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Introduction The supporting information encompasses i. information on cli-

mate data selection and climate data pre-processing measures (e.g. bias-

correction procedures), ii. a comparison of central model structural differences

between the bio-physical model APSIM and the agro-hydrological model SWAT,

and iii. additional crop type specific results of climate change impacts on

biomass production, irrigation demands, evapotranspiration, and leaf area growth.

1. Climate Data Selection and Processing

1.1. Historical Climate Data

CFSR data (Climate Forecast System Reanalysis; Saha et al., 2010) is taken as historical

reference climate data for a baseline period, from 1996-2005. To ensure the accuracy of the

baseline data set, the CFSR data is bias-corrected using climate records of three available

local climate stations, located in and in close proximity to the study area (shown in Fig. 1,

in the main text). Non-parametric quantile mapping is used as statistical fitting method

between observed and simulated data over the time period 1979-2005. The bias correction

is conducted using the R-package “Qmap” (Gudmundsson et al., 2012).

Figure S1 and S2 show the fit of the reanalysis data before and after the bias correction,

for precipitation and mean temperature. It shows, that the bias correction procedure was

successful in removing the negative bias of original CFSR precipitation data as well as

the positive bias of summer temperatures. Winter temperatures are ”over corrected”

and are now slightly underestimating temperatures from November until March. As the

study focuses on climate impacts during the summer period (May-October), where a clear

improvement of the fit between observed and bias corrected CFSR data can be achieved,

we accept these results despite the winter-deviation from the observed data.
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The same correction procedure (i.e. quantile mapping) was used to correct the remaining

climate variables, namely Relative Humidity, Solar Radiation and Wind Speed, which

are used by SWAT to calculate evapotranspiration rates according to Penman-Monteith

(results not shown).

1.2. Climate Change Data

Climate change data is taken from the Coordinated Regional Climate Downscaling

Experiment (CORDEX; www.cordex.org), which provides a suite of regional climate pro-

jections based on Global Climate Models of the Coupled Model Intercomparison Project,

Phase 5 (CMIP5; Taylor et al., 2012).

We first select daily CORDEX climate projections, of 15 climate models, of the South-

Asian CORDEX domain, at a resolution of 0.44 degrees x 0.44 degrees. CORDEX hindcast

data of the same 15 GCM-RCM model combinations, is used to test the fit of CORDEX

model outputs with the chosen baseline climate data from the CFSR-data set. Here, we

use the maximum overlapping time period of the data products (1979-2005) to test their

agreement. The performance of single CORDEX GCM-RCM combinations with respect

to the baseline climate data is displayed in Figure S3, which shows their goodness of fit in

terms of standard deviation, correlation and RMSE, with respect to each climate variable

(i.e. precipitation, temperature, solar radiation, relative humidity, and wind speed).

The unsatisfactory performance of all models which employ the Regional Climate Model

“RegCM4-4” for downscaling purposes (Figure S3, triangles), leads to the exclusion of

these models. Based on the goodness of fit between CORDEX and CFSR data, we select

the data sets of all 9 models which use “RCA4” Regional Climate Models for downscaling

(Figure S3, dots).

To minimize any further bias, which the data sets of 9 selected RCMs still present,

we apply a commonly used linear scaling correction approach (Teutschbein & Seibert,
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2012) to each ensemble member and to each climate variable. Here, the relative changes,

based on 10-year monthly mean difference between CORDEX hindcasts (1996-2005) and

CORDEX future forecasts (2021-2030 and 2041-2050) are used as correction factors to

create new daily future climate times series. The final future climate time series consist

of the daily CFSR baseline data plus the added difference between CORDEX hindcasts

and CORDEX future data, defined by the respective monthly correction factors.

2. SWAT and APSIM

2.1. Model description and model differences

In this study, we use two models from two different research communities. On the one

hand we use the hydrological Soil & Water Assessment Tool (SWAT, Version SWAT2012

rev 664; Arnold et al., 2012) and on the other hand the biophysical-crop modelling frame-

work Agricultural Production Simulator (APSIM v. 7.10, Version APSIM classic; Holz-

worth et al., 2014). Based on their model structure, both models have strengths and

weaknesses in predicting future yields and plant water requirements. Calculation proce-

dures for central variables discussed in the main paper (i.e. biomass production, LAI and

yield) are as follows:

2.1.1. SWAT

Potential biomass production (biom) is calculated in SWAT based on the amount of in-

tercepted light available for photosythesis (Hphotosyn) and based on plant specific radiation-

use efficiency (RUE), which defines the conversion of intercepted light at the leaf surface

into biomass.

∆biom = RUE ∗Hphotosyn (1)
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The radiation use efficiency is adjusted according to changing CO2-concentrations:

RUE = (
100 ∗ CO2

CO2 + exp(r1 − r2 ∗ CO2)
) (2)

With r1 and r2 being plant specific shape coefficients, accounting for a plant specific light

use efficiency under differing CO2 concentrations. For the calculation of r1 and r2 please

see the SWAT model documentation.

While the radiation-use efficiency itself is assumed to be independent of the plant growth

stage, the amount of intercepted light depends on the plant leaf area development (Neitsch

et al 2009).

Hphotosyn = 0.5 ∗Hday ∗ (1− exp(−kl ∗ LAIact)) (3)

With Hday being the incident total solar radiation, kl being the light extinction coefficient

and LAI being the leaf area index.

The leaf area index, which controls the amount of intercepted light, is simulated dy-

namically based on the concept of potential heat units (PHUs). The heat unit theory

assumes plant specific temperature requirements for the different phenological stages of

plant maturation, denominated as “heat units”, or more commonly known as “growing

degree days”. Heat units are accumulated over time and control the leaf and plant growth

until a maximum LAI and plant maturity is reached, after which leaf senescence begins

and LAI declines.

To estimate the actual plant growth, the actual LAI (LAIact) and the actual biomass

growth (biomact) are reduced according to the stress experienced by plants due to extreme

temperature stress (tstrs). Water stress (wstrs) and nutrient stresses (nstrs and pstrs)

are reduced to a minimum in our study by assuring constant irrigation and sufficient
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fertilization.

∆LAIact = ∆LAI ∗
√

1−max(wstrs, tstrs, nstrs, pstrs) (4)

∆biomact = ∆biom ∗ {1−max(wstrs, tstrs, nstrs, pstrs)} (5)

Finally, yield is estimated in SWAT by multiplying the actual biomass, produced at the

time of harvest, by a plant specific harvest index (HI).

Y ield = biomact ∗HIact (6)

The harvest index depends on the fraction of accumulated potential heat units (frPHU)

and is defined as

HI = HIopt(
100 ∗ frPHU

100 ∗ frPHU + exp[11.1− 10 ∗ frPHU ]
). (7)

The actual harvest index (HIact in eqn. 6) is a reduced HI, depending on the impact of

water deficit stresses. In our study water deficit is close to zero and HI = HIact, due to

constant and demand based irrigation. Optimal harvest indices (HIopt) used in this study

are 40% for cotton and 50% for maize and rice, according to Awan et al. (2016).

This procedure shows that SWAT simulations of leaf area development, biomass and

ultimately yield production are highly dependent on one single dominating environmental

stress factor. In our study this results in a strong sensitivity of plant production to

temperature stress, which leads to significant reductions of LAI, biomass and yield with

increasing temperatures.

2.1.2. APSIM

APSIM is a modelling framework with separate crop modules for each plant type. It uses

the Ozcot Model for cotton simulations (Hearn, 1994), the CERES-based maize model for

maize simulations (Jones & Kiniry, 1986) and the Oryza2000 model for rice simulations

(Bouman et al., 2001). Each model accounts for crop specific physiologies such as plant
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phenology, photosynthesis, plant stresses, nutrient cycling and carbon allocation. Details

on the model structures and calculation steps for each separate model can be found the

the above cited references.

The main difference to SWAT is the strength in accounting for more detailed bio-physical

processes. The cotton model for example, includes a plant respiration factor (Resp) in

the photosynthesis calculation (adopted from Hearn 1994).

Hphotosyn = 2.391 + Hday(1.374− (0.0005414Hday)) ∗ (1− exp(−kl ∗ LAI))−Resp (8)

The respiration factor is primarily affected by temperature stress. Thus, the photosyn-

thesis and carbon assimilation part already accounts for the impact of stress factors in

addition to impacts caused by changes in LAI. The maize model uses a similar concept

to SWAT for the estimation of the light driven biomass production without the effects

of photorespiration. Here the radiation use efficiency (RUE) solely varies with change in

phenology but not due to changes in CO2 (adopted from APSIM maize model documen-

tation)

∆biom = min{(soil water supply ∗ transpiration efficiency), (RUE ∗Hday)} (9)

Accounting for various stresses in different phenological stages, makes the APSIM mod-

els less sensitive to one single dominating stress (= temperature stress in SWAT). Yet,

some stages are lacking the impact of temperature stress, which might lead to an over-

estimation of plant productivity in environments, where the remaining stresses are low.

The cotton model for example does not account for heat stress in the initial parts of leaf

area development. In the leaf area formation, temperature stress is not considered until

the first square event. After the first square event, it is indirectly included through vapor
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pressure deficit (VPD).

∆LAIact =
√

0.1847− 0.1165 ∗ SMI − 1.514 ∗ V PD + 1.984 ∗ SMI ∗ V PD (10)

When the soil moisture index (SMI) and VPD are low (as in the case of our intensively

irrigated and from monsoon rainfall impacted region), LAI development will hardly be

affected by environmental stresses. This is one reason for the strong differences between

SWAT and APSIM results regarding their LAI estimations.

Yield estimation of the APSIM models are based on crop specific fruiting dynamics

rather than on the more stringent harvest index (HI) method in SWAT. Yield is estimated

based on grain number and grain filling (maize and rice) or ball growth rates (cotton),

which makes it less dependent on LAI and dry matter production. This explains, why

yield declines are projected even under strengthening leaf area development.

2.2. Management parameters

Table S1 lists the settings of both models regarding management parameters, which

define irrigation settings, planting, growing and harvesting decisions as well as plant type

specific information on optimal growing conditions (i.e. optimal temperature ranges of

single cultivars).

2.3. Soil parameters

SWAT is able to account for spatially distributed soil information and distinguishes

between five different soil type in the study area. Their local names are: Buchiana,

Chuharkana, Farida, Jhang and Nokhar soils. The soil characteristics were adopted from

the study by Awan et al. (2016) and thoroughly calibrated in a complex calibration

procedure described in Becker et al. (2019). In addition, a field campaign was conducted

and soil samples were taken. Laboratory soil test results were used to validate and improve

the soil information.
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The most prominent soil type is the so called ”Jhang” soil type - a sandy-loam which

covers approx. 63% of the study area. The second most abundant soil type (approx. 24%

of the study area) is called ”Farida” soil, with similar grain size distribution and soil char-

acteristics as the ”Jhang” soil. A sensitivity check of APSIM yield results with respect

to soil parameters was conducted. Using ”Farida” as well as ”Jang” soil characteristics,

APSIM results revealed that yield levels do not show any significant variation with re-

spect to differences in these two soils (yield difference = 1.5%) . We therefore select the

prominent ”Jhang” soil characteristics for the APSIM soil module, while maintaining all

characteristics of the five different soils for SWAT. Detailed characteristics of Jhang soils

are given in table S2 and S3 and details on the remaining soil types and soil layers can

be made available on request or found in Becker et al. (2019).

2.4. Regional data sets used in SWAT and APSIM

Please see Table S4.

2.5. Model validation

Validating models such as SWAT and APSIM using observed yield data is challenging.

Closely matching observed yield levels taken for example from national agricultural statis-

tics is difficult, mainly due to model limitations in representing the actual environmental

conditions, short-term changes in management strategies, farmer’s capabilities to react

flexibly to environmental dynamics, potential plant diseases, technical standards in irri-

gation or harvesting, etc.. Using data from national statistics, which are often based on

data at national or provincial level might further add to the uncertainty in yield validation

of models which operate on regional scales.

Yet, to prove that crop model results show reasonable yield predictions a validation of

yield estimates is necessary and a comparison with observed data is a common procedure.
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To support the validity of the models used in this study, we compare their yield predictions

with observed yield data from Agricultural Statistics of Pakistan, published by the Min-

istry of National Food Security & Research (http://www.mnfsr.gov.pk/frmDetails.aspx,

last accessed: 12/22/2020). Yield data for cotton, rice and maize from the province of

Punjab was taken for the years 2002-2013 and compared to simulated yield levels by SWAT

and APSIM. The time period 2002-2013 corresponds to the last available 11 years of the

CFSR climate data set, which is taken as reference climate data input in this study. The

models were run for the same time period with the respective reference climate data and,

due to the above mentioned difficulties in comparing the results with observed data, their

average yield (mean of 11 years) was compared with the 11-year-average of the observed

yield levels.

The validation results are shown in Fig. S4, where ”AGRIStats” corresponds to the

data from Agricultural Statistics of Pakistan. Uncertainty bars show +/- one standard

deviation. Deviations from estimated yield levels by APSIM are 23% for cotton and 38%

for maize and 3% for rice. SWAT shows a relative error of 30% for cotton, 4% for maize

and -35% for rice.

3. Crop specific results

In the main text we mention that our deductions on crop responses to climate change

are based on average trends estimated for maize, cotton, and rice crops. Yet, the three

selected crops are reacting differently to climate change and plant specific reactions should

be taken into account, when impacts on individual crop types are the focus. Figures S5

to S8 give detailed information on the reaction of each crop type to the climate change

scenarios of this study.
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Separating the changes of each crop type reveals that even though the magnitudes in

crop reactions to climate change are different the crops show similar responses (e.g. strong

improving trend in yield and biomass with increasing CO2; decreasing Irrigation demand

with increasing temperatures for SWAT, less effect for APSIM; clearly decreasing SWAT-

LAI for all crops and significant positive CO2 effects on APSIM-LAI). With the exception

of APSIM-maize, it can be stated that the difference in plant reaction to climate change

is larger between the models than between the crop types. Which again hints to the

importance of considering model structural differences.
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Figure S5. Simulated biomass changes for cotton
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Figure S6. Simulated biomass changes for maize
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Figure S7. Simulated biomass changes for rice
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(a) Irrigation changes w/o changes in CO2 concentration (b) Irrigation changes with changes in CO2 concentration
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(c) ET changes w/o changes in CO2 concentration (d) ET changes with changes in CO2 concentration
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(e) LAI changes w/o changes in CO2 concentration (f) LAI changes with changes in CO2 concentration
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Figure S8. Simulated changes in irrigation demand, ET and LAI showing mean changes per

model and for each crop type
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Table S1. Management Parameter

Parameter APSIM SWAT
Irrigation frequency demand based demand based
Irrigation efficiency [%] 0.7 0.7
Irrigation trigger soil water deficit soil water deficit
Irrigation trigger 2a 0.9 0.9
Fertilizer application on sowing day and each 14 days with irrigation
Fertilizer type Urea N Urea
Fertilizer amount [kg/ha] 100 at each irrig. event 100 at each irrig. event
Sowing rule fixed date fixed date
Cultivar type - cotton S71BR not specified (from SWAT data base)
Topt1;2 cotton [°C] 20;30 30
Tbase cotton [°C] 8 15
Cultivar type - maize Pioneer 3153 not specified (from SWAT data base)
Topt1;2 maize [°C] 15;30 25
Tbase maize [°C] 8 8
Cultivar type - rice BR3 not specified (from SWAT data base)
Topt rice [°C] 30 25
Tbase rice [°C] 8 10

a Fraction of available soil water below which irrigation is applied

Table S2. Soil parameters of Jhang soils

Depth Bulk
density

AirDry LL15
(Wilting
Point)a

DUL
(Field
Capacity)

SATb KS AWC

cm g/cm3 mm/mm mm/mm mm/mm mm/mm mm/day mm/mm
0-15 1.45 0.102 0.203 0.380 0.403 11280 0.177
15-30 1.61 0.180 0.225 0.310 0.342 11280 0.085
30-60 1.61 0.225 0.225 0.310 0.342 11280 0.085
60-90 1.59 0.223 0.223 0.300 0.350 11280 0.077
90-120 1.59 0.223 0.223 0.300 0.350 2064 0.077
120-150 1.59 0.223 0.223 0.300 0.350 2064 0.077

a calculated according to SWAT manual (Wilting Point = Field Capacity - Available Water

Capacity (AWC))
b calculated according to APSIM Soil manual (SAT = 1-(Bulk Density/2.65)-0.05)

Table S3. Soil grain size distribution for Jhang soils

Depth Clay Sand Silt
cm % % %
0-15 3.5 65.5 31
15-30 3.5 65.5 31
30-60 3.5 65.5 31
60-90 3.5 65.5 31
90-120 6.5 84.4 9.1
120-150 6.5 84.4 9.1
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Table S4. Regional Data Sets

Variable Spatial Resolution Temporal Resolution Source
DEM 90x90 m - SRTM, NASA
Soil Map 500x500 m - WASID, Pakistan
Land-use classes 250x250 m - Awan and Ismaeel (2014)
Station Data Point data (3 Stations) daily Pakistan Met. Dept. (PMD)
Reanalysis Data approx. 25x25 km daily globalweather.tamu.edu
CC Projections approx. 50x50 km daily www.cordex.org
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