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Abstract
Reliable information on climate impacts can support planning processes to make the agricultural sector—which has cascading 
effects on food security, livelihoods and the security situation—more resilient. Subsequently, uncertainties in past and future 
climate data need to be decreased and better understood. In this study, we analysed the quality and limitations of different 
past and future climate data sets to be used for agricultural impact assessments in West Africa. The high differences between 
the three analysed past climate data sets underline the high observational uncertainty in West Africa and show the influence 
of selecting the observational data set for the bias-adjustment of climate model data. The ten CMIP6 (Coupled Model Inter-
comparison Project Phase 6) models show regional and model-dependent biases with similar systematic biases as have been 
observed in earlier CMIP versions. Although the bias-adjusted version of this data (ISIMIP3b—Inter-Sectoral Impact Model 
Intercomparison Project) aligns overall well with observations, we could detect some regional strong deviations from observa-
tions for some agroclimatological indices. The use of the multi-model ensemble mean has resulted in an improved agreement 
of CMIP6 and the bias-adjusted ISIMIP3b data with observations. Choosing a sub-ensemble of bias-adjusted models could 
only improve the performance of the ensemble mean locally but not over the whole region. Therefore, our results suggest the 
use of the whole model ensemble for agricultural impact assessments in West Africa. While averaging the impact results over 
all climate models can serve as a best guess, the spread of the results over all models should be considered to give insights 
into the uncertainties. This study can support agricultural impact modelling in quantifying climate risk hotspots as well as 
suggesting suitable adaptation measures to increase the resilience of the agricultural sector in West Africa.

1 Introduction

To support the United Nations (UN) Integrated Strategy for 
the Sahel (UNISS), the UN wants to increase the prepared-
ness to respond to growing multi-causal risk in the Sahel by 
improving the availability of high-quality data. The agricul-
tural sector is the main source of livelihood in this region 

and strongly influences development and peace-building. 
Hence, the data quality for climate impacts on the agricul-
ture sector plays an important role in securing future liveli-
hoods under climate risk (UN 2018, 2021).

West Africa is characterised by high variability in cli-
mate (Kothe et al. 2014), has a population that is expected 
to double from 2020 to 2050 (United Nations 2019) and is 
home to a population strongly reliant on rainfed agriculture 
(Schewe & Levermann 2017). Agricultural production is 
largely weather-dependent in West Africa and the risk of 
yield losses is increasing further under increasing tempera-
tures (Sultan & Gaetani 2016). Even low future emissions 
scenarios were shown to push farming globally outside of its 
historical regimes under simulation of the latest climate and 
crop models (Jägermeyr et al. 2021). To adequately address 
climate risks and avoid further pressure on food security, 
evidence-based information on climate impacts and guid-
ance on the suitability of adaptation measures is required. 
This is increasingly recognised by individual countries and 
the international community (e.g. in the UNISS strategy).
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Simulations of regional impacts of climate change on 
crop production are strongly influenced by the climate data 
used as input. The selection of climate-forcing data is most 
influential in regions with high uncertainties in past climate 
data and where agricultural production varies greatly under 
climate variability (Ruane et al. 2021). Both are the case in 
West Africa, calling for an improved understanding of past 
and future climate data in the region.

The quality of past data over West Africa is limited by 
spatial and temporal gaps due to scarcely distributed long-
term weather stations (Funk et al. 2019; Satgé et al. 2020). 
Validated data from satellites supports closing the existing 
gaps and reanalysis products developed with weather models 
are further providing solutions to missing data (Vy 2021). 
Nevertheless, uncertainties remain.

In recent decades, there has been substantial progress 
in climate modelling, but only limited improvements have 
been made over Sub-Saharan Africa (James et al. 2018). 
This can be seen in particular in West Africa, where the 
representation of the West African monsoon shows system-
atic biases in climate models and future climate projections 
carry high uncertainties. Especially for precipitation projec-
tions, climate models show strong disagreement, varying 
between much wetter and drier future conditions (Druyan 
2011; James et al. 2018). Climate models of the Coupled 
Model Inter-comparison Project (CMIP) phase 3 and 5 pro-
ject future climate that is highly model-dependent (Roehrig 
2010; Sow et al. 2020). While CMIP6 models tend to simu-
late the West African monsoon better than CMIP5 models, 
common biases and large intermodal spreads persist (Wang 
et al. 2021), limiting the reliability of future projections in 
the region.

Simulations of general circulation models (GCMs) show 
too strong biases in mean climatology and extremes and 
the models are often on a too low resolution to produce 
meaningful results when applied in impact models to, e.g. 
simulate effects on the agricultural sector. Bias-adjusted 
data, meaning data that is statistically altered to match the 
current climate and often statistically downscaled, is pre-
ferred. While bias-adjustment is a necessary step, it cannot 
fix major problems of a climate model (Maraun 2016) but 
rather hides that physical processes might not be represented 
correctly by the model. Common bias-adjustment methods 
can easily adjust the mean climatology, but an understand-
ing of how different bias-adjustment methods influence 
extremes or the trend is largely missing (Casanueva et al. 
2020). Gampe et al. (2019) showed exemplary that the qual-
ity of the reference data set used for the bias-adjustment 
highly influences the bias-adjusted data, especially the 
representation of extremes. Famien et al. (2018) highlight 
the difference between bias-adjusted data sets depending 
on the bias-adjustment method and the reference data set 
that also leads to differing future yield projections. Thus, 

the bias-adjusted data entails the model uncertainty as well 
as additional uncertainty introduced by the selection of the 
bias-adjustment method and observational uncertainty com-
ing from the choice of the reference data set.

In this study, we analysed 10 CMIP6 models as well as 
their bias-adjusted versions developed in phase 3b of the 
Inter-Sectoral Impact Model Intercomparison Project (ISI-
MIP3b) (Lange 2019; Lange & Büchner 2021). ISIMIP3b 
historical simulations and future projections are widely used 
by an international network of agricultural impact model-
lers and are one of few resources of bias-adjusted climate 
data designed for impact assessment and available globally. 
However, analyses of the quality and limitations of the data 
in West Africa are largely missing. The aim of our study is 
thus to contribute to a better understanding of uncertainties 
in climate data and offer guidance on the use of the CMIP6 
and ISIMIP3b data for agricultural impact assessments in 
West Africa.

We analysed the uncertainties related to the data sets by 
comparing modelled data and observations in two steps:

1) To understand the general ability of the CMIP6 models 
to represent the main features of the West African cli-
mate, we compare monthly precipitation and tempera-
ture as well as past trends in the historical runs to three 
different observational data sets. Including observational 
data sets from different sources supports accounting for 
observational uncertainties.

2) Next, we assessed the bias-adjusted ISIMIP3b data. We 
tested its ability to simulate different agroclimatologi-
cal indices in comparison to the observational data set 
used for the bias-adjustment. The indices were selected 
according to their reported influence on crop production 
and are ranging from rainy season onset and number of 
dry spells to temperature extremes.

The present study is structured as follows: in ‘Sect. 2’, 
we present the climate data used, the study region and its 
climate, and the methodology including all the definitions of 
indices. In ‘Sect. 3’, we present and discuss the results and 
finally, conclusions are given in ‘Sect. 4’.

2  Data and methods

2.1  Climate and agricultural data sets

To evaluate the performance of the climate models, the sim-
ulated data is compared against observational and reanalysis 
datasets. To account for uncertainties in the observational 
data sets and understand the influence of the selection of a 
reference data set used for the bias-adjustment, three obser-
vational data sets are included (Table 1). The data sets were 
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selected based on their wide use, their availability over West 
Africa and daily resolution as well as their independence 
from one another. The data sets cover different available 
sources, namely observations, satellite data and/or data 
constructed through reanalysis. The three data sets cover 
precipitation and temperature data and are:

 (i) ERA5 (fifth generation of European Centre for 
Medium-Range Weather Forecast (ECMWF) atmos-
pheric reanalyses), the latest high-resolution reanaly-
sis produced by ECMWF. It combines vast amounts 
of historical observations into global estimates using 
advanced modelling and data assimilation systems 
(Hersbach et al. 2019, 2020).

 (ii) CHIRTS-daily, a high-resolution (0.05° × 0.05°) 
daily maximum and minimum temperature data set. 
CHIRTS-daily is based on the CHIRTSmax data set 
(Climate Hazards Center InfraRed Temperature with 
Stations). CHIRTSmax combines a global network 
of around 15,000 in situ station observations with 
remote sensing infrared land surface emission tem-
peratures and thereby estimates the monthly mean 
maximum 2-m air temperature. ERA5 was used to 
disaggregate the monthly CHIRTSmax to daily maxi-
mum (Tmax) and minimum temperature (Tmin) val-
ues (Chris Funk et al. 2019; Verdin et al. 2020).

CHIRPS (Climate Hazards Center Infrared Precipitation 
with Station data) is the respective gridded precipitation data 
set incorporating satellite imagery with in situ station data 
(C. Funk et al. 2014).

 (iii) W5E5 v2.0, a dataset that was compiled to support 
the bias-adjustment of climate input data for the 
impact assessments carried out in ISIMIP3b (Cuc-
chi et al. 2020; Lange et al. 2021). W5E5 is a com-
bination of WFDE5 (WATCH Forcing Data meth-
odology applied to ERA5 data and monthly values 
are bias-adjusted with CRU, Weedon et al. 2014; 
Cucchi et al. 2020) over land and ERA5 over the 
ocean. Additionally, W5E5 precipitation is adjusted 
to GPCC (Global Precipitation Climatology Centre, 
Schneider et al. 2018) precipitation over land and 
GPCP (Global Precipitation Climatology Project, 
Adler et al. 2003) over the ocean.

W5E5 and CHIRTS are partially dependent on ERA5 
constraining an analysis of independent data sets. For both 
variables (temperature—tas and precipitation—pr), we ana-
lysed three data sets (compare Table 1). The observational 
and reanalysis data sets are for reasons of simplicity in the 
following called observational data sets.

Table 1  Specification of 
observational and reanalysis 
data sets

1 Obtained by calculating the mean between Tmax and Tmin.

Data set Variable(s) Covered period Frequency Resolution

ERA5 tas, pr 1979–2019 Hourly 0.25° × 0.25°
CHIRTS-daily tas1 1983–2016 Daily 0.05° × 0.05°
CHIRPS-2.0 pr 1981–near-real time Daily 0.05° × 0.05°
W5E5v2 tas, pr 1979–2019 Daily 0.5° × 0.5°

Table 2  Specification of the ten CMIP6 climate models

1 Information on resolution based on Richter and Tokinaga (2020)

Model Acronym Institute Resolution (atmosphere)1 Reference

CanESM5 Can Canadian Earth System Model T63 linear Gaussian grid 
(~ 2.8125° × 2.8125°); 49 
levels

(Swart et al. 2019)

CNRM-CM6-1 CNCM Centre National de Recherches Météorologiques T127 (~ 100 km); 91 levels (Voldoire 2018)
CNRM-ESM2-1 CNES Centre National de Recherches Météorologiques T127 (~ 100 km); 91 levels (Voldoire 2019)
EC-Earth3 EC EC-EARTH consortium TL255 (~ 70 km); 91 levels (EC-Earth 2019)
GFDL-ESM4 GFDL Geophysical Fluid Dynamics Laboratory 1.25° × 1.00°; 49 levels (Krasting et al. 2018)
IPSL-CM6A-LR IPSL Institute Pierre-Simon Laplace N96 (2.5° × 1.259°); 79 levels (Boucher et al. 2018)
MIROC6 MIROC Model for Interdisciplinary Research on Climate T85 (~ 1.4° × 1.4°); 81 levels (Tatebe & Watanabe 2018)
MPI-ESM1-2-HR MPI Max Planck Institute Earth System Model T127 (0.94° × 0.94°); 95 levels (von Storch et al. 2017)
MRI-ESM2-0 MRI Meteorological Research Institute TL159 (~ 120 km); 80 levels (Yukimoto et al. 2019)
UKESM1-0-LL UKE Met Office Hadley Centre N96 (1.875° × 1.25°); 85 level (Tang et al. 2019)
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Our analysis was carried out with temperature and precip-
itation data of ten GCMs from the CMIP6 historical simula-
tions (specified in Table 2) as well as their bias-adjusted and 
downscaled counterparts of the ISIMIP3b data (Lange 2019; 
Lange & Büchner 2021). The ten GCMs are CanESM5 
(short: Can), CNRM-ESM2-1 (short: CNES), CNRM-
CM6-1 (short: CNCM), EC-Earth3 (short: EC), GFDL-
ESM4 (short: GFDL), IPSL-CM6A-LR (short: IPSL), 
MIROC6 (short: MIROC), MPI-ESM1-2-HR (short: MPI), 
MRI-ESM2-0 (short: MRI) and UKESM1-0-LL (short: 
UKE). ISIMIP3b data was obtained by applying a trend 
preserving bias-adjustment at the spatial resolution of the 
CMIP6 data and a statistical downscaling method applied 
to the bias-adjusted simulations to increase and unify the 
resolution. The bias-adjustment method uses parametric 
quantile mapping aiming at a robust bias-adjustment of all 
percentiles of a distribution that preserves the trends in these 
percentiles (Lange 2019).

The subset of CMIP6 models selected within ISIMIP are 
representing a subset with relative structural independence 
and a fair representation of the whole ensemble in terms of 
climate sensitivity, with a tendency towards high climate 
sensitivity (Lange 2021; Nijsse et al. 2020).

The different CMIP6 historical simulations are all pro-
vided on different grids. For the comparison of CMIP6 data 
to observational data, all observational datasets and CMIP6 
model data have been regridded to a spatial resolution of 
2.0° × 2.0° using conservative remapping of CDO (Schul-
zweida 2019). Due to the inconsistent availability of data 
over the ocean, only data points over land are taken into 
consideration for all the analyses where different data sets 
are compared with one another by statistical means. The 
maps contain data over the ocean if available. ISIMIP3b 
data is provided on a 0.5° × 0.5° grid. Since it is not the 
focus to compare the bias-adjusted and non-bias-adjusted 
versions with each other, the different grid scales for non-
bias-adjusted CMIP6 data and ISIMIP3b data are unprob-
lematic. To distinguish between the bias-adjusted and non-
bias-adjusted versions of the GCMs in the following text, the 
bias-adjusted data is written in italic.

As a compromise between different time frames available 
by models and observations, the analysis focuses on a 30-year 
period between 1985 and 2014 available for all data sets. We 
consider this period sufficient to detect meaningful mean val-
ues of climate and agroclimatological indices not dominated 
by extreme values. At the same time, this is a period with 
higher observational data quality than earlier periods.

In addition to climate data, crop planting and harvest-
ing dates were used in this study to define growing sea-
sons. These were obtained from the Center for Sustain-
ability and the Global Environment (Sacks et al. 2010) on 
a 0.5° × 0.5° grid. The dataset is the result of digitising 
and georeferencing existing observations of crop planting 

and harvesting dates from six sources and merging these 
crop calendar maps with monthly climatologies from 
CRU (Climate Research Unit gridded Time Series, Harris 
et al. 2020) with the help of derived climate statistics. We 
based our definition of the growing season on the maize 
crop calendar, as maize is widely grown in this region and 
assuming that the high data availability for maize leads to 
the most reliable results. We thereby defined the growing 
season as the time between the earliest planting date and 
the latest harvesting date of maize. A visualisation of the 
growing season dates can be found in the SI.

2.2  Study region

The model evaluation is done over the West African region 
from 19°W to 14°E and 3°S to 20°N entailing the main part 
of the Sahel region as defined in UNISS, a UN project aim-
ing at increased availability of high-quality data to assess 
risks (UN 2018). The region is characterised by diverse 
climate conditions ranging from very dry conditions in the 
Sahara to a tropical climate near the Gulf of Guinea. The 
annual cycle of precipitation over the whole region is driven 
by the West African monsoon (WAM). The WAM is mainly 
driven by a temperature gradient between the ocean and land 
surface. The high temperatures over the Sahara in the north-
ern hemisphere summer create a heat low which drives the 
moist air from the Atlantic inland towards the Sahel. The 
moisture condenses over land and thus releases latent heat, 
which again reinforces the temperature gradient and thereby 
the monsoon. This brings precipitation inland from April to 
October, with major differences between the wet Guinean 
region, where precipitation patterns show two peaks—one 
in June and one in September—and the arid Sahelian region 
showing a single peak in precipitation around August (Her-
zschuh et al. 2014; Kothe et al. 2014; Sow et al. 2020).

Due to substantially different climatological conditions as 
well as past trends within the West African region, we intro-
duced three sub-regions within the whole region for parts of 
the analysis: the Sahel, Savanna and Guinea regions (Fig. 1). 
The north–south boundaries of the sub-regions are defined 
following (Abiodun et al. 2012; Dieng et al. 2018; Omoto-
sho and Abiodun 2007) as 12°N–16°N (Sahel), 8°N–12°N 
(Savanna) and 4°N–8°N (Guinea).

Due to predominantly rainfed agriculture, the agricultural 
season is largely limited to the rainy season. Most of the 
precipitation occurs in the main monsoon season between 
June and September. Rainy season length and precipitation 
amount highly differ between the regions. The Sahel and 
Savanna zones have a short rainy season of between 6 and 
2 months with a peak in August and decreasing precipitation 
amounts towards the north. The Guinea zone receives more 
precipitation over a longer period, most of it falling between 
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February and October. Close to the equator, the rainy season 
is interrupted by a short dry season around July.

2.3  Methods

2.3.1  Representation of temperature and precipitation 
in the CMIP6 models

The bias-adjustment leading to the ISIMIP3b data hides 
the fact that the GCMs are only partially able to repro-
duce the main physical processes of the West African cli-
mate. Thus as a first step, we analyse the ability of the 
ten CMIP6 models to represent the main features of the 
West African climate by comparing the not bias-adjusted 
data from the CMIP6 models and their equally weighted 
multi-model ensemble mean (MMM) and the three differ-
ent observational data sets CHIRTS, CHIRPS and ERA5 
with the reference data set W5E5 (‘Sect. 3.1’). The W5E5 
data set is selected as a reference data set since it was used 
for the bias-adjustment of the ISIMIP3b data. Therefore, 
the comparison between the CMIP6 models and W5E5 
shows the bias, which is addressed with the bias-adjust-
ment. First, we compared the mean climatology from 1985 
to 2014, including the spatial distribution of annual precip-
itation and mean annual temperature in the main monsoon 
season. We assessed the representation of the seasonality 
by comparing monthly temperature and precipitation along 
the latitudinal cross-section of the different data sets.

To compare the model simulations and different obser-
vational data sets against the W5E5 data set, we used dif-
ferent tools, which are further specified in the SI:

• Taylor diagrams for a quantitative comparison (Taylor 
2001).

• Hovmöller diagrams to display the north–south distri-
bution of temperature and precipitation across West 
Africa on a monthly scale (Hovmoeller 1949).

• Mann–Kendall test for trend detection from 1985 to 
2014 (Kendall 1975; Mann 1945). The trend is in the 

following named statistically significant if the signifi-
cance level is below 5%. The trend analysis was done 
over the three regions Sahel, Savanna and Guinea.

2.3.2  Representation of agroclimatological indices 
in the ISIMIP3b data

To understand the representation of the agroclimate in the 
bias-adjusted ISIMIP3b data, we analysed the agreement 
between the bias-adjusted data of the ten models and the 
W5E5 data set for every grid point on land in the second part 
of the paper (‘Sect. 3.2.1’). We validated the bias-adjusted 
data in how well it represents 14 temperature and precipita-
tion-based agroclimatological indices which were selected 
due to their documented influence on the growth of main 
staple crops in West Africa or areas with similar climate 
and thus following an approach by Dieng et al. (2018). The 
comparison was done with the help of two statistics, the 
Pearson correlation coefficient (r) and the mean absolute 
error (MAE) as described in the supplemental information 
(SI), two complementary statistics that were also used in 
other model evaluation studies like Akinsanola et al. (2018). 
The agroclimatological indices were compared for each grid 
point.

The 14 agroclimatological indices are listed and defined 
in Table 3 and the following.

The onset of the rainy season, as an important agroclima-
tological index, was obtained using a definition adapted from 
Stern et al. (1981) and Laux et al. (2008). The rainy season 
onset is considered to be the first day of the year on which 
the following three conditions are simultaneously met:

(1) At least 20 mm precipitation sum within 5 days.
(2) The starting day and at least two other days in these 

5 days are wet (defined as days with more than 0.5 mm 
precipitation).

(3) No dry period of seven or more consecutive days within 
the next 30 days.

Fig. 1  a Mean annual temperature and b annual precipitation based on W5E5 data from 1985 to 2005. The three sub-regions are marked in black
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We applied two definitions for the cessation date of the 
rainy season. In line with Laux et al. (2008), we defined 
cessation1 as the first day after the onset without a wet day 
(> 0.5 mm) within the next 20 days. The definition of cessa-
tion2 uses a threshold-based definition defining the end of 
the rainy season as the day after which 90% of the annual 
precipitation has fallen. This threshold is based on Odekunle 
(2006). Since this definition could not detect onset and ces-
sation for all of West Africa (some missing points in the 
very dry north), all further agroclimatological indices are 
calculated for the growing season which is defined as dates 
between the earliest planting date and the latest harvesting 
date of maize (see ‘Sect. 2.1’).

To better understand the diverging performance of the 
models in different regions, we assessed the agreement 
with W5E5 additionally over the three regions the Sahel, 
Savanna and Guinea separately (‘Sect. 3.2.2’). Next to the 
multi-model ensemble mean (MMM), we assessed the multi-
model mean of a sub-ensemble of the best-performing mod-
els (MMSM). This can give us a better idea of if a selection 
of best-performing models or exclusion of low-performing 
models can improve the general result (‘Sect. 3.2.3’).

3  Results and discussion

3.1  Comparing CMIP6 models with observational 
data sets

This section describes the agreement between different 
observational data sets as well as the agreement of the his-
torical simulations of non-bias-adjusted CMIP6 models 
with the observations. This includes an analysis of annual 
precipitation and mean annual temperature, their monthly 
distribution, as well as past climate trends.

3.1.1  Representation of main climatological patterns 
in the observational data sets

To assess uncertainties in observational data and thereby 
set the base for evaluating the performance of the climate 
models, we first discussed the agreement between the three 
gridded observational data sets. Annual (Fig. 2) and monthly 
(Fig. 3) temperature values are higher in CHIRTS and lower 
in ERA5 than in W5E5 over most of West Africa. Cold tem-
perature biases in ERA5 over Western Equatorial Africa 
were already found by Gleixner et al. (2020).

Annual (Fig. 4) and monthly (Fig. 5) precipitation is 
lower, most visibly over the Sahel, in ERA5 than in W5E5 
and CHIRPS. CHIRPS agrees well with W5E5, showing 
only small regionally and monthly varying differences. 
W5E5 seems to have a strong wet bias over Gabun as both 
other observational data sets and all GCMs depict a much 

Table 3  Agroclimatological indices used for the analysis of the ISIMIP3b data

Agroclima-
tological 
indices

Definition Unit

onset First day of the year with at least 20 mm of precipitation within 5 days, of which the starting day and at least 
two other days are wet (< 0.5 mm) and no dry period of 7 or more consecutive days within next 30 days

DoY

offset1 First day after the onset without a wet day (> 0.5 mm) within the next 20 days DoY
offset2 Day after which 90% of precipitation has occurred DoY
mm20 Number of days in the growing season with precipitation above 20 mm mm
mm40 Number of days in the growing season with precipitation above 40 mm mm
dry7 Number of times where 7 days are consecutively dry (< 0.5 mm) within the growing season Number of events
dry15 Number of times where 15 days are consecutively dry (< 0.5 mm) within the growing season Number of events
tmax95 95th percentile of maximum daily temperature in the growing season °C
tmax99 99th percentile of maximum daily temperature in the growing season °C
tmin05 5th percentile of minimum daily temperature in the growing season °C
tmin01 1st percentile of minimum daily temperature in the growing season °C
trange_sd Standard deviation of diurnal temperature range in the growing season °C
trange Mean diurnal temperature range (maximum daily temperature–minimum daily temperature) in the growing 

season
°C

tmax_sd Standard deviation of maximum daily temperature in the growing season °C
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drier climate. Remarkable is that the cold temperature 
bias of ERA5 compared to CHIRTS and W5E5 shows 
patterns similar to the annual precipitation distribution 
(compare Figs. 5a and 3b) indicating that the reanalysis 
product overestimates the cooling effect of precipitation. 

Additionally, the double passaging of the rain belt and 
the movement of the WAM to its most northern peak are 
shown less clearly by ERA5. This is in line with a recent 
study that found biases in the position of the rain band 
in reanalysis products (Quagraine et al. 2020). Satagé 

Fig. 2  a Difference in mean annual temperature between GCMs, CHIRTS and ERA5 compared to W5E5 for the period 1985–2014. b Mean 
annual temperature in °T averaged over 1985–2014 based on W5E5

Fig. 3  Hovmöller diagrams of mean monthly temperature along the latitudinal cross-section between longitude − 20E and 20W over land for the 
period 1985–2014. a Anomalies compared to W5E5. b Hovmöller diagram based on W5E5 as a reference
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et al. (2020) analysed 23 precipitation data sets over West 
Africa and found the data sets reliability to vary in space 
and time. They found CHIPRS to be the best-performing 
data set for monthly averages.

All in all, we found substantial differences in observa-
tional data sets. Since W5E5 and CHIRTS are partially 
dependent on ERA5, the observational uncertainties shown 
here might be even bigger than the displayed results. Sylla 

Fig. 4  a Difference in mean annual precipitation of GCMs, CHIRPS and ERA5 compared to W5E5 for the period 1985–2014. b Mean annual 
precipitation in mm averaged over 1985–2014 based on W5E5

Fig. 5  Hovmöller diagrams of mean monthly precipitation along the latitudinal cross-section between longitude − 20E and 20W over land for the 
period 1985–2014. a Anomalies compared to W5E5. b Hovmöller diagram based on W5E5 as a reference
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et al. (2013) state that the large discrepancies in observa-
tional and reanalysis data sets over West Africa put con-
straints on a reliable model evaluation and Gómez-Navarro 
et al. (2012) point to the importance of a model evaluation 
that takes uncertainties in observations into account. The 
found differences in observations over West Africa show that 
the following validation of the performance of the models 
by a comparison to observations is largely dependent on and 
limited by the quality of the observational data set.

3.1.2  Representation of main climatological patterns 
in the CMIP6 models

Comparing the ten CMIP6 models and their ensemble 
mean to the observational data sets, the models exhibit 
some systematic and individual biases that are higher than 
the spread between the different observational data sets. 
Looking at the biases of each model in reproducing the 
mean annual temperature (Fig. 2), a systematic warm bias 
over the Gulf of Guinea is visible for all ten models and 
the MMM. Since the temperature gradient between the 
ocean and the Sahara is influencing the northward shift of 
the monsoon (Roehrig et al. 2013), questions arise about 
how far the models are reproducing the West African mon-
soon correctly. Over land, MIROC stands out with a strong 
warm bias over the Sahel and Sahara throughout the year, 
while Can, CNCM, CNES, EC, GFDL, IPSL and UKE 
show a clear cold bias over this region in the northern 
hemisphere winter (Fig. 3b). An analysis of the monthly 
distribution of temperature along the latitudinal cross-sec-
tion shows that all ten GCMs can reproduce the temporal 
distribution of temperature with low inter-annual tempera-
ture differences in Guinea and higher differences in the 
Sahel and Sahara (Fig. 3). The models tend to show warm 
biases in the monsoon season in the Sahel and Sahara and 

cold biases in the dry season. Similar to ERA5, some mod-
els show temperature biases that are similar to the annual 
precipitation distribution (compare Figs. 5a and 3b) indi-
cating that also some models are not capable of simulating 
the cooling effect of precipitation well. This is especially 
visible for UKE and Can.

The simulations of precipitation in the CMIP6 models 
show a systematic southward shift of the rain belt, indicated 
by a wet bias over the Guinean coast and a dry bias over 
the Sahel in JJAS in most models and the MMM (Fig. 4). 
Only GFDL and MIROC overestimate the precipitation 
in the southern Sahel. This systematic underestimation of 
the northwards movement of the WAM could be linked 
with the systematic warm bias over the Gulf of Guinea in 
JJAS (Fig. 2) as Roehrig et al. (2013) have found a relation 
between the north–south temperature gradient between the 
Sahara and the ocean in the monsoon season and the position 
of the monsoon maximum in CMIP3 and CMIP5 historical 
simulations.

All models capture the annual movement of the WAM 
including the northward movement of the rain belt, reach-
ing a maximum around July and migrating southwards 
afterwards (Fig. 5a) with some temporal and spatial biases 
(Fig. 5b). None of the models can detect the position and 
time of the most northern position of the WAM correctly. 
EC, MPI and MRI simulate a late onset of the rainy season. 
Due to the double passage of the tropical rain belt around 
the equator, two rainy seasons are shown by the observa-
tional data sets. Only the MRI model can simulate this 
pattern reasonably well, showing a distinct dry period in 
July near the Gulf of Guinea.

For temperature and precipitation, the MMM shows 
smaller absolute differences to W5E5 than most individ-
ual models. Some systematic biases persist in the MMM. 
Biases in precipitation are similar to biases found in earlier 

Fig. 6  Taylor diagram showing the agreement of a monthly precipita-
tion and b monthly temperature over West Africa. Displayed are the 
ten CMIP6 data sets and the three observational data sets in reference 
to the W5E5 data set. The Taylor diagram displays the spatial (each 
grid point) combined with the temporal (12 months) agreement based 

on three statistics: (1) the Pearson correlation coefficient (azimuthal 
angle), the root-mean-square error (distance to the centre point) and the 
standard deviation (radial distance from the origin, normalised to 1)
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(downscaled) CMIP versions by the IPCC 4th Assessment 
Report (IPCC 2007) and Akinsanola and Zhou (2018).

When comparing the biases of the multi-model mean 
with the ones of ERA5, it becomes visible that the stronger 
systematic biases in the models (warm bias over the Sahel 
and Sahara and underestimation of the northwards move-
ment of the WAM) are to a weaker degree also visible in 
ERA5.

Additionally, we analysed the representation of mean 
monthly temperature and precipitation quantitatively with 
Taylor diagrams (Fig. 6). The diagrams confirm that the 
three observational data sets agree slightly better with 
W5E5 than the GCMs. For mean temperature and precipi-
tation over West Africa, the three observational data sets 
are correlated (> 0.97 for tas and > 0.93 for pr) and have 
low values of root-mean-square errors. The normalised 
standard deviations are around 1 (> 1 for tas and < 1 for pr). 
ERA5 and CHIRPS had an initially higher resolution than 
W5E5 and were regridded with conservative remapping. 
The remapping could partially explain the different stand-
ard deviations of ERA5 and CHIRPS compared to W5E5 
(Diaconescu et al. 2015). Comparing the CMIP6 models to 
W5E5, temperature shows lower values for the root-mean-
square error and a better correlation than precipitation with 
a correlation coefficient between 0.92 and 0.975 compared 
to a range between 0.82 and 0.91. The overall high corre-
lation values are partially emerging from the heterogenic 
climate over space and time. The models tend towards high 
standard deviations for temperature, indicating a stronger 
spatial and/or temporal divergence in comparison to W5E5. 

For precipitation, the ten models depict an equal spread 
with some models showing higher and some lower standard 
deviations. Only the MMM shows a high correlation and 
a normalised standard deviation close to one. The MMM 
is closer to W5E5 than all other models for mean annual 
temperature and precipitation being placed very close to 
the observational data sets in the Taylor diagrams.

3.1.3  Past trends in the observational data sets and CMIP6 
models

We compared the temporal evolution by applying a 
Mann–Kendall trend test. A significantly increasing past 
temperature trend of similar magnitude is indicated by all 
observational data sets in all the regions (Fig. 7b). The weak-
est trend is observed in the Sahel. Also, the climate models 
represent the temperature trend well. Models with weak 
trends tend to display weak trends in all sub-regions and 
vice versa. Only MIROC does not detect a significant past 
trend in the Sahel and Savanna.

While for temperature the trends are almost uniform 
amongst the regions and agree well between the different 
data sets, the indicated trends for precipitation differ by 
region and data set (Fig. 7a). The observational data sets 
do not agree on a past trend in precipitation, with ERA5 
not showing an increasing trend in the Sahel. According to 
other literature (Biasutti 2019; Kothe et al. 2014; Roehrig 
et al. 2013), seasonal precipitation amounts have partially 

Fig. 7  Trend in a annual precipitation and b mean annual temperature between 1985 and 2014 for the ten GCMs and the three observational data 
sets. A Mann–Kendall test was applied. The magnitude of the trend and its direction is given by tau. The significance level is 5%
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recovered since the droughts of the 1970s and 1980s, sup-
porting the increasing trend shown by CHIRPS and W5E5 
in the Sahel. Reanalysis data was found to be unsuitable for 
the investigation of trends (Bengtsson et al. 2004; Thorne 
& Vose 2010; Trenberth et al. 2008) and large differences 
in local trend patterns in West Africa have been detected 
amongst reanalysis products and in comparison with obser-
vations (Quagraine et al. 2020). Also, Gleixner et al. (2020) 
have found opposing trends in ERA5 temperature and pre-
cipitation trends on the African continent compared to other 
observational datasets. When excluding the ERA5 data set, 
the other two observational data sets agree on an increas-
ing trend in the Sahel and detect partially opposing trends 
that are not significant in the other two regions. Despite 
excluding ERA5 for its known limitations in reproducing 
past trends, the differences in the other data sets point to 
uncertainties in past trends.

Six out of the ten models agree on the increasing trend 
in the Sahel. In disagreement with W5E5, nine out of ten 
models simulate a past increasing precipitation trend in the 
Savanna. The inability to correctly represent the precipita-
tion trend in the Savanna might be due to the rain belt being 
placed too far south in most models.

3.2  Representation of agroclimatological indices 
in the bias‑adjusted GCMs

3.2.1  Performance over West Africa

We have clearly shown that the CMIP6 data has strong 
biases and can simulate the climatology in West Africa, 
not to the extent that it is suitable for agricultural impact 
modelling. Thus, a bias-adjustment of the data is neces-
sary before it can be adequately used for crop modelling as 
has been done in the ISIMIP project. The bias-adjustment 
adjusts the distribution of temperature and precipitation 

and therefore also its long-term averages and variability 
of the climate simulations in CMIP6 to the W5E5 dataset. 
Taylor diagrams (Fig. 8) compare the agreement between 
CMIP6 data, bias-adjusted ISIMIP3b data and observa-
tional data sets with one another. Since the bias-adjusted 
data sets are on a different grid, the data displayed in one 
single Taylor diagram is not completely comparable. Nev-
ertheless, the Taylor diagrams clearly show that the bias-
adjustment done as part of the ISIMIP project leads to a 
spatial distribution of mean historical climate data that is 
very close to the W5E5 data set which was used for the 
bias-adjustment. This does not allow a clear conclusion on 
the agreement of ISIMIP3b data with the real climate as 
the observational uncertainty was shown to be high over 
the region. For example, as W5E5 might have a strong wet 
bias over Gabun, the bias-adjusted climate models inherit 
this bias. As the bias-adjusted data sets agree much better 
with one another than the observational data sets, we can 
see that the choice of the observational data set has a high 
influence on the bias-adjusted data as has also been high-
lighted by Famien et al. (2018) and Gampe et al. (2019).

While mean monthly values are almost perfectly 
aligned with the observations, it is not guaranteed that the 
bias-adjusted dataset captures other agriculturally relevant 
indicators and extreme events. Therefore, the focus of this 
section is on indicators that are important for ensuring reli-
able agricultural impact assessments (specification of the 
agroclimatological indices in ‘Sect. 2.3.2’).

Evaluating the bias-adjusted ISIMIP3b data shows that 
overall the agreement in agroclimatological indices between 
the ISIMIP3b data and the observational data set W5E5 
is high (Fig. 9). There is not one bias-adjusted ISIMIP3b 
model that can simulate all aspects of the agroclimatol-
ogy better than others. While MIROC (bias-adjusted data in 
italic) cessation dates agree best with W5E5, MRI can best 
simulate heavy precipitation events and CNES performs 

Fig. 8  Taylor diagram showing the agreement of a monthly precipita-
tion and b monthly temperature over West Africa. Displayed are the 
CMIP6 data sets (circle), the 10 bias-adjusted ISIMIP3b data sets (star) 
and the three observational data sets (square) in reference to the W5E5 
data set. The Taylor diagram displays the spatial (each grid point) 

combined with the temporal (12  months) agreement based on three 
statistics: (1) the Pearson correlation coefficient (azimuthal angle), the 
root-mean-square error (distance to the centre point) and the standard 
deviation (radial distance from the origin, normalised to 1)



944 P. Romanovska et al.

1 3

best for high temperature extremes. The spatial distribution 
and direction of the bias for the different agroclimatologi-
cal indices is shown in the SI Fig. 2–Fig. 15 and exemplary 
maps for 15 days dry spells are shown in Fig. 10. Most 
models show a bias towards more 15 days dry spells in the 
growing season in Guinea and less in the Sahel and Savanna 
compared to W5E5. Thus, this bias can also be seen to a 
weak extent in the ensemble mean. Other biases cancel each 
other out, making the MMM the closest to W5E5. Abrupt 
changes of values, especially at country borders, can be 
seen in all indicators that are calculated within the growing 
season. This is not due to the climate data sets but due to 
the definition of the growing season which is in this data 
set often defined for a whole country (Sacks et al. 2010) 
(SI Fig. 1). Since the performance analysis of the models 
is based on a comparison to W5E5, we assume that a more 
fine-grained definition of the growing season would not 
have a strong influence on the results here.

Overall, the agreement between ISIMIP3b data and 
W5E5 is dependent on the index, the model, the area and 
the chosen statistics. On average MPI, CNCM and CNES 

have a better ranking for all three statistics. The MMM 
outperforms any single model in most agroclimatological 
indices under all applied statistics. While the agreement 
is generally good, outliers exist on a regional scale. Infor-
mation on these outliers (as can be seen in the maps in 
Fig. 10 and in SI Fig. 2–SI Fig. 15) can help impact mod-
els understand the behaviour of the model when apply-
ing the different bias-adjusted GCMs. For example, Can, 
IPSL and GFDL underestimate the number of days with 
heavy precipitation of at least 20 mm and overestimate 
the number of days with very heavy precipitation of at 
least 40 mm. EC shows the opposite biases (SI Fig. 5 and 
SI Fig. 6). These biases in climate input data can influ-
ence crop model outputs, especially for crops and models 
that are sensitive to heavy precipitation. Some indices, 
namely onset and cessation of the rainy season and 15 days 
dry spells, show in individual regions strong negative or 
positive deviations from W5E5. Regional outliers in crop 
model outputs driven by individual climate models could 
be better understood and eliminated by taking these results 
into account.

Fig. 9  Diagrams showing the Pearson correlation coefficient (a, b) 
and the mean absolute error (c, d) relating all models and the MMM 
to W5E5 for 14 different agricultural indicators. The right diagrams 

display the ranking of the models in representing the individual indi-
cators. The most right column displays the average rank of an indi-
vidual model
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Although the bias-adjusted models agree to a satisfying 
degree with the W5E5 data, our ability to detect their repre-
sentation of the true current climate is limited by the quality 
of the W5E5 data set. Our results point to uncertainties here 
since the three different observational data sets show clear 
differences (‘Sect. 3.1.1’). We want to underline the high 

influence of the selection of the reference data set applied in 
the bias-adjustment on the bias-adjusted data.

Fig. 10  Difference in number of 15 days dry spells within the growing season detected by the 10 bias-adjusted GCMs and the ensemble mean in 
reference to the W5E5. Right bottom: number of 15 days dry spells in the W5E5 data set

Fig. 11  Ranking of agreement 
between ISIMIP data and W5E5 
for each sub-region Guinea, 
Savanna, Sahel and whole of 
West Africa based on the mean 
absolute error (a) and the Pear-
son correlation coefficient (b). 
Rankings are averages over the 
14 agroclimatological indices
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3.2.2  Model ranking over sub‑regions

The models show a slightly different performance in 
reproducing the agricultural indices in the individual 
sub-regions as could also be seen on a fine scale already 
in Fig. 10 and SI Fig. 2–SI Fig. 15. To quantify regional 
differences in the performance of the individual models, 
Fig. 11 shows the ranked mean absolute error and Pear-
son correlation coefficient for each model and sub-region 
separately, whereby the ranking is averaged over all 14 
agroclimatological indices. While the ranked correspond-
ence to W5E5 is also for the regions dependent on the 
statistic, CNCM and CNES tend to perform better over 
Guinea while MPI performs better over the Sahel for both 
statistics. Averaged over all indices, the MMM still clearly 
outperforms any of the individual models in all regions.

3.2.3  Performance of sub‑ensemble of models

Since MPI, CNCM and CNES show higher agreement 
to W5E5 for all analysed statistics and many agrocli-
matological indices, we analysed the performance of 
the mean of the three model sub-ensemble (here called 
multi-model sub-ensemble mean: MMSM). Averaged over 
the whole region, the MMM does still represent all but 
one agroclimatological index better than the MMSM (SI 
Table 1 shows the correlation coefficients for all agrocli-
matological indices between the MMSM/MMM and the 
W5E5 data set). Figure 12 shows the number of indices 
where the MMSM outperforms the MMM for each grid 
point. Overall, the regions where the MMM is closer 
to W5E5 than the MMSM dominate (displayed in pink 
in Fig. 12) indicating that the selection of the best-per-
forming models for a multi-model mean is not meaning-
ful over the whole of West Africa. Nevertheless, on a 
regional scale, we could show that the selection of mod-
els could improve the performance of the mean for a few 

regions, for example northern Burkina Faso. Thus, in line 
with Schaller et al. (2011), we find that the selection of a 
sub-ensemble of climate models can be considered on a 
regional scale after a further assessment.

This simple selection of a sub-ensemble of models does 
not allow a conclusion for (not) applying any weighting 
or exclusion of models to reach a higher performance of 
the ensemble mean. More complex approaches that apply 
a weighting according to the model’s uniqueness as well 
as an agreement with observations (e.g. Sanderson et al. 
2017) and maintain the model spread (e.g. Herger et al. 
2018) could lead to different results. A more detailed 
process-based analysis could also allow model exclusion 
on a regional scale, but the method requires substantial 
resources and in depth expertise on the regional climate 
dynamics (Siderius et al. 2021).

4  Summary and conclusions

To answer the need for high-quality climate data under 
increasing climate risks, uncertainties in past and future cli-
mate data need to be reduced and better understood. This 
study provides a better understanding of the quality and limi-
tations of past and future climate data sets to be used for agri-
cultural impact assessments in West Africa. For this, we com-
pared ten CMIP6 GCMs and their respective bias-adjusted 
ISIMIP3b versions against the three different observational 
and reanalysis data sets CHIRPS, CHIRTS, ERA5 and W5E5 
in terms of representing mean temperature and precipitation, 
past trends as well as crucial agroclimatological indices.

The observational and reanalysis data sets show region-
ally dependent differences in their representation of past 
trends and mean climatology over West Africa pointing at 
large observational uncertainties. The reanalysis data set 
ERA5 displays an overestimated cooling effect of precip-
itation and shows an opposing past precipitation trend in 

Fig. 12  Number of indices for 
which the MMSM values are 
closer to the W5E5 data set than 
the MMM values. The blueish 
colour indicates that the mean 
of the best three models is 
closer to W5E5 for more than 
half of the indices, while pink 
shades indicate the opposite
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comparison to the other data sets. W5E5 and thus also the 
bias-adjusted ISIMIP3b data show a wet bias over Gabun 
compared to the other data sets.

The differences between the GCMs exceed the differences 
between the observational data sets. While the models suc-
cessfully simulate the large climatological patterns of annual 
and monthly temperature and precipitation, systematic as 
well as individual biases exist in all models. With similar 
systematic biases found in earlier CMIP versions by IPCC 
4th Assessment Report (IPCC 2007) and Akinsanola and 
Zhou (2018), we conclude that CMIP6 could only partially 
improve the performance over West Africa. Overall, the 
multi-model ensemble mean presents the highest correla-
tion with observations.

The bias-adjustment leading to ISIMIP3b data almost 
perfectly aligns mean precipitation and temperature to the 
reference data set W5E5. Thus, the differences between 
the observational data sets are much higher than between 
the bias-adjusted models. This highlights the importance 
of ensuring the quality of the reference data set used for 
the bias-adjustment and underpins the need to account for 
observational uncertainty when developing and working 
with bias-adjusted data. The W5E5 data set and the bias-
adjusted ISIMIP3b data are overall also in good agreement 
for 14 selected agroclimatological indices like rainy season 
onset and cessation as well as extreme precipitation and 
temperature values. This lends confidence in the use of ISI-
MIP3b data for crop modelling over West Africa but this 
confidence is limited by the high observational uncertainty 
we found earlier and thus the limited trust we can put in the 
reference data set W5E5. Some regionally higher systematic 
and individual differences to W5E5 could be shown in the 
individual bias-adjusted models which can help to explain 
outliers in agricultural modelling results. Not a single model 
can simulate all agroclimatological indices better than the 
other models, but the performance depends on the indica-
tor, the location and to some extent on the chosen statistics. 
The ensemble mean consistently outperforms the individual 
bias-adjusted models. A sub-ensemble of the slightly better 
performing models (MPI, CNCM and CNES) did not per-
form better than the full ensemble over the whole region 
but could improve the correlation to W5E5 in a few regions.

Therefore, the results of this study suggest using the 
complete ensemble mean of the ISIMIP3b data over West 
Africa or carefully selecting a subset of models based on an 
analysis on a regional scale. While the multi-model mean 
of the climate models shows the highest performance, it 
cannot directly be used as an input for impact models since 
it is not a physically consistent data set and suppresses part 
of the variability of the climate system. Instead, we recom-
mend to run impact models with each individual model 
of the whole model ensemble and average at the end over 
the impact results. Nevertheless, averaging can only serve 

as a best guess. Considering results from all individual 
models is essential to understand the range of uncertain-
ties in climate impact studies. The detailed analysis found 
in this study can support agricultural modellers to under-
stand their impact results under different climate input 
data. These recommendations are limited by the selection 
of indicators used for this assessment and the simple selec-
tion of best-performing models.

As the UN aims to increase readiness in the light of 
multi-causal risks in the Sahel region, the strategies need 
to root in solid analyses of the crop response to climate 
change and thus, high-quality data is key. Our findings 
point to further efforts needed in two main research areas 
to increase the reliability of climate data used for agri-
cultural impact assessments and other cascading climate 
change impacts. First, observational uncertainties highlight 
the necessity to increase the quality of observed weather 
data by, e.g. expanding the station network over the study 
domain complemented with further improvements of rea-
nalysis and satellite products. Second, model uncertainties 
and systematic model biases in the CMIP and ISIMIP3b 
data underpin the need to improve the representation of the 
complex West African climate in future CMIP versions.
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