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The analysis of event time series is in general challenging. Most time series analysis

tools are limited for the analysis of this kind of data. Recurrence analysis, a powerful

concept fromnonlinear time series analysis, provides several opportunities towork

with event data and even for the most challenging task of comparing event time

series with continuous time series. Here, the basic concept is introduced, the

challenges are discussed, and the future perspectives are summarized.

KEYWORDS

event time series, extreme events, recurrence analysis, edit distance, synchronization

1. Introduction

The study of event time series is of general interest in data analysis and modeling,

because of their ubiquitous nature in almost all scientific fields, such as investigating

financial transactions, customer interactions, life-threatening cardiac events, system failures,

or natural phenomena. Event series can be single, discrete events, binary events or events

with different amplitude, e.g., events extracted from data with heavy tail distributions, short-

term extreme events, or anomalies in time series. In neuroscience, event series are also called

“spike trains” [1]. A time series is generally be denoted by a set of ordered pairs {(ti, xi)} of

time ti with ti+1 > ti and corresponding data value xi; and with sampling index i (usually

constant sampling time ti+1−ti = const., i.e., equidistant time axis). An event series, instead,

is considered as a series of event times, defined by the associated specific time or timestamp of

the single events, finally resulting in a set of event time points {ti}. As events could also have

some amplitude, a definition as an event time series as a tuple of time and event strength

{(ti, xi)} is also possible. Because the events usually do not occur at regular intervals, such

event time series are usually irregularly sampled ti+1 − ti 6= const. The alternative is using

a regularly sampled, discretized time axis with binary (or amplitude) values at those points

of time where the event happens (this is similar to categorical data, another class of discrete

data, but not necessarily representing separated single events). However, this approach is

usually limited and not appropriate for many research questions, because the timing of

events often does not fit the sampling points and, even more important, the time series can

be filled withmany zeros. Standard time series analysis tools have their limits when analysing

such data.

Examples of event data are time series of extreme events, which are of specific interest

because of their technical and medical importance, and their potential of serious societal

impacts: Extreme rainfall (flush floods) and river floods are of strong concern because they

are increasing worldwide due to the global warming [2, 3]. Extreme loading conditions

are considered and modeled in material sciences to monitor and predict serious failures,

e.g., on bridges caused by extreme traffic or on airplane structures due to sudden stress

or birdstrikes [4, 5]. Ventricular tachyarrhythmias are life-threatening cardiac arrhythmias,
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usually analyzed by investigating the beat-to-beat intervals of the

heart, expressed by a series of events [described as the R-waves in

an electrocardiogram (ECG)], themselves [6]. Examples of natural,

rare event time series are sequences of landslides. Such landslide

events cause serious damages and can be triggered by specific

weather phenomena, like atmospheric rivers or El Niño/ Southern

Oscillation [7, 8]. They are increasingly affecting urban settlements,

because of the spreading of cities and climate change [9]. Another

example is brain activity which is controlled by the firing of

neurons. For example, the coherence of neuron firings can cause

seizures [10]. The investigation of extreme events in dynamical

systems is an important subject in statistics and statistical physics.

It covers many research questions, from the emergence of extremes

to predicting extreme events [11].

The research questions related to event series are often the

same as for other kind of data, e.g., comparing different time

series, classifying the dynamics of the process behind, identifying

regime changes, or use as the base for simulations and predictions.

The growing availability of data and computational facilities in

almost all scientific disciplines has significantly advanced data

science in general. Several approaches have been introduced that

allow to study different research questions related of event data

[12–14]. Among them are probabilistic methods based on large

deviation and extreme value theory (parametric, semi-parametric

approaches, and multivariate extensions), pattern-based prediction

algorithms and BDE modeling [15–17], as well as modern learning

based approaches for predicting extreme events [18, 19]. Another

class of methods are based on the property of recurrences of states.

In general, recurrence based methods provide versatile approaches

for classifying data, identification of regime transitions, but also

for unveiling interrelationships, synchronization, and causal links

between different dynamical systems [20–23]. Due to its broad

usability, simplicity, and growing number of software allowing

recurrence analysis [24], this method is attracting more and more

interest and becoming increasingly popular [23, 25]. By modifying

the definition of what a recurrence is, it is, in general, possible to

adapt recurrence analysis to be usable for analysing discrete and

event-like data [26–28]. In the following, I describe briefly the

basics of recurrence analysis, its extension to work with event data,

and the related challenges and future perspectives.

2. Recurrence analysis of event time
series

A recurrence plot (RP) is the graphical representation of the

recurrence matrix, which is simply representing all pair-wise time

combinations (i, j) of a data sequence which have similar values or

states Exi:

Ri,j = 2
(

ε − d( Exi, Exj)
)

, (1)

with a similarity measure d(·, ·) and the Heaviside function 2(·)

which sets Ri,j = 1 if the similarity value d(·, ·) falls below the

threshold ε [29]. For dynamical systems with continuous change

of the state variables, i.e., Exi ∈ R
m (with m the dimension of

the system), the similarity between states is often defined by the

Euclidean norm d( Exi, Exj) =
∥

∥Exi − Exj
∥

∥ [29]. For discrete data

of regular sampling (equidistant time instances), e.g., categorical

data, the recurrence matrix R can be simply defined by the

Kronecker delta function Ri,j = δ(xi, xj), which is one if both

arguments are identical [26, 30–32]. This approach works well

for discrete data, such as categorical data or symbolic sequences,

with applications, e.g., in life science to detect atrial fibrillation or

congestive heart failure [33, 34], to measure synchronization in an

epileptic brain [30], or in engineering to optimize manufacturing

networks [35]. This concept is easily extendable for bivariate

analysis. Cross-RPs, CR
x,y
i,j = 2

(

ε − d( Exi, Eyj)
)

, and joint-RPs,

JR
x,y
i,j = 2

(

ε − d( Exi, Exj)
)

◦ 2
(

ε − d(Eyi, Eyj)
)

, are two basic concepts

for measuring different aspects of synchronization [29]. To modify,

the cross-RP for discrete data, we can simply use the Kronecker

delta CRi,j = δ(xi, yj) [36]. Joint-RP even allows us to measure the

synchronization between different types of data, such as discrete

and continuous data [37], where

JR
x,y
i,j = δ(xi, xj) ◦ 2

(

ε − d(Eyi, Eyj)
)

(2)

is the Hadamard product of the RP of the discrete system xi and the

RP of the continuous system Eyi.

This concept reaches its limits when considering event time

series which consist of rare events and many zeros between them,

or, even more limiting, consist only of the events {ti} or have

strong non-equidistant time instances (ti+1 − ti 6= const.). For this

kind of data, the similarity measure d(·, ·) has to be replaced by a

specific metric which measures the coincidence of event sequences.

Several measures (event metrics) are available, mainly developed

in neuroscience [13]. A widespread measure would be the event

synchronization, which allows varying delays between events to be

considered as coinciding [38]. This measure is successfully applied

for investigating, e.g., the spatio-temporal relationships between

extreme rainfall events [39]. Another candidate is the edit distance,

an extension of the Levenshtein distance [40, 41]. The distance

is calculated by the minimum cost needed to modify one event

sequence into another with a limited set of operations (Figure 1).

Edit distance is a metric and has been successfully integrated with

recurrence analysis [27, 28].

The edit distance measure is the (minimum) sum of the costs of

the transform operations addition, deletion, and shifting applied to

modify a sequence Si = {t(i)1 , t(i)2 , . . . , t(i)Ni
} of Ni events (with events

at time points t(i)a ) into sequence Sj = {t
(j)
1 , t

(j)
2 , . . . , t

(j)
Nj
} (with events

at time points t
(j)
b
):

d(Si, Sj) = min
{

λs(Ni + Nj − 2N(i,j))+
∑

a,b∈C

λ0‖t
(i)
a − t

(j)
b
‖
}

, (3)

where a and b are indices of the events in segments Si and Sj; Ni

and Nj the number of events in segments Si and Sj, respectively;

N(i,j) the number of events in Si and Sj to be shifted, which form the

set C; λs is the cost of deletion/ insertion, and λ0 the cost assigned

for shifting events in time. Thus, the first summand corresponds

to deletion and insertion operations and the second summand

to the shifting of the events (Figure 1). Extensions of this cost

function include considering costs for amplitude changes or to

modify the shifting term by a continuous cost function allowing a

more intuitive interpretation in terms of a delay [27, 28]. To apply

the edit distance for recurrence analysis, the event series has to
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FIGURE 1

Edit distance as cost-based similarity between event sequences Si and Sj from an event series (left). Events can be shifted, added or deleted, and their

amplitude adjusted. All these operations have costs. The minimum cost is used as the distance d(Si, Sj) (right).

be divided into sequences Si defined by a time window of length

Tw. The shifting of this interval can be with smaller steps s < Tw

resulting in overlapping time intervals. In order to get reliable costs

d(Si, Sj), the resulting sequences Si and Sj should have at least one

event (i.e., should not be empty).

This edit distance measure has been used as a simple

synchronizationmeasure between event series to study the stimulus

responses in neuron spike trains [41], as a similarity measure

between extreme rainfall data to reconstruct climate networks [42],

and to create regularly sampled time series from non-regularly

sampled time series (TACTS approach) [43, 44]. It was also used

as a distance measure for computing RPs directly from event

data (Figure 2), e.g., to study stock exchange data [27], flood

events [28], or to allow calculation of RPs directly from irregularly

sampled palaeoclimate data [46, 47]. The integration of the edit

distancemetric into the RP definition, Equation (1), provides all the

applications of recurrence based time series analysis for the specific

data of event time series.

3. Challenges

Despite the recent advances in recurrence analysis of event time

series, there are still several challenges.

Event time series can have missing data which are not easy to be

detectable. For example, data on landslide events is mainly available

at sites where they affect infrastructure [48], but their statistical

analysis with respect to, e.g., climate change would require reliable

event series [49]. Missing or sparse data can, therefore, bias the

results of any analysis, and is subject of research in time series

analysis in general, including interpolation, modeling, or advanced

data reconstruction methods [50–52], but mainly not applicable for

event data.

The process behind the analyzed study object could be non-

stationary (e.g., life-threatening cardiac arrhythmias or seizures

[6, 10]), meaning that the statistical properties of the event series

may change over time (such as the distribution of events could

change over time – events may be sparse, meaning that there

could be some periods of time without events), which can make

it difficult to apply the event based recurrence analysis (e.g., using

edit distance). In particular, if the time interval defined by lengthTw

is too small, many sequences Si could be empty, resulting in non-

defined costs d(Si, Sj). The selection of the time interval length Tw

is, thus, crucial. For simple periodically recurring events, the choice

might be easy, but its selection if multiple time scales are present is

not straightforward [28].

The number of events in an interval can also change due

to sampling issues, as it is a common problem in palaeoclimate

research, where the deposition rate in sediments is varying over

time, thus, leading to palaeoclimate time series of non-equidistant

sampling in general [53–55]. Event based metrics, such as event

synchronization, event coincidence analysis, or edit distance cost

depend on the number of events in the interval and produce

different types of biases which impact the results of the quantitative

analysis and call for correction schemes [55, 56].

In general, the comparison of event time series with continuous

time series is very challenging. Such problems occur, e.g., in

climate research when studying recurring pattern of special weather
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A B C

FIGURE 2

Example of a recurrence plot using edit distance. (A) The maxima (red dots) of the x-variable of the Rössler system [45] are used to mimic sparse (or

extreme) events. (B) Recurrence plot calculated from the (x, y, z)-variables of the Rössler system. (C) Recurrence plot derived from the events in (A)

using the edit distance as defined by Equation (3). Periodical occurrence of the events are clearly indicated by the period line structures in the edit

distance recurrence plot. The empty bars around t =55s and t =100s indicate the parts in the dynamics with abrupt changes where no maximum

values appear. Edit distance is calculated using overlapping windows length Tw =15s and moving step of s =1s. The recurrence threshold ε is

selected to ensure a recurrence rate (recurrence point density) of 15%.

phenomena (e.g., atmospheric rivers) or extreme events (such as

heavy precipitation or river floods) with respect to large scale

climate phenomena, such as El Niño/ Southern Oscillation or

North Atlantic Oscillation [7, 57]. The RP approach offers a

promising way by modifying Equation (2) to Kodama et al. [37].

However, event series often consist of much less events than the

number of sampling points of the continuous time series, resulting

in RPs of rather different length andmaking it impossible to directly

apply Equation (4). An approach to finally match the event based

RP with those of the continuous data would be required.

JR
x,y
i,j = d(Sxi , S

x
j ) ◦ 2

(

ε − d(Eyi, Eyj)
)

(4)

Finally, the uncertainty of the timing of events (timing jitter)

is strongly affecting any measure of coincidence. It is expected

that timing jitter is a common problem in measuring real-world

event series. This challenge might be addressed by evaluating the

sensitivity of the results on the jitter using specific models.

The extension of the edit distance can also take amplitude

variations into account. However, this mixes two different aspects

of the data: the temporal pattern of event sequences and amplitude

differences. The optimal choice of the corresponding parameters

might be less clear then, but have to be used to balance between

these aspects.

4. Discussion

The perspective future methodical developments will consider

several important challenges to study interesting research questions

related to (discrete) event data.

For recurrence analysis of event data, so far only the edit

distance metric has been applied. It would be important to test

and compare also other measures, such as Needleman-Wunsch

distance, event synchronization, event coincidence analysis, or

ARI-SPIKE-distance [13, 38, 56, 58]. Specific discrete data might

call for distancemetrics considering amplitude differences, e.g., edit

distance or longest common subsequence [59].

Data with missing events is a general problem. Different

strategies might be considered to solve this challenge, including

correction and gap filling schemes [51, 55]. Correction schemes are

also important for data with non-stationarities (varying sparsity of

events). Such correction schemes needs further development to be

applicable in a more general way (e.g., independent of the event

distribution) and be more computationally efficient.

Events can exhibit some kind of temporal dependencies,

meaning that the likelihood of an event may depend on the

occurrence of previous events. The RQA measures could be used

to study temporal dependencies from event series [28]. In general,

diagonal lines in a RP represent the tendency that current neighbors

in phase space will remain to be neighbors in the near future,

thus represent serial dependence. The RQAmeasure determinism is

quantifying the fraction of recurrences forming such diagonal lines

and can, thus, be used as an indicator of serial dependence.

The classification of dynamical processes by event series based

on duration, frequency of events or their characteristics (e.g.,

shape), will be another interesting application which will also

involve machine learning approaches. The combination of machine

learning with recurrence analysis is currently a strongly developing

field with applications mainly in classification and prediction, using

RPs and RQA measures as inputs in machine learning workflows

[23]. A typical example is to convert time series into images by using

the RP approach which are finally fed into the machine learning

workflow for classification [60]. RPs of event series can be used

in a similar manner for such kind of classification tasks. Other

characteristics of event series (like serial dependence) would be

accessible to machine learning approaches by the RQA measures

[61–63] .

The detection of interdependencies or synchronization of

(sub-)systems represented by different kinds of data (e.g., event

data with continuous time series) is an important methodical

challenge. New approaches based on RPs seem to be promising,

including the concept of joint-RPs [37] and the comparison of the
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probability of recurrences [64]. The advantage is the comparison

by the recurrence structure, which would allow comparing

time series of different kinds (e.g., event series vs. continuous

data). It includes further developments to finally match the size

of event based RPs with those of the continuous data, e.g.,

considering coarse-graining, interpolation, or specific window

selections schemes (for event-sequence based metrics like edit

distance) [28].

RP based analysis can be used to infer coupling directions or

even causal links between different systems [65, 66]. Thus, the next

step would be to test this approach for its potential on causality

testing even for event data.

RPs also allow to identify patterns or regularities in challenging

data, such as event series, including the estimation of the power

spectral density of event series [67]. The most obvious way

to derive a spectrum from a RP is to use the probability of

recurrence after lag τ , which is simply the density of recurrence

points along the diagonals (with distance τ from the main

diagonal). This probability of recurrence is related to the auto-

correlation [68, 69]. Using the edit distance measure, the temporal

dependency structure within the event series can be visualized

and quantified with this approach. Finally, the power spectrum

can then be estimated from this probability of recurrence,

either by applying the Fourier transform or any other advanced

decomposition [67, 69].

The uncertainty of the timing of events (timing jitter) needs

to be considered in the analysis, leading to new concepts such as

Monte Carlo based ensemble approaches or Bayesian approaches.

A recently proposed concept combines a Bayesian approach with

RPs to derive a RP which explicitly represents the uncertainties

of the timing of data points [70]. The resulting recurrence matrix

contains the probabilities of recurrences instead of the binary

information of recurrences. The recurrence quantification of such

matrix is still subject of future research.

Although various distance measures for event based RP

computation are available, the already applied one, edit distance,

provides already a bunch of interesting directions for future

research. For example, the choice of an optimal window length Tw

or the different cost parameters λ. Including the cost for amplitude

differences require an optimal choice of the corresponding

parameters, which would need some systematic studies to provide

some guidance to balance between the differences in the temporal

and spatial domain.

The recurrence analysis as a concept is rather novel approach,

with a lot of interesting and powerful developments and extensions

in the last two decades [23]. It is also a promising concept for

studying different aspects related to (discrete) event time series,

where other methods have their limits.
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