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ABSTRACT

Dynamical stability of the synchronous regime remains a challenging problem for secure functioning of power grids. Based on the symmetric
circular model [Hellmann et al., Nat. Commun. 11, 592 (2020)], we demonstrate that the grid stability can be destroyed by elementary viola-
tions (motifs) of the network architecture, such as cutting a connection between any two nodes or removing a generator or a consumer. We
describe the mechanism for the cascading failure in each of the damaging case and show that the desynchronization starts with the frequency
deviation of the neighboring grid elements followed by the cascading splitting of the others, distant elements, and ending eventually in the
bi-modal or a partially desynchronized state. Our findings reveal that symmetric topology underlines stability of the power grids, while local
damaging can cause a fatal blackout.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0131931

A particular complexity of the power grid stability is caused by
the fact that the desired synchronous state is only locally stable,
not globally. In the system phase state, it repeatedly co-exists with
many other desynchronized states. In such a case, the desired
grid synchrony can be secured only against small perturbations
but not against large impacts, even applied to a single grid ele-
ment or to a single connection. If so, the system’s dynamics can
switch to another, desynchronized attractor as soon as a large per-
turbation is applied. The essential difficulties of the power grid
studies are also induced by intricate, highly asymmetric archi-
tectures of the realistic grids, often caused by geographical and
historical reasons. What is the role of asymmetry for the sta-
bility? Which grids with symmetric or asymmetric topology are
more reliable? We attack this problem by examining a symmetric
circular power grid model and compare its stability with the sit-
uation when the symmetry is broken by elementary violations of
the network structure.

I. INTRODUCTION

Despite many studies, both theoretical and engineering,1–16 sta-
bility of power grids remains a challenging problem. The solution
to this riddle is noteworthy as it concerns the safety of our everyday
life. As was found in Ref. 11, the multistability grid problem is a con-
sequence of the presence in the system phase space of the so-called
solitary states,17–24 in which one or a few network oscillators (genera-
tors or consumers) deviate from the collective synchrony and start to
rotate with a different frequency. The problem becomes even more
puzzled due to the fact that stability regions of the solitary states
are practically coinciding (at the lower level of connectivity) with
the regime for the operating synchronous state. Such unavoidable
grid multistability can perhaps explain the never-ending chains of
the blackouts happening in many countries of the world, even in
these with the highest level of grid security. The U.S. Department of
Energy (DOE) estimates that power outages cost businesses annually
$150 billion.25,26
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A well known example is the European blackout, which orig-
inated in Northern Germany on 4 November 2006 (see Refs. 27
and 28). The blackout was caused by the planned disconnection of
a high-voltage line, which was switched off to allow a ship to pass
underneath the overhead cables. After the implementation of the
procedure, the lines were overloaded, and as a consequence, one
of the zones was out of power. Millions of customers from France,
Germany, Belgium, Netherlands, Italy, and Spain were deprived
of electricity that evening. It is interesting to note that the same
disconnection was performed before more than ten times.

A question arises whether the multistability problem is indeed
unavoidable,29–31 and, more generally, how to design future “smart
grids”32–34 with minimum risk and the maximum protection against
blackouts.

Nonlinear dynamics of complex networks, including stability
of the synchronous state, is predominantly defined by the network
architecture.35–40 Due to the historical and geographical reasons,
most of the existing power grids have a high non-regular topo-
logical structure with an individual, visually “random” coupling
structure far from symmetric. This fact makes the study of the power
grid dynamics more involved. How is then the stability affected by
the level of the asymmetry? Which grids are more reliable, sym-
metric, or asymmetric? In Ref. 41, this problem was analyzed for
inhomogeneous grids with different mass generators, and it was

found that this kind of asymmetry can improve the stability of
the grid.

II. SYMMETRIC CIRCULAR GRID MODEL

In this Letter, we analyze the grid asymmetry problem from
a different perspective based on the symmetric model proposed in
Ref. 11. In the model, all generators and consumers are considered
identical and coupled alternately on a ring [Fig. 1(a)]. Note that
despite maximum symmetry, this model shows an adequate cor-
respondence with the realistic Scandinavian power grid.11 Our task
here is to analyze the impact of asymmetry for the model by cutting
a connection between any of two chosen elements or removing one
of them, generator or consumer. We explore how does the imposed
asymmetry affects the grid stability. Can it improve or disprove it?

In this study, we have considered five elementary motifs of the
asymmetric grid damaging and found that in four of them, the sta-
bility can be destroyed, and only in one of them, it is not affected.
The asymmetry impairs the grid stability causing, under certain
conditions, cascading desynchronization as illustrated in Figs. 1(b)
and 1(c). We conclude that at the contrary to the mass genera-
tor inhomogeneity,41 topological asymmetry underlines instability
of power grids.

FIG. 1. Grid desynchronization in model (1) obtained by removing a generator. (a) Schematic representation of the circular grid model closed in a ring (red squares denote
generators, whereas blue circles denote consumers). The damage is illustrated in the zoom to the right, where the numbers next to consumers and generators indicate
neighboring deviation from the damage point: (−1, −2, etc.) to the left and (+1, +2, etc.) to the right. Frequency timeplots of cascading grid failure resulting eventually
in (b) the complete desynchronization (parameters: α = 0.21, µ = 0.208) or (c) in partial desynchronization (parameters: α = 0.3, µ = 0.28). Frequencies of the gener-
ators are shown in warm colors from red to yellowish-green, while the frequencies of consumers are shown by cold colors from dark blue to turquoise. Other parameters
m = 1.0, ε = 0.1,ω1,2 = ±1; network size 2N = 60 (30 generators and 30 consumers).
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The circular grid model is written in the general form

mθ̈i + εθ̇i = ωi +
µ

2P

i+P
∑

j=i−P,j6=i

sin(θj − θi + α), (1)

where θi(t) describes the phase of the ith oscillator, i = 1, . . . , 2N.
The coefficients m, ε, µ, and α denote mass, damping, coupling
strength, and phase lag, respectively. The oscillators’ natural fre-
quencies ωi/εm are positive for generators and negative for con-
sumers, and we put, therefore, ωi = (−1)iω. In our study, we fix
m = 1.0, ε = 0.1, ω = 0.1 and explore stability dynamics of the
synchronous state of (1) when varying µ ≥ 0 and 0 ≤ α ≤ π/2 as
control parameters. The coupling radius P will be fixed to 2, which
corresponds to the node degree 4. The number of all oscillators
in the grid ring will be 2N = 60, including equal number N = 30
of generators and consumers placed alternately: consumers at odd
places θi=2k−1 and generators at even θi=2k, k = 1, . . . , N [see Fig. 1(a)
for a schematic representation of the grid].

III. IMPOSING THE GRID ASYMMETRY

The results of the direct numerical simulations of the model (1)
in the two-parameter plane of the phase lag α and coupling strength
µ are summarized in Fig. 2. This figure exhibits and allows one
to compare between stability regions of the synchronous grid state
before and after the elementary motif damages. The regions are
bounded from below by the bifurcation curves denoted as Sj,
j = 0, . . . , 5. This figure reveals that the symmetric model (i.e., this
not damaged) has the widest stability region, which is bounded from
below by the curve S0 (the lowest curve in the figure). Only one

FIG. 2. Regions of stability of a synchronous state for different node and
edge removal (cases S1–S5) and for system without damage S0. Coordinates
(α,µ) of chosen parameter points: A = (0.21, 0.208), B = (0.3, 0.28), and
C = (0.21, 0.28).

of the other curves, S1, coincides with S0, and four remaining S2−5

lie above. The curves bound stability regions from below for the
following basic asymmetric motifs:

(1) S1: cutting link between two generators;
(2) S2: cutting link between two consumers;
(3) S3: cutting link between a generator and a consumer;
(4) S4: removing a consumer; and
(5) S5: removing a generator.

We conclude, therefore, that the asymmetric grid modifica-
tions can destroy the grid stability. This occur as soon as the grid
operating point lies in the gap between the curves S0 and S2−5. The
only conditionally secure modification is cutting a link between two
generators (the curve S1 coincides with S0). Two examples of the
critical desynchronization transitions, when removing a generator,
are illustrated in Figs. 1(b) and 1(c). The synchrony is violated by a
cascading grid failure, leading eventually to complete [Fig. 1(b)] or
partial [Fig. 1(c)] desynchronization.

The bifurcation curve S0 for the symmetric circular model (1)
can be obtained analytically. Indeed, in the synchronous regime,
all generators obtain equal synchronized phase θg, as well as all
consumers—phase θc. Then, the respective system in the difference
η = θg − θc takes the form

mη̈ + εη̇ = 2ω +
µ

2
sin(−η + α) −

µ

2
sin(η + α). (2)

In the synchronized state, all nodes have the same constant fre-
quency; therefore, η̈ = η̇ = 0. Then, the solution of (2) exists if
and only if µ >

2ω
cos α

. The equality in this formula just describes
the curve S0, above which the synchronous state is (locally) stable,
herewith all network oscillators, generators, and consumers, rotate

with constant frequency ω = sin(α)

ε

(√

µ2

4
− ω2

cos (α)2
+ 3

4
µ

)

and with

a constant phase difference η = arcsin
(

2ω
µ cos α

)

.

For the asymmetric motif modifications of the model (1), ana-
lytical formulas for the bifurcation curve S1–S5 cannot be obtained
due to the high-dimensionality of the nonlinear dynamics in the
cases. Our accurate numerical simulations (with using two differ-
ent codes) allow us nevertheless to make the following conclusions
about the changes in the system behavior caused by the asymmetry,
described in Sec. IV.

IV. CASCADING FAILURE

Typical scenarios for the desynchronization transition in each
of the four critical damaging motif S2–S5 (listed above) are illustrated
in Fig. 3, where we have fixed the control parameters to the point
A = (α, µ) = (0.21, 0.208) in the gap above S0 and below S2−5. In
each case, first, the symmetric model (1) has been simulated, start-
ing from random initial conditions, up to time moment tc = 25, and
then the damage has been applied. As A lies above S0, the solution
behavior synchronizes (quite fast) at the beginning time interval to
equal phases θg and θc for generators and consumers, respectively,
all rotating with equal frequency ω.

Figures 3(a)–3(d) reveal that each of the four elementary grid
damages destroy the synchronization via cascading splitting of the
oscillators, bringing eventually the network solution to a bi-modal
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FIG. 3. Cascading failure in the model (1) as a result of elementary damaging of the grid: (a) cutting consumer–consumer connection, (b) cutting generator–consumer
connection, (c) removing consumer, (d) removing generator. Left column—frequency timeplots, right column—phase difference timeplot (difference between the actual phase
in the simulations and the theoretical phase if the system would be still left synchronized). Parameter (α,µ) ≡ A. Point A is shown in Fig. 2. Other parameters as in Fig. 1.
Multimedia views: https://doi.org/10.1063/5.0131931.1; https://doi.org/10.1063/5.0131931.2; https://doi.org/10.1063/5.0131931.3; https://doi.org/10.1063/5.0131931.4
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state with two different frequencies ωg and ωc for all generators and
all consumers, respectively. The transition starts with a sharp voltage
picking of the nearest-neighboring oscillators, i.e., linked directly to
the removed connection or node, followed by the secondary desyn-
chronizations of the distant nodes, pair by pair. Let us focus on the
transitional behavior in each case by analyzing frequency and phase
timeplots shown in the left and in the right panels, respectively.

Figure 3(a) (Multimedia view) corresponds to cutting the cou-
pling link between two consumers (S2 case). The first elements to
desynchronize are two disconnected consumers (denoted by ±1
in the figure) and nearly simultaneously with them—the genera-
tor located opposite to the cut link (denoted by 0 in the inset).
After some time, the next distant consumers ±2 and generators
±1 desynchronize in turn. This process continues successively for
other nodes until the full desynchronization of all oscillators. Fre-
quency of the customers decreases monotonously: first, very slowly,
then faster, approaching eventually ωc. To quantify the change of
pace of escape, we have calculated escape acceleration for consumer
±1: average acceleration in first 25 time units after damage is equal
to −0.0034, then in the next 10 time units (before first oscillations
occurs) is equal to −0.048, i.e., around 14 times larger in the mod-
ule. Interestingly, the frequency of each desynchronized generator
first decreases (escape acceleration in the first 23 time units for gen-
erator ±1 is equal to −0.0015) and a bit after starts to increase
(escape acceleration is equal to 0.0117 in the next 10 time units)
reaching eventually the ωg value. As a result, the described cascading
frequency distribution in the grid becomes bi-modal.

Similar behavior is observed for respective phase differences,
Fig. 3(a) (right panel). Phase differences are here understood as the
difference between the actual phase in simulations and the theoret-
ical phase if the system will still be synchronized. Looking at the
right panel, however, no sharp picking can be seen. All phase dif-
ferences grow gradually in a power law with power > 1. Another
peculiarity of the desynchronization is that after the deviating, the
first escaping consumers ±1 wait for the second pair ±2 and further
they rotate together. In the case of generators, the scenario is anal-
ogous but first 0 and ±1 waits for ±2. After some time, the second
group is separating, in which each element makes the same number
of phase flips. Eventually, the phase difference grows, and all oscil-
lators obtain approximately the same phase, with multiples of the
2π difference between the groups. In the end, all oscillators group
by fours in the group (regarding the number of full flip rotations)
except the first and the last groups with five and only one.

Note that when removing the link between two consumers
[S2 case, Fig. 3(a)], the grid is separated into two parts that are a
mirror reflection—that is the reason of complete overlapping of the
± curves. The symmetry is broken in the next S3 case (Fig. 3), where
the link between the consumer and generator is cut. Looking at the
frequency timeplot (left panel), one can see that the first escape is
very rapid and it concerns both the generator and consumer with a
broken connection, i.e., the elements are denoted as 0. Soon after,
cascading splitting appears, but this time (due to topological asym-
metry), graphs for consumer to the left and to the right are not
coinciding; the same is for generators. Nevertheless, the closer node
is to the damage point, the earlier the desynchronization occurs.
Finally, as in the previous case, the system reaches the bi-modal
desynchronized state.

The phase difference presented in Fig. 3(b) (Multimedia view)
shows that also in this case, we observe phase grouping by four in
the group (except five in the first and last groups), but only for gen-
erators. For consumers, the groups are not equal and vary from two
to five elements in the group. As we assume, such grouping of con-
sumers can be caused by not equal phases, which create a smooth
wave profile, while for generators, the phases are approximately
identical.

Figure 3(c) (Multimedia view) illustrates the cascading desyn-
chronization caused by removing a consumer (S4 case). The topol-
ogy of the damage is symmetric; so, as expected, the frequencies
of the escaping elements are also symmetrically grouped (in the
± denoting sense). Generators ±1 and consumers ±1 are the first
to desynchronize, but the generators escape earlier than the con-
sumers. The next groups escape in the similar way, and the phases
are grouped by four (similar to the S2 case), whereas the last group of
generators consists of six elements and the last group of consumers
of five.

Desynchronization transition in the last damaging case (S5:
removing a generator) is illustrated in Fig. 3(d) (Multimedia
view). Here, the frequency cascading is similar to the case S2

[Fig. 3(a)]: first, both generator’s and consumer’s frequencies
decrease approaching eventually the bi-modal distribution. Again,
the phases group by fours, and only the first and last groups break
up from the rule, containing two, four, six, or seven elements.

In all damaging motifs demonstrated in Fig. 3, the escaping
oscillators’ behavior mostly obeys the rule of “grouping-by-four”
(regarding the number of full flip rotations in the desynchroniza-
tion procedure). Due to the fact that N = 30 is not a multiple of 4,
the first and last groups have different numbers of elements, but
the inner grouping number is always four for the S2, S4, and S5

motifs. Interestingly, this rule does not work for consumers in the
S3 motif, when the phases create a rotating wave. In order to explain
the phenomenon of grouping in fours, we have performed numer-
ous simulations with grids with different node degrees. It seems that
any rule for grouping is only visible for “strongly” symmetrical cou-
pling, i.e., for example, when each consumer is connected to four
other consumers, each generator to four other generators, and each
generator to four consumers. We do not have any explanation for
this kind of “quantization” of the network behavior and leave this
puzzle for future study.

To finalize our consideration, in Fig. 4, we present three pecu-
liar examples of possible different system behavior after the grid
damaging. The first example shown in Fig. 4(a) (Multimedia view)
shows the system behavior for motif S1: cutting the link between
two generators, which does not affect stability of the synchronous
state (bifurcation curve S1 coincides with S0; see Fig. 2). Frequency
timeplot and six phase snapshots for this damage motif are pre-
sented for parameter point A. It can be seen than although the
system behavior returns eventually to the complete synchroniza-
tion (on a slightly lower frequency level), before this, it undergoes
rather large perturbations as a result of the damage: The nearest-
neighboring generators obtain a strong perturbation (losing some
amount of frequency) followed by the milder cascading perturba-
tions of the subsequent couples. Analogous behavior is observed for
the consumers. This example shows that the perturbations arising at
damaging can also represent a way back to the synchrony.

Chaos 33, 011104 (2023); doi: 10.1063/5.0131931 33, 011104-5

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 4. Diversity in the desynchronization transition after grid damaging. (a) Removing generator–generator line ending up in synchronization with slightly different frequency,
(α,µ) ≡ A. (b) Cascading failure to partial synchronization obtained after removing a generator, (α,µ) ≡ B. (c) Solitary state reached after removing generator and adding
perturbations in the moment of damage, (α,µ) ≡ C. Left column—frequency timeplot, right column—frequency snapshots. Points A, B, and C are shown in Fig. 2. Other
parameters as in Fig. 1. Multimedia views: https://doi.org/10.1063/5.0131931.5; https://doi.org/10.1063/5.0131931.6; https://doi.org/10.1063/5.0131931.7

Another example of peculiar behavior in model (1) after the
damaging is presented in Fig. 4(b) (Multimedia view). It is for motif
S5 (removal of a generator) in the parameter point B close to the
bifurcation curve S5. As it can be seen from the figure, after the dam-
age, the solution approaches eventually not the bi-modal but only a
partially synchronized state with three frequencies. The generators
and the consumers close to the damage deviate, one after another,
from the synchronous frequency. The cascading process does not
lead, however, to complete separation into two groups: it stops in

such a way that seven distant generators and six consumers remain
synchronized creating a partially synchronized state.

Our last example in Fig. 4(c) (Multimedia view) shows the
arising of a partially synchronized state for motif S5 (removing a
generator) in point C above the bifurcation curve S5 (see Fig. 2),
i.e., inside the stability region of the synchronous state. This syn-
chronous state, as it has been noted previously, is only locally not
globally stable as there are many other co-existing stable partially
synchronized states. Then, if the perturbations in the grid are not
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small, the damage can bring the system phase point beyond the basin
boundary of the synchronous state and the solution will approach
one of the co-existing partially synchronized states. Figure 4(c)
shows the example where this state contains only two desynchro-
nized oscillators (the closest to the damage), and therefore, it is the
so-called solitary state.11

Each video representing Figs. 3(a)–3(d) (Multimedia views)
and Figs. 4(a)–4(c) (Multimedia views) presents phase evolution for
each grid element after the introduction of the damage.

V. DISCUSSION AND CONCLUSION

In our study, we have analyzed how elementary violations of
the symmetric power grid topology can affect its stability based on
the circular model (1) proposed in Ref. 11. We have found out that
in most cases, the imposition of asymmetry can cause the cascad-
ing desynchronization in the grid, leading eventually to complete
splitting of the generator and consumer frequencies. The generators
and consumers escape, one by one, from the operating synchronous
state until the grid is fully disintegrated. The closer to the damage
point, the earlier node is desynchronized. In most cases, we observe
an interesting phenomenon of “grouping-by-four” for the phase in
the process of the desynchronization. The desynchronized networks
stabilize on the bi-modal (mostly) or partially synchronized (less
common) state.

We have examined five different asymmetric motifs for the grid
damaging and found parameter regions for the grid stability. The
most dangerous damage seems to be the removal of a generator: in
this case, the region shrinks most drastically. Cutting a connection
between two generators, on the other hand, is rather secure trans-
formation. It does not affect the stability region; however, there arise
voltage surges, which can also cause disturbance to the functioning
of the grid.

An interesting open question concerns the asymptotic behavior
of the grid solutions after the desynchronization. Our study demon-
strates a perfect cascade of the successive desynchronizations of the
nodes, one after another, as a wave originated in the damage point
to the periphery. In the majority of the considered cases, the wave
goes to the end causing complete grid uncoupling. The bi-modal
state is created with two different frequencies for generators and
consumers, respectively. We show also that the cascading grid dis-
integration can stop after some number of escapes giving rise to
a partially synchronized state. Moreover, it can happen that only
two neighboring nodes escape, which corresponds to a solitary state.
Nevertheless, we believe that deeper characterization of cascades
using, for example, line flow and overload conditions is needed.

Our results demonstrate that topological symmetry encourages
stability of power grids. Elementary interruptions of the symmet-
ric architecture can destroy the stability causing full or partial grid
disintegration. We believe that this integral property indicates a
common, probably universal phenomenon in the power grids of dif-
ferent typologies, which can have some consequences for designing
new power grids.
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