𝛼−1𝑑𝑁 . (154)

These equations are solved by considering that the sizes of the largest and smallest cities in a country depend on the
total population of that country, following power-laws,

𝑁max = 𝑏(𝑁∗)𝜃 and 𝑁min = 𝑎(𝑁∗)𝛿 , (155)
where 𝑎, 𝑏, 𝜃, 𝛿 are constants. Introducing these relations in Eq. (153), the authors obtain

𝑌 ∗ ∼
(𝛼 − 1)𝑁∗

𝛼 − 𝛽

(

𝑎𝛽𝑏𝛼(𝑁∗)𝛿𝛽+𝜃𝛼 − 𝑎𝛼𝑏𝛽(𝑁∗)𝜃𝛽+𝛿𝛼

𝑎𝑏𝛼(𝑁∗)𝛿+𝜃𝛼 − 𝑎𝛼𝑏(𝑁∗)𝜃+𝛿𝛼

)

. (156)

Country populations are large (𝑁∗ ≫ 1) and in this limit the total aggregate urban metric becomes
𝑌 ∗ = 𝑌 ∗

0 (𝑁
∗)𝛾 , (157)

where 𝑌 ∗
0 and 𝛾 are constant. Which of the four terms in the parenthesis of Eq. (156) dominates in the limit, depends

on the values of the exponents 𝛼, 𝛽, 𝛿, 𝜃. Considering Eq. (156) in the limit 𝑁∗ ≫ 1 and comparing with Eq. (157),
the exponents can be solved for 𝛽 yielding

𝛽 =

⎧

⎪

⎨

⎪

⎩

1 + 𝛾−1
𝜃 0 < 𝛼 ≤ 1

𝛾+𝛿−1
𝜃 +

(

1 − 𝛿
𝜃

)

𝛼 1 < 𝛼 < 1 + 𝛾−1
𝛿

1 + 𝛾−1
𝛿 𝛼 ≥ 1 + 𝛾−1

𝛿

, (158)

for 𝛾 > 1 and 𝛿 < 𝜃 (the authors provide similar expressions for other conditions). It is a step-wise function (see
Fig. 11), which in the middle regime exhibits a linear relation between 𝛽 and 𝛼. Solving for 𝛽 does not mean that there
is a causality from 𝛼 on 𝛽.
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Figure 11: Illustration of Eq. (158) relating the urban scaling exponent 𝛽 and the Zipf exponent 𝛼. Here the parameters
𝛾 = 1.1, 𝛿 = 0.25, and 𝜃 = 0.8 have been used. Source: adapted after [97].

Last, it needs to be mentioned that 𝛼 and 𝛽 are exponents across cities and there is one value each for a country.
The other exponents 𝛾, 𝛿, 𝜃 are country scaling exponents across countries. This means, considering a country or a
similar confined region as it is generally done in this paper, the country scaling exponents are constants. E.g. for a
given country population 𝑁∗ Eq. (157) with 𝛾 implies a fixed country aggregate 𝑌 ∗.

Comparison of Eq. (152) and the middle regime of Eq. (158) leads to 𝛾+𝛿−1
𝜃 = 0 and (1 − 𝛿

𝜃 ) =
1
𝛼𝑌

. It supports the
compatibility of both views. Fitting the country scaling relationships Eqs. (155) and (157), Ribeiro et al. [97] report
𝛾 ≈ 1.31, 𝛿 ≈ 0.20, and 𝜃 ≈ 0.79, approximately confirming the first relation and leading to 𝛼𝑌 ≈ 1.34. However,
as the country scaling relations only describe the mean field, the value 𝛼𝑌 ≈ 1.34 needs to be interpreted in the same
sense and one needs to keep in mind some spread around it.
6.4. Altmann et al. model – attractiveness token

The last model to be discussed is the one developed by Altmann [99] based on an approach initially proposed
by Leitão et al. [100]. This model differs from the other models presented here in the sense that it does not lead to
the scaling exponent as an emergent phenomenon. However, it is essential to mention it because the model builds on
interactions between individuals of different cities, introducing ideas about integrating intra- and inter-city aspects.
Moreover, this model suggests ideas that could be incorporated into the intra-city models, in order to expand them to
an inter-city approach.

The model considers an urban system composed of 𝑁cit cities, where 𝑁𝑐 is the population of the 𝑐-th city, in such
a way that the total population of the system is 𝑁∗ =

∑𝑁cit
𝑐=1 𝑁𝑐 . There are also 𝑌 ∗ tokens that are randomly assigned

to the people of the system. This token can be, for example, a patent or a socio-economic output. Let’s denote 𝑝(𝑖) the
probability that one token is attributed to the individual 𝑖 out of 𝑁∗ individuals. Altmann proposes that this distribution
is a function of the attractiveness 𝑥𝑖 of this individual [99]. The attractiveness would be related to the ability of the
individual to attract one of the tokens – for example, charisma, leadership, or professional training. In other words,
token attractiveness can also be understood in an active sense, i.e. related to the skills of an individual or to which
extent an individual is able to convince others. This quantity can be thought of as the result of the connection between
this individual and all the others, in the form

𝑥𝑖 ∝
𝑁∗
∑

𝑗=1
𝑝int(𝑟𝑖𝑗) (159)
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where 𝑝int(𝑟𝑖𝑗) is a measure of the interaction between the individuals 𝑖 and 𝑗, that are at the distance 𝑟𝑖𝑗 one each other.
Here 𝑟𝑖𝑗 can be within or across the boundaries of a city, since 𝑖 and 𝑗 can belong to the same or to different cities.

Note that the attractiveness 𝑥𝑖 also appears in the Yakubo et al. model (see Sec. 2.4.2), and 𝑝int(𝑟𝑖𝑗) is the probability
of interaction in the context of gravity models (see Sec. 2.4). This way, 𝑝int(𝑟𝑖𝑗) can, for instance, obey the power-law
form given by Eq. (34). Moreover, Eq. (159) can also recover a strict intra-city process when 𝑝int(𝑟𝑖𝑗) = 0 for 𝑖 and 𝑗
residing in different cities. There is a subtle but essential difference between the attractiveness considered by Yakubo
et al. and the one considered by Altmann. In the former, the attractiveness implies the probability of interaction (as
given by Eq (42)); while in the latter the attractiveness is a consequence of the probability of interaction (as given by
Eq. (159)).

Returning to the model, the probability that a token is allocated to a particular city 𝑐 is 𝑝tok(𝑐) = ∑

𝑖∈𝑐 𝑝(𝑖), and the
expected number of tokens at this city can be computed using this probability, i.e.

𝑌𝑐 = 𝑌 ∗ ⋅ 𝑝tok(𝑐) . (160)
Altmann considers, by hypothesis, a non-linear efficiency of individuals, expressed by

𝑝(𝑖) =
𝑥1−𝛽𝑖
𝑍(𝛽)

, (161)

where 𝑍(𝛽) is the normalization constant given by the sum ∑𝑁∗

𝑖=1 𝑝(𝑖) = 1. In the particular case that 𝑥𝑖 is the same for
all individuals of the same city 𝑐, that is 𝑥𝑖 = 𝑥𝑐 for any 𝑖 belong to city 𝑐, the probability of this city to attract a token
is

𝑝tok(𝑐) = 𝑁𝑐 ⋅
𝑥1−𝛽𝑐
𝑍(𝛽)

. (162)

Then, from Eq. (160), the expected number of tokens at the 𝑐-th city is given by

𝑌𝑐 = 𝑌 ∗ ⋅𝑁𝑐 ⋅
𝑥1−𝛽𝑐
𝑍(𝛽)

. (163)

The probability to observe the set {𝑌𝑐}𝑐=1,⋯,𝑁cit
in the set of cities of size {𝑁𝑐}𝑐=1,⋯,𝑁cit

is indeed a multinomial
distribution

𝑃 (𝑌1,⋯ , 𝑌𝑁cit
|𝑁1,⋯ , 𝑁𝑁cit

) = 𝑌 ∗!
∏𝑁cit

𝑐=1 𝑌𝑐!

𝑁cit
∏

𝑐=1

(

𝑁𝑐 ⋅ 𝑥
𝛽−1
𝑐

𝑍(𝛽)

)𝑌𝑐

. (164)

It correspond to the likelihood of the data {𝑌𝑐}𝑐=1,⋯,𝑁cit
given a fixed population {𝑁𝑐}𝑐=1,⋯,𝑁cit

.
The first version of the model [100] is without spatial interactions. However, in the version presented in [99],

Altmann has generalized the model to take into account spatial interactions between individuals by Eq. (159). He
investigates the parameter 𝛽 that maximizes the posterior of this likelihood, varying the typical interaction distance 𝑟0that governs the interaction range between the individuals. For instance, in the case where the probability of interaction
is governed by an exponential decay 𝑝int(𝑟𝑖𝑗) ∼ 𝑒− ln(2)𝑟𝑖𝑗∕𝑟0 , implies that the interaction becomes 0.5 for 𝑟𝑖𝑗 = 𝑟0 and
1 for 𝑟𝑖𝑗 = 0 (intra-city case).

He finds that the value of 𝛽 that maximizes Eq. (164), say 𝛽∗, is a function of the typical distance 𝑟0, i.e. 𝛽∗ = 𝛽∗(𝑟0).In addition, he finds that 𝛽∗ has a maximum value for 𝑟0 ≠ 0, which reflects an effect from an inter-city process. For
instance, for the urban GDP of Brazilian cities, 𝛽∗ is maximized when 𝑟0 = 14.6 km, suggesting that this is the typical
interaction range for this system of cities.

Altmann argues that urban scaling is a consequence of the non-linearity of the individuals’ efficiency that depends
on the size of the city they live in, modelled by Eq. (161), which is in line with what other authors argue [11]. Another
distinguishing aspect of Altmann’s work is a systematic way – via the likelihood (164) – to test different models, with
their parameters being extracted and tested from data. It involves, according to Altmann, separating the analysis into
two steps. First “explaining” the emergence of scaling (the model) and second, making a fit to the data (by maximum
likelihood approach).
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For future work, it could be interesting to incorporate into this model some ideas from the models presented
previously. For example, to incorporate the power-law distribution of attractiveness – as done by Yakubo (see
section 2.4.2) – or to use a range of interaction as captured by the parameter 𝛾 discussed in the gravity models context
(section 2.4.1).

7. Discussion and future directions
The purpose of this work goes beyond simply presenting the mathematical models that aim at explaining the urban

scaling phenomenon. Instead, here we explore what one can find out when all such models are organized and compared
systematically. Which similarities do they share and what distinguishes a specific model? And most importantly,
what can be inferred from the junction of all these models for future research designs and schools of thought? These
perspectives will be discussed in this section.

In order to facilitate the organization, comparison, and identification of research gaps, we propose the taxonomy
depicted in Figs. (2) and (3). The first distinguishing property is that the models can be divided into two types, the ones
based on processes or interactions within a city and the ones based on processes between cities. In the former, intra-
city type, most models consider that urban scaling emerges from human interactions, i.e. intentionally or accidentally
meeting people, in the considered city. In the following subsections, we synthesize the particularities in more detail
(in arbitrary order).
7.1. Intra- versus inter-city process

A point that has been little explored by the theoretical research is the role of exogenous factors in the scaling of
cities. The imbalance between models of intra- and inter-city processes (as also visible in Fig. 2) may be attributed to
early successes of publications employing human interactions within cities to explain urban scaling. However, external
factors – including inter-city processes – should be better investigated in future work, either to show that they represent
negligible perturbations compared to the internal factors, responsible for urban scaling, or the opposite, that external
factors can significantly affect the scaling laws discussed here.

Intra-city models are based on reasonable assumptions and prove to be successful in describing urban scaling.
Nevertheless, at the same time, cities are not isolated objects, and there are important interactions between them. An
example includes commuting [101, 102] – quantified by the number of people who live in certain cities but work in
others – and how it can increase urban productivity. The models based on processes between cities, in addition to being
few, are less explicit, and the emergence of urban scaling is barely derived but, e.g. somewhat related to other scaling
laws.

Furthermore, it will be interesting to study how digital means of interaction (e.g. video conferencing) change
the role of distance and endogenous/exogenous interactions and how this will have short-, medium-, and long-term
repercussions in socio-economic urban productivity. Conducting experiments to quantify these issues is essential for
developing a systematic understanding of cities.
7.2. Probability of interaction

We find that models employing human interactions within a city are all based on a given probability of interaction.
The main idea behind this kind of models is that the exchange of knowledge and experiences generates ideas and
innovations, which results in increasing returns and economy scale. The super-linearity that the number of contacts
that people have represents strong evidence and argument favouring the idea that the connections between people are
a crucial mechanism that causes increasing returns to scale. It is supported by empirical findings and the theoretical
background presented here.

The models that are based on the interaction within cities differ one from the others only in the reasoning behind
how the interaction probability is estimated theoretically. Exploring this similarity, we unify this conceptual overlap
in a framework that formalizes this probability (see Fig. 4). Supporting this framework with empirical analysis would
represent a great step forward, e.g. quantifying the frequency of encounters between personal profiles. Moreover, the
type of interaction plays an important role but is neglected by all models. Overall, the spatial organization of social
interactions on urban and pan-urban scales is of high relevance. Recent works that are going empirically in this direction
include [103, 104, 105]. Growing data, as collected by mobile phones and GPS, might provide a better measure of these
human interactions in space.
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7.3. Gravity and city integrity
The analogy to gravity in physics has a long history and has been studied in a broader context, including population

flows [54], like commuters [56], or spatial explicit modelling [106]. Reviewing the gravity models used to explain urban
scaling, we find that three groups of authors independently employ different ideas that lead to equivalent results (within
given parameter configurations). We interpret this observation as strong support for the gravity idea, i.e. that some sort
of interaction decays with some sort of distance, interfering in some way with urban scaling. A closer inspection
of the variants permits us to draw conclusions, that might serve as guidelines to public managers and as theoretical
justifications for implementations of social integration policies.

Different approaches of gravity show the consistency of the presented models in terms of (i) good access to all
parts of the city, (ii) influencers reaching distant parts of the city, and (iii) interaction between socially distant people.
It was also possible to see via these models how geometry can interfere with people’s interactions and how it affects the
socio-economic development of cities; and finally, how it could be responsible for generating urban scaling. One point
that must be highlighted is the axiom of the city’s integrity as one necessary condition to explain scaling properties
to emerge. Different models (Ribeiro et al. and Yakubo et al. models in the context of gravity idea, and also the
Bettencourt model) show that the increasing returns to scale are only possible if the city behaves as a whole, with a
good integration of its different geographical parts. This aspect deserves more attention, especially when it concerns
the design of empirical research to understand the integrity and connection more profoundly. One work that went in this
direction is [104], which using mobile phone data and analyzing the trajectory of thousands of people found that the
density of visitors of a place decays with the inverse of the square of both distance and frequency of visits. However, as
important as the design of experiments to corroborate or contradict these models’ outcomes is to design urban policies
and to use such findings to improve the cities’ efficiency. That is, to understand this connection force as a guiding
principle to generate an assisted socio-economic improvement of cities.

One example of improved socio-economic output due to increased inter-connectivity is the city of Medellin
(Columbia) and its cable car, which connects previously isolated areas of the city [107]. It had a significant and
persistent influence on the socio-economic index of the city, showing that integrating people is a vital ingredient
to enhancing the development of the cities. For future work, it remains to systematically identify such examples and
to investigate quantitatively the effect of integration, i.e. how it reverberates quantitatively to the city development.
For instance, how the improvement of transport efficiency – for example, implementing links in a subway network or
increasing the number of bus lines – changed the city’s GDP. Ex-post analysis of developing cities could provide us
with an excellent opportunity to quantify these relationships between integration and productivity. This includes also
the validation of models presented here – and perhaps the creation of more general and more robust ones.

Gravity approaches appear in the urban literature in at least three domains: (i) geo-spatial interactions [56, 84, e.g.],
(ii) urban form and growth [108, 109, e.g.], and (iii) urban scaling [48, 12, e.g.]. They all resemble Newton’s law of
gravity, with a decreasing distance power-law function controlled by the exponent 𝛾 .

In the context of (i) geo-spatial interactions, the urban dynamics – such as population flows (e.g. commuters) – is
empirically modelled by a gravity form consisting of the product of origin and destination mass (usually populations),
and the exponent 𝛾 is usually obtained by regression. In the context of (ii) urban form and growth, the spatial distribution
of the population, or the built-up area of a city, can be simulated on a grid where the probability of urbanization is
modelled by a decreasing power-law of the distance to already urban locations. The exponent 𝛾 of this power-law is
a parameter to be chosen. In the context of (iii) urban scaling, the gravity form is used to model the probability of
interaction between people, which is controlled by the 𝛾 parameter.

It will be highly relevant to study and understand the relations between these three forms of gravity approaches, and
if it is possible to unify them. It could lead to an explanation of the 𝛾-exponent itself, that is, the parameter that controls
the space impedance. In other words, it is desirable to derive the exponent 𝛾 instead of treating it as an inexplicable
parameter. Solving this problem will also help to understand the role of morphology in urban scaling, specifically the
interaction between urban scaling, fractality, and gravity.
7.4. Urban morphology and geometry

Geometry plays a fundamental role in describing urban scaling, and it was evidenced by gravity models and
the Molinero & Thurner model, both presented here. It is important to stress that the findings of these models
are not merely naive analogies. Of course, we know that the presence of lakes or mountains (components of the
geometry/geography of the city) interferes with the flux and, consequently, the interaction between people. However,
the models’ implications go beyond these basic premises. Indeed we found quantitative relations between urban scaling
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and the fractal dimensions of the spatial structure formed by the people and the fractal dimension of the street network.
This means, the models and the empirical findings reveal, to some extent, how the shape of the city facilitates or
obstructs human contact, which, in turn, reverberates in economic productivity and scaling. In other words, through
the models, we can observe a quantitative relationship between the shape (geometry) and scaling (socio-economic
properties).

Given these insights, it remains to investigate these properties more deeply, especially in other countries, given
that Molinero & Thurner exclusively analyzed European cities. They found that the ratio between the population and
infrastructure fractal dimensions is similar to those (European) cities. However, is this ratio universal? Can the same
value of this ratio be observed across a wider set of countries? One point that calls attention in this context is that
the entropy of the spatial distribution of urban settlements strongly depends on the degree of development of the
country/city [110, 111]. Given that entropy is related to the fractal dimension [112] and that entropy depends on the
country’s development, it suggests that maybe the ratio between fractal dimensions found by Molinero & Thurner
could be different for non-developed countries and thus it could not be universal. Of course, that is speculative, and
only empirical analysis in a broader set of countries can bring some light to this issue.
7.5. The influence of the city definition

Although this paper has a theoretical focus, we cannot leave without discussing an empirical issue. When we see a
city, we immediately recognize it as such, but where does it start and where does it end? The question of how to define
cities is probably as old as cities research itself. It is an ongoing problem if and how it affects scaling exponents – see
[96, Sec. 3.1] for a discussion of the “units of observation” in the context of Zipf’s law for cities.

Arcaute et al. [113] define urban units via commuting and population density thresholds. In many cases, subsequent
urban scaling analysis leads to vanishing non-linearity or non-universal exponents. Similarly, Cottineau et al. [114]
report that “different scaling regimes can be encountered for the same territory, time and attribute, depending on the
criteria used to delineate cities”. Strikingly, [115] analyze urban CO2 emissions in the USA and obtain super-linear
scaling (𝛽 = 1.37) for “urban areas” and sub-linear scaling (𝛽 = 0.95) for “combined statistical areas”.

In contrast, Dong et al. [58] analyze urban scaling on a within-city scale and confirm super-linear scaling for socio-
economic activity. In the opposite direction, Ribeiro et al. [97] find that (urban) GDP also follows a power-law on the
country scale, i.e. when each point in the scaling-plot represents a country instead of a city. Both findings support the
robustness of (urban) scaling.

On the one hand, these works add to the problem of “city definition”, and it would be interesting to contextualize
the findings with the city’s integrity condition as discussed in the context of gravity models. On the other hand, the
sensitivity to the choice of the units of observation represents an interesting scientific problem. Researchers do mention
the Modifiable Areal Unit Problem (MAUP) [114, e.g.] but to our best knowledge there is no theoretical work solving
the problem in the urban scaling context.

A starting point could be the ordinary least squares (OLS) slope given by 𝛽OLS = 𝜌(𝜎ln 𝑌 ∕𝜎ln𝑁 ) [116, e.g.], where
𝜌 is the correlation coefficient between ln 𝑌 and ln𝑁 , and 𝜎ln 𝑌 , 𝜎ln𝑁 are the respective standard deviations. Changing
the aggregational scale, the standard deviations obey 𝜎 ∼ 𝑠ℎ−1, where 𝑠 is the number of smallest units in the aggregated
values, and ℎ is a fluctuation exponent. In the absence of correlations, ℎ = 1∕2 and ℎ − 1 < 0 so that the standard
deviation decreases with increasing aggregational scale following 𝑠−1∕2. Changes of 𝛽 with the aggregational scale
can occur when population and urban indicators exhibit different spatial correlations (ℎln 𝑌 ≠ ℎln𝑁 ). Moreover, the
correlation coefficient 𝜌 is affected by the aggregational scale (ecological fallacy [117, e.g.]).
7.6. Longitudinal and transversal scaling

We also need to mention that here we exclusively consider urban scaling cross-sectionally. The equivalence of
cross-sectional (transversal) and temporal scaling (longitudinal) is tempting but requires some formal considerations.
Recently, two groups independently and consistently provide the theoretical description [118, 119]. Essentially, these
works suggest that temporal and cross-sectional scaling are the same, given that cities have sufficiently large growth
rates and given that exogenous factors can be neglected.

Remains for future works to analyze the connection between the models presented in this paper in the context of
individual cities’ growth. In most cases, models of urban scaling leave it open if they are only valid cross-sectionally or
also temporally. While longitudinal and transversal scaling is basically understood from the empirical perspective, the
modelling is not explored at all. This is best visible by the fact that none of the models includes the time variable in any
sense. Accordingly, they implicitly operate at a constant time where the time Δ𝑡 needed by the processes is negligible
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to the time that changes of parameters and constraints take. This, however, might be an unjustified assumption that
requires further investigation.
7.7. Zipf’s law and urban scaling

If large cities are wealthier than smaller ones, then they should also be more attractive. In this way, a systematic
population flow among cities of different sizes should lead to a change in the city size distribution. Empirically, such
a temporal process has not been observed. However, Ribeiro et al. [97] do find an association between urban scaling
and city size distribution. Their finding not only suggests inter-city processes but also that there must be some truth to
the intuition. Nevertheless, it is also plausible that there must be some sort of counteracting force holding people back,
otherwise everyone would migrate to the largest city. In a general sense, the dynamics can be formulated by a balance
equation that combines intrinsic population growth and migration between cities [33]. Significant work has been done
in solving the balance equation [120], but more effort is needed to understand the connection between urban scaling
and Zipf’s law for cities.

A better understanding of inter-city processes (and the association between Zipf’s law and urban scaling) will
require a better understanding of the spatial organization of cities in a country or region. Certainly, such attempts go
back to Christaller, who formulated the Central Places Theory (CPT) in 1933 [121]. While Zipf’s law implicitly gives a
hierarchical organization of cities, an explicit manifestation is given by CPT [122]. Accordingly, we suggest reviewing
CPT in view of today’s understanding of urban systems, particularly in front of urban scaling. E.g. according to CPT,
cities produce goods and services that exceed the needs of their own population and serve a “basin of attraction”, which
includes smaller cities and settlements. Therefore, the larger the centrality of the city is, the bigger it will be. Moreover,
Christaller quantifies the centrality by the number of telephones relative to population – similar to [123] but assuming
𝛽 = 1 [121, Sec.B1, p.152]. However, to what extent the various components of CPT hold true represents an additional
question and requires up-to-date empirical analysis.
7.8. Forms of density scaling

In the context of the fundamental allometry, Eq. (2), we had mentioned the population density. Some colleagues
explore the population density as the alternative independent variable, i.e. instead of the plain population.

E.g. Newman & Kenworthy [13] plot the annual gasoline use per capita as a function of population density and find
for a set of metropolises a strong dependence with low density being associated with high gasoline use. More recently,
a similar relation was found for urban carbon emissions in the USA which was characterized by means of power laws
[124]. The Cobb-Douglas form discussed in Sec. 4.2 can to some extent reconcile this form of density scaling with the
conventional urban scaling [71].

A different form of density scaling is studied by Gastner & Newman [125], i.e. facilities (hospitals, airports, or
malls) per area as a function of population per area. The authors find a power law with the exponent 0.66. This value
agrees with their theoretical prediction 2∕3 which is based on the global minimization of total travel distance between
people and facilities [125]. Um et al. [126] expand the understanding by distinguishing public and commercial facilities.
They argue that public facilities follow the minimization of travel distance but commercial facilities aim at maximizing
the number of people in their respective Voronoi cells (defined by the spatial organization of other facilities of the same
type). Then, in the case of commercial facilities, their derivation leads to an exponent 1 between facility density and
population density [126]. Although this form of density scaling is well described, it remains open how it relates to
conventional urban scaling. In this context, it could also be of interest to relate density scaling to Reilly’s law of retail
gravitation [127].
7.9. Urban scaling and the New Science of Cities

Given all the challenges cities are facing, such as spatial segregation, accessibility, mobility, pollution, energy
demand, congestion, and crime, it is an urgent need to develop an operational science of the city. That is, a systematic
and quantitative way to govern our cities using a predictive theory that is empirically grounded.

One way to approach this problem is via the analyses (by machine learning) of a massive amount of data that
is nowadays available due to the omnipresence of sensors (e.g. mobile phones, GPS, digital office). Another way is
by performing computer simulations to predict scenarios and opportunities. However, such approaches – while being
fashionable and tempting – have their own pitfalls. While big data and machine learning usually cannot reveal the
processes of the system, the computational simulations are often based on a large set of parameters which mostly
impedes any general interpretation. However, minimal mathematical models, like the ones presented here, are the
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way to understand more profoundly a complex system as the urban phenomenon. This approach allows identifying
the predominant mechanisms – the essence – of the phenomenon without getting lost in the less important and non-
fundamental details.

Finally, we have to see how these models contribute to the New Science of Cities [3, 1, 2, 128]. Here we discuss
only one facet of the urban phenomenon, namely urban scaling. Nevertheless, the various emergent properties observed
in cities and urban systems, such as fractality, segregation, and mobility patterns, are mainly studied and understood
as independent features. We argue in favour of a holistic view, where the findings presented here only represent a
particular case of a more general theory. A beginning could be models that cover both intra- and inter-city processes
parsimoniously. Specifically, such models could explain the association between urban scaling and city size distribution
as recently found [97]. As such models would include two important urban regularities, they could represent an
important step towards a Unified Urban Theory (UUT) – a quantitative theory that combines few premises and derives
many different observed urban patterns as particular cases [98].

8. Final Remarks
The research of urban scaling attained a mature state where initial indication in data has been expanded to a solid

empirical finding – and to a range of theoretical models mathematically deriving the empirical exponents. We discuss
and contextualize a set of modelling approaches, whereas most of the considered models (a) aim at explaining the
emergence of non-linear urban scaling and (b) consist of a formal derivation. On the one hand, our work summarizes
the models in a comprehensible and coherent manner and, on the other hand, compares and relates them in order to
identify similarities and dissimilarities. Consequently, the purpose of this work is to infer perspectives for the field.

To finalize, we would also like to mention works that challenge the urban scaling framework (in addition to the
problem of how to define cities, see Sec. 7.5). Leitão et al. [100] find that empirically different estimations of the
exponent 𝛽 can be obtained depending on the assumptions made about the fluctuations around the urban scaling
relation. Gomez-Lievano et al. [78] show that non-linear urban scaling can emerge as an artefact when extreme value
theory is employed. Despite overwhelming evidence favouring urban scaling, these works and similar publications
need to be taken more seriously as they can also point towards weak spots in the theoretical models.

Overall, we hope this paper disentangles the plethora of urban scaling models and thereby synthesizes new
understanding. Substantial progress has been made by the community, but we also think that the chapter of urban
scaling models cannot be closed yet. We also hope that approaches and concepts developed in related disciplines –
including social sciences, economics, and geography – can be translated into mathematical models in order to obtain
a broader and more general understanding of cities and urban systems.
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