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Abstract
Extreme precipitation events have a significant impact on life and property. The U.S. experiences huge economic losses
due to severe floods caused by extreme precipitation. With the complex terrain of the region, it becomes increasingly
important to understand the spatial variability of extreme precipitation to conduct a proper risk assessment of natural hazards
such as floods. In this work, we use a complex network-based approach to identify distinct regions exhibiting spatially
coherent precipitation patterns due to various underlying climate mechanisms. To quantify interactions between event series
of different locations, we use a nonlinear similarity measure, called the edit-distance method, which considers not only the
occurrence of the extreme events but also their intensity, while measuring similarity between two event series. Using network
measures, namely, degree and betweenness centrality, we are able to identify the specific regions affected by the landfall of
atmospheric rivers in addition to those where the extreme precipitation due to storm track activity is modulated by different
mountain ranges such as the Rockies and the Appalachians. Our approach provides a comprehensive picture of the spatial
patterns of extreme winter precipitation in the U.S. due to various climate processes despite its vast, complex topography.

1 Introduction

Extreme precipitation poses a serious threat to lives and
livelihood of people all around the world. With the
intensification of extreme precipitation and increase in flood
events over most climate regions (Tabari 2020; Easterling
et al. 2017; Janssen et al. 2014; Vu and Mishra 2019;
Kunkel et al. 2012) due to climate change, understanding
the spatial variability of extreme precipitation is crucial
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to manage the big socioeconomic losses often associated
with them (Merz et al. 2021). Previous studies have shown
that extreme precipitation connectivity in the United States
(U.S.) is highest during the winter months (Touma et al.
2018), while river flood connectivity is higher in spring
in the Rocky mountains and the central U.S. due to snow
meltdown (Brunner et al. 2020). As reported in the billion-
dollar weather and climate disasters catalog released by
the NOAA/National Centers for Environmental Information
(NCEI), in the period 2010–2020, 328 people were killed
due to flooding and winter storms in the U.S. and more than
$77 billion (U.S. dollars) worth of economic damages were
caused (Weather 2021).

This included, for instance, the above-average precip-
itation leading to severe flooding in the Mississippi and
Missouri Rivers and their tributaries during the winter sea-
son of 2019 (December 2018–February 2019) (Hoell et al.
2021; Flanagan et al. 2020). Therefore, our study focuses
on extreme precipitation in the winter months (December–
January–February; DJF), during which extreme rainfall may
cause floods directly, and snowfall leads to the accumula-
tion of snow packs for the melting season.

Numerous studies have analyzed extreme precipitation
events across the U.S. (Mondal et al. 2020; Najibi et al.
2020) in terms of the meteorological causes of the
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secular variations (Kunkel et al. 2012), their spatiotemporal
variability (Mullen 2008), and their relation to large-scale
meteorological patterns (Agel et al. 2019). Here, we focus
on the spatial connectivity of extreme precipitation events,
which is relevant for understanding river flood generation
and anticipating the spatial extent of simultaneous flooding
(Brunner et al. 2020; Kemter et al. 2020). Understanding
the spatial dependence of extreme precipitation and its
underlying mechanism is vital to assess risk from natural
hazards. Simultaneous extreme precipitation across large
scales can lead to synchronous flooding in multiple
states, which has a greater societal and financial impact
than independent, localized flood events due to regional
interdependencies in risk management, infrastructure, and
insurance (Jongman et al. 2014).

We use a complex network-based approach to study
the spatial patterns of extreme winter precipitation in the
U.S. Climate network analysis can help to identify the
regions which are most likely to experience concurrent
precipitation extremes along with the climatic conditions
that are responsible for their generation. The climate
network belongs to the category of functional network,
in which pairwise statistical dependencies between the
time series associated with the nodes of the network are
computed to estimate the functional connectivity between
them. Then, the topological structure of the network is
analyzed using different network measures (Donges et al.
2009b; Fan et al. 2021; Tsonis and Roebber 2004).

The network representation of the spatiotemporal climate
data allows us to study pairwise interactions between
climate variables of different locations. The analysis of the
climate network enables us to understand the spatial pattern
of climate variability. Standard similarity measures used
to estimate the strength of the climate interaction include
Pearson’s or Spearman’s correlation coefficients. However,
these are not suitable for evaluating the relationship within
extreme precipitation data, which are event-like time series.
Therefore, nonlinear synchronization measures specifically
designed to compute the similarity between event series
are required to construct extreme precipitation networks.
Recent works have extensively used event synchronization
(ES) (Quian Quiroga et al. 2002), in particular, to construct
climate networks for event-like data such as extreme
precipitation (Malik et al. 2011; Stolbova et al. 2014; Ozturk
et al. 2019) and heat wave pattern (Mondal and Mishra
2021). Boers et al. (2013), Boers et al. (2014a), and Boers
et al. (2014b) used complex networks constructed based
on ES to study the South American Monsoon and reveal
the global extreme precipitation pattern (Boers et al. 2019).
Konapala and Mishra (2017) used the same climate network
framework to study hydroclimatic extreme events. Agarwal
et al. (2017) introduced multi-scale event synchronization
by combining wavelet transform and ES. However, ES only

considers the time of occurrence of events to identify the
events’ coincidence and obtain the degree of similarity, but
not the difference in strength or amplitude of the events.
While some previous works (Ciemer et al. 2018) have
proposed some modified correlation measures to investigate
spatial co-variability patterns of general precipitation (i.e.,
considering the amplitude variability), they are linear and,
thus, limited for studying extreme precipitation behavior.

In our study, we use a special distance metric, particularly
designed to study the similarity between spike trains,
called edit distance (ED), first proposed by Victor and
Purpura (1997) and later extended by Hirata and Aihara
(2009). This metric has been used in combination with
recurrence plots (Eckmann 1987) to analyze the recurrence
property of marked point process data (Suzuki et al. 2010),
paleoclimate data (Ozken et al. 2015; Ozken et al. 2018),
and extreme event-like hydrological data (Banerjee et al.
2021). Recently, Agarwal et al. (2022) integrated ED with
climate networks to study the extreme rainfall pattern in the
Ganga River basin and highlighted its advantage over ES. In
the case of ED, each event series is considered as a marked
point process and the similarity between two such event
series is measured by optimizing the cost of transformation
associated with transforming one event series to another one
through elementary operations, such as shifting in time or
amplitude, addition, or deletion of events.

Spatial patterns of different network measures, namely
the degree and the betweenness centrality, are used to
study the spatial connectivity pattern of extreme winter
(DJF) precipitation events. While the degree centrality
is based on local topological information, the path-based
betweenness centrality includes the global topological
information (Donges et al. 2009b). Through our approach,
we are not only able to identify regions with distinct
extreme precipitation patterns, but also delineate the regions
affected by atmospheric rivers and tornadoes. In Section 2,
we describe in detail the data and the methodology. In
Section 3, we discuss the results based on our network
analysis and draw an interpretation from a climatological
point of view.

2 Data andmethodology

2.1 Data source and data pre-processing

In this study, we use daily averaged precipitation, geopo-
tential height and wind at different pressure levels, and
vertically integrated water vapor (IVT) flux data derived
from ERA5 reanalysis (Hersbach et al. 2020) for the period
1980–2020. The spatial resolution used is 0.5◦ × 0.5◦.
It is worth mentioning here that although the reanaly-
sis precipitation data do show biases compared to the
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observations, observational datasets typically either have a
limited spatial coverage (GPCC, TRMM, etc.), lower res-
olution (GPCP), or a limited temporal coverage (TRMM).
The ERA5 shows, in most cases, smaller biases than
other reanalysis datasets (JRA-55, MERAA-2) (Hassler and
Lauer 2021). Nevertheless, we verify the robustness of our
results by comparing them with those obtained using JRA-
55 (Japan Meteorological Agency 2013) (see figures in the
Supporting information).

To construct the extreme precipitation event series from
the daily averaged precipitation time series data at each
grid point, we consider only those days as events for
which precipitation is among the highest 5% of all values,
including dry days without precipitation, in a particular
season (here, DJF) at that location, resulting in 4 to 5
events for each season (Malik et al. 2011; Boers et al. 2013;
Stolbova et al. 2014).

2.2 Network construction

A network or graph comprises two main components: a set
of nodes V and a collection of edges E. Mathematically,
a network is expressed as G = {V, E} (Donges et al.
2009b; Sivakumar and Woldemeskel 2014). In the case of a
climate network, each geographical grid point of the climate
dataset is considered a node, and an edge is placed when
there is a statistically significant association or functional
dependency between two nodes. To construct the climate
network for extreme precipitation, first, we transform the
precipitation time series data at each grid point into an
extreme precipitation event series as described earlier.

Sa

S1

S2

S3

Sb

shift+amplitude modulation

shift+amplitude modulation

deletion

X

Fig. 1 Schematic of the transformation of segment Sa to Sb through
four steps numbered as steps S1, . . . , S3. The path shown is a minimal-
cost path and all steps are elementary steps, i.e., shifting an event,
amplitude modulation, deleting/inserting

Then, we construct the network for extreme precipitation
events to study its pattern of spatial variability as follows.

In this study, we use the edit distance (ED) method,
which takes into account both the sequence and amplitude
of events. In general, ED is a distance metric to quantify
the similarity/ dissimilarity between two spike trains (Victor
and Purpura 1997; Banerjee et al. 2021). Additionally,
ED considers each event series as a marked point
process (Suzuki et al. 2010; Ozken et al. 2015; Ozken et al.
2018). The idea is to transform an event series into another
series by performing some elementary operations: shifting
in time, amplitude modulation, and deletion/insertion of
events (Fig. 1). A specific cost is assigned to each such
operation. The total transformation cost to convert one
event series to the other is computed by tracing the
minimal-cost path.

The mathematical formulation of the distance metric is
described as follows. Consider two given segments Sa and
Sb, the minimum cost of transformation is defined as

D(Sa, Sb) = min
C

{{ ∑
(α,β)∈C

�0‖ta(α) − tb(β)‖

+�1‖La(α) − Lb(β)‖
}

+�s(| I | + | J | −2 | C |)
}

.

(1)

The time and amplitude of events are denoted as ta(α),
tb(β), and La(α), Lb(β), �0 and �1 are the coefficient of
cost of shifting in time and change in amplitude, while the
cost allotted for each insertion and deletion operation is �s .
The first term of Eq. (1) sums the cost of shifting in time and
amplitude modulation between the αth event in Sa and βth
event in Sb. C is the set containing all the pairs associated
in this operation. The second term in Eq. (1) denotes the
deletion/insertion operation. I , J are the sets of indices of
events in Sa and Sb respectively. | I |, | J |, and | C |
are the cardinalities of the sets I , J , and C respectively.
All three cost parameters are computed as suggested by
Agarwal et al. (2022).

Naturally, the minimum cost of transformation implies
the highest similarity and vice versa. We then calculate
the transformation cost for every pair of event series Si

and Sj , corresponding to nodes i and j , of the gridded
extreme event dataset using the above method, which gives
us the similarity matrix Qij (here, cost matrix). Thereafter,
we obtain the adjacency matrix Aij by thresholding the
similarity matrix Qij with a suitable threshold, which gives
the edges of our network. Mathematically, Aij = �(ε −
Qij )−δij , where � is the Heaviside function, i.e., we assign
1 when the cost is below a certain threshold, otherwise 0.
ε is the threshold, and δij is the Kronecker delta to remove
self loops. In the case of ED, lower transformation cost
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between two event series implies higher similarity. For all
pairs of grid cells whose value of the transformation cost
is below the threshold ε will be connected by an edge. In
this study, to find the significant edges, we fix the edge
density of the network at ρ = 2E

N(N−1)
= 5% and choose the

corresponding threshold ε(ρ) (Malik et al. 2011; Stolbova
et al. 2014; Wiedermann et al. 2017).

2.3 Networkmeasures

Various network measures are used to quantify the network
topology which provide novel insights into the underlying
dynamics of the system over different spatial scales (Donges
et al. 2009a). We use two network measures to quantify
and characterize the spatial pattern of extreme precipitation.
One of the basic local network measures is the degree
which measures the centrality of a node based on how well-
connected it is. The degree ki of a node i is defined as

ki =
N∑

j=1

Aij (2)

where N is the total number of grid points (nodes). It
quantifies the number of direct connections node i has with
other nodes in the network (Fig. 2a).

In climate networks, nodes connected by a link indicate
the spatial distribution of areas with similar climate
variability. The nodes with higher degree values ki are
crucial regions that regulate the connectivity of the
network and are typically related to large-scale atmospheric
circulation (Malik et al. 2011; Boers et al. 2013; Boers
et al. 2014b). Degree has been used to identify the
highly connected geographical sites (super-nodes) and their
association with atmospheric teleconnection pattern (Tsonis
et al. 2008; Radebach et al. 2013; Agarwal et al. 2019).

The second network measure we use here is the
betweenness centrality, which provides information about
the global topology of the network on the basis of shortest
paths between pairs of nodes (Donges et al. 2009a).

Betweenness centrality BCi measures how much a node
i falls “in between” two nodes in the network, i.e., acts
as a bridge connecting two other nodes (Newman 2010;
Freeman 1978). A node may not be well-connected (i.e.,
has low degree) but can be crucial to connect different parts
of the network (Golbeck 2015) (Fig. 2b). Betweenness is
quantified by measuring the percentage of the shortest paths
that must go through this specific node i and is defined as

BCi =
N∑

j,k �=i

σjk(i)

σjk

(3)

where σjk is the total number of shortest path between node
j and k and σjk(i) is the number of shortest paths that go
via node i. In the case of a social network, BC indicates the
importance of a node in controlling the flow of information
in the network. However, for functional networks, such as
climate networks, it represents boundaries between highly
connected regions (Molkenthin et al. 2014; Tupikina et al.
2016). BC has been used to uncover energy flow patterns
in the atmosphere (Donges et al. 2009b) and has also
been successfully applied to study the extreme precipitation
patterns of different monsoon systems (Boers et al. 2013;
Stolbova et al. 2014).

Correction for spatial embedding: When we choose a
particular study area, we impose an artificial boundary
in space. These boundaries influence the climate network
(Rheinwalt et al. 2012; Boers et al. 2013) by cutting
links that actually connect nodes with outer regions,
hence affecting the network measures. Here we adopt the
boundary correction procedure suggested by Rheinwalt
et al. (2012) as follows: We first generate 500 spatially
embedded random networks (Barnett et al. 2007) (SERN)
which preserve both the node position and the distribution
of the spatial link lengths of the original network. After that,
we compute the network measures for all SERN surrogates.
The boundary-corrected network measure is obtained by
dividing the value of the measure of the original network by
that of the average of the SERN surrogates.

v

(a) (b) A B
k1=1

k2=3

k3=3

k5=2

k4=1

Fig. 2 Network measures: (a) Degree ki of the network nodes, based
on the number of connections of node i with other nodes. Degree mea-
sures how well-connected a node is in the network. (b) Betweenness

centrality BCi of network nodes. Node v has low degree but high
betweenness because it acts as a bridge joining two groups of nodes A

and B
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(a) (b)

Fig. 3 (a) Mean daily winter precipitation from 1980 to 2020. (b)
Mean winter precipitation anomaly as the fraction of mean annual pre-
cipitation falling in winter (same period) for ERA5 reanalysis data.

Anomalies are highly positive along the West Coast and slightly pos-
itive along the southern flank of the Appalachians. Highly negative
anomalies exist in the central north

3 Results and discussion

3.1 Calculation and network interpretation

In this section, we analyze the winter extreme precipitation
pattern of the U.S. using the above introduced complex
network measures. Our climate network, constructed using
the ED metric (mentioned in Section 2.2), considers both
the sequence and the amplitude of events when quantifying
similarity. High degree nodes (Eq. 2) represent regions
of high connectivity of extreme precipitation events that
are connected to many grid cells which exhibit similar
variability of extreme precipitation occurrence and intensity.
We find in our extreme precipitation network, a relatively
low degree in the northwestern part of the U.S. (Fig. 4a),
suggesting less similarity of extreme precipitation behavior
with any other regions. On the other hand, a high degree is
observed in the eastern Pacific Ocean and southwestern part
of the U.S. To understand the connectivity pattern for these
regions, we choose really small boxes A (low degree) and
B (high degree), in the northwestern part of the U.S. and
in the eastern Pacific Ocean respectively, and determine the

number of links connecting these boxes with other nodes
in the network (Fig. 5a and b). We find that connections
with the region A are confined to a very small region
centered more towards the coast, indicating a quite narrow
corridor of moisture transport as typical for atmospheric
rivers (Dettinger 2013; Xiong and Ren 2021; Hu et al. 2017;
Gonzales et al. 2019). On the other hand, the connectivity
of region B spans over a larger area in the Pacific Ocean
and extending up to some parts of the southwestern coast.
Such extended spatial connectivity of extreme precipitation
indicates the presence of a larger atmospheric pattern that
impacts the region, such as tropical cyclones which usually
tend to cause enhanced rainfall in this region (Woodruff
et al. 2013).

We also observe high degree values in the Great Plains
and northeastern parts of the U.S. We choose another small
box C in this region which lies roughly in the Mississippi
river watershed (Fig. 5c). The connectivity pattern of this
region indicates similar variability of extreme precipitation
along the southwest-northeast direction. Furthermore, high-
elevation regions such as the Cascades, some parts of the
Rockies and the Appalachians show relatively lower degree

(a) (b)

Fig. 4 (a) Degree and (b) betweenness centrality for extreme winter (DJF) precipitation from 1980 to 2020
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(a) (b) (c)

A

B

C

Fig. 5 Partial degree, i.e., the number links connected to the selected regions in the north-western U.S. (box A), eastern Pacific Ocean (box B),
and in the central U.S. (box C)

than regions of low elevation which was also observed
by Agarwal et al. (2022) in case of extreme precipitation
networks constructed using edit-distance for the Ganges
river basin in India. Similar observations are made in the
results obtained using JRA-55 dataset (see Fig. S2a).

Next, we study the spatial patterns of BC (Fig. 4b),
which reveal some striking structures associated with
the transition zones between different atmospheric
flows (Molkenthin et al. 2014; Tupikina et al. 2016) during
winter in the U.S.

Along the northwestern coast of the U.S., we find high
betweenness but low degree. This implies that although
these are relatively small regions of similar precipitation
dynamics, they are transition zones of different atmospheric
flow directions (Molkenthin et al. 2014), possibly because
of spatial confinement and orographic lift due to the
presence of topographical features such as mountains. The
high BC values are seen to continue downwards along
the entire western coast, lining the land-sea boundary. The
results obtained from ERA5, however, deviate from those
obtained from JRA-55, where the BC values decrease
substantially beyond 30◦N southwards.

We observe high BC values in the central U.S., i.e., from
Texas towards the Midwest area, and in the northeastern
region, which are also regions of high degree. This
implies that while the lower elevation regions, east of
the Rocky mountains (Great Plains) and the Appalachians
(Coastal Plains), are large regions of spatially coherent
extreme precipitation dynamics, big rivers, and mountain
features cause diversification of atmospheric flow leading
to different and strongly fragmented precipitation patterns.
These observations are mostly similar with those seen in the
network constructed using the JRA-55 dataset (Fig. S2b)
except for the small disparity in BC values seen along the
southwest coast. This may be due to the relatively high bias
in JRA-55 precipitation data in the Pacific Ocean close to
the tropics (Hassler and Lauer 2021).

3.2 Climatological interpretation

The low spatial connectivity of precipitation in the
northwestern part of the U.S. (Fig. 4a) is caused due to the
effects of the Cascade and Rocky Mountains. Precipitation
gets “trapped” west of these ranges and, thus, is not
connected to the rest of the country, lowering the overall
degree. At higher elevations, extreme precipitation requires
different conditions than the coast, so the northwest coast
and the mountain ranges are also not connected. However,
as rainstorms can travel more freely through the plains
on the eastern side of the mountains, it leads to a higher
regional similarity. The presence of the western Cascades
results into an orographic lift, effectively transforming the
water vapor to extreme precipitation resulting in high BC
values a little inland from the northwest coast (Fig. 4b).

The southwestern part of the U.S. along with adjacent
regions of the eastern Pacific Ocean exhibits high connectiv-
ity due to a high fraction of winter precipitation despite low
mean winter precipitation (Fig. 3). This can be explained
by the fact that this part of the eastern Pacific is a separate,
relatively small, and well-organized precipitation system
(Zhang and Wang 2021) as also seen from Fig. 5b. Ele-
vation and slopes are much lower here than further north,
so rainstorms can penetrate further into the land and cause
near-simultaneous precipitation along the land terrain.

The southwestern coast has high BC values similar
to the northwestern coast, indicating that they may be
related to the transition in opposing atmospheric flow
direction. The western coast of the U.S. experiences heavy
precipitation, and hence extreme streamflows, due to the
atmospheric rivers (ARs), which contribute 30 to 45%
of total winter precipitation (Dettinger 2013; Xiong and
Ren 2021; Hu et al. 2017). ARs are relatively narrow
filament-shaped conduits of moisture in the atmosphere
transported from the lower latitudes to the mid and high
latitudes (Gimeno et al. 2016; Guan and Waliser 2015;
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Ralph et al. 2019). The activity of ARs starts during
autumn and tends to shift southward along the Pacific coast
later during the winter (Gonzales et al. 2019). However,
these ARs may be associated with different regimes of
large-scale Rossby wave breaking (RWB) — anticyclonic
wave breaking (AWB) in the northwest and cyclonic wave
breaking (CWB) in the southwest (Hu et al. 2017)(Fig. 6a
and b). The penetration of high BC values further inland
(Fig. 4b), in the northwest U.S., close to the western slope
of the Cascades may be related to the AWB-ARs, which
arrive more orthogonally to the western Cascades due to
their westerly impinging angle transforming moisture to
precipitation due to orographic lift. On the other hand,
the CWB-ARs have impinging angles, which are more
southwesterly, and therefore arrive more orthogonally to
the east-west oriented Olympics in the northwest U.S.
and the northwest-southeast oriented Sierra Nevada along
the southwest coast. Consequently, they cause intense
precipitation along the western coast. The transformation of
water vapor to extreme precipitation through the orographic
lift (Barlow et al. 2019), albeit due to different regimes of
RWB, explains the high BC along the western coast. The
relatively high degree in the southwestern region may be
related to the high density of the shorter track ARs close to
central and southern California. The seasonal progression

of the mean latitude position of the AR tracks southwards
could also possibly explain the high BC values in this
region (Gonzales et al. 2019).

The southwest-northeast (SW-NE) inclination in connec-
tivity of the high degree regions in the northeast U.S. and
the Great Plains (Fig. 5c) is in agreement with (Najibi et al.
2020), who found high similarity in anomalous extreme
precipitation in winter in these regions.

The eastern side of the Rockies also has high BC values,
which may be attributed to the pressure gradient seen
in the atmosphere (Fig. 6a, b, and c) (Molkenthin et al.
2014). The area roughly coincides with the loosely defined
region called the Tornado Alley, where tornadoes occur very
frequently (Concannon and Brooks 2000; Bluestein 2006).
We also see the propagation of wind in the southwesterly
direction in all atmospheric levels (Fig. 6a, b, and c). The
IVT seasonal composite anomalies (Fig. 6d) also show
an anomalously high moisture transport in this direction.
This flow pattern is modulated by the presence of the
Rocky mountains (Lukens et al. 2018) which suppress the
storm-track activity by deflecting the westerly flow over
land (Chang 2009). This leads to a SW-NE tilt in the
upper tropospheric jet (Fig. 6a) which subsequently causes
a downstream flow and hence high betweenness along
those nodes.

(a) (b)

(c) (d)

Fig. 6 (a–c) Geopotential height and wind in 250hPa, 500hPa, and 850hPa atmospheric level. (d) Vertically integrated water vapor flux anomaly
during winter season (DJF)
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High BC values along the northeast coast of the U.S. may
also be associated with high baroclinic instability formed
due to the large land-sea temperature gradient in winter
over northeastern U.S. Brayshaw et al. (2009) which leads
to an intensification of extratropical storms on the leeward
side of the Appalachian mountains (Colucci 1976; Lukens
et al. 2018). Extreme precipitation in this region is mainly
related to an anomalously high upward lift of air along
the coast due to high vorticity advection, frequent warm
conveyor belts, and diabatic heating (Agel et al. 2019). The
wind flow (Fig. 6a, b, and c) and high anomalous IVT
(Fig. 6d), along the northeast coast, lead to synchronous
extreme precipitation in the region and hence high degree.

4 Conclusions

The climate network approach has been proven to be
a robust and promising framework for studying various
climate extremes such as extreme monsoon precipita-
tion (Malik et al. 2011; Boers et al. 2013; Boers et al.
2014b), the influence of El Niño (Boers et al. 2014a), and
cyclone tracks (Gupta et al. 2021). In this work, we studied
the spatial variability of extreme precipitation during winter
in the U.S., which has a very complex topography. For this,
we employ the edit distance metric to measure pairwise sim-
ilarity between extreme precipitation time series of different
locations. Most of the earlier developed methods (Malik
et al. 2011; Stolbova et al. 2014; Boers et al. 2013; Boers
et al. 2014a; Wolf et al. 2020) consider only the timing
of events when studying the similarities in event-like data.
However, the edit distance emerges as a powerful alterna-
tive measure because it considers the amplitude or strength
of extreme events along with their time of occurrence when
calculating the similarity.

Extension of the coherent regions depends on the orog-
raphy, seasonal climatology, and the presence of any atmo-
spheric circulation. Understanding the spatial extent of
regions of coherent extreme precipitation is necessary for
risk assessment of natural hazards. Through a combination
of network measures, viz., degree and betweenness central-
ity, we were able to identify the different regions of the
U.S. which exhibit distinctly different extreme precipita-
tion dynamics. While the analysis of the spatial patterns
of degree differentiated between extreme precipitation vari-
ability of the northwest and the southwest coast based
on the associated large-scale atmospheric circulation, the
high betweenness along the entire western coast brought to
light the role of atmospheric rivers and that of topographic
barriers in causing extreme precipitation. The network mea-
sures also demarcated the “Tornado Alley” (Concannon
and Brooks 2000; Bluestein 2006) region in the Great
Plains where tornadoes are more frequent. The high degree

pattern captured the southwest-northeast (SW-NE) inclina-
tion (Najibi et al. 2020; Lukens et al. 2018) of extreme
precipitation due to modulation of storms by the Rocky
mountains. Similarly, a modulation of extreme precipita-
tion due to other high ranges, such as the western Cascades
and the Appalachians in the east of the country, was also
reflected in the network connectivity.

Our complex network-based approach provides a com-
prehensive overview of the distinct regions which experi-
ence spatially coherent extreme winter precipitation in the
U.S. albeit due to various climate processes. The similarity
measure used in this study, the edit distance, comes out as a
very promising alternative to studying extreme precipitation
patterns in regions exhibiting very intricate climate vari-
ability, such as the U.S. Future work may include studying
the effects of increasing intensity of extreme precipitation
for different large-scale monsoon systems and to possibly
identify teleconnections.
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