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Extreme climate events constitute a major risk to global food production. Among 48 

these, the extreme rainfall is often dismissed from historical analyses and future 49 

projections, whose impacts and mechanisms remain poorly understood. Here, we 50 

used long-term nationwide observations and multi-level rainfall manipulative 51 

experiments to explore the magnitude and mechanisms of extreme rainfall impacts 52 

on rice yield in China. We find that rice yield reductions due to extreme rainfall 53 

were comparable to those induced by extreme heat over the last two decades, 54 

reaching 7.6 ± 0.9% (one standard error) according to nationwide observations 55 

and 8.1 ± 1.1% according to the crop model incorporating the mechanisms 56 

revealed from manipulative experiments. Extreme rainfall reduces rice yield 57 

mainly by limiting nitrogen availability for tillering that lowers per-area effective 58 

panicles and by exerting physical disturbance on pollination that declines per-59 

panicle filled grains. Considering these mechanisms, we projected ~8% additional 60 

yield reduction due to extreme rainfall under warmer climate by the end of the 61 

century. These findings demonstrate that it’s critical to account for extreme 62 

rainfall in food security assessments. 63 



Main 64 

Extreme climate events have been recognized as a major risk induced by climate 65 

change1. Agricultural ecosystems are among the most vulnerable to climate extremes, 66 

resulting in declines in crop production (either through yield or harvested area)2. For 67 

example, climate anomalies  have been shown to account for as much as a third of the 68 

observed anomalies in global crop yields3,4, with extreme events playing a particularly 69 

important role5. The consequences of such yield anomalies vary from fluctuations in 70 

food prices, destabilized food supply, to famines6. As such, understanding the impacts 71 

of extreme climate events on crop yield is critical for adapting food systems to future 72 

climate change and thus contributing to food security for the growing global 73 

populations. Recent studies have focused on elucidating impacts of drought7,8, extreme 74 

heat9,10 and cold spells11, but the impact of extreme rainfall on yields remain largely 75 

uncertain12,13.  76 

 77 

Estimating the yield loss due to extreme rainfall needs to assess the magnitude of 78 

extreme rainfall and timing of crop exposure, both of which are highly heterogeneous 79 

over space and time. Spatially, previous studies indicate that yield statistics and climate 80 

variables aggregated at administration zones have likely smoothed out the highly 81 

localized extreme rainfall events, which could have resulted in non-significant and 82 

weaker impact of extreme rainfall than drought reported based on national statistics2,12. 83 

Temporarily, the exposure of crops to extreme rainfall can be dismissed if using climate 84 

data with coarse temporal resolution to explore the climate-yield relationships12. The 85 



lack of clear mechanistic evidence for extreme rainfall impacts has also rendered crop 86 

modelers to dismiss their potential effects in projecting the impacts of climate change14, 87 

despite the expected increase in occurrence of extreme rainfall15.  88 

 89 

Rice is the primary calorie source for more than 50% of the world’s population, with 90 

the largest production in China16. This crop is generally considered to be strongly 91 

tolerant to extreme rainfall, though this may be an artifact of relatively intense irrigation 92 

and drainage management that minimizes adverse effects of rainfall anomalies. While 93 

the impacts of extreme rainfall through secondary processes (e.g., waterlogging17) have 94 

been well documented, the impacts through biophysical or biochemical processes 95 

remain poorly investigated. Here, we used long-term nationwide observations and 96 

multi-level rainfall manipulative experiments to explore the magnitude and 97 

mechanisms of extreme rainfall impacts on rice yield in China. We further improved a 98 

process-based crop model by explicitly accounting for the biophysical or biochemical 99 

mechanisms to hindcast and project the yield responses to extreme rainfall across China. 100 

This combination of field observation, manipulative experiment, and model simulation 101 

enables us to address three questions here: what is the magnitude and pattern of change 102 

in rice yield due to extreme rainfall during 1999-2012? what are the key mechanisms 103 

determining rice yield response to extreme rainfall? how strongly do changes in extreme 104 

rainfall impact future rice yield? 105 

 106 

Results 107 



Evidence from nationwide observations 108 

We used a window searching strategy to isolate changes in rice yield (ΔY) induced 109 

separately by an extreme climate event for each site and rice type from the nationwide 110 

observations in 1999-2012 (Methods and Supplementary Text 1), yielding 707 ΔY data 111 

at 114 sites (Supplementary Fig. 1b and data 1). While the data were by far limited and 112 

not homogeneously distributed, they represented climate heterogeneity across China’s 113 

rice production areas quite well (Supplementary Text 2). These data show that extreme 114 

rainfall induced a significant yield reduction by 7.6±0.9% (one standard error) in China 115 

(n = 217, P < 0.001, Fig. 1a). Counter-intuitively, the yield reduction due to extreme 116 

rainfall was comparable to that due to extreme heat (5.4±1.7%, n = 61, P = 0.27), and 117 

larger than the reductions related to drought (4.2±1.1%, n = 152, P = 0.01), extreme 118 

cold (3.7±0.9%, n = 163, P = 0.002), and the remaining extreme events (e.g., hail, 119 

typhoon and tropical cyclones, 2.9±1.1%, n = 114, P < 0.001, Fig. 1a). The larger ΔY 120 

for extreme rainfall in relative to other extreme events was robust when comparing 121 

different extreme events with similar probability of occurrence (Supplementary Fig. 2), 122 

and was not strongly influenced by the methods used (window searching strategy versus 123 

superposed epoch analysis2, time series analysis13, and panel regression model18; Fig. 124 

1a and Supplementary Fig. 3). Spatial analyses further confirm that the negative effects 125 

of extreme rainfall on rice yield are more pervasive and stronger than those of other 126 

extreme events, even though record yield reductions (ΔY < −20%) can arise from any 127 

type of extreme events considered here (Fig. 1b-f and Supplementary Fig. 4).  128 

 129 



Figure. 1 130 

 131 

To identify the potential factors determining the magnitude of extreme rainfall impacts, 132 

correlation analyses were performed between ΔY and extreme rainfall parameters. 133 

Extreme rainfall is defined as hourly precipitation exceeding the threshold that is the 134 

99th percentile of growing-season hourly precipitation over the base period 1981–2012 135 

for each site. An extreme rainfall event is defined as a time period that involved at least 136 

one hour with extreme rainfall and for which the break duration between hourly 137 

precipitation does not exceed 6 hours19. Based on the hourly precipitation data from the 138 

China Meteorological Administration (CMA), five extreme rainfall parameters were 139 

quantified during the rice growing season (Supplementary Data 1), including intensity 140 

as the maximum hourly precipitation when exceeding the threshold (cm h−1), total 141 

intensity as the sum of hourly precipitation when exceeding the threshold (cm), 142 

frequency as the fraction of hours of extreme rainfall (%), proportion as the sum of 143 

hourly precipitation that exceeds the threshold divided by the growing-season total 144 

precipitation (%), and event amount as the precipitation amount averaged for extreme 145 

rainfall events (cm per event). The correlation analyses show that extreme rainfall 146 

induced ΔY was negatively correlated with intensity and event amount of extreme 147 

rainfall occurred during rice growing season, rather than with the total intensity, 148 

frequency, or proportion of extreme rainfall (Supplementary Fig. 5a). The combining 149 

results from the Kruskal-Wallis Rank Sum Test and the Dunn’s test affirm that the 150 

repeated extreme rainfall does not add to additional yield loss (Supplementary Fig. 5b). 151 

These relationships are robust against variations in the definitions of extreme rainfall 152 



(exceeding 95th, 99th or 99.9th percentile of growing-season hourly precipitation over 153 

the base period) and of break duration between hourly precipitation (2, 6 or 12 hours) 154 

for consecutive extreme rainfall events (Supplementary Table 1), confirming the key 155 

driving indicators are extreme rainfall intensity and event amount rather than repeated 156 

frequencies.  157 

 158 

The nationwide observations also indicated that rice might be more vulnerable to 159 

extreme rainfall intensity than rainfed crops. Although with large site-to-site differences, 160 

we found that rice yield was negatively affected by rainfall when intensity exceedingly 161 

around 20 cm h−1 (Supplementary Fig. 6). This threshold seems lower than that detected 162 

by Lesk et al.12 on rainfed maize and soybean over the US Midwest. This is 163 

understandable since yield of largely rainfed crops may benefit from extreme rainfall 164 

by improving plant available water or buffering drought8,20, while intensively irrigated 165 

rice benefits less from the compensating effects. More soluble nutrient loss from rice 166 

fields than that of maize and soybean also contribute to the high sensitivity to extreme 167 

rainfall21,22.  168 

 169 

Experimental tests of rainfall-rice yield relationship 170 

To isolate the mechanisms leading to extreme rainfall impacts on ΔY, we established a 171 

series of rainfall manipulative experiments in 2018 and 2019 at the Jingzhou 172 

Agrometeorological Experimental Station located in Central China (Fig. 2a and 173 



Supplementary Fig. 7). In the experiments, we established four rainfall levels of 174 

intensity and event amount to broadly represent extreme rainfall heterogeneity across 175 

China’s rice fields. To test if the impacts differ by growth phases, rainfall manipulation 176 

was conducted for each or their combination of the three phases (i.e., vegetative phase 177 

when tillers are formed, reproductive phase when spikelets reach anthesis, and ripening 178 

phase when grains are filled). We quantified ΔY between treatment and control plots 179 

for which two replicates were considered, and converted the manipulative rainfall to 180 

equivalent natural rainfall in terms of measured kinetic energy (see Methods). ΔY was 181 

−1.1 ± 0.3% and −0.6 ± 0.1% in response to 1-centimeter increase in extreme rainfall 182 

intensity and event amount, respectively. These effect sizes were also statistically the 183 

same between the two experimental years (Supplementary Fig. 8a, b). Analyses of 184 

changes in yield components indicated that ΔY were mostly caused by declines in 185 

effective panicles per unit land area (EP) and filled grains per panicle (FG), accounting 186 

for 22% to 25% and 71% to 75% of ΔY, respectively, whereas decreased grain weight 187 

(GW) only contributed to approximately 1.4% to 6.0% (Fig. 2c-e and Supplementary 188 

Fig. 8c). Extreme rainfall impacts on yield components depend on growth phase: 189 

extreme rainfall in the vegetative phase mainly reduced EP, while in the reproductive 190 

phase, it mainly reduced FG. (Fig. 2c, d).  191 

 192 

Figure. 2 193 

 194 

The damages of extreme rainfall result from biophysical and biochemical processes, 195 



and secondary processes such as waterlogging17, stem laydown23, and disease 196 

development24,25. In our experiments, no plants were washed away, fell, or infected due 197 

to rainfall manipulation. We therefore hypothesized that the growth phase-dependent 198 

effects of extreme rainfall mainly result from biophysical and biochemical mechanisms 199 

in reducing rice yield, that is, high extreme rainfall intensity reduces per-panicle filled 200 

grains through physical disturbance (in terms of kinetic energy) on pollination26, and 201 

high extreme rainfall event amount stresses tillering through inducing soil N losses12. 202 

To test these hypotheses, we conducted two supplementary experiments using the 203 

maximum rainfall level (103 mm per hour for natural rainfall intensity or 240 mm per 204 

event for event amount) in 2021 (see Methods).  205 

 206 

In the first supplementary experiment, we sheltered half of each rice plot during the 207 

reproductive phase so that the sheltered halves of treatment were affected by extreme 208 

rainfall only through its effects on soil N losses, but not direct physical disturbance (Fig. 209 

2a and Supplementary Fig. 9). We found FG in the sheltered halves of treatment show 210 

little difference (< 2.0%) with the control, while FG in the exposed halves of treatment 211 

decreased by 18.0 ± 2.6% (Fig. 2). The empty or shrunken grains were found mostly in 212 

the upper part of the panicles of the exposed halves of treatment (Supplementary Fig. 213 

10), further supporting that FG were reduced by the physical disturbance that prevents 214 

successful pollination, a critical process of yield formation. 215 

 216 



The second supplementary experiment isolates the effects of soil N losses induced by 217 

extreme rainfall event amount during the vegetative phase (Supplementary Fig. 9a). We 218 

supplied additional urea to half of the treatments, so that if there was a soil N loss 219 

induced by the extreme rainfall, it would be compensated. We found that urea re-220 

application could help maintain N uptake per tiller, and thus successfully stabilized EP 221 

and rice yield (Fig. 2). Treatments that did not compensate for N losses caused 222 

proportionally similar declines in N uptake per tiller and thereby EP (R2 = 0.70 and 0.57, 223 

respectively, P < 0.001, Supplementary Fig. 11). These findings confirm that the 224 

reduced EP was primarily attributable to extreme rainfall event amount that limits soil 225 

N availability and crop N uptake causing lower yields. 226 

 227 

Figure. 3 228 

 229 

Ultimately, we conducted a series of structural equation models (SEMs) to test potential 230 

pathways by which extreme rainfall reduces rice yield (Supplementary Fig. 12). The 231 

SEMs were formulated based on the experimental measurements of rice yield, 232 

physiological factors, physical and chemical factors in 2018 and 2019 (see Methods). 233 

The SEM including the direct pathways of rainfall-induced physical disturbance and 234 

soil N losses shows the best performance (Fig. 3), explaining 56% of the overall 235 

variance in rice yield reductions. This suggests that both pathways are primary 236 

mechanisms explaining ΔY, whereas other potential mechanisms (e.g., changes in 237 

photosynthesis, leaf area index, phosphorous loss, phosphorous and potassium 238 

absorptions) do not show significant effects (Supplementary Fig. 12b-f). In addition to 239 



these two direct pathways, the best-explaining SEM also identified an indirect pathway, 240 

i.e., rainfall-induced N losses during the vegetative phase, which may also limit per-241 

panicle N uptake during the reproductive phase thereby decreasing FG (Fig. 3).  242 

 243 

Crop model improvements for assessing ΔY 244 

Correctly representing the mechanisms through which extreme rainfall reduces rice 245 

yield is critical for diagnosing and projecting spatiotemporal variations in rice yield. 246 

We introduced the physical disturbance module of extreme rainfall on rice yield in 247 

ORganizing Carbon and Hydrology in Dynamic EcosystEms for crops (ORCHIDEE-248 

crop)27, which is a process-based crop model including the representation of single, 249 

early and late rice types, paddy rice irrigation, and a detailed soil hydrology model28. 250 

The direct and indirect pathways of extreme rainfall through soil N losses was also 251 

introduced into the model (see Methods and Supplementary Table 2). The model with 252 

the extreme rainfall processes was calibrated by the experimental observations in 2018-253 

2019, and then validated by the nationwide observations in 1999-2012. The results 254 

show that the model, in contrast to that without the extreme rainfall processes, can 255 

reproduce the rice yield variability due to year-to-year weather variations and extreme 256 

rainfall treatments (the coefficient of determination [R2] of 0.88 in 2018 and 0.78 in 257 

2019, Supplementary Figs 13a and b), and robustly capture the spatiotemporal 258 

heterogeneity of ∆Y induced by extreme rainfall (R2 = 0.41, Supplementary Fig. 13c). 259 

 260 



We then used the high-resolution global precipitation measurement (GPM) datasets29 261 

to drive the model with the extreme rainfall processes over China in 2001-2016 (see 262 

Methods). On average, the model with the extreme rainfall processes hindcasts lower 263 

rice yields due to the extreme rainfall by 8.1 ± 1.1% (weighted by sowing area, one 264 

standard error for interannual variability) for all rice types, 8.3 ± 1.0% for single rice, 265 

8.6 ± 1.0% for early rice, and 7.6 ± 1.3% for late rice (Supplementary Figs 14a-c). 266 

Higher ΔY were simulated eastern China and southern coastal regions which 267 

experienced higher rainfall intensities (Supplementary Figs 14a-c). Factorial model 268 

simulations show that physical disturbance induced by extreme rainfall was the most 269 

important determinant across 47-95% of rice sowing areas (Supplementary Figs 14d-f), 270 

leading to yield losses of 3.9% for single rice, 5.1% for early rice, and 4.1% for late 271 

rice. Extreme rainfall-induced N losses dominated the ΔY mainly in Anhui and Jiangsu 272 

provinces where both N application rates30 and extreme rainfall event amount were 273 

relatively high31 (Supplementary Figs 14h-j). 274 

 275 

Projected impacts of future change in extreme rainfall 276 

Since extreme rainfall was found to have significant impacts on historical rice yields, a 277 

process which was neglected in previous process-based crop model projections under 278 

climate change32,33, we made a attempt to project the risk of future rice yield to changing 279 

extreme rainfall dynamics. We used the high-resolution climate projection by the IPSL 280 

model zoomed over China34, which performed well in reproducing the spectral 281 

properties of rainfall including extreme events35, to drive the model with the extreme 282 



rainfall processes under two climate scenarios (representative concentration pathways 283 

[RCP] 4.5 and 8.5; see Methods). Considering extreme rainfall impacts led to greater 284 

projected yield reductions by the end of this century (2085-2100, Fig. 4). On average, 285 

extreme rainfall induces an additional yield reduction of 7.6% (weighted by sowing 286 

area) in China on the top of other climate-change induced impacts under RCP 4.5. We 287 

then ranked the additional yield reductions in grid cells from the largest to smallest and 288 

calculated the cumulative sowing area affected by a given additional yield change, and 289 

found that the sowing areas with additional yield reduction of >7.6% accounted for 58% 290 

for early rice, 39% for single rice, and 29% for late rice (Fig. 4a). Rice is projected to 291 

suffer from extreme rainfall events the most over northeast China and southeast coastal 292 

regions (Fig. 4b-d). However, additional yield reductions were projected to be weaker 293 

under RCP 8.5 relative to RCP 4.5 (Fig. 4e-h), with the national mean reduction due to 294 

extreme rainfall of 5.4%, mainly because of larger rice yield reduction induced by 295 

stronger warming and carbon dioxide concentrations under RCP 8.5 together with no 296 

differences in projected extreme rainfall between the two scenarios (Supplementary Fig. 297 

15). These projections highlight the increasing risk of rice yield reductions induced by 298 

extreme rainfall. There is an urgent need to consider this risk in planning climate change 299 

adaptations, such as guaranteeing N availability to maintain tillering effectiveness36, 300 

avoiding excessive losses to the environment30, and breeding for rainfall-tolerant rice 301 

varieties37.  302 

 303 

Figure. 4 304 

 305 



Discussion 306 

While both nationwide observations and model simulations indicated approximately 8% 307 

of rice yield lost in China due to extreme rainfall, we note that our analyses are subject 308 

to several sources of uncertainties. On the observation side, due to rigorous screening 309 

criteria to isolate extreme rainfall impacts from other extreme events, rice yield 310 

assessment has been eliminated over the Southeast Coast where extreme rainfall is 311 

strong (Supplementary Figs 1b and 16), likely underestimating the extent of extreme 312 

rainfall induced ΔY. On the modelling side, extreme rainfall intensity and event amount 313 

used for driving the historical simulations across China were from the half-hourly and 314 

0.1-degree GPM dataset, which is well represented for but still did not fully capture the 315 

observed heaviest rainfall extremes during rice growing seasons (Supplementary Fig. 316 

17). Thus, our estimates of extreme rainfall impact on rice yield should be viewed as a 317 

conservative assessment. Another source of uncertainty is related to the setup of our 318 

manipulative experiments. The experiments were conducted on cloudy days to mimic 319 

natural rainfall conditions, but muted the effects of secondary processes. These 320 

secondary processes may cause rice diseases and lodging that can further compound 321 

rice yield responses13,24. Moreover, our experiment focused on uncovering mechanisms 322 

of extreme rainfall impacts under regular management, without climatic adaptations, 323 

which introduces additional uncertainties in future projection. 324 

 325 

Although we focused on rice yields in China that is the largest rice producer globally, 326 

attention to other rice producing regions may yield critical insights into the 327 



biogeography and generalizability of our findings. Compared to China, rice fields in 328 

South and Southeast Asia have smaller N application rates and larger fractions of 329 

rainfed rice (Supplementary Fig. 18). Extreme rainfall in these regions may lead to a 330 

lower risk of soil N losses and thus lower impacts on tillering. However, these regions 331 

were more exposed to extreme rainfall given much higher extreme rainfall intensity 332 

(Supplementary Fig. 16b), and thus subject to higher risk of physical disturbance. Since, 333 

extreme rainfall impacts results from direct physical disturbance on pollination across 334 

70% of China’s rice fields (Supplementary Figs 14j-l), rice yield reductions in South 335 

and Southeast Asia should also be significant. Previous projection of rice yield response 336 

to climate change without considering the extreme rainfall impacts (e.g., Webber et 337 

al.14, Rosenzweig et al.32, Jägermeyr et al.33, Iizumi et al.38) have likely been overly 338 

optimistic in this regard. 339 

 340 

The impacts of extreme rainfall on other staple crops such as wheat and maize remain 341 

to be explored. Although the magnitude and mechanistic representation of rice yield 342 

response to extreme rainfall may not be directly applicable to other crops, our research 343 

paradigm that combines field observations, manipulative experiments, and processed-344 

based modelling is well transferable. Unlike rice, sizable fraction of upland crops were 345 

rainfed or under different irrigation-drainage systems39. Thus extreme rainfall effect 346 

may not be stronger than droughts, and the sensitivity of tillering and pollination 347 

processes in response to extreme rainfall may also be different from what we observed 348 

here. Therefore, a major research challenge remains to assess the global extreme rainfall 349 



impacts for all cereal crops. 350 

 351 

Methods 352 

Analysis of nationwide observational data 353 

Yield change induced by extreme climate events. We collected field observations of rice 354 

yield and extreme climate events from the national agrometeorological observation 355 

network that is run by the CMA. This network covers the rice fields for single rice in 356 

Northeast and Central China and early and late rice in South China. All sites in the 357 

network refer to irrigated rice systems which accounts for 99% of rice fields in China 358 

(Supplementary Fig. 18). The network observed extreme climate events occurring in 359 

the rice growing seasons over the period 1999-2012 at 356 sites, but only 166 of them 360 

provide information for rice yields over the same period. In total, it provides rice yield 361 

of 2,304 observations and extreme climate events of 8,595 observations. Rice yield is 362 

defined as actual production divided by the hectare of harvested area. Extreme climate 363 

events are recorded on given days for each site and are sorted into five broad categories, 364 

i.e., extreme heat, extreme cold, extreme rainfall, drought, and the other events (see 365 

definitions in Supplementary Table 3). 366 

 367 

We used a window searching strategy to quantify the change in rice yield (∆Y) induced 368 

by each extreme climate event. ΔY is defined as the relative difference in yield between 369 

the treatment and control cases (in %) from the same site and rice type, where in the 370 

treatment rice has been exposed to a given extreme event, and in the control rice has 371 



not been exposed to that event and other extreme events either did not occur or were 372 

the same as in the treatment. As such control and treatment pairs are from the same site 373 

with the same rice type, but different years. We adopted a 7-year moving window2 to 374 

identify all available control-treatment pairs from the nationwide observations, yielding 375 

707 pairs from 114 sites for quantifying the difference between control and treatment 376 

(Supplementary Fig. 1b and Data 1). However, the difference for each pair can also be 377 

attributed to changes in rice cultivar, phenology, and the interannual variations in 378 

climate condition. As such, we detrended rice yield to exclude the effects from changes 379 

in rice cultivar and phenology, and then used a panel regression model to exclude the 380 

effects from interannual weather variability. Subsequently, we isolated ∆Y related to 381 

each extreme climate event for each site and rice type as follow: 382 

∆Y , , , = , , , , , , , , , , , ,, , , × 100%,                        (1) 383 

where t, k, i, u, and m refer to year of the treatment, year of the control, site, rice type, 384 

and event type, respectively. , , ,   refers to the detrended yield in the treatment. 385 

, , ,  refers to fitted yield after excluding effect of inter-annual climate variation in 386 

the treatment. , , ,  and , , ,  refer to the mean rice yield in the control after 387 

being detrended and fitted, respectively, if identifying multiple controls. The detailed 388 

methods are provided in Supplementary Text 1 with examples in Supplementary Fig. 389 

19. 390 

 391 

The t-test was applied to estimate the significance of the difference in ΔY between 392 

extreme rainfall and other extreme events. To ensure that the unequal sample size of 393 



different extreme events did not affect the significance estimates, we ran a bootstrap t-394 

test with 1000 replicates using the R package MKinfer v.0.5. In addition, we calculated 395 

the percentiles of the extreme events occurred in year of the treatment relative to the 396 

base period 1981–2012, and found that most of them exceed 95th percentile 397 

(Supplementary Fig. 2a-d). However, these percentiles are not completely consistent 398 

among the events. To test the robustness of the differences in ΔY, we compared the 399 

effects of different extreme events with similar percentiles, that is, 95th to 99th (or 99th 400 

to 99.8th) percentiles for extreme heat and rainfall and 1st to 5th (or 0.2nd to 1st) 401 

percentiles for extreme cold and drought (Supplementary Fig. 2e-f). 402 

 403 

Correlation between ΔY and extreme rainfall parameters. We conducted correlation 404 

analyses of the extreme rainfall induced ΔY against five parameters to identify the 405 

potential factors determining the magnitude of extreme rainfall impacts. Besides, the 406 

Kruskal-Wallis Rank Sum Test and the Dunn’s test were applied to test if ∆Y is sensitive 407 

to the repeated extreme rainfall (1, 2, 3 and ≥4 times). We also tested if ΔY in response 408 

to extreme rainfall is dependent on the definitions of extreme rainfall based on different 409 

thresholds (95th, 99th or 99.9th percentile) and of extreme rainfall event based on break 410 

duration (≤ 2, 6, or 12 hours) (Supplementary Table 1). 411 

 412 

Rainfall manipulative experiments 413 

Plants and cultivation condition. The experimental site is at the Jingzhou 414 

Agrometeorological Experimental Station in Hubei province, China (30°21´N, 415 



112°09´E; Supplementary Fig. 7a). It is characterized as subtropical humid monsoon 416 

climate, with a mean air temperature of 16 °C and a mean precipitation of 1,095 mm 417 

yr−1. Soil is classified as Hydragric Anthrosol (Supplementary Table 4). Rice seedling 418 

nurseries were managed under the water regime of continuous flooding. Seedlings of 419 

rice (Oryza sativa L.) were transplanted at 30-day seedling ages with a hill spacing of 420 

0.33 × 0.33 m (9 hills m−2), and harvested after 103 days. Rice fields were managed 421 

using yield-oriented optimal fertilizer applications. Further details on cultivation 422 

condition can be found in Supplementary Fig. 7b. 423 

 424 

Main experiment. The rainfall manipulative experiment was conducted from 2018 to 425 

2019, spanning two rice growing seasons. The experiment consisted of ambient control 426 

and factorial treatments with two replicates, and was designed for extreme rainfall 427 

level-timing combinations (Supplementary Fig. 7c), with the results in Supplementary 428 

Data 1. The treatments comprised four levels of extreme rainfall intensity and event 429 

amount in each or all of the three growth phases (i.e., vegetative, reproductive, and 430 

ripening phases), as they impact crop yield through different mechanisms. For instance, 431 

the extreme rainfall with high intensity damage plant tissue40; whereas that with large 432 

event amount limits crop uptake through increasing soluble nutrient losses and 433 

waterlogging12,17. There was a total of 34 plots, each of which had an area of 6 m2 (2 m 434 

× 3 m) and was completely isolated by plastic-covering levees and impervious plates at 435 

a 0.5-meter distance in between. Throughout the experiment, all plots were subjected 436 

to the same agricultural management practices. To avoid the border effects, we use 437 



independent-samples t-test to compare the yield of ambient control with that of three 438 

plots nearby, with each plot owing 150 m2 (25 m × 6 m) with the same agricultural 439 

management practices, and found no significant differences during three rice growing 440 

seasons (P >0.05, Supplementary Fig. 20a). 441 

 442 

We manipulated rainfall levels by running the artificial rainfall manipulation system 443 

(NLJY-10, Nanlin Electronics, China) for one hour on two replicates for each treatment, 444 

with the rainfall amount of 60, 120, 180, and 240 mm. For more consistent estimates 445 

on the extreme rainfall impacts in both the field and the experiment, we thus measured 446 

the kinetic energy of manipulative rainfalls using the laser precipitation disdrometer 447 

(OTT Parsivel2, Hach, USA), which is equivalent to the natural rainfall intensities of 6, 448 

19, 51, and 103 mm per hour41,42. These rainfall levels represent most of the broad range 449 

of growing-season rainfall extremes (exceeding the 99th percentile) across China’s rice 450 

fields (i.e., 8 to 143 mm per hour and 12 to 526 mm per event observed during1999-451 

2012). To approximate the natural rainfall condition, rainfall manipulation was 452 

conducted in cloudy daytime for vegetative and ripening phases, but for reproductive 453 

phase specifically at 8:00-13:00 when spikelets reach anthesis in experimental site. To 454 

minimize the impact of waterlogging, ponded water was discharged within 12 hours 455 

after rainfall manipulation if the depth exceeds 100 mm.  456 

 457 

For each plot, we measured leaf area index, total tiller number, dry weights of leave, 458 

stem, and panicle, which were determined from three hills with an average number of 459 



tillers (Supplementary Data 1). All leaves, stems, and panicles were oven-dried 460 

(DHG500, SUPO Co.) at 75°C for at least 72 h, before analyzing N, P, and K contents 461 

using a continuous flow analyzer (Elementar, Germany). We measured net 462 

photosynthesis of three flag leaves at two photosynthetic photon flux densities of 1500 463 

and 600 μmol m−2 s−1 using Li6400 (Li-Cor Inc., USA). These measurements were 464 

conducted at seedling, maturity, and during three growth phases. Net photosynthesis 465 

was measured before and after each rainfall manipulation. In addition, for each 466 

treatment, we observed N and P losses via runoff and leaching during the period from 467 

the beginning of rainfall manipulation to the time when ponded water level decreased 468 

the same as that before manipulation. 469 

 470 

At maturity, three hills with an average number of panicles were collected from each 471 

plot to determine the yield estimated as the product of effective panicles per unit land 472 

area (EP), filled grains per panicle (FG), and grain weight (GW) (Supplementary Data 473 

1). The filled grains were oven-dried at 75 °C for at least 72 h, but their weights were 474 

adjusted to a fresh weight with a moisture content of 0.15 g H2O g−1, ref43. To determine 475 

actual yields, the filled grains from the other rice plant hills for all plots were machine-476 

threshed (OUGEDA Co., China) and sun-dried to reach a moisture content of 0.15 g 477 

H2O g−1. The yields for all plots were highly consistent with actual ones (Supplementary 478 

Fig. 20b-c).  479 

 480 

We calculated relative changes in rice yield and in yield components between the 481 



controls and treatments (ΔY, ΔEP, ΔFG, and ΔGW in %) to simplify comparisons 482 

among treatments. Note that the compensation relationship between ΔEP and ΔFG can 483 

be avoided in our experimental plots as rice planting distance is 30 cm (ref44). ΔY is 484 

equal to the sum of ΔEP, ΔFG, and ΔGW, that is ΔY = ΔEP + ΔFG + ΔGW according 485 

to the Kaya identity principle45. The attribution results help identify the key yield 486 

components that were most affected by extreme rainfall. We further identified in which 487 

growth phase extreme rainfall regulates the changes in key yield components. 488 

 489 

1st supplementary experiment. To isolate the mechanism driving the causal relationship 490 

between extreme rainfall and ΔFG, we ran the first supplementary experiment during 491 

the reproductive phase in July 2021. In the experiment, extreme rainfall intensity is 103 492 

mm per hour (Supplementary Fig. 9 and Data 1). For each treatment, transparent 493 

impervious film was placed above half of the plot, such that half of the plants were fully 494 

exposed to artificial rainfall and the other part was sheltered but experienced the same 495 

increases in ponded water levels and nutrient losses as the exposed part. To avoid an 496 

unintentional influence of film on rice growth, the film was also placed above a half 497 

control plots and all films were removed when the experiment ended. 498 

 499 

FG and actual yield in exposed and sheltered parts for each plot were observed. Based 500 

on the observations, we attributed the effect of extreme rainfall on ΔFG into physical 501 

disturbance and soil N loss as below: 502 

Total: ΔY = YROC − YCOC, ΔFG = FGROC − FGCOC,                      (2a) 503 



Soil N loss (o): ΔYo = YRC − YCC, ΔFGo = FGROC − FGCOC,             (2b) 504 

Physical disturbance (p): ΔYp = ΔY − ΔYo, ΔFGp = ΔFG − ΔFGo,          (2c) 505 

where ROC and COC refer to the exposed parts for treatment and control, respectively. 506 

RC and CC refer to the sheltered parts for treatment and control, respectively. In 507 

addition, we measured the number of empty and shrunken grains at maturity as well as 508 

their distribution along panicle. Such observations elucidate how extreme rainfall 509 

influences rice pollination during reproductive phase. 510 

 511 

2nd supplementary experiment. To confirm the causal effect of extreme rainfall on ΔEP, 512 

we ran the second supplementary experiment during vegetative phase in June 2021.  513 

The experiment consisted of ambient control and two treatments with rainfall amount 514 

of 240 mm (Supplementary Fig. 9a and Data 1). For treatments, rice plants were fully 515 

exposed to artificial rainfall on 6 plots, half of which were re-applied by 28.8 kg N ha−1 516 

(37% of tillering fertilizer application) in the form of urea after rainfall manipulation. 517 

The re-application rate was determined as the average of observed N losses from the 518 

treatment plots using the same rainfall amount during vegetative phase in 2018 and 519 

2019. 520 

 521 

For each plot, we observed EP and the actual yield at maturity as well as N uptake per 522 

tiller from transplantation to panicle initiation, and tested their differences between 523 

treatments and controls using the Wilcoxon rank sum test. If no significant differences 524 

between N re-applied treatment and control but significant differences between normal 525 



treatment and control were found, the decrease in EP were attributed to N losses induced 526 

by extreme rainfall during the vegetative phase. 527 

 528 

Path analysis. Structural equation modelling (SEM) implemented in the R package 529 

‘lavaan 0.6-7’ allows us to test different pathways by which extreme rainfall affects rice 530 

yield. On the basis of potential causal relationships revealed by our experiments and 531 

previous literatures12,26,46, SEMs were formulated based on the experimental 532 

measurements of rice yield parameters (i.e., actual yield, effective panicles per unit land 533 

area, filled grains per panicle, and grain weight), physiological factors (i.e., leaf area 534 

index, total tiller number, aboveground dry weights, N, P, and K uptakes, net 535 

photosynthesis), and physical and chemical factors (kinetic energy of rainfall, N and P 536 

losses via runoff and leaching) in 2018 and 2019. The insignificant paths (P > 0.05) 537 

were eliminated gradually until all links significantly contributed to the final model. To 538 

compare model performance, we conducted a chi-squared difference test and calculated 539 

model fit statistics (root mean square error of approximation [RMSEA], comparative 540 

fit index [CFI], goodness-of-fit index [GFI] and adjusted R squared [  ]). 541 

Standardized path coefficients were computed according to ref.47, which can be 542 

interpreted as the change in the dependent variable when the independent variable 543 

changes by one standard deviation. 544 

 545 

Process-based modelling for regional assessments 546 

We improved the process-based crop model ORCHIDEE-crop27,28,48 to account for 547 



direct and indirect pathways of extreme rainfall revealed by the best-explaining SEM. 548 

We then used the model with the extreme rainfall processes to hindcast and project the 549 

impacts of extreme rainfall on rice yield across China during 2001-2016 and 2085-2100 550 

under two Representative Concentration Pathways (RCP 4.5 and 8.5).  551 

 552 

Model improvement. ORCHIDEE-crop simulates crop phenology, leaf area dynamics, 553 

growth of reproductive organs, carbon allocation and managements, as well as carbon, 554 

water and energy fluxes of agroecosystems. This model has been applied globally and 555 

regionally, and found to robustly reproduce yield variability49. ORCHIDE-crop is 556 

suitable for this study since it has been optimized for simulating the phenology and 557 

yield of single, early and late rice types in China27,48. It has paddy irrigation and soil 558 

hydrology schemes28, able to represent the typical irrigation and drainage systems for 559 

China’s rice fields. It runs in a half-hourly time-step and at 0.5-degree grid cell, suitable 560 

for extreme rainfall of short duration, which is a challenging issue for the models 561 

running at daily time-step. 562 

 563 

In ORCHIDEE-crop, the rice growth starts from transplanting, and the growth cycle 564 

includes three stages divided by the onset of grain filling and the physiological 565 

maturity48. Starting from grain filling, the quantity of dry matters accumulated in grains 566 

is calculated by applying a progressive “harvest index” to the biomass of the plant. The 567 

daily rate of grain increment is proportional to the daily accumulated thermal unit, 568 

which could be reduced by frost and extreme heat50. The impacts of extreme rainfall 569 



are formulated as a factor (α) to reduce the rate of grain increment: 570 

α = (1 + ΔEP + ΔFG),                                             (3a) 571 

ΔEP = 0.262⋅ΔNut − 1.644,                                        (3b) 572 

ΔFG = −0.00424⋅KEre −0.00115⋅KEri + 0.139⋅ΔNup −3.676.             (3c) 573 

These model equations were derived from the best-explaining SEM, where ΔNut and 574 

ΔNup denote relative change in N uptake per tiller and N uptake per panicle during 575 

vegetative phase (%) as a function of soil N losses, respectively. KEre denotes kinetic 576 

energy (J m−2 h−1) of the maximum hourly precipitation (exceeding the 99th percentile) 577 

occurred at 8:00-16:00 in flowering period when spikelets reach anthesis and if hourly 578 

air temperature ranges from 23°C to 35°C, ref51,52. KEri denotes kinetic energy of the 579 

maximum hourly precipitation (exceeding the 99th percentile) during ripening phase. 580 

Note that Equation 3 summing ΔEP and ΔFG is suitable to diagnose and project extreme 581 

rainfall induced ΔY across China, since the rice planting distances of 17 to 25 cm in 582 

China are enough to avoid the compensation relationship between EP and FG44 583 

(Supplementary Data 1). Further details on model equations can be found in 584 

Supplementary Table 2.  585 

 586 

Historical simulation. Two sets of historical simulations were performed for three rice 587 

types over China: (1) the comprehensive simulation (S0) that accounts both impacts of 588 

rainfall-induced physical disturbance and soil N losses on rice yield and (2) the partial 589 

simulation (S1) that only accounts the impact of physical disturbance. By comparing 590 

S0 and S1, we isolate the impact of soil N losses. The difference between yield 591 



simulations from simulation with and without the extreme rainfall processes can be 592 

attributed to the historical extreme rainfall (Supplementary Data 2), thus we derived 593 

ΔY as below: 594 

Y =    × 100%.                      (4) 595 

Details on historical input data can be found in Supplementary Table 5. Specifically, we 596 

used field observed rice phenology from the CMA to interpolate 0.1-degree 597 

transplanting date48. We used the satellite-based gridded precipitation datasets (GPM 598 

IMERGv6) to quantify extreme rainfall intensities and event amounts, since it is well 599 

represented at the site scale (Supplementary Fig. 17).  600 

 601 

Future projections. To evaluate the implications of our findings for future rice yield 602 

projections over China, we applied the ORCHIDEE-crop model with the extreme 603 

rainfall processes to simulate yield changes of three rice types under RCP 4.5 and 8.5 604 

with present-day agricultural management practices (Supplementary Data 2). To 605 

analyze the effect of future extreme rainfall on rice yield, we estimated additional rice 606 

yield loss as the difference between yield simulations with and without the extreme 607 

rainfall processes in 2085-2100 divided by the yield simulation without the extreme 608 

rainfall processes in 2001-2016. To remove systematic deviations of the simulated 609 

historical climate, we applied the trend-preserving bias-correction53 to the IPSL 610 

projected climate change34. The bias correction was then applied to the climate forcing 611 

data and extreme rainfall indices during 2085-2100. Further details on input data source 612 

for future projections can be found in Supplementary Table 5. 613 



 614 

Data availability: The data from the national agrometeorological observation network 615 

and the rainfall manipulative experiments are available in Supplementary Data 1. The 616 

climate data, records of extreme climate events, rice yield and phenology at the site 617 

scale from the China Meteorological Administration (CMA) are available at 618 

https://data.cma.cn/en. Model input data for historical simulations and future 619 

projections are available from public data depositories listed in Supplementary Table 5. 620 

The global precipitation measurement (GPM) IMERGv6 are available at 621 

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_06/summary. Model output 622 

data for historical simulations and future projections are available in Supplementary 623 

Data 2. Source data are provided with this paper. 624 

 625 

Code availability: Source codes for data analyses are available from 626 

https://www.doi.org/10.6084/m9.figshare.19801765. Source codes for process-based 627 

model are available from http://forge.ipsl.jussieu.fr/orchidee, under the French Free 628 

Software license, compatible with the GNU GPL (http://cecill.info/licences.en.html).  629 
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Figure captions 652 

Fig. 1. Changes in rice yield (ΔY) induced by extreme climate events in China. a. 653 

ΔY (mean ± standard error) quantified by the window searching strategy (left column 654 

of each pair) and mean of three other methods2,13,18 (right column of each pair, n = 3, 655 

see Supplementary Text 1). Asterisks refer to statistical significance of the differences 656 

in mean ΔY between extreme rainfall and other events based on the two-sided bootstrap 657 

t-test, with * P < 0.05, ** P < 0.01, *** P < 0.001, and n.s. for not significant. For left 658 

column of each pair, n = 217 for extreme rainfall, n = 61 for extreme heat, n = 152 for 659 

drought, n = 163 for extreme cold, and n = 114 for the other events. b-f. Patterns of ΔY 660 

induced by extreme rainfall at 82 sites, extreme heat at 18 sites, drought at 73 sites, 661 

extreme cold at 61 sites, and the other events at 68 sites (typhoon and tropical cyclones), 662 

respectively. Each point in panels b to f represents the location of a given extreme 663 

climate event with ΔY, with size of the symbols showing the mean percent change over 664 

the period 1999-2012. The base map of the country boundaries was from the Global 665 

Administrative Areas dataset (https://gadm.org).  666 

 667 

Fig. 2. Effects of simulated rainfall on rice yield and yield components. a. 668 

Experimental setup. b to e. Relative changes in rice yield (ΔY), effective panicles per 669 

unit land area (ΔEP), filled grains per panicle (ΔFG), and grain weight (ΔGW), 670 

respectively. For the 2nd supplementary experiment, the urea re-application rate (i.e., 671 

28.8 kg N ha−1) is equal to the average N losses observed from the treatment plots using 672 

the same rainfall amount during vegetative phase in main experiments. Sample size is 673 



4 for each treatment, but 3 for each supplementary experiment. Data are presented as 674 

mean ± standard error. Asterisk indicates for the significant difference with zero based 675 

on two-sided t-test, with P < 0.05.  676 

 677 

Fig. 3. Schematic diagram of extreme rainfall impacts on rice yield. Best-explaining 678 

SEM illustrating major pathways through which extreme rainfall reduced rice yield (χ2 679 

= 22.8, P = 0.530, df = 24, n = 32). Single-headed arrows indicate the direction of 680 

causation identified by the structural equation modelling. Blue (red) arrows indicate 681 

significant positive (negative) effects (P < 0.05). Arrow width is proportional to the 682 

strength of the relationship, which is characterized by standardized path coefficients 683 

showing next to arrows. The coefficients can be interpreted as the change in the 684 

dependent variable when the independent variable changes by one standard deviation. 685 

Amountveg, extreme rainfall event amount in vegetative phase; Intensityrep and 686 

Intensityrip, extreme rainfall intensity in reproductive and ripening phases, respectively; 687 

ΔY, relative changes in rice yield.  688 

 689 

Fig. 4. Future projections of additional yield change induced by extreme rainfall. 690 

a and e. Cumulative proportions of sowing area affected by a given additional yield 691 

change under RCP 4.5 and RCP 8.5, respectively; Black dashed lines represent the 692 

national means (−7.6% and −5.4%), and the numbers represent the cumulative 693 

proportions of sowing area affected by exceeding the national means. b to d. Patterns 694 

of ΔY under RCP 4.5. f to h. Same as panels b to d but under RCP 8.5. The base map 695 



of the country boundaries was from the Global Administrative Areas dataset 696 

(https://gadm.org).  697 

 698 
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Supplementary text 1. Quantification of Y induced by climate extreme events 

We used a window searching strategy to quantify the change in rice yield (∆Y) 

induced by each extreme climate event. ∆Y is defined as the relative change in rice 

yield between the treatment (YT) and control (YC) cases (in %), where the control-

treatment pair was identified for the same site and rice type (Supplementary Fig. 18). 

The national agrometeorological observation network provided observations of rice 

yields and extreme climate events, offering the opportunity to identify the control-

treatment pairs. As differences between control and treatment for each site and rice type 

are not only influenced by extreme climate events, but also by changes in rice cultivar 

and phenology and the interannual weather variability, we isolated ∆Y induced by 

climate extremes by controlling for effects of cultivar, phenology and weather 

variability for each site and rice type as follow: 

∆Y𝑖,𝑡,𝑢,𝑚 =
(𝑌𝑇𝑖,𝑡,𝑢,𝑚

𝑑𝑒 −𝑌𝑇𝑖,𝑡,𝑢,𝑚
𝑓𝑖𝑡

)−(𝑌𝐶̅̅ ̅̅
𝑖,𝑘,𝑢,𝑚
𝑑𝑒 −𝑌𝐶̅̅ ̅̅

𝑖,𝑘,𝑢,𝑚
𝑓𝑖𝑡

)

𝑌𝐶̅̅ ̅̅
𝑖,𝑘,𝑢,𝑚
𝑑𝑒 × 100%,             (1) 

where t, k, i, u, and m refer to year of the treatment, year of the control, site, rice type, 

and event type, respectively. 𝑌𝑇𝑖,𝑡,𝑢,𝑚
𝑑𝑒  and 𝑌𝑇𝑖,𝑡,𝑢,𝑚

𝑓𝑖𝑡
 refer to the detrended yield and 

fitted yield in the treatment, respectively. 𝑌𝐶̅̅̅̅
𝑖,𝑘,𝑢,𝑚
𝑑𝑒  and 𝑌𝐶̅̅̅̅

𝑖,𝑘,𝑢,𝑚
𝑓𝑖𝑡

 refer to the mean 

rice yield in the control after being detrended and fitted, respectively, if identifying 

multiple controls within a 7-year window1.  

First, we detrend rice yield to exclude the effects from changes in rice cultivar and 

phenology for each site and rice type as follows:  

𝑌𝑖,𝑡,𝑢
𝑑𝑒 = 𝑌𝑖,𝑡,𝑢 − (α𝑖,𝑢 × 𝑌𝑒𝑎𝑟𝑡 + β𝑖,𝑢) + �̅�𝑖,𝑢, 𝑖, 𝑢,               (2) 

where 𝑌𝑖,𝑡,𝑢 and 𝑌𝑖,𝑡,𝑢
𝑑𝑒  refer to rice yield before and after being detrended, respectively, 

at site i of rice type u in year t. α𝑖,𝑢 and β𝑖,𝑢 refer to coefficients of the temporal linear 

trend of the observed rice yield (𝑌𝑖,𝑢) against observational years. �̅�𝑖,𝑢 refers to the 

mean of 𝑌𝑖,𝑢 at site i of rice type u during the observational year 1999-2012. 

Second, we use a panel regression model to remove the effects from inter-annual 

variations in climate conditions, based on all observations without records of extreme 

climate events: 

𝑌𝑖,𝑡,𝑢
𝑓𝑖𝑡

= 𝛽1𝑇𝑒𝑚𝑝𝑖,𝑡,𝑢 +  𝛽2𝑃𝑟𝑒𝑐𝑖,𝑡,𝑢 + 𝛽3𝑆𝑠𝑑𝑖,𝑡,𝑢 + 𝛽4𝑇𝑒𝑚𝑝𝑖,𝑡,𝑢
2 +

𝛽5𝑃𝑟𝑒𝑐𝑖,𝑡,𝑢
2 + 𝛽6,𝑖𝑌𝑒𝑎𝑟𝑡 + 𝛽7,𝑖𝑌𝑒𝑎𝑟𝑡

2 + 𝑆𝑖𝑡𝑒𝑖 + 𝜀𝑖,𝑡,𝑢, 

(3) 



Page 3 

 

where 𝑌𝑖,𝑡,𝑢
𝑓𝑖𝑡

 is the fitted yield at site i of rice type u in year t; 𝛽 represents model 

parameters obtained from the regression of 𝑌𝑖,𝑢
𝑑𝑒 ; ε is an error term; 𝛽6,𝑖𝑌𝑒𝑎𝑟𝑡 +

𝛽7,𝑖𝑌𝑒𝑎𝑟𝑡
2  are the site-specific quadratic polynomials time trends; 𝑆𝑖𝑡𝑒𝑖 

corresponds to the time-invariant site-fixed effect to control for time-invariant 

heterogeneity. This model showed sufficient predictive capability, explaining 55% of 

rice yield variations (Supplementary Fig. 20).  

Third, we apply a window searching strategy to identify all available control-

treatment pairs, where in the treatment rice has been exposed to a given extreme event 

during the rice growing season, and in the control, rice has not been exposed to that 

event and other extreme events either did not occur or were the same as in the treatment. 

Both of the treatment and control for each pair are detected from the same site and rice 

type. All the available controls were identified within a 7-year moving window for each 

treatment. The controls were identified for ∆Y only when at least one control is detected, 

otherwise the window moves to cover another 7-year observation of rice yield. YC were 

averaged if multiple controls were detected within a 7-year window. We elaborate the 

procedure for identifying control-treatment pairs in Supplementary Fig. 18. After that, 

we determine 𝑌𝑇𝑖,𝑡,𝑢,𝑚
𝑑𝑒 , 𝑌𝑇𝑖,𝑡,𝑢,𝑚

𝑓𝑖𝑡
, 𝑌𝐶̅̅̅̅

𝑖,𝑘,𝑢,𝑚
𝑑𝑒 , and 𝑌𝐶̅̅̅̅

𝑖,𝑘,𝑢,𝑚
𝑓𝑖𝑡

, and accordingly calculate 

∆Y based on the Equation 1. In addition, a sensitivity analysis was done to test if the 

quantification of ∆Y depends on the range of moving windows — that is, 5 years and 

9 years. The results indicate that the quantification of ∆Y is insensitive to the choice of 

moving windows (Supplementary Fig. 21). 

This strategy expands on previous studies1-9 in at least three aspects: (i) It ensures 

both control and treatment sharing approximately the same management practices (e.g., 

fertilization, irrigation, and drainage) and geographical conditions (e.g., soil properties 

and topography), while almost avoiding technology- or cultivar-driven change in rice 

yield; (ii) it isolates the impact of a given extreme event on rice yield while largely 

reducing the noise due to the other events, and (iii) it provides an observational evidence 

for climate extreme impacts on rice yield at the site scale, rather than expected signal 

from statistical inferences at administrative scales. 

Finally, we verify the robustness of Y by comparing the results from our window 

searching strategy with those from three previous methods (Supplementary Fig. 4). The 

analyses of previous methods are based on the observations of rice yield along with at 

least one record of extreme event over the period 1999-2012 (n = 1,826). 

(i) Superposed epoch analysis1. We re-organized the yield data into two types of 

composited series, i.e., the treatment composited series (TS) and control composited 

series (CS). For each site and extreme climate event, we extracted short sets of time 
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series of rice yield using a 7-year window, and centered the treatment, with 3 years of 

data preceding and following. Then, the yield data within 7-year window were 

normalized to the average of 3 years preceding and following. Yields were excluded 

from the mean when the occurrence of another extreme climate events in the TS, 

resulting in variable sample size across the 7 years of the composites. To set up CS, we 

first identified control by randomly resampling the rice yield data from site-years 

without any extreme climate event occurred. Then we normalized each control point 

the same as for the treatment, and the entire process was repeated 1,000 times. We 

quantified Y by subtracting the means of TS from the mean of CS. The results of the 

superposed epoch analysis showed that rice yield reduction induced by extreme rainfall 

(3.8±0.2%, n=135) was larger in relative to other extreme events, i.e., 2.8±0.2% for 

extreme heat (n=7), 0.7±0.4% for drought (n=79), 2.7±0.2% for extreme cold (n=118), 

and 1.0±0.2% for other extreme events (n=55). These yield reductions were generally 

lower than that obtained from the other methods, which could be attributed to the 

limited sample size for the super epoch analysis (Supplementary Fig. 4). 

 (ii) Time series analysis3. The impact of extreme climate events on crop yield for 

a given site can be quantified by comparing the crop yield in the treatment (𝑌𝑇) with 

that expected from its long‐term yield trend (𝑌𝑇𝑒𝑥𝑝). We calculate Y as the relative 

change in rice yield between YT and 𝑌𝑇𝑒𝑥𝑝 (in %) as below:  

∆Y𝑖,𝑡,𝑢,𝑚 =
(𝑌𝑇𝑖,𝑡,𝑢,𝑚−𝑌𝑇𝑖,𝑡,𝑢,𝑚

𝑒𝑥𝑝
)

𝑌𝑇
𝑖,𝑡,𝑢,𝑚
𝑒𝑥𝑝 × 100%,                    (4) 

where ∆Y𝑖,𝑡,𝑢,𝑚 refers to rice yield change due to extreme climate type m at site t of 

rice type u in year i. It should be noted that this method might overestimate Y as for 

more than half of observations, multiple extreme events were coincided, and the effect 

of a given extreme event cannot be distinguished. Results showed that rice yield 

reduction induced by extreme rainfall (7.9±0.9%, n=217) was larger than drought 

(6.2±1.0%, n=152), extreme cold (5.3±0.8%, n=163) and other extreme events 

(4.9±1.1%, n=114), and not significantly different from extreme heat (7.1±1.7%, n=61).  

(iii) Panel regression model10. We built a panel regression model to connect rice 

yield with climate variables (𝑇𝑒𝑚𝑝, 𝑆𝑠𝑑, extreme rainfall, drought, extreme heat and 

cold), edaphic properties (Clay content and SOC), agricultural management practices 

(irrigation and fertilizer application) as below: 

log(𝑌𝑖,𝑡,𝑢
𝑑𝑒 ) = 𝛼1𝑇𝑒𝑚𝑝𝑖,𝑡,𝑢 + 𝛼2𝑆𝑠𝑑𝑖,𝑡,𝑢 + 𝛼3𝑅𝑋1ℎ𝑖,𝑡,𝑢 + 𝛼4𝑅𝑔1𝑒𝑣𝑒𝑛𝑡𝑖,𝑡,𝑢 +

𝛼5𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖,𝑡,𝑢 + 𝛼6𝐻𝑒𝑎𝑡𝑖,𝑡,𝑢 + 𝛼7𝐶𝑜𝑙𝑑𝑖,𝑡,𝑢+𝛼8𝐹𝑒𝑟𝑡𝑖,𝑡,𝑢+𝛼9𝐼𝑟𝑟𝑖𝑖,𝑡,𝑢 +

𝛼10𝐶𝑙𝑎𝑦𝑖,𝑢+𝛼11𝑆𝑂𝐶𝑖,𝑢 + 𝑆𝑖𝑡𝑒𝑖 + 𝑅𝑖𝑐𝑒𝑇𝑢+𝛼12,𝑖𝑌𝑒𝑎𝑟𝑡 + 𝑒𝑖,𝑡,𝑢, 

(5) 
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where 𝑇𝑒𝑚𝑝𝑖,𝑡,𝑢  and 𝑆𝑠𝑑𝑖,𝑡,𝑢  refer to mean daily temperature and total sunshine 

hours over rice growing season, respectively. 𝑅𝑋1ℎ𝑖,𝑡,𝑢 and 𝑅𝑔1𝑒𝑣𝑒𝑛𝑡𝑖,𝑡,𝑢  are 

defined as the extreme rainfall intensity and its event amount, respectively. 

𝐷𝑟𝑜𝑢𝑔ℎ𝑡𝑖,𝑡,𝑢 is defined as the minimum standardized precipitation evapotranspiration 

index over rice growing season. 𝐻𝑒𝑎𝑡𝑖,𝑡,𝑢 and 𝐶𝑜𝑙𝑑𝑖,𝑡,𝑢 are defined as the maximum 

and minimum hourly temperature over rice growing season, respectively. 𝑆𝑖𝑡𝑒𝑖 and 

𝑅𝑖𝑐𝑒𝑇𝑢 correspond to the time-invariant fixed effect of site and rice type, respectively, 

to control for time-invariant heterogeneity. 𝛼12,𝑖𝑌𝑒𝑎𝑟𝑡  correspond to linear site-

specific time trends. It should be noted that total precipitation over the rice growing 

season was excluded because of the collinearity between total precipitation and extreme 

rainfall event amount. Coefficients α1~α11 refer to sensitivities of yield to climatic, 

edaphic, and management-related variables. For instance, a unit increase in 𝑇𝑒𝑚𝑝 is 

associated with 𝛼1×100% yield decline, and thus the Y induced by mean temperature 

increase is calculated as the increase in 𝑇𝑒𝑚𝑝 multiplied by 𝛼1×100%10. The panel 

regression model explained 58% of rice yield variations. Results showed that extreme 

rainfall induced rice yield decline of 5.0±0.3% (n = 217), which was comparable to 

drought (4.7±0.1%, n = 152), but higher than extreme heat (4.5±0.1%, n = 61) and 

extreme cold (2.1±0.02%, n = 163). Note that this model did not quantify the Y 

induced by the other extreme events (e.g. hail, typhoon and tropical cyclones). 

Combining the results of three previous methods concluded that the yield 

reduction due to extreme rainfall (5.8±1.2%) was comparable to that due to extreme 

heat (4.8±1.3%), and larger than the reductions related to drought (3.9±1.7%), extreme 

cold (3.4±1.0%), and the other extreme events (2.9±1.6%). This finding was well 

consistent with that of our window searching strategy (Supplementary Fig. 4).  
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Supplementary text 2. Representativeness of observation dataset used for 

historical analysis 

The national agrometeorological observation stations are by far limited and not 

homogeneously distributed over the rice production areas in China, resulting in a 

potential lack of representativeness. We cannot exclude the uncertainty of observation 

representativeness, but conduct an additional analysis to investigate how well our 

dataset can spread across the rice production areas in China. Following the approach of 

Beer et al.11, we compared the distributions of climate indices (average and extreme) 

between the datasets from study stations in 1999-2012 and all stations across China’s 

rice production areas in 1981-2012. First, to test the representations of background 

climate variation over space, we compared the distribution of mean daily temperature 

and total rainfall during rice growing season from study stations with that at all stations. 

Second, to test the representations of extreme rainfall variation over space, we 

compared the distribution of its intensity and event amount during rice growing season 

from study stations (that involved in the extreme rainfall induced ∆Y analysis) with 

those at all stations. The intensity is defined as the maximum hourly precipitation when 

exceeding the threshold, and the event amount is defined as the precipitation amount 

averaged for extreme rainfall events that involve at least one extreme rainfall and for 

which the break duration between hourly precipitation does not exceed 6 hours. Third, 

to test the representations of rainfall variation over time, we compared the kernel 

probability density curves of total rainfall during rice growing season from study 

stations with that at all stations. Two indicators (Kullback–Leibler divergence12 and 

Jensen-Shannon divergence13) were used for assessment of the representativeness. 

Climate datasets were acquired directly from the national agrometeorological 

observation stations, including 1,237 stations within rice production area in China in 

1981-2012.  

The results indicate that our dataset can adequately capture the spatiotemporal 

heterogeneity of climate conditions across rice production areas in China 

(Supplementary Fig. 22), with the Kullback–Leibler divergence (KL) ≤0.1 and the 

Jensen-Shannon divergence (JS) <0.03 for the comparisons of the background climate, 

KL<0.3 and JS<0.07 for extreme rainfall conditions, and KL=0.001 and JS<0.001 for 

the comparison of rainfall variation over time. 
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Supplementary Table 1 Correlations between Y and extreme rainfall indices. It 

includes intensity (RX1h, cm h−1), total intensity (RX1hTOT, cm) and its proportion to 

growing-season total precipitation (R99pPROP, %), frequency in proportion to 

growing season length (R99p, %), event amount (Rg1event, cm event−1). The 

thresholds were defined as the 95th, 99th, or 99.9th percentiles of hourly precipitation 

during growing season in the reference period during 1981–2012 for each site. Extreme 

rainfall event was defined as events that involve at least one extreme rainfall and for 

which the break between hourly precipitation lies below 2, 6, 12, and 24 hours. Data is 

the correlation coefficients of Y to indices. *p<0.05; **p<0.01; ***p<0.001, and n.s. 

for not significant. 

Break Threshold Y v.s. RX1h Y v.s. RX1hTOT Y v.s. R99pPROP Y v.s. R99p Y v.s. Rg1event 

2h 

95.0th −0.16 (*) −0.11 (n.s.) −0.01 (n.s.) −0.05 (n.s.) −0.37 (***) 

99.0th −0.20 (*) −0.07 (n.s.) −0.03 (n.s.) −0.01 (n.s.) −0.38 (***) 

99.9th −0.28 (n.s.) −0.07 (n.s.) −0.02 (n.s.) 0.07 (n.s.) −0.43 (**) 

6h 

95.0th −0.11(n.s.) −0.11 (n.s.) −0.02 (n.s.) −0.07 (n.s.) −0.35 (***) 

99.0th −0.21 (**) −0.10 (n.s.) −0.06 (n.s.) −0.02 (n.s.) −0.41 (***) 

99.9th −0.29 (n.s.) −0.05 (n.s.) 0.01 (n.s.) 0.10 (n.s.) −0.45 (**) 

12h 

95.0th −0.11 (n.s.) −0.13 (n.s.) 0.00 (n.s.) −0.09 (n.s.) −0.36 (***) 

99.0th −0.20 (*) −0.08 (n.s.) −0.02 (n.s.) −0.01 (n.s.) −0.35 (***) 

99.9th −0.29 (n.s.) −0.06 (n.s.) 0.00 (n.s.) 0.10 (n.s.) −0.44 (**) 

24h 

95.0th −0.11 (n.s.) −0.16 (*) −0.05 (n.s.) −0.15 (*) −0.35 (***) 

99.0th −0.17 (*) −0.08 (n.s.) −0.02 (n.s.) −0.02 (n.s.) −0.33 (***) 

99.9th −0.31 (n.s.) −0.07 (n.s.) 0.01 (n.s.) 0.10 (n.s.) −0.17 (n.s.) 
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Supplementary Table 2 Model equations derived from the best-fit structural 

equation model 

Equation  Description* 

Change in effective panicle per unit land area (EP) 

∆𝐸𝑃 = 𝑎1 ∙ ∆𝑁𝑢𝑡 + 𝑏1 ∆𝐸𝑃: relative change in effective panicle during vegetative phase 

(%), ∆𝑁𝑢𝑡 : relative change in N uptake per tiller of rice during 

vegetative phase (%), 𝑎1 = 0.262, 𝑏1 = −1.644. 

∆𝑁𝑢𝑡 = 𝑎2 ∙ ∆𝑁𝑙𝑜𝑠𝑠 + 𝑏2 ∆𝑁𝑢𝑡: relative change in N uptake per tiller during vegetative phase 

(%), ∆𝑁𝑙𝑜𝑠𝑠: change in N loss during vegetative phase induced by 

extreme rainfall (kg N ha−1), 𝑎2 = −1.026  and 𝑏2 =  7.054. 

∆𝑁𝑙𝑜𝑠𝑠 = (𝑁𝑙1 + 𝑁𝑟1) − (𝑁𝑙0 +

                   𝑁𝑟0) for model 

performance assessment 

∆𝑁𝑙𝑜𝑠𝑠: soil N loss (kg N ha−1), 𝑁𝑙: change in N loss via leaching 

(kg N ha−1), 𝑁𝑟: change in N loss via runoff (kg N ha−1), with the 

subscript 1 for extreme rainfall treatment and 0 for control. 

𝑁𝑙 = (0.0463 + 0.0037 ∙
𝑃

𝐶∙𝐿
 ) ∙

          (𝐹 + 𝛾 ∙ 𝐷 − 𝑈) for historical 

simulations and future projections 

P: precipitation during the vegetative phase (mm), C: clay content 

(%), L: layer thickness or rooting depth (m), F: mineral and manure 

fertilizer N (kg N ha−1 yr−1), γ: the decomposition rate of manure 

matter (% yr−1), D: soil N density (kg N ha−1), U: N uptake by crop 

(kg N ha−1), according to ref.14. 

𝑁𝑟 = 𝐸𝐹𝑃 ∙ 𝐶𝑟 + 𝐻𝑤 ∙ (𝐶𝑝 − 𝐶𝑟) ∙

(1 − 𝑒
−

𝐸𝐹𝑃

𝐻𝑟 ) + 2.2 ∙ 𝐶𝑝 ∙ 𝑊 ∙ 𝑇 for 

historical simulations and future 

projections 

EFP: effective precipitation per event during the vegetative phase, 

defined as the difference between precipitation and the sum of 

canopy interception and subsurface water fluxes (mm event−1), 𝐶𝑟: 

mean N concentration of rainfall (mg L−1), 𝐶𝑝 : mean N 

concentration of ponded water (mg L−1), 𝐻𝑤: mean ponded water 

level (mm), 𝐻𝑟: weir outlet height (mm), 𝑊: soil-water exchange 

velocity (cm s−1), 𝑇: rainfall duration (s), according to ref.15. 

Change in filled grains per panicle (FG) 

∆𝐹𝐺 = 𝑐 ∙ 𝐾𝐸𝑟𝑒 + 𝑑 ∙ 𝐾𝐸𝑟𝑖 +

              𝑒 ∙ ∆𝑁𝑢𝑝 + 𝑓  

∆𝐹𝐺 : relative change in filled grain, 𝐾𝐸𝑟𝑒 : time-specific kinetic 

energy during reproductive phase (   J m−2 h−1 ), 𝐾𝐸𝑟𝑖 : time-

specific kinetic energy during ripening phase (J m−2 h−1), ∆𝑁𝑢𝑝: 

relative change in N uptake per panicle due to the change in ∆𝑁𝑢𝑡, 

𝑐 = −0.00424, 𝑑 = −0.00115, 𝑒 = 0.139 , 𝑓 = −3.676. 

∆𝑁𝑢𝑝 = 𝑎3 ∙ ∆𝑁𝑢𝑡 + 𝑏3 This correlation is confirmed by previous work16, 𝑎3 = 0.723 , 

𝑏3 = 1.592. 

𝐾𝐸 = 1288.17 ∙ 𝜇−1.34 ∙

            𝐼𝑛𝑡(1+1.34∙𝛽)  

𝐼𝑛𝑡: actual rainfall intensity ( 𝑚𝑚 ℎ−1), following Salles et al.17. 

Constants that are linked to the type of microphysical process 

dominant in the raindrop growth. Since stratiform rain dominates in 

summer East Asia18, we use constants corresponding to stratiform 

rain (𝜇 = 40 and 𝛽 = 0.21) in this study.  

𝐼𝑛𝑡 =

{
0.736 ∙ 𝐷4.525 , 𝑓𝑜𝑟 𝐷 < 2.531𝑚𝑚

101.019∙𝐷−0.891, 𝑓𝑜𝑟 𝐷 ≥ 2.531 𝑚𝑚
  

D: diameter of raindrop (mm), its correlation with Int is according 

to Nanko et al.19. 
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Supplementary Table 3 Definition of climate extremes translated from the China 

meteorological administration 

Event Definitions
*
 References in Chinese 

Extreme 

heat 

A period of abnormally hot weather, if the daily 

maximum temperature exceeds 35C. 

http://zwgk.cma.gov.cn

/zfxxgk/gknr/flfgbz/bz/

202107/t20210716_35

40198.html 

Extreme 

cold 

A period of abnormally cold weather, if daily mean 

temperature lies below that over the same period in 

history by one standard deviation. 

http://zwgk.cma.gov.cn

/zfxxgk/gknr/flfgbz/bz/

202102/t20210210_27

20477.html 

Extreme 

rainfall 

Intense rainfall with short duration, if daily precipitation 

exceeds 50 mm for rice planting regions in China where 

mean annual precipitation >400 mm. 

http://zwgk.cma.gov.cn

/zfxxgk/gknr/flfgbz/bz/

202102/t20210210_27

20509.html 

Drought A period of unusually low precipitation that produces a 

shortage of water for plants. It can be defined by 

different indices, such as standard precipitation index, 

standardized precipitation evapotranspiration index, and 

Palmer Drought Severity Index. 

http://zwgk.cma.gov.cn

/zfxxgk/gknr/flfgbz/bz/

202102/t20210210_27

19989.html 

The other 

events 

It included hail, wind, typhoon and tropical cyclone.  

A hail storm is a type of storm that is characterized by 

hail as the dominant part of its precipitation. The size of 

the hailstones can vary between pea size (6 mm) and 

softball size (112 mm) and therefore cause considerable 

damage.  

Wind is difference in air pressure resulting in the 

horizontal motion of air. The greater the difference in 

pressure, the stronger the wind. Wind moves from high 

pressure toward low pressure. 

A tropical storm originates over tropical or subtropical 

waters. It is characterized by a warm-core, non-frontal 

synoptic-scale cyclone with a low-pressure center, spiral 

rain bands and strong winds. Depending on their 

location, tropical cyclones are referred to as hurricanes 

(Atlantic, Northeast Pacific), typhoons (Northwest 

Pacific), or cyclones (South Pacific and Indian Ocean). 

https://www.docin.com

/p-2440560243.html 

http://zwgk.cma.gov.cn

/zfxxgk/gknr/flfgbz/bz/

202112/t20211221_43

17166.html 

http://zwgk.cma.gov.cn

/zfxxgk/gknr/flfgbz/bz/

202102/t20210210_27

20508.html 

* These definitions are similar with the Emergency Events Database (EM-DAT) at 

https://www.emdat.be/Glossary.  

https://www.emdat.be/Glossary
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Supplementary Table 4 Physicochemical properties of topsoil in the experimental 

site 

Soil depth  0-20 cm 20-40 cm 40-60 cm 60-80 cm 80-100 cm 

SOM 20.4 11.6 7.4 6.4 6.3 

STN 1.2 0.8 0.6 0.5 0.6 

STP 0.8 0.8 0.7 0.8 0.7 

NH4-N 2.4 1.9 1.7 1.8 1.5 

NO3-N 8.6 8.2 6.6 5.4 4.1 

Olsen-P 29.4 22.2 14.4 31.8 15.0 

Sand 0.4 0.6 0.4 0.7 0.2 

Silt 79.8 82.2 81.8 80.3 76.5 

Clay 19.8 17.2 17.8 19 23.3 

The table depicts soil organic matter (SOM), soil total nitrogen (STN) and soil total phosphorus (STP) 

in g kg−1, soil ammonium nitrogen (NH4-N), soil nitrate nitrogen (NO3-N), and soil available phosphorus 

(Olsen-P) in mg kg−1, as well as soil texture including sand, silt and clay content in %. 



Page 11 

 

Supplementary Table 5 Model input data for historical simulations and future 

projections 

Input data Temporal 

resolution 

Spatial resolution Data source Ref. 

Historical simulations 

Climate forcing* Daily 0.5° CRU-NCEP v8 20 

Atmospheric CO2 

concentration 

Annual -- Ed Dlugokencky and Pieter 

Tans, NOAA/GML 

21 

Extreme rainfall intensity 

and event amount 

Half hourly 0.1° GPM (IMERG), version 6.0 22 

Transplanting date Fixed value 0.1° (interpolated from 

site-level observations) 

National agrometeorological 

observation network 

23 

N loss via runoff Event-based 0.1° Calculated based on Table S4 15 

N loss via leaching Seasonal 0.1° Calculated based on Table S4 14 

N application rate Seasonal 1km  24 

Rice sowing area Fixed value 1km  24 

Future projections  

Climate forcing* Daily 0.5° IPSL earth system model 25 

Atmospheric CO2 

concentration (RCP4.5, 

RCP8.5) 

Annual --  26 

Extreme rainfall intensity 

and event amount 

Half hourly 0.5° IPSL earth system model 25 

Transplanting date Fixed value 0.1° (interpolated from 

site-level observations) 

National agrometeorological 

observation network (consistent 

with historical simulation) 

23 

N loss via runoff Event-based 0.1° Calculated based on Table S4 15 

N loss via leaching Seasonal 0.1° Calculated based on Table S4 14 

N application rate Seasonal 1km Same as historical simulations 24 

Rice sowing area Fixed value 1km Same as historical simulations 24 

* It includes daily maximum temperature, daily minimum temperature, precipitation rate, surface wind, near-surface air 

temperature, surface air pressure, air specific humidity, surface downwelling, shortwave radiation, surface downwelling, 

and longwave radiation. 
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Supplementary Fig. 1 Field observation network of rice yield, phenology, and extreme 

climate events during 1999-2012. Note that panel b shows the distribution of the 707 control-

treatment pairs filtered by a window searching strategy. The map was generated in MATLAB 

R2020a (MATLAB and Statistics Toolbox Release R2020a, The MathWorks). The base map of 

the country boundaries was from the Global Administrative Areas dataset (https://gadm.org). 
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Supplementary Fig. 2 Comparison in the effects of different extreme events with similar 

percentiles. a. Histogram with kernel density estimation (hereinafter referred to as histogram) of 

extreme rainfall based on data of the maximum hourly precipitation recorded in given days for 

different sites and treatment years, b. Histogram of extreme heat based on data of maximum 

hourly air temperature recorded in given days for different sites and treatment years, c. Histogram 

of drought based on data of the minimum standardized precipitation evapotranspiration index27 

recorded in given days for different sites and treatment years, d. Histogram of extreme cold based 

on data of the minimum hourly air temperature recorded in given days for different sites and 

treatment years, e. Comparison of effects of extreme events with the similar percentiles from 95th 

to 99th for extreme heat and rainfall and from 1st to 5th for extreme cold and drought, f. 

Comparison of effects of extreme events with the similar percentiles from 99th to 99.8th for 

extreme heat and rainfall and from 0.2nd to 1st for extreme cold and drought. For panels e and f, 

data are presented as mean ± standard error. Numbers on the column refer to the sample size. 

Statistical significance of the differences in mean ∆Y between extreme rainfall and other events 

are based on two-sided bootstrap t-test. For each of the 707 control-treatment pairs, we calculated 

the percentile of climate extremes recorded in year of the treatment relative to the base period 

1981–2012. The data used was from the site observations run by the China Meteorological 

Administration (CMA). Both median and mode values were estimated. 
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Supplementary Fig. 3 Comparison of Y in response to extreme climate events of this study 

and three previous methods. Columns are shown as mean and one standard error that were 

derived from this study and the other three methods: superposed epoch analysis1, time series 

analysis3, and a panel regression model10. Data are presented as mean ± standard error. Numbers 

on the column refer to the sample size. The significance between this study and the mean of other 

methods were tested using two-sided Paired Samples Wilcoxon Signed Rank Test with α=0.05. 
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Supplementary Fig. 4 Frequency of individual yield responses to climate extremes. a. ΔY 

due to extreme rainfall, b. ΔY due to extreme heat, c. ΔY due to drought, d. ΔY due to extreme 

cold, e. ΔY due to the other events (typhoon and tropical cyclones). A preponderance of 

moderately negative values (falling towards the left areas of the dashed lines) underlies the 

negative mean climate extreme response signals, with a limited influence of a few outliers (those 

at the right areas of the dashed lines). 
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Supplementary Fig. 5 Correlations between ∆Y and extreme rainfall parameters. a. 

Univariate Pearson’s correlation coefficients for the effects of seven extreme rainfall parameters 

on ∆Y (n=154): RX1h refers to the maximum hourly precipitation exceeding the threshold (cm 

h−1); Rg1event refers to event amount that is the precipitation amount averaged for extreme 

rainfall events (cm per event); RX1hTOT refers to total intensity that is the sum of hourly 

precipitation when exceeding the threshold (cm); R99p refers to frequency that is the fraction of 

the hours when hourly precipitation exceeds the threshold divided by the length of rice growing 

season in hours (%); R99pPROP refers to proportion that is the sum of hourly precipitation 

exceeding the threshold divided by the growing-season total precipitation (%). Numbers and 

colors indicate for correlation coefficients, with *p<0.05; **p<0.01; ***p<0.001. b. The 

relationship between ∆Y and repeated extreme rainfall defined as hours when hourly 

precipitation exceeds the threshold during rice growing season. The Kruskal-Wallis Rank Sum 

Test and Dunn’s test were used for testing significance among hours of repeated extreme rainfall, 

since it’s neither conform to a normal distribution (Shapiro-Wilk test, p<0.001) nor meet the 

homogeneity of variances (Bartlett's test, p=0.001). Blue shadows in panel b covered 

frequency4, with the same letters indicating for not significant differences in comparison with 

other frequencies, α=0.05. Threshold of extreme hourly rainfall was defined as the 99th percentile. 

Rainfall event was defined with the break between rainfall no more than 6 hours. 
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Supplementary Fig. 6 Experimental evidence of the extreme rainfall-rice yield 

relationship. a. ΔY v.s. extreme rainfall intensity. b. ΔY v.s. extreme rainfall event 

amount; for panels a and b, no significant differences were found between two 

experiment years, with n = 16 for each year. The solid line is the best‐fit line, with 

*p<0.05; **p<0.01; ***p<0.001. c. Attribution of relative changes in effective panicle 

per unit land area (ΔEP), filled grains per panicle (ΔFG), and grain weight (ΔGW) to 

ΔY, following the Kaya identity approach28, that is Y = EP + FG + GW. Data are 

presented as mean ± standard error, with n = 8 for each intensity.  
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Supplementary Fig. 7 Field setup of main experiment conducted from 2018 to 2019. a. Field location and the artificial rainfall simulation system. b. 

Climate, fertilization, and irrigation conditions. c. Schematic diagram of field layouts and rainfall manipulations. Rainfall manipulations were conducted 

in 3rd July - 6th July in vegetative phase, 6th August - 9th August in reproductive phase, and 26th August - 29th August in ripening phase of 2018, and in 27th 

June - 30th June in vegetative phase, 2nd August - 5th August in reproductive phase, and 28th August -31st August in ripening phase of 2019. Filled colors 

of panel c correspond to the manipulations conducted in different growth phases. Fertilizers of 172 kg N ha−1, 61 kg P ha−1, and 49 kg K ha−1
 were applied 

over three events. The first one was 72 kg ha−1 N, 53 kg ha−1 P and 42 kg ha−1 K applied first day before rice transplanting, followed by 78.7 kg ha−1 N 

applied two weeks after transplantation and 20.9 kg ha−1 N, 8 kg ha−1 P and 7 kg ha−1 K applied during the jointing stage. 
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Supplementary Fig. 8 Field setup of the supplementary experiment conducted in 

2021. a. Field layout of two supplementary experiments, with n = 3. b to c. Artificial 

rainfall simulation system with transparent rain shelter during reproductive phase, with 

the views from the right and left corners, respectively.  
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Supplementary Fig. 9 Differences in floret, grains, and grain distribution revealed 

by the first supplementary experiment. Panels a to d indicate that florets adhered to 

the surface of spikelet due to rainfall, while keeping normal for sheltered treatments 

and the controls. Panels e to h indicate that rainfall induced less filled grains (FG) but 

more empty or shrunken grains (EG or SG) than the sheltered treatments and the 

controls, based on 6 panicles randomly selected. Panels i to l indicate that empty or 

shrunken grains were found mainly in the upper part of the panicles for the exposed 

treatments, while in general distributing evenly along the panicles for the sheltered 

treatments and the controls, based on 3 typical panicles. 
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Supplementary Fig. 10 Experimental relationships between soil N loss and 

changes in effective panicle. a. Soil N loss v.s. Change in N uptake per tiller, b. Change 

in N uptake per tiller v.s. Change in effective panicle. Data are presented as mean ± 

standard error, with n = 4. In the legend, numbers before the slash indicate extreme 

rainfall intensity (mm h−1), and numbers after indicate event amount (mm event−1). The 

dash line is the best‐fit line, with ***p<0.001. 
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Supplementary Fig. 11 Structural equation modeling for hypothesis tests. Aveg, 

extreme rainfall event amount in vegetative phase; Irep and Irip, extreme rainfall intensity 

in reproductive and ripening phases, respectively; ΔY, ΔEP, and ΔFG, relative changes 

in rice yield, effective panicle, and filled grains, respectively; Nloss, Nut, and Nup, relative 

changes in soil N loss, per-tiller N uptake during vegetative phase and per-panicle N 

uptake during reproductive phase, respectively; Ploss, Put, Kut, relative changes in soil P 

loss, per-tiller P uptake, and per-tiller K uptake during vegetative phase, respectively; 

Photorep, photosynthetic rate in reproductive phase after rainfall maniputation; LAIveg, 

leaf area index in vegetative phase. Solid black (red) arrows (with standardized path 

coefficients and standard errors in the brackets) indicate significant positive (negative) 

effects (P < 0.05), while dotted lines for insignificant effects. Data are averages for two 

replicates with n = 32.
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Supplementary Fig. 12 Performance of the ORCHIDEE-Crop model with the 

extreme rainfall processes for simulating rice yields. a-b Model calibration without 

and with extreme rainfall processes. The observed yield is obtained from the main 

experiment in 2018 and 2019. Dot size refers to rainfall levels, while colors for different 

experiment years. Data in panel b is shown as mean ± standard deviation. c. Model 

validation (n=95). We selected the observations with negative statistically-derived ∆Y 

induced by extreme rainfall from the nationwide agrometeorological stations in 1999-

2012, and local meteorology was used to force the model at each site. R2 refers to 

coefficient of determination. 
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Supplementary Fig. 13 Regional assessments of rainfall-induced rice yield 

reductions in 2001-2016 based on the model with the extreme rainfall processes. 

a-c. Effects of rainfall-induced physical disturbance and N losses; d-f. Effects of 

rainfall-induced physical disturbance; g-i. Effects of rainfall-induced N losses. j-l. 

Dominant pathways of extreme rainfall impacts on rice yield. Left column is for single 

rice, middle column early rice, and right column late rice. The number in each panel 

indicates national mean relative change in rice yield weighted by sowing area and its 

standard error for interannual variability. The map was generated in MATLAB R2020a 

(MATLAB and Statistics Toolbox Release R2020a, The MathWorks). The base map 

of the country boundaries was from the Global Administrative Areas dataset 

(https://gadm.org). 
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Supplementary Fig. 14 Relative change in extreme rainfall in 2085-2100 compared 

to that in 2001-2016 under RCP 4.5 and RCP 8.5. The relative change is calculated 

as the difference between IPSL-projected and IPSL-simulated extreme rainfall indices, 

including extreme rainfall event amount in vegetative phase (Amountveg), extreme 

rainfall intensities in reproductive phase (Intensityrep) and in ripening phase 

(Intensityrip).  
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Supplementary Fig. 15 Patterns of extreme rainfall across the Asian rice fields. a. 

Cumulative extreme rainfall event amounts during vegetative phase averaged over the 

period 2001-2016, b. Extreme rainfall intensity during reproductive phase averaged 

over the period 2001-2016. The definitions of extreme rainfall and its event can be 

found in the Methods. Data sources of hourly precipitation, rice phenology, rice 

production are the GPM IMERGv622, Jägermeyr et al.29, and the FAOSTAT30, 

respectively. The map was generated in MATLAB R2020a (MATLAB and Statistics 

Toolbox Release R2020a, The MathWorks). The base map of the country boundaries 

was from the Global Administrative Areas dataset (https://gadm.org). 
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Supplementary Fig. 16 Probability distributions of extreme rainfall from three 

data sets during 2001-2016. a. Extreme rainfall event amount during rice growing 

season; b. Extreme rainfall intensity during rice growing season. Three data sets include 

the site observation from the China Meteorological Administration (CMA), the China 

Meteorological Forcing Dataset (CMFD, http://data.tpdc.ac.cn/en/data/8028b944-

daaa-4511-8769-965612652c49/), and global precipitation measurement (GPM) 

IMERGv6, ref22. 

http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
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Supplementary Fig. 17 N application rates and rainfed ratios across the Asian rice 

fields. a. N application rate24, b. rainfed ratio30. The map was generated in MATLAB 

R2020a (MATLAB and Statistics Toolbox Release R2020a, The MathWorks). The 

base map of the country boundaries was from the Global Administrative Areas dataset 

(https://gadm.org). 

 

  



Page 29 

 

 
Supplementary Fig. 18 Examples to identify the control-treatment pairs using a 

window searching strategy. a. Case where one or more extreme climate type in the 

year of treatment and several corresponding controls. For extreme rainfall event, there 

are two control-treatment pairs: 1) the year of treatment is 2005, and the years of control 

include 2004 and 2008-2010; 2) the year of treatment is 2007, and the year of control 

is 2006. For drought event, there are also two control-treatment pairs: 1) the year of 

treatment is 2006, and the years of control include 2004 and 2008-2010; 2) the year of 

treatment is 2007, and the year of control is 2005. b. Case in which no control that can 

be detected in this window and it was not possible to create a control-treatment pair, 

and thus not involved in the ∆Y quantification. Examples are selected from specific 

sites labeled with site and rice type on the left top of each panel. Points in the top of 

each panel represent for different extreme events. The blue line in the bottom panels 

represent the detrended yields, while red lines show the fitted yields and black dots 

represent the actual rice yields. Black dotted boxes show the 7-year windows, within 

which all available control-treatment pairs can be identified.  
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Supplementary Fig. 19 Comparison of yield observations and estimation from 

yield components. a. Yield observations from adjacent plots owning 6 m2 and 150 m2 

in 2018, 2019 and 2021 under control, with n = 2 for 2018 and 2019 and n = 6 for 2021 

of left columns of each pair, and n = 3 for the right columns of each pair. Data are 

presented as mean ± standard error. b. Observed and estimated yield (n = 16 for each 

year). c. Observed and estimated change in rice yield (ΔY). Column in panel a is 

shown as mean ± standard deviation. The significance between adjacent plots owning 

6 m2 and 150 m2 were tested using two-sided Paired Samples Wilcoxon Signed Rank 

Test. The solid line is the best‐fit line and shaded area is the 95% confidence interval 

(estimated from 1,000-time bootstrap analysis), with ***p<0.001. 
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Supplementary Fig. 20 Performance of the panel regression model to exclude the 

effects from inter-annual variations in climate conditions. The panel regression 

model was built on all observations where no extreme climate events occurred, with n 

= 1,596.  
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Supplementary Fig. 21 Comparison of Y in response to extreme rainfall using 

three window widths. Data are presented as mean ± standard error. The significance 

among the three window widths were tested using two-sided Paired Samples Wilcoxon 

Signed Rank Test with α=0.05. 
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Supplementary Fig. 22 Nationwide observational stations within the rice 

production areas in China during 1999-2012. a. Spatial patterns of the stations used 

for all control-treatment pairs and all stations across China’s rice production areas. b. 

Distribution of mean temperature and total rainfall during rice growing season and their 

kernel probability density curves. Each point represents for one station of a year. c. 

Distribution of the extreme rainfall parameters of event amount (Rg1event) and the 

maximum hourly intensity (RX1h) during rice growing season and their kernel 

probability density curves. d. Kernel probability density curves of total rainfall during 

rice growing season from study stations in 1999-2012 with that at all stations in 1981-

2012. KL and JS represent the Kullback-Leibler divergence and Jensen-Shannon 

divergence, respectively. The map was generated in MATLAB R2020a (MATLAB and 

Statistics Toolbox Release R2020a, The MathWorks). The base map of the country 

boundaries was from the Global Administrative Areas dataset (https://gadm.org). 
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