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A B S T R A C T   

Background: Despite considerable progress made over the past 20 years in reducing the global 
burden of malaria, the disease remains a major public health problem and there is concern that 
climate change might expand suitable areas for transmission. This study investigated the relative 
effect of climate variability on malaria incidence after scale-up of interventions in western Kenya. 
Methods: Bayesian negative binomial models were fitted to monthly malaria incidence data, 
extracted from records of patients with febrile illnesses visiting the Lwak Mission Hospital be-
tween 2008 and 2019. Data pertaining to bed net use and socio-economic status (SES) were 
obtained from household surveys. Climatic proxy variables obtained from remote sensing were 
included as covariates in the models. Bayesian variable selection was used to determine the 
elapsing time between climate suitability and malaria incidence. 
Results: Malaria incidence increased by 50% from 2008 to 2010, then declined by 73% until 2015. 
There was a resurgence of cases after 2016, despite high bed net use. Increase in daytime land 
surface temperature was associated with a decline in malaria incidence (incidence rate ratio 
[IRR] = 0.70, 95% Bayesian credible interval [BCI]: 0.59–0.82), while rainfall was associated 
with increased incidence (IRR = 1.27, 95% BCI: 1.10–1.44). Bed net use was associated with a 
decline in malaria incidence in children aged 6–59 months (IRR = 0.78, 95% BCI: 0.70–0.87) but 
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not in older age groups, whereas SES was not associated with malaria incidence in this 
population. 
Conclusions: Variability in climatic factors showed a stronger effect on malaria incidence than bed 
net use. Bed net use was, however, associated with a reduction in malaria incidence, especially 
among children aged 6–59 months after adjusting for climate effects. To sustain the downward 
trend in malaria incidence, this study recommends continued distribution and use of bed nets and 
consideration of climate-based malaria early warning systems when planning for future control 
interventions.   

1. Introduction 

Malaria remains a leading cause of morbidity. Indeed, in 2020, the World Health Organization (WHO) reported 241 million clinical 
malaria cases globally, an increase from 227 million cases reported in the preceding year (WHO, 2021). An overwhelming majority of 
the cases (95%) and deaths (96%) occurred in the WHO African region (WHO, 2021). Concerted efforts to reduce malaria in sub- 
Saharan Africa led to a reduction of morbidity and mortality incidence by 27% and 59% between 2000 and 2020, respectively 
(WHO, 2021). In Kenya, the incidence of confirmed outpatient malaria cases decreased from 57 to 36 cases per 1000 population 
between 2013 and 2017 (Ministry of Health - Kenya, 2019a). This reduction in malaria burden has been attributed to scaling-up of 
malaria control interventions, such as the distribution of insecticide-treated nets (ITNs), indoor residual spraying (IRS), enhanced 
surveillance, prompt diagnosis and treatment of malaria using effective artemisinin-based combination therapy (ACT) (Ministry of 
Health - Kenya, 2019b). 

Apart from interventions, variability in malaria trends has been associated with changes in climatic conditions, especially in 
temperature and rainfall patterns, which are the main drivers of malaria transmission (Mordecai et al., 2019; Thomson et al., 2017). 
Since 1960, the mean annual temperature in Kenya has increased by 1.0 ◦C with an average rate of 0.21 ◦C per decade (NEMA, 2015). 
Global climate models predict that the mean annual temperature will further increase by 0.8–1.5 ◦C by the 2030s, raising concerns that 
droughts and floods will occur without clear patterns in the future (NEMA, 2015). Environmental factors, including land cover (Kweka 
et al., 2016), land use such as farming and deforestation (Babamale et al., 2020; Stefani et al., 2013) and altitude (Baidjoe et al., 2016), 
have also been previously associated with malaria incidence. Other variables, including socio-economic status (SES), distance to 
freshwater bodies (Ssempiira et al., 2018), human mobility (Grillet et al., 2019), drug and insecticide resistance (Hay et al., 2002) and 
urbanization (Padilla et al., 2015) have also been identified as factors that influence malaria transmission. 

While earlier studies investigated the relationship between malaria transmission with climate (Kipruto et al., 2017; Sewe et al., 
2017; Wardrop et al., 2013) and control interventions (Gimnig et al., 2016; Gimnig et al., 2003) separately, more recent studies have 
looked at the interplay between these factors with conflicting results. Many of the studies observed relationships between climatic 
factors (i.e., rainfall and temperature) and malaria incidence (Bennett et al., 2016; Endo et al., 2017; Fletcher et al., 2020; Ssempiira 
et al., 2018). While Hay and collaborators did not observe any effect of climate, thus attributing the increase in malaria burden to other 
factors such as drug resistance and changes in land use (Hay et al., 2002), another research group observed that climate change was 
unlikely to increase the burden of malaria in West Africa (Yamana et al., 2016). The disagreements in these studies may be explained 
by different methods or variables included in the analyses. Gething et al. observed that while evaluating the effect of changes in climate 
on malaria burden, it is important to include non-climatic factors such as SES, distance to major freshwater bodies and malaria control 
interventions for a deeper understanding of the net effect of these changes (Gething et al., 2010). Furthermore, some of the previous 
studies used data from malaria indicator surveys, which are temporally limited and therefore not able to capture seasonal variation in 
malaria transmission. 

Taken together, there is a paucity of quality, long-term malaria data that include non-climatic factors. There are several health and 
demographic surveillance systems (HDSS) in Africa that routinely collect data on malaria incidence and mortality, malaria in-
terventions, vector densities and household-related indicators. Longitudinal data collected by such HDSS offer unique opportunities for 
modelling the spatio-temporal interactions between climatic and non-climatic factors on the burden of malaria. The Kenya Medical 
Research Institute (KEMRI), in collaboration with the US Centers for Disease Control and Prevention (CDC), runs a HDSS and a 
population-based infectious disease surveillance (PBIDS) in western Kenya in which several diseases, interventions and socio- 
economic factors within the population are monitored (Feikin et al., 2011; Odhiambo et al., 2012). Using the monthly malaria inci-
dence, SES and bed net use data from this HDSS and PBIDS, this study investigated the relative effect of climate variability on the 
burden of malaria in the face of intensified malaria control programmes in western Kenya using a Bayesian modelling approach. 

2. Methods 

2.1. Study area and population 

Since 2005, KEMRI in collaboration with CDC have conducted a PBIDS, which is embedded within the HDSS in Asembo, as pre-
viously described (Feikin et al., 2011). In brief, the PBIDS covers approximately 30,000 people residing in 33 villages within an 
approximate 5 km radius from St. Elizabeth Lwak Mission Hospital (referred to as Lwak Mission Hospital, LMH in short) in Asembo, 
Rarieda sub-county, Siaya county (Fig. 1). These villages are near Lake Victoria, where malaria is holoendemic with year-round 
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transmission (Odhiambo et al., 2012). The population is culturally homogeneous with over 95% being members of the Luo tribe and 
mainly live on subsistence farming and fishing (Hamel et al., 2011). The HDSS estimated life expectancy at birth was 63 years in 2018, 
with a crude death rate of 8 deaths per 1000 residents (internal reports). Infant and under-five mortality ratios were estimated at 41 
and 53 deaths per 1000 live births in 2018, respectively. 

2.2. Data sources 

2.2.1. Malaria incidence data 
This study utilized malaria data collected from LMH between January 2008 and December 2019. Briefly, all patients visiting LMH 

with symptoms of febrile illness (axillary temperature ≥ 37.5 ◦C or history of fever within the past 24 h) were consented to provide 
finger prick blood for microscopy to determine whether they had malaria (presence of Plasmodium parasites in thick and thin blood 
films). All patients testing positive were treated using ACT. Monthly malaria incidence was estimated by dividing the monthly number 
of new malaria cases by the total monthly person-time of follow-up in years (pyo). Malaria incidence was further stratified by the 
following age categories: All ages >5 months (overall), 6–59 months, 5–14 years and ≥ 15 years. Children aged <6 months were 
excluded from this analysis as malaria is not common in this age group as the young infants are protected through maternal antibodies 
(D’Alessandro et al., 2012). 

2.2.2. SES and bed net use data 
During the study period, the HDSS collected socioe-conomic indicators every two years from every household. Using these data, a 

composite SES index was generated by household and year using multiple correspondence analysis (MCA) as previously described 
(Amek et al., 2015). Annual average SES index scores were generated for the entire area and the previous year’s score applied for the 
years when SES were not conducted. Existing interventions were evaluated through the PBIDS by estimating the proportion of in-
dividuals who reported bed net use during the previous night before the interview, using bi-weekly household visits data collected 
between January 2008 and April 2015 (Feikin et al., 2011), aggregated by month. Visits to each household were reduced to two in a 
year thereafter but the data collection instruments remained unchanged. It is important to note that there was mass bed net distri-
bution targeting children aged <5 years and pregnant women in malaria high risk areas of Kenya in 2006 and other mass distributions 
every 3–4 years since 2011, aimed at achieving universal coverage (i.e., at least one bed net for every two people) (Hightower et al., 
2010; Kamau et al., 2017). IRS was last conducted in this study area in the 1970s (Fontaine et al., 1975). 

2.2.3. Climatic data 
Daytime land surface temperature (LSTD) and nighttime land surface temperature (LSTN) data with a 1 × 1 km2 spatial and 8-day 

Fig. 1. Map showing the KEMRI-CDC health and demographic surveillance system (HDSS) study area, the location of the 33 villages participating in 
population-based infectious disease surveillance (PBIDS), the location of Lwak Mission Hospital and the Kisumu international airport. 
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temporal resolution were extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA’s Terra and 
Aqua satellites (Wan et al., 2015). Rainfall data were obtained from the Climate Hazards Group InfraRED Precipitation with Station 
data (CHIRPS) at 5.6 × 5.6 km2 spatial and 5-day temporal resolutions (Funk et al., 2015). Monthly averages of these climatic factors 
were calculated at their original scale and then averaged within the area for linkage with the monthly malaria incidence data. Missing 
LSTN data for a specific month were imputed by averaging the preceding and succeeding 1-month values. To better understand the 
effect of temperature on malaria incidence, historical and projected daily near-surface air temperature data were extracted from the 
ERA5-Land (Muñoz Sabater, 2019) and NASA’s Earth Exchange Global Daily Downscaled Climate Projections (NEX-GDDP) datasets 
(Thrasher et al., 2012), respectively. The projections were averaged from Coupled Model Intercomparison Project - Phase 5 (CMIP5) 
models assuming the historical, rcp45 and rcp85 scenarios. These remote sensing products, reanalysis data and climate projections 
were used because there was no weather station within the study area during the study period; the closest station was situated 
approximately 60 km away, at the Kisumu international airport (Fig. 1). Table S1 describes the sources and the spatio-temporal 
resolution of the data used. 

2.3. Statistical analyses 

2.3.1. Descriptive analysis 
Malaria incidence was calculated at monthly intervals for all ages >5 months (overall) and stratified into three age groups: (i) 6–59 

months; (ii) 5–14 years; and (iii) ≥15 years. Time series plots were used to describe the inter- and intra-year variation of malaria 
incidence by age groups, variation in climatic factors and bed net use. Cubic smoothing B-splines with 5 degrees of freedom (df) were 
used to highlight the annual trends of changes in climatic factors, bed net use and malaria incidence. Pearson correlation was used to 
explore bivariate associations between the climatic predictors and malaria incidence. 

Considering the elapsing period between climate suitability and the occurrence of malaria cases, time lagged variables were 
generated for each climatic factor. Eight-time lagged variables were computed corresponding to 1 (lag1), 2 (lag2), 3 (lag3) and 4 (lag4) 
months before the month of reported cases, as well as cumulative lag times corresponding to the average of the current and the 
previous 1 (lag01), 2 (lag012), 3 (lag0123) and 4 (lag01234) months. Bayesian variable selection (BVS) using stochastic search was 
used to identify the most important climatic factors as well as their best lag times. BVS was chosen because it accounts for potential 
temporal correlation in malaria incidence. Details on the BVS implementation are provided in the Appendix. 

2.3.2. Statistical modelling 
Bayesian negative binomial models were fitted to estimate the effect of climatic factors and interventions on malaria incidence. Let 

yt be the number of malaria cases reported at LMH at month t = 1, 2, …, 144 (i.e., 12 months for 12 years). For each age group, it was 
assumed that yt followed a negative binomial distribution, yt ~ NB(pt,r), where pt = r/(r + μt), r is the dispersion parameter, μt is the 
average number of monthly malaria cases, such that: 

μt = λyt− 1 + νt, (0 < λ < 1, νt > 0);

where λyt− 1 is a first order autoregressive term AR(1), with temporal correlation (λ), accounting for malaria incidence in the previous 
month (i.e., yt− 1) and νt is modelled with a log link function defined as: 

log(νt) = log(Pt)+XT
t β  

Pt is the offset term corresponding to the total person-years of follow up, β is a vector of regression coefficients associated with the 
matrix of covariates (including climatic factors and interventions) - Xt. Normal priors for β with mean 0 and variance of 100, that is β ~ 
N(0,100) and a non-negative uniform prior for λ, that is λ~U(0,1) given that λ is constrained (>0) were assumed. Markov chain Monte 
Carlo (MCMC) simulation was used to estimate the model parameters. All the covariates were standardized to reduce the computa-
tional time of MCMC and to allow direct comparison of the covariate effects. The parameter estimates are reported as incidence rate 
ratios (IRR) and are considered to be statistically important when their respective 95% Bayesian credible intervals (BCI) exclude 1. The 
negative binomial age-specific models were fitted using the Just Another Gibbs Sampler (JAGS) software (Plummer, 2003). Two 
Markov chains of 300,000 iterations, each with a burn-in of 30,000 iterations were run. Convergence was assessed using density plots, 
trace plots and the Gelman-Rubin diagnostics (Brooks and Roberts, 1998) implemented in the coda package (Plummer et al., 2006) in R 
software. 

Data management and exploratory analyses were conducted using Stata version 16 (Stata Corp, College Station, Texas, USA) and R 
version 3.6.3 (Vienna, Austria). The study area map was developed in ESRI’s ArcGIS 10.2.1 (https://www.esri.com/en-us/home). 

2.4. Ethical considerations 

The HDSS and PBIDS study protocols were reviewed and approved by the KEMRI scientific and ethics review unit (SSC #1801 and 
#2761) and CDC’s institutional review board (CDC IRB #3308 and #6775). Written informed consent was obtained from all patients 
or from their parents/guardians if minors, and from compound heads for the household-based evaluation. 
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3. Results 

3.1. Descriptive analysis 

For the period from 2008 to 2019, a total of 71,733 patients visiting LMH with febrile illnesses had malaria. Approximately one 
third of the cases were aged 6–59 months and 42% were 5–14 years old. Malaria incidence shows a bimodal seasonality, with the first 
and more pronounced peak during May–July, and the second peak during November–January (Fig. 2a). The highest incidence was 
observed in children aged 6–59 months (Fig. 2a). 

The median (interquartile range - IQR) LSTD, LSTN, air temperature and rainfall were, 32.2 ◦C (29.5–35.2 ◦C), 18.3 ◦C 
(17.4–19.0 ◦C), 22.9 ◦C (22.4–23.5 ◦C) and 100 mm (64–143 mm), respectively. These climatic factors also depict a bimodal seasonal 
pattern. Rainfall peaked from March through May with a second peak observed during November (Fig. 2c). Variation in monthly LSTD 
and LSTN was observed with a decrease in temperature when rainfall increases. Bed net use was highest among children aged 6–59 
months, followed by individuals aged ≥15 years and 5–14 years, median (IQR) proportions – 0.96 (0.92–0.98), 0.93 (0.87–0.96) and 
0.90 (0.80–0.94), respectively (Fig. 2d). 

LSTD declined from an annual average of 33.7 ◦C in 2009 to 31.9 ◦C in 2013, then increased steadily to 34.8 ◦C in 2017 before 
declining to 31.8 ◦C in 2019. It is projected that the mean air temperature in this study area will rise, from approximately 24.4 ◦C to 
26.7 ◦C between 2020 and 2100 (Fig. S1). Future projections from climate models (Thrasher et al., 2012) also suggest an increase in the 
amount of rainfall in the study area (Fig. S1). A steady rise in the proportion of individuals using bed nets from 0.75 in 2008 to 0.93 in 
2012 was observed. Thereafter, >92% of individuals within the HDSS reported using bed nets. The crude incidence of malaria 
increased from 210 cases per 1000 person-years in 2008 to 358 in 2010 before declining to 99 in 2015. The incidence increased 
thereafter to 207 cases per 1000 person-years in 2019. Fig. 3 shows smoothed time series plots of the annual trends. 

The correlation between lagged monthly averages of LSTD vs. rainfall, and air temperature vs. rainfall was − 0.60 and − 0.46, 
respectively. Correlation between lagged climatic factors and malaria incidence was similar for the three age groups (Table S2). LSTD 
was negatively correlated with malaria incidence, whereas the correlations between incidence with rainfall were positive, except for 
rainfall which was significantly negative during the current month. LSTN was not correlated with crude malaria incidence, and hence, 
was not considered for BVS. 

Fig. 2. Monthly time-series (2008–2019) of malaria incidence per 1000 person-years by age groups (A), mean daytime and nighttime land surface 
temperature (LST) in ◦C (B), mean rainfall in mm (C) and bed net use (D). 
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3.2. Bayesian variable selection (BVS) 

Table 1 summarises the posterior inclusion probabilities of climatic factors, showing the lags that fit the malaria incidence data 
best. Different models were fitted for climatic factors (considering temperature and rainfall pairs) and for different subsets of the data 
corresponding to different age groups. For example, 71% of the models generated from all lag combinations of LSTD and rainfall 
included LSTD in the previous 1 month (lag1) and rainfall in the previous 2 months (lag2) when all age data were analysed (Table 1). 
Similarly, 97% of models from the air temperature and rainfall combination included the previous 1 month (lag1) and previous 2 
months (lag2) lags for air temperature and rainfall, respectively. 

Fig. 3. Time-series showing trends of daytime land surface temprerature (A), rainfall (B), bed net use (C) and modelled trends of malaria cases (D) 
by year. Cubic smoothing B-splines with 5 degrees of freedom were used to highlight the annual trends. 

Table 1 
The best three model combinations (by age group) with the highest posterior probabilities as identified by the Bayesian Variable Selection (BVS).  

Temperature 
variable 

All ages 6–59 months 5–14 years ≥15 years 

Covariates Posterior 
probability 

Covariates Posterior 
probability 

Covariates Posterior 
probability 

Covariates Posterior 
probability 

LSTD 

Combination 1 
LSTD_1 +
Rain_2 70.91 

LSTD_1 +
Rain_2 32.73 

LSTD_1 +
Rain_3 31.19 

LSTD_3 +
Rain_3 98.20 

Combination 2 
LSTD_1 +
Rain_0123 10.34 

LSTD_1 +
Rain_0123 19.71 LSTD_1 25.85 LSTD_3 0.10 

Combination 3 
LSTD_1 +
Rain_012 6.50 

LSTD_1 +
Rain_1 17.15 

LSTD_1 +
Rain_0 12.90 

LSTD_3 +
Rain_1 0.75  

Air temperature 

Combination 1 AirT_1 +
Rain_2 

96.88 AirT_1 +
Rain_2 

45.89 Rain_2 32.48 AirT_3 +
Rain_0123 

38.34 

Combination 2 AirT_0 +
Rain_2 

1.81 Rain_0123 22.13 AirT_3 +
Rain_2 

27.52 Rain_0123 21.93 

Combination 3 Rain + 2 0.99 
AirT_01 +
Rain_0123 13.7 

AirT_1 +
Rain_2 12.25 

AirT_01 +
Rain_0123 18.45 

-LSTD- Daytime land surface temperature. 
-AirT- Air temperature. 
-LSTD/ AirT/ Rain_1, 2, 3 indicate lags of 1, 2, and 3 months. 
-LSTD/ AirT/ Rain_01, 012, 0123 indicate lags averaged over the current and previous 1, 2, and 3 months, respectively. 
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3.3. The joint effect of climate variability, SES and bed net use on malaria incidence 

When modelling the joint effect of LSTD, rainfall, SES and bed net use (Model 1) for all the ages (overall) category, we observed that 
an increase in LSTD was associated with a decrease in malaria incidence (IRR = 0.70, 95% BCI: 0.59–0.82) and an increase in rainfall 
was associated with an increase in malaria incidence (IRR = 1.27, 95% BCI: 1.10–1.44) (Table 2). Using a model fitted with actual 
values of climatic and bed net use (i.e., non-standardized covariates) this study estimated that an increase in LSTD by 1 ◦C was 
associated with a 9% decrease in malaria incidence (IRR = 0.91, 95% BCI: 0.86–0.95), an increase in rainfall by 10 mm was associated 
with a 4% increase in malaria incidence (IRR = 1.00, 95% BCI: 1.00–1.01) and a 100% increase in bed net use was associated with a 
19% decline in malaria incidence (IRR = 0.81, 95% BCI: 0.72–0.91). Bed net use was associated with a decrease in malaria incidence 
(IRR = 0.82, 95% BCI: 0.72–0.91) whereas SES was not statistically important (IRR = 0.98, 95% BCI: 0.87–1.10). Similar observations 
were made for children aged 6–59 months. However, for children aged 5–14 years, only LSTD was statistically important among these 
covariates (IRR = 0.82, 95% BCI: 0.72–0.91). Furthermore, LSTD and rainfall were found to be statistically important for individuals 
aged ≥15 years (IRR = 2.74, 95% BCI: 1.72–4.23) and (IRR = 2.06, 95% BCI: 1.32–3.21), respectively. However, unlike the other age 
groups, an increase in LSTD was associated with an increase in malaria incidence. 

In model 2 which included air temperature, rainfall, SES and bed net use, this study observed that an increase in air temperature 
was associated with a decrease in malaria incidence (IRR = 0.83, 95% BCI: 0.71–0.96), an increase in rainfall was associated with an 
increase in malaria incidence (IRR = 1.41, 95% BCI: 1.23–1.61), bed net use was associated with a decrease in malaria incidence (IRR 
= 0.82, 95% BCI: 0.73–0.93) and that SES was not statistically important (IRR = 0.98, 95% BCI: 0.86–1.11) for all the ages (overall) 
category (Table 2). Similar observations were made for children aged 6–59 months and 5–14 years, except that air temperature was not 
selected by BVS for the later age group. For those aged ≥15 years, rainfall and bed net use were associated with increase (IRR = 1.72, 
95% BCI: 1.21–2.35) and marginally important decrease (IRR = 0.79, 95% BCI: 0.59–1.01) in malaria incidence, respectively. Air 
temperature and SES were not statistically important in the ≥15 years age group. 

3.4. Seasonal and annual trends of malaria incidence 

The posterior median of the model-based expected malaria cases indicate a good agreement with the observed monthly cases, 
depicting similar seasonal patterns (Fig. 4). Plots by age categories indicate a sustained decline in incidence among children aged 6–59 
months, unlike the other two age groups, where malaria incidence depict a similar trend throughout the study period. It was also 
observed that malaria incidence was on the decline until 2016 but there was a resurgence post-2016 (Fig. 3d). 

4. Discussion 

This study was able to evaluate the joint effect of climate variability, SES and control interventions on malaria incidence in the 
study area. Increase in temperature and bed net use were negatively associated with malaria incidence, whereas increase in rainfall 
when lagged over 2 months was positively associated with malaria incidence. It was further observed that an increase in rainfall and 
temperature had equal but opposing effects on malaria incidence, especially among children aged 6–59 months, and that both tem-
perature and rainfall had a slightly greater effect on malaria incidence compared to bed net use. The reduction in malaria incidence 
was greatest among children aged 6–59 months, potentially due to bed net distribution campaigns targeting this group and pregnant 

Table 2 
Effects (posterior median and 95% Bayesian credible interval [BCI]) of climatic factors, socio-economic status and bed net use on the incidence of 
malaria in Asembo, 2008–2019.  

Characteristics by age categories All ages 6–59 months 5–14 years ≥15 years  

IRR (95% BCI) IRR (95% BCI) IRR (95% BCI) IRR (95% BCI) 

Model 1 
LSTD 0.70 (0.59,0.82) 0.71 (0.61,0.81) 0.54 (0.41,0.67) 2.74 (1.72,4.23) 
Rainfall 1.27 (1.10,1.44) 1.23 (1.07,1.38) 0.93 (0.76,1.11) 2.06 (1.32,3.21) 
Bed netsa 0.81 (0.72,0.91) 0.78 (0.70,0.87) 0.88 (0.71,1.07) 0.77 (0.53,1.05) 
Wealth index 0.98 (0.87,1.10) 1.01 (0.91,1.13) 0.92 (0.75,1.11) 0.92 (0.68,1.22) 
Temporal correlation (λ) 0.50 (0.39,0.62) 0.50 (0.38,0.62) 0.61 (0.46,0.77) 0.83 (0.70,0.95) 
Dispersion (r) 7.41 (5.69,9.21) 9.37 (7.19,11.84) 3.97 (3.05,5.03) 4.38 (3.33,5.63) 
DIC 1865.4 1540.6 1703.2 1517.8  

Model 2 
Air temperature 0.83 (0.71,0.96) 0.80 (0.69,0.91)  1.25 (0.97,1.57) 
Rainfall 1.41 (1.23,1.61) 1.35 (1.19,1.53) 1.57 (1.32,1.83) 1.72 (1.21,2.35) 
Bed netsa 0.82 (0.73,0.93) 0.79 (0.70,0.89) 0.83 (0.69,0.99) 0.79 (0.59,1.01) 
Wealth index 0.98 (0.86,1.11) 1.00 (0.89,1.12) 0.96 (0.80,1.15) 0.90 (0.68,1.17) 
Temporal correlation (λ) 0.50 (0.38,0.62) 0.51 (0.39,0.63) 0.57 (0.42,0.72) 0.76 (0.63,0.89) 
Dispersion (r) 6.73 (5.16,8.37) 8.54 (6.58,10.83) 3.78 (2.86,4.77) 4.08 (3.07,5.21) 
DIC 1879.6 1554.0 1709.0 1527.5  

a Bed net use modelled on a scale from 0 to 1, thus a unit increase corresponds to 100% increase. 
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women. These findings suggest that, despite the fact that climatic factors drive malaria incidence in this part of Kenya, mass distri-
bution of bed nets also have an important effect. Moreover, since it is projected that temperature and rainfall amounts will increase in 
this study area towards the year 2100 and the finding that climatic factors have a larger effect on transmission, model-based malaria 
early warning systems are important adaptation tools to climate change impacts as they can guide optimising responses and timing of 
interventions. 

A rise in temperature (both LSTD and air) was associated with a decline in malaria cases. This decline in malaria incidence may be 
associated with a decline in the malaria causing vectors, female Anopheles mosquitoes. Previous studies have indicated that mosquitoes 
thrive within a range of 22–30 ◦C (Mordecai et al., 2019; Mordecai et al., 2013). Bayoh and Lindsay found that there was a non-linear 
relationship between temperature and mosquito development; at very low and high (which is the case in this area during the dry 
seasons) temperatures, adult mosquitoes fail to thrive (Bayoh and Lindsay, 2003). Ssempiira et al. and Sewe et al. observed in studies 
conducted in Uganda and western Kenya that extreme LSTD had a negative effect on malaria incidence and mortality (Sewe et al., 
2016; Ssempiira et al., 2018), similar to findings in this study. In addition, Yamana and colleagues and Ryan et al. made similar 
observations in West Africa (Ryan et al., 2015; Yamana et al., 2016). This relationship suggests that when only temperature is 
considered, a warmer climate will result in a reduction in malaria incidence in the lake endemic region, unlike in the western highlands 
and other epidemic-prone regions of Kenya, where it is projected that the incidence of malaria is likely to increase (Githeko and 
Ndegwa, 2001). 

Unlike in the younger age groups, it was observed that LSTD was positively associated with increase in malaria incidence among 
individuals aged ≥15 years whereas air temperature did not have an important effect. This is an indication that in older age groups, it 
may be difficult to capture the effects of climatic factors as they are confounded by other factors, including acquired immunity (Färnert 
et al., 2015), land use and mobility (Grillet et al., 2019; Kweka et al., 2016). 

Rainfall lagged over a 2-month period had a positive effect on the incidence of malaria, especially in the younger age groups. In the 
same region as this study, Sewe et al. found that rainfall was positively associated with malaria mortality (Sewe et al., 2016). Other 
studies, including analyses in Sri Lanka (Briët et al., 2008), Uganda (Ssempiira et al., 2018), the Rift Valley-in Kenya (Kipruto et al., 
2017) and western Kenya (Chaves et al., 2012) found similar relationship between lagged rainfall and malaria. However, too much 
rainfall has a negative effect on malaria incidence, this is attributable to washing of mosquito larvae which destabilizes the mosquito 
reproduction cycle (Briët et al., 2008). Unlike these studies, Ototo and colleagues reported that rainfall was not a significant predictor 

Fig. 4. The observed (red line) and posterior median (blue line) estimates of monthly malaria cases from model 1, in all ages (A), children aged 
6–59 months (B), children aged 5–14 years (C) and adolescents and adults aged ≥15 years (D). The blue shaded area represent the 95% Bayesian 
credible intervals around the posterior median. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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of malaria incidence (Ototo, 2020), possibly due to correlation in the predictors (Gregorich et al., 2021; Vatcheva et al., 2016) or 
differences in analysis methods. 

Bed net distribution was scaled-up in the study area and other malaria-endemic areas in Kenya during the period between 2006 and 
2014 (Hightower et al., 2010; Kamau et al., 2017). It was observed that an increase in bed net use had an important protective effect, 
especially during 2013–2015. Similar findings were reported elsewhere (Ng’ang’a et al., 2021). However, an increase in malaria 
incidence post-2016 was observed, despite high bed net use. A plausible explanation could be the observed decrease in temperature 
and the slight increase in rainfall during this period. It is also feasible that the efficacy of the bed nets distributed during mass dis-
tribution campaigns had waned over time. In the literature, other factors such as changes in mosquito biting patterns with a shift to 
outdoor biting (Ng’ang’a et al., 2021), waning efficacy of antimalarial drugs (Ndwiga et al., 2021), vector resistance to insecticides 
(Owuor et al., 2021) or use of torn bed nets (Ochomo et al., 2013) have also been reported and may have contributed to this 
observation. 

Climatic models (Ongoma et al., 2018; Thrasher et al., 2012) predict an increase in both temperature and rainfall in this study area. 
However, from this study’s findings, an increase in temperature is associated with a decline in malaria incidence, while an increase in 
rainfall is related to an increase in transmission. This would imply that malaria incidence is likely to remain the same given that the 
effect size of both temperature and rainfall were similar. On the other hand, bed net use-associated reduction in incidence was 
observed, especially among children aged 6–59 months, indicating that if efforts towards consistent distribution and use of ITNs are 
sustained and issues around vector and drug resistance addressed, a further reduction of malaria incidence in the future is conceivable. 

Other factors such as urbanization, SES, deforestation, altitude and distance to freshwater bodies, all have an effect on malaria 
incidence, but not all these factors apply to the current setting. This study was conducted in a mainly rural area next to the shores of 
Lake Victoria with little variability in SES and altitude. The relatively little variability in SES may explain the reason why this study did 
not observe a meaningful effect of SES on malaria incidence. Close proximity to Lake Victoria and relatively high temperatures might 
explain year-round transmission of malaria (Ssempiira et al., 2018). The area is characterized by few trees and shrubs throughout, 
therefore this study could not assess the impact of land cover changes which may be impactful in other regions. 

This study has several limitations that are offered for consideration. The study did not evaluate the effects of other malaria in-
terventions such as ACT use, IRS and intermittent preventive treatment of malaria in pregnancy (IPTp). It has been shown that ACT 
contribute to a reduction in the gametocyte loads in infected individuals (John et al., 2009), and therefore it is associated with a 
reduction in transmission (Ssempiira et al., 2018). IRS reduces indoor vector density (John et al., 2009) while IPTp prevents malaria 
during pregnancy. However, in this setting all patients diagnosed with malaria were offered ACT, and hence, no variation in ACT use 
during the study period and IRS was not employed during the study period while IPTp data was not available. The study did not adjust 
for the potential impact of community case management initiated in 2013. However, two recent studies evaluating the impact of 
intermittent mass testing and treatment in the western Kenya HDSS observed that the incidence and prevalence of malaria was similar 
for the intervention and control arms of the study (Desai et al., 2020; Samuels et al., 2021), implying that exclusion of case man-
agement from our analysis may not bias our findings. 

5. Conclusion 

This study provides evidence that variability in temperature and rainfall play important roles in the dynamics of malaria, despite 
high bed net use in this part of Kenya. The observation that the effect of temperature and rainfall is similar but in opposing directions 
and slightly more pronounced than that of bed net use suggests that in the face of climate change, model-based malaria early warning 
systems could help in optimising the timing and mix of control interventions. 
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Appendix A. Bayesian variable selection 

To select the best lags for the climatic variables while accounting for temporal correlation, Bayesian variable selection (BVS) using 
stochastic search (Chammartin et al., 2013) was implemented considering the joint effect of temperature, rainfall, SES and bed net use. 
Covariates were standardized to reduce the Markov chain Monte Carlo (MCMC) simulation computational time and to achieve better 
correlation properties between the predictors and malaria incidence (Kuo and Mallick, 1998). For the lagged climatic predictors Xp, a 
categorical variable was created with ten values where Ip = 1 represents exclusion of the variable from the model and Ip = 2 represents 
inclusion of the variable in the current month (lag0). Ip = j where j = 3,4,5,6 represents inclusion of the lagged variables over the 
previous 1 (lag1), 2 (lag2), 3 (lag3) and 4 (lag4) months and j = 7,8,9,10 represents the inclusion of the lagged variables averaged over 
the current and previous 1 (lag01), 2 (lag012), 3 (lag0123) and 4 (lag01234) months, respectively. A non-informative Dirichlet dis-
tribution with α = (1,1,1,1,1,1,1,1,1,1)T was used for the indicators of the lagged climatic variables. For estimation of the corre-
sponding βp, a spike and slab prior distribution βp ~ (1 − Ip)N(0,ϑ0τp

2) + IpN(0, τp
2) assuming a non-informative prior for βp when Xp is 

included in the model (slab) and an informative normal prior with a huge variance ϑ0 = 106 shrinking βp to zero (spike) if Xp is 
excluded from the model. Inverse Gamma priors were assumed for the precision hyper parameter τp

2. Temperature and rainfall var-
iables with the highest inclusion probabilities were deemed the most important thus used in the modelling. Models were run in JAGS 
and parameters estimated using two Markov chains with 300,000 iterations each and a burn-in of 30,000 iterations. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.parepi.2023.e00297. 
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