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Abstract 15 

Wheat production in Kazakhstan is fundamentally contributing to food security in Central Asia and 16 

beyond. It gained even more importance after recent spikes in global food prices in 2022. Therefore, 17 

timely and reliable estimates of Kazakh wheat production are important for food security planning and 18 

management. In this study, we developed a statistical weather-driven crop model that can successfully 19 

hindcast wheat yields at the oblast level up to two months before the harvest. The hindcast of wheat 20 

yields for 1993 to 2021 produces a median R2 of 0.69 for the full model run and R2 values of 0.60 and 21 

0.37 for two levels of out-of-sample validations, respectively. Based on these yield estimates we 22 

provide a robust hindcast of the total wheat production for Kazakhstan with R2 values between 0.86 23 

and 0.73. We forecast total wheat production in Kazakhstan for 2022 to be 12.4 million tonnes and the 24 

average yield to be 0.96 tonnes per hectare, which is 5 % above the production and yield of 2021 25 

(assuming equal areas). The statistical model is run with publicly available weather and yield data and 26 

requires low computational power, making it easily replicable. The forecast model can be used as a 27 

replenishment to currently applied forecasting methods supporting countries in Central Asia to meet 28 

their food demand. 29 
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1. Introduction 37 

Global wheat production is fundamental for food security providing over 20 % of global calorie intake 38 

(Lephuthing et al., 2021). At the same time prices for grains reached their record high in spring 2022 39 

after the invasion of Russian forces in Ukraine which has aggravated existing tensions in the food 40 

market (Glauben et al., 2022) and accelerated increasing energy prices. The war comes on top of 41 

existing challenges that have already disrupted the agricultural commodities market: the COVID-19 42 

pandemic, shipping constraints, land degradation and recent extreme events that are rising under 43 

human-made climate change (Barbier & Hochard, 2018; Behnassi & El Haiba, 2022; Nicas, 2022). 44 

Subsequent high prices and grain scarcity severely affect food security in some vulnerable food-45 

importing countries (Behnassi & El Haiba, 2022). This makes reliable wheat production in high-46 

producing regions even more important. One of those regions is Kazakhstan. In 2020, the country was 47 

the top 14th producer of wheat with a national production of above 14 million tonnes. This is around 48 

70 % of the production of Ukraine and 17 % of the production of the Russian Federation (Bureau of 49 

National Statistics Kazakhstan, 2022; FAO, 2022a). Together the three countries were often referred 50 

to become the world’s “bread basket” (Swinnen et al., 2017). The Kazakh wheat production is 51 

important for food security in the whole region as the main share of wheat exports goes to other 52 

Central Asian countries and the wheat quality is high (Schierhorn et al., 2020; USDA, 2010). However, 53 

Kazakhstan has shown highly variable annual wheat production ranging between 4.7 and 22.7 million 54 

tonnes since 1992 (FAO, 2022a). The export share of wheat also showed high variability with values 55 

between 20 % and 65 % of the annual production (USDA, 2010). Kazakhstan exported around 9 million 56 

tonnes of cereals in 2021 (FAO, 2022b) and was the 12th largest wheat exporter (WITS, 2022). Key 57 

importers of Kazakh wheat are Uzbekistan, Tajikistan and Afghanistan (USDA, 2022b), which underlines 58 

the high importance of Kazakh wheat production for food security in Central Asia. The wheat trading 59 

in the region was and is disrupted by the Russian grain export restrictions, political uncertainties after 60 

the Taliban takeover in Afghanistan and pandemic-related border restrictions, especially in China. This 61 

led to increased exports to several countries outside of Central Asia, namely to Italy, Azerbaijan and 62 

Turkey, while still Central Asia and Afghanistan remain the main destination for Kazakh grain exports 63 

(USDA, 2022b).   64 

Wheat yields are generally low in Kazakhstan compared to the other high-producing countries due to 65 

adverse climate conditions (a short growing season with high temperatures in summer and harsh 66 

winter temperatures as well as limited water availability) and low input use (fertilizers and pesticides) 67 

(Schierhorn et al., 2020). Kazakhstan is estimated to have the highest wheat yield gap of the high-68 

producing countries reaching 70 % (Senapati et al., 2022). Kazakh rainfed wheat production is largely 69 

dependent on the weather conditions. The influence of precipitation could be seen in the dry year of 70 

2021 where the production was 21 % lower than the year before (Bureau of National Statistics 71 

Kazakhstan, 2022). Agricultural production is at risk due to a tendency towards intensive land 72 

degradation and desertification, salinisation, and decreasing soil fertility (Saparov, 2014). 73 

Furthermore, the Asian Arid Zone, within which Kazakhstan is located, is particularly sensitive to 74 

climate change and showed a past temperature increase above the global average over land (Salnikov 75 

et al., 2015; Schierhorn et al., 2020).  76 

Given the low average yields in Kazakhstan, their high variability in percentage terms as well as further 77 

pressure on global and regional yields due to climate change, it is essential to have good estimates of 78 

production before harvest to timely plan the distribution of food and ensure food security in Central 79 

Asia and beyond. Numerous studies have developed yield forecasts based on satellite data, climatic 80 

variables and soil properties on various spatial scales (Cai et al., 2019; Luo et al., 2022). Nevertheless, 81 

according to our knowledge, little research has been done on national yield forecasting in Central Asia. 82 

This is also shown by a systematic review of yield forecasting approaches done by Schauberger et al. 83 
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(2020). They analysed 362 scientific studies conducting yield forecasts published between 2004 and 84 

2019 and found none in a Central Asian country. To our best knowledge, national forecasts of wheat 85 

production from the government of Kazakhstan are mainly based on work-intensive field 86 

measurements. Operational yield forecasts on the national level are provided furthermore by the 87 

European Commission with the MARS Crop Yield Forecasting System, the United States Department of 88 

Agriculture (USDA) and the Food and Agricultural Organisation (FAO). The forecasting tool by the 89 

European Commission is based on satellite observations, meteorological data, meteorological 90 

forecasts, agro-meteorological and biophysical modelling, and statistical analyses (European 91 

Commission, 2023). USDA’s crop production forecasts in Kazakhstan use information from agricultural 92 

experts, official governmental statistics, the analysis of economic data and satellite imagery (USDA, 93 

2022c). The FAO bases its forecasts on ground-based information and satellite data (FAO, 2020). 94 

Therefore, in this study, we provide a statistical wheat yield hindcast for Kazakhstan at the oblast level 95 

from 1993 to 2021 based on weather indices and use it to forecast total national wheat production in 96 

a fully blind validation for 2022. To assess the skill of the model we included two levels of out-of-sample 97 

validations. The forecast for 2022 is compared to national forecasts by FAO, USDA and the European 98 

Commission (European Commission, 2022; FAO, 2022b; USDA, 2022c). 99 

2. Data and Methods 100 

2.1 The study Region 101 

Kazakhstan is located in the centre of Asia and covers 2.7 million square km making it the ninth biggest 102 

country in the world (Dana et al., 2009). The climate is dominated by its high continentality leading to 103 

hot summers and cold winters as well as low annual rainfall (Salnikov et al., 2015). Wheat production 104 

is mainly rainfed and thus sensitive to climate variability and climate change (Karatayev et al., 2022). 105 

Frequent drought events have been observed since 1770 (Zhang R. et al., 2017) disrupting stable 106 

agricultural production.  107 

Average wheat production showed high variability in the past due to fluctuations in yield and total 108 

production area. After peaking at 19.6 million hectares in 1969 the wheat growing area steadily 109 

declined in the 1970s as low-yielding fields were taken out of grain production. The production area 110 

declined again in the 1990s after the breakup of the Soviet Union. The wheat area started to rebound 111 

only in the 2000s (USDA, 2010). Yields were and are generally low compared to other world regions 112 

and only reach more than two tonnes per hectare in a few years and for some oblasts. Higher yields 113 

can be achieved in years of high rainfall, but the drought-prone area suffers from low yields due to 114 

little rainfall in around two out of five cropping seasons (Shmelev et al., 2021; USDA, 2010).  115 

More than 90 % of the wheat is sown as spring wheat (Abugalieva et al., 2010), as the climate in most 116 

of the country is more favourable for spring wheat than winter wheat. Winter wheat is only grown in 117 

parts of the south of Kazakhstan. This justifies a focus on the spring wheat growing season within this 118 

study. Spring wheat is sown from March to May and harvest begins in August (Alchemyka, 2022; Wang 119 

et al., 2022) with the earliest planting in the south and the latest harvesting in the north. While 120 

Kazakhstan consists of 14 administrative territories (oblasts), 75 % of the production is in the plains 121 

and lowlands of three oblasts located in the north: Aqmola, North Kazakhstan, and Qostanay (USDA, 122 

2010; Wang et al., 2022).  123 

2.2 Input data 124 

The inputs of the regression model are observed yield data and agroclimatic indices based on weather 125 

data. As a source for past weather data, we chose ERA5 (fifth generation of European Centre for 126 

Medium-Range Weather Forecast (ECMWF) atmospheric reanalyses), the latest high-resolution 127 

reanalysis data set produced by ECMWF. It combines vast amounts of historical observations into 128 
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global estimates using advanced modelling and data assimilation systems (Hersbach et al., 2019, 2020). 129 

ERA5 is available around two months behind real-time. Additionally, we used the initial release data 130 

ERA5T for June and July 2022 as it is available about 5 days behind real-time and thus needed for a 131 

timely forecast.  132 

We obtained data on yield, production and production area at the oblast level from the Agency for 133 

Strategic Planning and Reforms of the Republic of Kazakhstan - Bureau of National Statistics (Bureau 134 

of National Statistics Kazakhstan, 2022). The complete time series of yield, production and production 135 

area of wheat from 1993 to 2021 is visualized in the Supplementary Information Figure S1 and the 136 

wheat production in 2021 is shown in Figure 1. The data displayed shows the combined winter and 137 

spring wheat, as to our best knowledge separate data for the two cultivars is not available for the 138 

complete time period since 1993 from a public source. The data time series is complete for all oblasts 139 

but Atyrau, Mangghystau and South Kazakhstan, three oblasts with low or no production. For Atyrau 140 

and South Kazakhstan, the last years contain missing entries and for Mangghystau no data was 141 

reported for any year. The arid climate in the southwest of Kazakhstan hampers wheat production and 142 

could explain the missing entries in Atyrau and Mangghystau. The production is highest in the North 143 

of Kazakhstan (Aqmola, North Kazakhstan, and Qostanay) and decreases towards the South, where the 144 

reported production declines to a few thousand tonnes per oblast. Personal discussions with 145 

agricultural experts in Kazakhstan testify to the reported annual variability of wheat production. 146 

Namely, the high-yielding years of 2009 and 2011 as well as the low-yielding years of 2010 and 2012 147 

were frequently mentioned. As an exception, it was pointed out that the total wheat production in 148 

2008 was likely up to 3 million tonnes below the reported one.  149 

 150 

Figure 1: Reported wheat production in 2021 [mil t] in each oblast. The data source is the Bureau of National statistics 151 
Kazakhstan (2022). 152 

Additionally, crop planting and harvesting dates of spring wheat were used in this study to define the 153 

growing season. These were taken from conversations with agricultural experts from the Analytical 154 

Centre of the Economic Policy in Agricultural Sector (ACEPAS) - a local private crop forecast agency - 155 

and verified with crop calendars of the Center for Sustainability and the Global Environment (Sacks et 156 

al., 2010) and the United States Department of Agriculture - Foreign Agricultural Service (USDA, 157 

2022a). The earliest planting date was thereby set to the 15th of April and the latest harvesting date to 158 

the 30th of September. This covers the planting period of spring wheat in the whole of Kazakhstan with 159 

the earliest planting in the south and the latest harvesting in the north. Due to a lack of region-specific 160 

data, we used the same crop calendar for the whole of Kazakhstan.  161 
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2.3 Model setup 162 

We developed a statistical regression model following the approach of Gornott & Wechsung (2016), 163 

Laudien et al. (2022) and Schauberger et al. (2017) to hindcast wheat yields for 1993-2021 and forecast 164 

wheat yields for 2022. We used the R (R Core Team, 2022) packages caret, glmnet, tidyr, dplyr and 165 

ggplot. To account for the diverse climate conditions in Kazakhstan, we set up a different model for 166 

each oblast following the flow chart in Figure 2 and steps A to E described in detail below. A more fine-167 

grained analysis at a smaller administrative level was not possible due to the unavailability of reliable 168 

yield data.  169 

   170 

 171 

Figure 2: Flow chart of yield model. 172 

A. Pre-processing of agroclimatic variables and yield data 173 

Based on daily maximum and minimum temperature, precipitation and near-surface relative humidity, 174 

we created 20 agroclimatic variables that describe either potential stress or growth factors (listed in 175 

Table 1). In the literature, these variables were found to be relevant for wheat production or were 176 

successfully used in statistical crop models.  177 

Temperature and water availability have a main influence on potential crop growth. We aim at 178 

covering these aspects in the model by including the agroclimatic input variables listed in Table 1 and 179 

described in the following.  180 

Because of the connection between temperature and plant development, growing degree days (GDD) 181 

are often used as a predictive indicator for crop development (Dar et al., 2018). Next to the median 182 

minimum and maximum temperature in the growing season, we considered variables related to low 183 

and high-temperature extremes as both can decrease the rate of dry matter production or even lead 184 

to crop failure (Grace, 1988; Porter & Gawith, 1999). Plant development of wheat is slower below an 185 

optimum temperature range, considered to be inactive below 0°C and plants might be irreversibly lost 186 

beyond a lethal limit that depends on the growth stage and is well below 0°C (Nagai & Makino, 2009; 187 

Porter & Gawith, 1999). To cover these aspects we included the region-specific long-term 5th and 1st 188 

percentile of minimum daily temperature, the sum of frost degree days (below 0°C) and the sum of 189 

chilling degree days (below 10°C). High temperatures can adversely affect the flowering and 190 
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reproductive growth of wheat and are associated with decreasing relative humidity affecting yield 191 

potential (Meng et al., 2017). To represent different levels of high-temperature extremes, we included 192 

heat degree days above 35°C as well as the 95th and 99th percentile of maximum daily temperature as 193 

variables. Additionally, crop yields respond to the diurnal temperature range (DTR, difference between 194 

maximum and minimum daily temperature) since some plant processes (e.g. photosynthesis) happen 195 

only during the day, while others (e.g. crop development) are nonlinearly related to temperature 196 

during the day and night. A higher DTR is furthermore related to higher solar radiation, which can 197 

benefit crop growth, especially in case of sufficient water availability. A higher DTR can also lead to 198 

decreases in yields in case of higher frost occurrence (Lobell, 2007). To cover the named processes 199 

related to the DTR we included the mean DTR as well as the standard deviation of the DTR as variables.  200 

As wheat production in Kazakhstan is mainly rainfed, it highly depends on water provided by rainfall 201 

during the growing season. Therefore, we included the precipitation sum as an agroclimatic variable. 202 

On the one hand, heavy rainfall events can adversely affect crop growth by damaging the crop canopies 203 

or limiting root and plant functions through anoxic soil conditions (van der Velde et al., 2012) and on 204 

the other hand, it can positively impact crop production in semi-arid areas by wetting deeper soil 205 

layers. Taking those effects into consideration, we included the number of high rainfall events above 206 

15 mm and above 30 mm. Long dry spells during the sowing season lead to a high risk of crop failure 207 

(Liakatas, 1997). To account for the damaging impacts of dry spells, we included consecutive dry spells 208 

of at least 7 and 20 days. Drought conditions were additionally covered by the standardized 209 

precipitation–evapotranspiration index (SPEI) (Vicente-Serrano et al., 2010). The SPEI is based on the 210 

calculation of a water balance and incorporates the effects of temperature variability on 211 

evapotranspiration. Precipitation before the growing season was shown to also have a positive effect 212 

on yields through conserved soil moisture (Meng et al., 2017). Thus, we considered the 12-month SPEI 213 

taken on the 31st of July which covers the average drought conditions of the whole year next to the 4-214 

month SPEI which covers the drought conditions of April-July.  215 

Humidity can affect crop development in two ways. First, it can directly affect the plant by altering the 216 

water content of the plant. Second, humidity can affect growth indirectly by influencing 217 

photosynthesis, pollination, leaf growth and pests and diseases (Zhang P. et al., 2015). Accounting for 218 

possible negative and positive effects of humidity, we included mean near-surface relative humidity as 219 

a variable.  220 

Variable Definition 

gdd growing degree days with tbase = 0°C and values above 30°C are 
counted as 30°C  

tasmin median of daily minimum temperature 

tasmax median of daily maximum temperature 

ahdd accumulated heat degree days (summing degrees over 35°C up) 

afdd accumulated frost degree days (summing degrees below 0°C up) 

acdd accumulated chilling degree days (summing degrees below 10°C up) 

tmax95 95th percentile of maximum daily temperature 

tmax99 99th percentile of maximum daily temperature 

tmin05 5th percentile of minimum daily temperature 

tmin01 1st percentile of minimum daily temperature 

DTR mean diurnal temperature range (difference between minimum and 
maximum daily temperature) 

DTR_sd standard deviation of diurnal temperature range 

pr mean precipitation 

15mm number of days with rainfall above 15mm/day 
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30mm number of days with rainfall above 30mm/day 

dry7 number of dry spells with a length of at least 7 days (day with < 0.5 mm 
is defined as dry) 

dry20 number of dry spells with a length of at least 20 days (day with < 0.5 
mm is defined as dry) 

spei4 Standardised Precipitation-Evapotranspiration Index (SPEI) at a 4-
month time scale taken at 31st of July 

spei12 SPEI at a 12-month time scale taken on the 31st of July 

hurs mean near-surface relative humidity 
Table 1: Definition of agroclimatic variables used as input for the regression model.  221 

The variables were separately calculated for three phases of the growing season, the first one from 222 

planting until the beginning of stem elongation, the second one until the end of flowering and the third 223 

stage until the forecast date 31st of July. The phases were defined for each year separately according 224 

to GDD thresholds as defined by Miller et al. (2001) (Table 2). These thresholds of plant growth stages 225 

according to GDDs were taken from experiments with hard red wheat in semiarid Saskatchewan 226 

(southern Canada) owing to the scarcity of equivalent data in Kazakhstan. The values are meaningful 227 

approximations for wheat in northern Kazakhstan due to the similar climate and the classification of 228 

most wheat in northern Kazakhstan as a hard red spring type (Morgounov et al., 2007). Still, the GDD 229 

thresholds might not match all cultivars, especially those in the south of Kazkahstan. To hindcast and 230 

forecast yields before harvest, we included only the weather data up to two months before the last 231 

day of reported harvest (30th of September), thus in this case until 31st of July. 232 

Phase of growing season Growth stage Number of GDDs 

Phase 1 until the beginning of stem elongation 0 – 592 GDD 

Phase 2 until the end of flowering 593 – 901 GDD 

Phase 3 until forecast date 902 GDD – end 
Table 2: Definition of growing season phases. 233 

As the last step, we standardized the weather variables by subtracting the mean and dividing this by 234 

the standard deviation of each variable. This allows for a consistent interpretation of the variable 235 

coefficients.  236 

To eliminate long-term trends due to management changes, we detrended the yield time series with 237 

the method (mean, linear, quadratic, and cubic) that resulted in the lowest Akaike Information 238 

Criterion (AIC). Then we took the logarithmic values of yield to adjust the yield input data to a Gaussian 239 

distribution. 240 

B. Variable selection 241 

At first, we removed all variables that showed near zero variance. Specifically, we excluded predictors 242 

that are subject to both of the following two characteristics: (1) the ratio of the frequency of the most 243 

common value to the second most common value is more than 10 and (2) the most common value is 244 

present for more than 50 % of the total sample. The thresholds were defined visually and empirically. 245 

The chosen values have been proven to be useful here to exclude not only predictors that have no 246 

variance but also predictors which have only differing values for one or two years, as was the case e.g. 247 

for heavy rainfall events in some oblasts. Next, we checked which variables are collinear (Pearson 248 

correlation coefficient > 0.6). From each group of collinear variables, we only kept the one variable 249 

with the highest correlation to yield anomalies. The final variable selection was done with LASSO and 250 

was set to allow for a maximum of 6 variables. In case LASSO selected more than 6 variables the ones 251 

with the lowest correlation to yield were removed. We set this maximum to avoid overfitting and 252 

tested that allowing for more variables does not improve the out-of-sample validations further.  253 
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C. Regression model 254 

Finally, we applied an individual linear regression model for each oblast following Eq 1.  255 

 log(𝑦𝑡𝑖) = 𝛽0 +  ∑ 𝛽𝑗𝑖𝑥𝑗𝑡𝑖 + 𝜀𝑡𝑖
𝐽
𝑗=1      (1) 256 

𝑦 – detrended and demeaned response variable (i.e. yield) 257 

𝛽 – beta coefficient 258 

𝛽0 – intercept 259 

𝑥 – standardized input variables (i.e. agroclimatic indices) 260 

𝜀 – error term 261 

𝑡 – T years (t = 1,…T) 262 

𝑖 – N spatial units (i.e. oblast) (i = 1,…N) 263 

𝑗 – J variables (j = 1,…J); J ≤ 6 264 

D. Model testing and validation 265 

We performed the Breusch-Pagan test against the heteroscedasticity of model residuals and the 266 

Shapiro-Wilk test for a normal distribution of residuals.  267 

The robustness of the yield model is assessed by performing two out-of-sample validations based on 268 

Laudien et al. (2020).  269 

First level out-of-sample: we selected the agroclimatic variables with LASSO based on data from all 270 

years. Then we subsequently removed one year from the data set and fitted the coefficients to 271 

simulate yields for the removed year. 272 

Second level out-of-sample: we subsequently removed one year from the data set and selected the 273 

variables with LASSO based on the reduced data set. We then fitted the coefficients and simulated 274 

yields for the removed year. The second level out-of-sample validation represents the operational case 275 

as it does not use any information from the year to be hindcasted. 276 

We used the standard model evaluation index R2 (coefficient of determination) to explain the degree 277 

that our input variables (agroclimatic indices) can explain our output variable (yield). R2 ranges from 0 278 

to 1, whereby 1 indicates a perfect model fit.  279 

𝑅2 = 1 −  
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
     (2)  280 

𝑆𝑆𝑟𝑒𝑠 – sum of squares of residuals (modelled minus observed value) 281 

𝑆𝑆𝑡𝑜𝑡 – total sum of squares (sum over all squared differences between the observations and their 282 

overall mean) 283 

E. Recalculating yields and total production 284 

The regression model results in estimates of detrended, logarithmic yield anomalies. To obtain the 285 

predicted actual yields, we transformed the detrended, logarithmic yield anomalies back to their actual 286 

values.  287 

Finally, we calculated the predicted total production in Kazakhstan by multiplying the predicted yield 288 

with the production area for each oblast and summing over all oblasts. To forecast the production for 289 

2022, we assumed the same production area for wheat in 2022 as in 2021. This approximation is 290 

plausible according to data by USDA  (USDA, 2022b) estimating a similar total production area and the 291 

JRC MARS Bulletin (European Commission, 2022) estimating a 4 % higher area for 2022 as was reported 292 
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for the previous year. We included only oblasts for which an official yield time series since 1993 is 293 

available without missing years to ensure the comparability between all years. This excludes Atyrau 294 

and South Kazakhstan. Due to their low wheat production in the reported years (around 2 % of the 295 

national production) and the unavailability of data in recent years (Figure S1c), we assume that the 296 

model covers approximately 98 % of total production. 297 

3. Results  298 

3.1 Validating the hindcast model  299 

The model can hindcast actual yields reasonably well in all oblasts with R2 values ranging between 0.45 300 

and 0.93 and a median R2 of 0.69 (R2 values for each oblast are shown in Figure 3). The median R2 301 

decreases to 0.60 and 0.37 for the two out-of-sample validations, respectively. The R2 values are 302 

slightly lower for the logarithmic, detrended yield anomalies (shown in Figure S2). LASSO selected 303 

between 1 and 13 variables for the different oblasts (on average 4.3 variables) whereby only in two 304 

oblasts more than the 6 variables, that we restricted the selection to later manually, were selected. 305 

Residuals were normally distributed for ten out of thirteen oblasts (Shapiro-Wilk test). 306 

Heteroscedasticity did not appear in any of the models (Breusch-Pagan test).  307 

 308 

Figure 3: Model performance measured as R2 for the actual (recalculated) yields from 1993 to 2021 at the oblast level. The left 309 
map (in sample) shows the model performance for the complete time series, the map in the middle (1st OOS) shows the 1st 310 
out-of-sample validation and the right map (2nd OOS) the 2nd out-of-sample validation. The median R2 over all oblasts is shown 311 
in the upper left corner of each map.  312 

Nevertheless, the model cannot capture all extreme years and shows some outliers for individual years 313 

and oblasts (Figure 4). The 2nd order out-of-sample simulations show unreasonable high yields in single 314 

years in Atyrau and Aqtöbe. The out-of-sample model performance is lower for the low-producing and 315 

arid oblasts in the west of the country. For the high-producing oblasts, Aqmola, North Kazakhstan, and 316 

Qostanay, the out-of-sample validations show more robust results with no outliers and R2 values for 317 

the 2nd order out-of-sample of 0.51, 0.46 and 0.58 respectively (Figure 4 & Table S1). These values are 318 

well above the country median of 0.37. 319 
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  320 

 321 

Figure 4: Time series of observed and simulated yield (in t per hectare) for each oblast including the 1st and 2nd order out-of-322 
sample. The R2 values for the full model and the 1st and 2nd out-of-sample are written in the upper part of each graph.  323 

The variables that were selected by Lasso in the model are related to precipitation sums in the whole 324 

growing season (pr, sprei4, spei12) and in the second growth period (pr_2), single high rainfall events 325 

in all three growth periods (mm15_1, mm30_1, mm15_2, mm30_2, mm15_3), dry spells in all three 326 

growth periods (dry20_1, dry7_1, dry20_2, dry7_2, dry20_3), cold temperatures (acdd, acdd_2, 327 

acdd_3, tasmin), cold temperature extremes (tmin05_3), high temperature extremes (ahdd_1, 328 

ahdd_3, tmax99_2), the temperature range (DTR_sd, DTR_sd_2, DTR_sd_3, DTR_1) and mean near-329 

surface relative humidity (hurs, hurs_1, hurs_3). Precipitation sums, a positive SPEI value, single 330 

precipitation events and near-surface relative humidity show consistently positive coefficients while 331 

dry spells show negative ones. Higher mean minimum temperatures and less chilling degree days 332 

show, with one exception, a negative influence on yields. Coefficients of high and low-temperature 333 

extremes are negative in the second and third growth stages (ahdd_3, tmax99_2, tmin05_3) and 334 

positive in the first growth stage (ahdd_1). The DTR (DTR_1) was once selected by Lasso with a negative 335 

coefficient. The standard deviation of the DTR (DTR_sd, DTR_sd_2, DTR_sd_3) shows predominantly 336 

positive influences on wheat production.   337 
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 338 

 339 

Figure 5: Regression coefficients for all selected variables. The number (_1, _2 and _3) indicate the growth stage. E.g. “pr_2” 340 
thus stands for precipitation sum in the second growth stage. No ending indicates the average over the complete growing 341 
period up to the forecast date. Oblasts in which the variable was not selected, are shown in grey.  342 

3.2 Hindcast of total Kazakh wheat production 343 

We further used the yield hindcast model at the oblast level to estimate total wheat production in 344 

Kazakhstan by multiplying the predicted yield by the wheat production area of each oblast and 345 

summing the production over all oblast (Figure 6a). The time series of observed and simulated total 346 

production are shown in Figure 6b. The R2 values for the total production hindcast range between 0.86 347 

and 0.73.  348 
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 350 

Figure 6: Time series of a) total observed wheat production area and b) observed and simulated total wheat production in 351 
Kazakhstan including the 1st and 2nd order out-of-sample. The R2 values for the full model and the 1st and 2nd out-of-sample 352 
are written within the graph.    353 

We additionally run the total production model considering only the three oblasts with the highest 354 

production (Aqmola, North Kazakhstan and Qostanay). The graphs for the total production are shown 355 

in the Supplementary Information (Figure S3) and largely agree with Figure 6b) since these three 356 

oblasts are dominating the total Kazakh wheat production. Still, the R2 values are slightly higher when 357 

considering only the three oblasts with 0.88, 0.83 and 0.78 compared to 0.86, 0.81 and 0.73. 358 

3.3 Forecasting wheat yield and production for 2022 359 

We applied the model to the year 2022 to get a completely independent forecast of yields for each 360 

oblast and the total Kazakh production. This is tantamount to an operational forecasting mode, where 361 

no information on yields from the target year is available at the time of forecasting. The forecasted 362 

yields at the oblast level are displayed in Figure 7 and listed in the Supplementary Information, Table 363 

S1. The forecasted total production in the 11 oblasts, excluding Atyrau, Mangghystau and South 364 

Kazakhstan, is around 12.4 million tonnes for 2022. The forecasted wheat production in the three 365 

oblasts with the highest production (Aqmola, North Kazakhstan and Qostanay) sums to 9.85 million 366 

tonnes. 367 

 368 
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 369 

Figure 7: Yield forecast for 2022 in tonnes per hectare at the oblast level. 370 

4. Discussion 371 

We provide and validate a seasonal hindcast of wheat yields at the oblast level and total wheat 372 

production at the national level in Kazakhstan from 1993 to 2021. Furthermore, we run a completely 373 

independent national production forecast for 2022. The model has the advantage of requiring low 374 

computational power and little input as it is solely based on yield and weather data.  375 

The model shows high accuracy in hindcasting wheat yields during the growing season up to two 376 

months before harvest (R2 of 0.69) and attains satisfying out-of-sample validations (median R2 of 0.60 377 

and 0.37). Thus, the model can explain at least 37 % of the yield variability (when applying the rigorous 378 

second-level validation) only by accounting for weather anomalies up to the 31st of July. This underlines 379 

the high influence of weather on wheat production in Kazakhstan.   380 

The model clearly shows the importance of precipitation sums, high precipitation events, high 381 

humidity, and the absence of longer dry spells and droughts for wheat production in the whole of 382 

Kazakhstan and throughout all growth stages. Sufficient precipitation was found to be most relevant 383 

for yield in the second growth stage between stem elongation and the end of flowering. Water scarcity 384 

during the growing season is also stated and analysed as the major stress factor for wheat production 385 

in Kazakhstan by various other studies (Babkenov et al., 2020; Fehér et al., 2016; Pavlova et al., 2014; 386 

Shmelev et al., 2021). The variable selection shows that minimum temperatures below 10°C have a 387 

predominantly positive effect on wheat yields and high minimum temperatures were negatively 388 

associated with yields in all growth stages. Night temperatures might influence crop production 389 

through the following two processes. First, high night temperatures (20°C and above) over a longer 390 

period were shown to lead to decreased photosynthesis and lower grain yields (Prasad et al., 2008). 391 

Second, lower night temperatures are associated with higher solar radiation as cloud-free nights are 392 

cooler. The DTR and its standard deviation can also give some information on the variability of cloud 393 

cover within a growth stage. This, in return, influences solar radiation as well as precipitation. Our 394 

results regarding the DTR and its standard deviation point to the correlation that a higher mean DTR 395 

in the first growth stage can lead to lower yields while a higher variability of DTR in any growth stage 396 

can lead to higher yields. The DTR in the second growth stage in East Kazakhstan does not fit this as 397 
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the model coefficient for this variable points in the opposite direction. Variables related to mean 398 

maximum temperature and growing degree days were not selected pointing to the already sufficient 399 

heat units available during the growing season in all years. According to the variable selection, the 400 

correlation between high-temperature extremes and yields is negative except for the first growth 401 

stage, where high temperatures show a positive effect on crop growth.  402 

Most of the variables were selected throughout different growth stages and the coefficients show the 403 

same sign. Only for heat degree days, the sign of coefficients differs between growth stages, pointing 404 

to a positive influence of hot temperatures on yield in the first growth stage and a negative one in the 405 

third growth stage. Thus, the different influence of weather on wheat depending on the growth stage 406 

is not clearly shown by the model results. This might also be due to the uniform definition of the growth 407 

stages according to GDDs over the whole of Kazakhstan despite the use of different cultivars. 408 

Compared to indices related to precipitation, variables related to high-temperature extremes were not 409 

as often selected by the model. Wang et al. (2022) and Schierhorn et al. (2020)  analysed the influence 410 

of climate on crop production and also found that extremely high temperatures had little impact on 411 

wheat production in Kazakhstan. We can conclude that under current climate conditions drought 412 

stress has a higher negative impact on wheat production than high-temperature stress. As the effect 413 

of temperature extremes on crop growth is discontinuous, the negative impact of high-temperature 414 

extremes might still come into play in the future after a specific warming level has reached under 415 

climate change. According to our modelling results, high minimum temperatures and the absence of 416 

enough chilling degree days are already now negatively correlated to yields. This will become more 417 

relevant under further increasing temperatures. Precipitation amount and distribution showed a high 418 

influence on crop yields. Precipitation in the future would need to rise at least by the amount of 419 

additional evaporation due to global warming to achieve similar yields in the future. While the latest 420 

climate models project a robust increase in mean annual precipitation in Central Asia, the changes also 421 

include a seasonal shift with a wetter spring and a dryer summer season (Jiang et al., 2020). Only a few 422 

studies exist that analyse subsequent influences on future wheat yields in Kazakhstan and those do 423 

not agree on a future trend (compare IPCC WG2 (2022)). Furthermore, the influences of climate change 424 

on wheat production are spatially diverging over Kazakhstan according to Schierhorn et al. (2020) and 425 

Wang et al. (2022). 426 

The R2 of the total production hindcast in Kazakhstan ranges between 0.86 (fitted) and 0.73 (level 2 427 

out-of-sample) underlining the operability of the production forecast. The hindcast for total production 428 

also covers extreme years. The high-producing years 2009 and 2011 as well as the low-producing years 429 

2010 and 2012 are to a satisfying degree represented. When running the model only with the high-430 

producing oblasts, the R2 values for the total production hindcast can even further be increased with 431 

values between 0.88 (fitted) and 0.78 (level 2 out-of-sample). This might be due to first, a higher data 432 

uncertainty in areas with low production, second, a high proportion of crop failure which is only 433 

partially recognized by the statistical model, third, the uniformly set GDD thresholds that fit better to 434 

the wheat production in the north, and, forth, the uniformly chosen crop calendar for spring wheat 435 

that is likely apt for the highly productive areas in the north of Kazakhstan, but not for the west or to 436 

the winter wheat in the south. Differences between modelled and reported data might not only come 437 

from model errors but also to some extent from errors in the reported data.  438 

The high R2 values for the total production hindcast are only to some extent due to the high yield model 439 

performance. We see two additional determents for the goodness of fit: First, errors with opposite 440 

signs can cancel each other out by summing the production over all oblasts and, second, including the 441 

known production area increases the goodness of the model. The second point underlines the 442 
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importance of having good estimates of the production area to ensure that the model can perform in 443 

a real case equally well.   444 

With this model, we provided a completely independent yield and production forecast up to two 445 

months before harvest at the oblast and national level for 2022. Total wheat production in 2022 is 446 

forecasted to be 12.4 million tonnes for the whole country but Atyrau, Mangghystau and South 447 

Kazakhstan. The actual numbers at the national level might be slightly higher due to the exclusion of 448 

oblasts and the possibly higher production area in 2022 (European Commission, 2022). The average 449 

yield is forecasted to be 0.96 tonnes per hectare and thus 5 % above the low-yielding last year but still 450 

well below the high-yielding year 2020. Other wheat yield forecasts that compile and harmonize data 451 

from different sources project a higher increase of 11.7 % (FAO), 19.4 % (MARS Crop Yield Forecasting 452 

System) and 11.8 % (USDA) for 2022 compared to 2021 (European Commission, 2022; FAO, 2022b; 453 

USDA, 2022c). Forecasts for winter wheat in the south of Kazakhstan are especially high with a 57 % 454 

increase compared to 2021 (European Commission, 2022) and partially drive the high overall increase 455 

in wheat. As our statistical model is not fit to winter wheat, this potentially high increase in production 456 

in the south is likely not covered and underestimated. Official observational data from the Bureau of 457 

National Statistics have not yet been released. 458 

Processes that cannot or only to a limited extent be covered by the model are pests and diseases, 459 

increasing soil degradation and varying agricultural management practices like fertilizer input. High 460 

costs of fertilizer in 2022 are for example not accounted for in the model and might have led to less 461 

fertilizer use and thus lower yields. Errors in observations (weather and yield) as well as the necessary 462 

aggregation of agroclimatic variables over a large area add further uncertainties to the model. Separate 463 

data on spring wheat yield instead of the combined winter and spring wheat data could lead to more 464 

accurate results in the south of Kazakhstan. Additionally, not all influences of weather on yield might 465 

be covered by the chosen agroclimatic variables. Namely, non-linear processes and interactive terms 466 

were partially neglected. Existing discontinuous threshold responses to temperature and precipitation, 467 

might not be caught by the model. The model could further be improved by introducing differing 468 

growing seasons and definitions of growth stages instead of uniform ones over the whole of 469 

Kazakhstan.  470 

A large part of Kazakh wheat was exported in the last years. After a disrupted global agricultural 471 

commodity market following the invasion of Russian forces in Ukraine, the Kazakh government 472 

introduced grain export restrictions in April 2022 leading to a limit on wheat export to guarantee 473 

domestic grain stocks and control national wheat prices (USDA, 2022b). The restrictions were 474 

suspended in September 2022 (FAO, 2022b) contributing to the stabilization of the global wheat 475 

trading market. In line with this, FAO forecasts wheat exports from Kazakhstan to be almost 9 million 476 

tonnes in the season 2022/23 and thus only slightly below the average of the recent years (FAO, 477 

2022b). Nevertheless, even constant total export rates can lead to considerably lower wheat 478 

availability in single countries as export flows from Kazakhstan have substantially changed their 479 

distribution between buyer countries in recent years. Decreases in wheat exports were already 480 

observed in 2021 especially to geographically close countries, namely Afghanistan (-11 %), Tajikistan (-481 

17 %), Kyrgyzstan (-79 %), China (-92 %) and Russia (-46 %) (USDA, 2022b). Rising wheat prices might 482 

aggravate this tendency this year constraining food security in Central Asia despite stable wheat 483 

production in the main producing country Kazakhstan.  484 

In light of multiple conflicts and economic crises, increasing climate change and degrading soil 485 

conditions in Kazakhstan, food security in the region is at risk. Efforts in improved agronomy and 486 

developing and applying drought-resistant varieties can contribute to closing the existing high yield 487 
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gap (Morgounov et al., 2013; Senapati et al., 2022) and thus can help to minimize the risk of food 488 

insecurity in Kazakhstan and the whole of Central Asia.  489 

5. Conclusions 490 

In this paper, we developed a statistical wheat yield and production hindcast model at the oblast level 491 

in Kazakhstan based on yield and weather data from 1993 to 2021. The hindcast of yield at the oblast 492 

level produces a median R2 of 0.69. We stringently evaluate our model in a double out-of-sample 493 

validation that produces a median R2 of 0.60 and 0.37. The selection of climate variables in the model 494 

allows us to conclude that mean precipitation and precipitation distribution are most crucial for wheat 495 

production and that high minimum temperatures hamper wheat growth in Kazakhstan. This highlights 496 

the risk for yield declines due to increasing climate change, whereby spatial differences were observed. 497 

The hindcast of total production at the national level shows high performance with R2 values between 498 

0.86 and 0.73. Higher R2 values are reached for the forecast in the three high producing oblasts in the 499 

north. This underpins the operability of this forecast, especially in northern Kazakhstan, which we 500 

advise using as a replenishment to field measurements that are currently the main source for national 501 

forecasts. The total wheat production in Kazakhstan for 2022 is forecasted to be 12.4 million tonnes 502 

and yields are forecasted to be 5 % above the year 2021. The forecasted increase compared to the 503 

previous year is in line with other forecasts, namely by FAO, USDA and the European Commission. Still, 504 

all three other sources forecast a higher increase between 11.7 and 19.4 %. Due to a disrupted trading 505 

market, the relatively high production might still lead to less wheat availability in neighbouring 506 

countries. The high performance and the interpretability of the model show that wheat production 507 

can be reasonably well estimated two months before the end of harvest using a simple statistical 508 

model based on publicly available weather and yield data. Such models can be used for operational 509 

forecasts to inform about looming food shortages and needed agronomic inventions to avert food 510 

shortages. 511 

 512 

 513 
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