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Anthropogenic influence 
on extreme temperature 
and precipitation in Central Asia
Bijan Fallah 1*, Emmanuele Russo 2, Christoph Menz 1, Peter Hoffmann 1, Iulii Didovets 1 & 
Fred F. Hattermann 1

We investigate the contribution of anthropogenic forcing to the extreme temperature and 
precipitation events in Central Asia (CA) during the last 60 years. We bias-adjust and downscale two 
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) ensemble outputs, with natural (labelled 
as hist-nat, driven only by solar and volcanic forcing) and natural plus anthropogenic forcing (labelled 
as hist, driven by all-forcings), to 0.25◦ × 0.25

◦ spatial resolution. Each ensemble contains six models 
from ISIMIP, based on the Coupled Model Inter-comparison Project phase 6 (CMIP6). The presented 
downscaling methodology is necessary to create a reliable climate state for regional climate impact 
studies. Our analysis shows a higher risk of extreme heat events (factor 4 in signal-to-noise ratio) 
over large parts of CA due to anthropogenic influence. Furthermore, a higher likelihood of extreme 
precipitation over CA, especially over Kyrgyzstan and Tajikistan, can be attributed to anthropogenic 
forcing (over 100% changes in intensity and 20% in frequency). Given that these regions show a high 
risk of rainfall-triggered landslides and floods during historical times, we report that human-induced 
climate warming can contribute to extreme precipitation events over vulnerable areas of CA. Our high-
resolution data set can be used in impact studies focusing on the attribution of extreme events in CA 
and is freely available to the scientific community.

Water availability, hydro-power, and food security are the main concerns for Central Asian (CA) society in the 
 Anthropocene1. Although the 1.5-degree target has not been proven impossible to achieve, many future climate 
scenarios project global warming to surpass this critical level at the end of the century compared to pre-indus-
trial2. The societal and economic impacts of global warming will be severe if this threshold is  reached1. At the 
regional scale, CA’s recent positive temperature trend is already significantly above the global  mean3. Also, the 
precipitation amount, snow-melt/glacier ratio, and precipitation phase (rain/snow) have been modified in recent 
 decades4. The snow-to-precipitation ratio has shown a negative trend in recent decades. For example, more than 
97% of the Tian Shan snow cover has started to retreat since the  1980s4. It is well-known that global warming will 
affect the hydrological cycle based on the Clausius-Clapeyron relation of thermodynamic theory and changes 
in the atmospheric circulation, increasing its intensity and  frequency5. The observed recent warming increased 
the frequency of daily precipitation extremes by 18% over land compared to pre-industrial6. Rain collected over 
Tian Shan affects the five CA countries selected in this study (Fig. 1): Tajikistan and Kyrgyzstan are the upstream, 
and Turkmenistan, Uzbekistan, and Kazakhstan are the downstream countries of rivers’ flow. Kyrgyzstan and 
Tajikistan are countries exposed to extreme landslide hazards and extreme precipitation. The complex political 
interrelations (i.e. the collapse of the Soviet Union) and the climate change impacts make it challenging to tackle 
the water availability problem in CA. Increasing extreme precipitation and warming temperature can contribute 
to more severe floods/droughts and glacier melting, with a series of devastating implications on the economy of 
these regions (e.g., malfunctioning in the transport infrastructure), as well as health and food  security7. More 
frequent heat  waves8 and the expansion of arid areas in  CA9 are likely to reduce crop productivity. With 4 ◦C of 
warming in CA to pre-industrial times, there will most probably be decision-making conflicts between the dif-
ferent countries of the area. For example, the challenge would be whether to use the water solely for agriculture 
or hydro-power  generation1. The complexity of the climate system makes it challenging to distinguish between 
naturally forced and human-induced extreme  events10, especially at the regional scale. It is hard to distinguish the 
climate’s response to anthropogenic influence from the natural internal and externally forced (solar or volcanic 
forcings) climate  variability11. For example, the Russian heat wave of 2010 can be linked to internal variability in 
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the magnitude and driven by external forcing in terms of its occurrence  probability12. In the detection process, 
one must demonstrate that the observed changes are significantly different from a situation explained by natural 
internal  variability13. To attribute those changes to human activity, one has to demonstrate that the observed 
changes are (1) unlikely related only to internal variability, (2) consistent with the responses to the anthropogenic 
and natural forcing, and (3) there exists no physical explanations of recent climate change without the combina-
tion of natural and anthropogenic  forcings11.

Many studies have explored the impact of global warming on weather extremes in general circulation models 
(GCMs), i.e., extreme sea level  rise14, rare rainfall  events15, hydro-climatic  extremes16, tropical  cyclones17 and 
 heatwaves18. However, the high-resolution spatiotemporal pattern of climate change is less  discussed19, particu-
larly robust attribution of extreme precipitation events over CA. Detection and attribution are challenging at the 
regional scale due to a small signal-to-noise  ratio19. Furthermore, due to the internal variability, the observed and 
simulated responses to anthropogenic forcing contain sampling  uncertainty20. A classical approach to extreme 
event attribution is to run a large ensemble of coupled climate simulations with and without anthropogenic 
forcing during the historical era (i.e., 1850–2014) and compare the statistics of the two model sets. According 
to the central limit theorem, this will reduce the sampling uncertainty but could only eliminate it if the number 
of simulations N reaches the ∞ . Models are not expected to reconstruct precisely the observed evolution of the 
chaotic internal variability but should capture the statistics of the climate system’s variability (“noise”)21. Models 
are assumed to capture the response to the external forcing correctly if the ones driven by human and natural 
forcing are consistent with the observed changes and those without human influence are inconsistent. However, 
most attribution studies assume that models correctly capture the shape of the response to external forcings (the 
large-scale spatiotemporal patterns). Therefore the magnitude of the response shall not be simulated accurately.

Generally, the attribution of temperature extremes shows a robust signal due to climate regime shifts in the 
data: the probability distribution of temperature anomalies is usually shifted towards warmer values. Changes 
in temperature distributions might be on the mean, variability, shape, or a mixture of  all22. However, extreme 
precipitation events are poorly simulated by the models, identified by the observations, and do not follow a 
general  trend23. This is partially due to insufficient parameterization in GCMs, e.g., parameterization of small-
scale but highly influential processes like convective precipitations. There exists larger variability for simulated 

Figure 1.  Central Asian domain and topography(m). The boundary data were taken from Natural Earth. 
Free vector and raster map data at www. natur alear thdata. com. The basin and river data were taken from 
 HydroATLAS34. The elevation data were downloaded from the ASTER Global Digital Elevation  Map35. The map 
was created using ArcGIS V10.8.2 (https:// www. esri. com), Adobe Illustrator Version 27.2 (www. adobe. com) and 
Blender V3.4.1 (www. blend er. org).

http://www.naturalearthdata.com
https://www.esri.com
http://www.adobe.com
http://www.blender.org
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precipitation among different models. This originates from the large uncertainties in the  observations24, different 
boundary data, the unforced “internal variability” within models, oversimplification of the models and numerical 
implementation,  etc25. The impact of human activity on the probability of extreme events like floods, droughts, 
and storms is somewhat complex and  mixed26. Even for a very dense Alpine observation network, the precipi-
tation pattern and magnitude are critically dependent upon the analysis and observation density. In CA, the 
number of station data with daily values is very small, and the spatial gridded data sets have higher confidence 
in monthly values. Climate impact assessments at regional and national scales require high-resolution climate 
data. GCM outputs are usually downscaled at higher resolutions for climate impact modelling like hydrological 
 simulations27, adaptation  strategies28, and agriculture  studies29. Additionally, impact models are usually tuned 
by local observations. Therefore, climate model outputs shall be bias-adjusted for climate impact modelling. To 
improve the problems of low resolution, mixed anthropogenic and natural forcing and the model uncertainties, 
we apply bias adjustment and statistical downscaling over an ensemble of climate model simulations to make their 
statistics, more similar to high-resolution observational  data30,31. The ISIMIP project aims to model the impacts 
of climate change comprehensively. In the counterfactual ISIMIP ensemble, two sets of model simulations from 
CMIP6 with and without anthropogenic forcings labelled as “historical” and “hist-nat”, are bias-adjusted using a 
gridded observational dataset and statistically downscaled to a 0.5◦ × 0.5◦ horizontal resolution. This resolution 
is appropriate for impact studies over river basins larger than 50,000 km232. For impact studies at smaller regional 
scales in CA, a higher resolution is required to have enough grid points of the model within those basins. Using 
the ISIMIP data, impact modellers can contribute to obtaining a comprehensive picture of the world under 
different climate change scenarios and disentangle the anthropogenic and natural forcing. The fifth generation 
CMIP5 model outputs have been shown to underestimate extreme precipitations  globally33.

This paper explores the anthropogenic impact of CA’s extreme temperature and precipitation events from 
1961 to 2014. First, we explain the methodology used for creating the climate data. Furthermore, we discover 
the contribution of anthropogenic forcing to changes in the frequency and magnitude of extreme temperature 
events and their spatial patterns. Then we analyze the statistics of precipitation extremes to study the impact of 
anthropogenic forcing. Finally, we discuss the correlation between the intensified precipitation extremes and 
the occurrence of land-slide events in CA.

Data and methods
We use a high-resolution gridded observational data set and a bias adjustment/statistical downscaling approach 
to increase the resolution of two sets of CMIP6-based ISIMIP products, i.e., hist (driven by natural and anthropo-
genic forcings) and hist-nat (driven only by natural forcing). To our knowledge, no study has used high-resolution 
bias-adjusted CMIP6 products to explore the influence of anthropogenic forcing on the extreme precipitation and 
temperature in CA. It has been previously  shown31 that this methodology creates a robust climate state in which 
the climate trends from CMIP6 are preserved in the statistics of the higher-resolution dataset. Considering the 
computational expenses of dynamical downscaling approaches, the presented methodology is, in our opinion, the 
best alternative in the impact modelling community. In this study, we use the Climatologies at High resolution for 
the Earth’s Land Surface Areas  (CHELSA36) data set as our high-resolution observations (1 km), which is based 
on the statistical downscaling of a new generation of reanalysis data, the European Centre for Medium-Range 
Weather Forecasts (ECMWF)  ERA537,38. We bias-adjust and downscale a set of previously bias-adjusted and 
statistical downscaled data sets of phase 3 of ISIMIP  (ISIMIP3b39) to a 0.25◦ × 0.25◦ horizontal resolution. These 
simulations were conducted with natural plus anthropogenic (hereafter, hist) and with natural only (hereafter, 
hist-nat) forcing from 1961 to 2014. The downscaled fields show a smoother pattern in an approach using multiple 
steps than using one big  step30. We have chosen the final 0.25◦ × 0.25◦ horizontal resolution as a trade-off between 
computational expenses, model performance, and the expectations from climate impact  modellers40. With the 
coarse observational network in CA, the spatiotemporal statistics of the original 1km data can not be evaluated 
against the station data. In the following, we present our analysis of extreme temperature and precipitation in 
CA. Table 1 summarises the gridded datasets used in this study.

Figure 2 shows the schematic of the processes used to create the climate output data in ISIMIP3b and this 
study. The bias adjustment in ISIMIP3b is based on a parametric quantile mapping method which reduces the 
error in all distribution quantiles and preserves the trends in each of  them31. The new version V3.0.1 improved 
the distribution fits for parametric quantile mapping and therefore outperforms its  predecessors31. For a complete 
explanation of the BASD method, we refer to the ISIMIP3b fact sheet available via https:// www. isimip. org/ docum 
ents/ 413/ ISIMI P3b_ bias_ adjus tment_ fact_ sheet_ Gnsz7 CO. pdf and the references  therein30,31,43.

By combining the ERA5 precipitation and MODIS satellite monthly cloud cover frequency, CHELSA pre-
cipitation improved spatial and temporal accuracy in complex terrain compared to the existing gridded data 

Table 1.  Gridded data sets used in this study.

Data Time range (step) Resolution Usage Variables

CHELSA36 1979–2016 (daily) 1km×1km Bias-adjustment and statistical downscaling Total precipitation/near-surface temperature

NOAA-CIRES-DOE 20th Century Reanalysis 
version 3 ensemble  mean41 1836–2015 (3−hourly) 1◦ × 1◦ Evaluation Total precipitation/near-surface temperature

Berkeley-Earth42 1880–recent (daily) 1◦ × 1◦ Evaluation Near-surface temperature

ISIMIP3b bias-adjusted atmospheric climate 
input  data43 1850–2020 (daily) 0.5◦ × 0.5◦ Input climate data Total precipitation/near-surface temperature

https://www.isimip.org/documents/413/ISIMIP3b_bias_adjustment_fact_sheet_Gnsz7CO.pdf
https://www.isimip.org/documents/413/ISIMIP3b_bias_adjustment_fact_sheet_Gnsz7CO.pdf
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 sets38. The ISIMIP3b data is bias-adjusted using the W5E5 v2.030. The spatially aggregated CHELSA and W5E5 
v2.0 show similar statistics for precipitation and temperature like mean, median and  PR9836. However, before 
downscaling the ISIMIP3b data set, we bias-adjust it again using the aggregated CHELSA at 0.5◦ (suggestion of 
the code developer, Stefan Lange). Changes introduced by the additional BA can be considered minor due to the 
similarity of CHELSA and W5E5. The aggregation of the CHELSA to the climate grid was done using first-order 
conservative  remapping44. For creating the composite pattern of precipitation during the landslide events, we 
consider the 3-day running mean values. For estimation of the temperature probability density functions (PDFs), 
we use the kernel density using Gaussian  kernels45 implemented in the scipy (https:// docs. scipy. org/ doc/ scipy/ 
refer ence/ gener ated/ scipy. stats. gauss ian_ kde. html, last visited on 25.01.2023) library of python. This method has 
been used in several related studies and has shown to be  robust46. Following the ISIMIP3b  protocol43, we first 
remove the biases of the model output (for the list of the considered models, see the Data and Methods section) 
using CHELSA. Then, we statistically downscale the output (from 0.5◦ × 0.5◦ to 0.25◦ × 0.25◦ ) using a stochas-
tic approach (see “Data and methods” and Fig. 2). It is essential to conduct statistical downscaling in multiple 
small steps (like in this study) instead of one big step (from the CMIP6 original resolution of 1 or 2 ◦ × 1 or 2° to 
0.25◦ × 0.25◦ horizontal resolution) as shown previously by statistical downscaling using neural  networks47. The 
new ISIMIP3b statistical downscaling software is spatially more coherent than simple uni-variate methods. It uses 
a stochastic approach to avoid mismatches between the coarse-resolution model, and finer observational data 
 sets48. The algorithm applies a uni-variate empirical quantile mapping using multiple grid boxes of the  dataset30. 
The downscaling  method49 preserves the coarse-scale statistics (like the trends). The ISIMIP3b bias-adjustment 
method is univariate and parametric.

For a local impact study at country or river basin scales, especially for regions such as Kyrgyzstan or Tajikistan, 
characterized by very complex topography, scientists require high-resolution (less than 30 km) climate  data49. 
Figure 3a,c,e show the different grid structures of the climatological precipitation pattern over the CA domain 
as calculated from one of the original CMIP6 GCMS (only GFDL-ESM4 is shown here), its corresponding ISI-
MIP3b and additional bias-adjusted and statistically downscaled ISIMIP3b (ISIMIP3b-BASD, hereafter) from 
top to bottom, respectively. Although a more refined precipitation structure is achieved in ISIMIP3b-BASD, 
some artefacts are inherited from the coarser grid structure (e.g. higher precipitation over East Afghanistan). This 
shortcoming might influence the neighbour points at the edge of the artefacts with high precipitation differences. 
Previous studies have observed similar artefacts using the BASD algorithm as  well30,31. The ISIMIP3b output for 
different variables has been evaluated globally, showing that they preserve the projected warming  trend43. It has 
been shown that mean values are well-adjusted in most of the variables except for the snowfall  flux43. To cross-
check the validity of our product, we use available daily precipitation station observations in CA for the last 30 
years in the data acquired from Meteostat (https:// meteo stat. net/ en/). Only three observation sites were available 
for 1985-2000 (represented by squares in Fig. 3a), with fewer missing values after 2000 and at daily resolution. 
The right panels in Fig. 3 show the frequency of daily precipitation values between one original CMIP6 model 
(GFDL-ESM4-r1i1p1f1), its ISIMIP3b and ISIMIP3b-BASD products and the selected observation for each of 

Figure 2.  Schematic of the ISIMIP3b (blue) and this study’s approach (green). Boxes with sharp (rounded) 
corners represent data (algorithms). The spatial resolution of different data sets is indicated in italics.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
https://meteostat.net/en/
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the 3 cites. It can be seen that both BASD algorithms correct the bias of the original CMIP6 model, especially for 
smaller but more frequent daily precipitation values. Most of the precipitation amount in CA is accumulated over 
Kyrgyzstan and Tajikistan. The results for the other five models also show similar improvements (not shown).

(a) precipitation climatology for GFDL−ESM4_r1i1p1f1 model (b)

(c) precipitation climatology from ISIMIP for the GFDL−ESM4_r1i1p1f1 model (d)

(e) precipitation climatology for the ISIMIP-BASD GFDL−ESM4_r1i1p1f1 model (f)

Figure 3.  Climatology of precipitation [mm/day] for (a) GFDL−ESM4_r1i1p1f1 model original grid ( �x=1.25◦ 
and �y=1◦ ), (c) ISIMIP3b at 0.5◦ and (e) this study at 0.25 ◦ . The precipitation fields show the average for 1985-
2014 over Central Asia. Model-data comparison  of precipitation frequencies for three available observations, 
shown in (a) for 1985–2000 (b,d,f). The maps were created using python3-matplotlib (version 3.1.2, https:// 
matpl otlib. org/).

https://matplotlib.org/
https://matplotlib.org/


6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6854  | https://doi.org/10.1038/s41598-023-33921-6

www.nature.com/scientificreports/

Results
Internal model variability. Internal climate variability is usually referred to as unforced variability, which 
emerges from different components of the Earth system (i.e., atmospheric, oceanic, land, and cryospheric) 
and their coupled  interactions50. Internal climate variability has an important impact on the projected climate 
at regional spatial scales and sub-decadal time  steps51. Bias-adjustment methods usually do not discriminate 
between different sources of the model’s bias (uncertainty in scenarios and simulations or internal variability). 
Therefore, there is no guarantee that the internal variability remains preserved after the bias-adjustment52. It 
has been shown that the global mean temperature reproduced by climate models agrees with the observations 
in different frequency ranges. However, the energy differed by a factor of 2-3 for the 20-50-yr band between 
 models53. Before any analysis, we investigate if the models’ variability is realistic compared to observations. 
Figure 4 compares the power spectrum of the detrended (the linear trend and the seasonal cycles are removed) 
monthly temperatures between the ensemble mean of hist and hist-nat, 20CRv3 and Berkeley-Earth. The power 
spectra of observations and reanalysis are a bit higher than the ones from the models. The differences in energy 
for higher frequencies are small. Both hist and hist-nat follow the observation and reanalysis well across all the 
frequencies. For precipitation, detecting the signal is usually challenging. Atmospheric circulations and internal 
variability impact precipitation trends more than radiative forcing. Therefore the uncertainty in the simulations 
is large, and the signal-to-noise (SNR) ratios are usually less than  251.

We calculate the SNR for the yearly temperature mean and yearly 99.9th percentile of daily precipitation 
(Fig. 5). SNR is defined as the ensemble mean trend divided by their standard deviation over all the individual 
 models51. PDF of the precipitation usually follows a gamma distribution, and for extreme value studies, the tail 
is of more importance. We explain the choice for selection of the 99.9th threshold in Supplementary Information.

Figure 5 shows the SNR (unitless) maps for yearly temperature trends during 1979-2014 from hist-nat (a), 
hist(b), as well as yearly precipitation’s 99.9th percentile trends. It confirms the previous  findings51 that the 

Figure 4.  (a) Power spectra of monthly temperatures over CA (filed-mean) from hist (red), hist-nat (green), 
20CRv3 (blue) and Berkeley-Earth (black) and (b) the zoom over the cyan box in (a).
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precipitation SNR remains almost less than 2 and that the model’s temperature’s SNR shows a stronger sensitivity 
due to the external forcing (Fig. 5b). The signal in the precipitation’s SNR in hist is slightly larger than the one 
from hist-nat. We will explore the precipitation signals in more detail in the following.

Anthropogenic warming in CA. Figure 6a shows the temperature time series of ISIMIP-BASD over CA 
for two simulation sets, hist and hist-nat, the Berkley-Earth and CHELSA observations and 20CRv3 reanalysis. 
The simulation driven by anthropogenic and natural forcing (hist) shows a constant positive trend similar to 
long-term observations from the Berkeley-Earth, CHELSA and 20CRv3 data sets (Fig.  6a). The simulations 
driven by natural forcing only (hist-nat) do not show any positive trend after 1979. The ensemble mean of the 
hist simulation exceeds the model spread of the hist-nat simulation after 2000. The cumulative global annual 
mean CO2 exhibits an increasing trend similar to the observational temperatures after 1980. From 1980 to 2014, 
an increase of 60 ppm in global CO2 concentration is accompanied by a warming of 1.5 K in the hist simulation 
over CA. The 20CRv3 reanalysis data shows a similar variability as in the Berkeley-Earth (Fig. 6b), however, with 
a warm bias. This shortcoming of the reanalysis has been previously shown in the average 500–1000-hPa layer 
 temperature54.

On daily time scales, the normalized PDFs of temperature differences (averaged over CA) calculated between 
the mean values for the period 1995–2014 and 1961–1980, are significantly shifted towards warmer values by 
anthropogenic forcing (Fig. 6b). The PDFs of 20CRv3 and Berkeley-Earth are within the hist’s ensemble spread. 
The similarity of the PDFs of the hist ensemble average, 20CRv3 and Berkeley-Earth show that the ensemble 
simulation could realistically capture the temperature anomalies. In the next step, we use these PDFs to estimate 
the likelihood of temperature changes at different levels of warming. Dividing the likelihoods of hist by the one 
for hist-nat will indicate the attribution ratio of the anthropogenic forcing to each warming level (Fig. 6c). For 
example, a daily anomaly of +3K is more than two times more likely in an anthropogenic-forced climate across 
all six models considered. With regard to temperature anomalies larger than 3K, the ensemble spread of the 
attribution ratio becomes very large, and the different ensemble members fall into one of two branches. Three 
models (IPSL-CM6A-LR, CNRM-CM6-1 and CANESM5) show an exacerbating trend in the attribution ratio, 
while the remaining three (MIROC6, MRI-ESM2-0 and GFDL-ESM4) a flat one. To explore spatial patterns 
corresponding to the +3 K temperature anomaly, we calculate the ensemble mean of temperature anomalies for 
months with regionally averaged values (over CA) of at least 3 K warmer than the climatology (1961–1980) from 
the ensemble of the hist and hist-nat simulations in Fig. 7. In all datasets, the resulting pattern reveals more than 
5K warming over Kazakhstan and lower warming over the rest of CA. The three models having a flat trend in 

(a) hist-nat temperature (b) hist temperature

(c) hist-nat precipitation (d) hist precipitation

Figure 5.  Signal-to-noise ratio maps for yearly temperature trends during 1979–2014 from hist-nat (a), hist(b), 
as well as for the yearly precipitation’s 99.9th percentile from hist-nat (c), hist (d). The maps were created using 
python3-matplotlib (version 3.1.2, https:// matpl otlib. org/).

https://matplotlib.org/
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attribution ratio (MIROC6, MRI-ESM2-0 and GFDL-ESM4) show a higher warming level in Kazakhstan than the 
remaining models (not shown here). The overall warming pattern, however, is similar to the ensemble mean. To 
explore if such a warming pattern exists in the real world, we calculate the same composites as in Fig. 7c,d from 
20CRv3 reanalysis and Berkeley-Earth data, i.e. an average of months with regionally averaged values (over CA) 
of at least 3 K warmer than the climatology (1985–2014 w.r.t. 1961–1980). Number of months with temperature 
anomalies larger than 3 K in Berkeley-Earth and the ensemble mean of hist are similar, and hist-nat shows a 
significantly smaller number (Fig. 7e). The similarity of extreme temperature patterns in the Berkeley-Earth, 
20CRv3 data sets and +3K warming level patterns of the hist and hist-nat simulations demonstrate that observed 
and simulated warming for the area has a similar pattern. Given the shift in PDF of temperature anomalies 
shown in Fig. 6b in hist, the probability of such wide-spread warming events is shown to increase compared to 
hist-nat at least by factor 2.5 (Fig. 6c). We conclude that the sensitivity of the simulated temperature for hist to 
anthropogenic forcing is significantly high.

Anthropogenically forced precipitation. For detecting heavy precipitation events, we consider val-
ues larger than 99.9 percentile of daily precipitation (PR99.9), which is a common threshold for detecting rare 
 events10 (other percentiles, i.e. 98, 99 and 99.7 are discussed in Supplementary Materials). PR99.9 from CHELSA, 
20CRv3, hist and hist-nat ensemble means for the overlapping period of 1979-2014 are shown in Fig. 8. The 

(a) Temperature trends (K)

(b) PDF of temperature anomalies (K) (c) Ratio of temperature anomaly changes

Figure 6.  (a) Annual temperature time-series over Central Asia for the Berkeley-Earth data  set42 (black line), 
historical models’ ensemble mean (red line), hist-nat models’ ensemble mean (green line) and cumulative global 
annual mean CO2 concentration (ppm); (b) Normalized probability density functions of daily temperature 
anomalies (1995–2014 w.r.t. 1961–1980) for hist (solid red) and hist-nat (solid green), (c) ratio of daily 
temperature anomalies’ PDF (i.e., P(tashist )

P(tashist−nat
 ). Shadings in (a) show the ensembles’ spread.
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overall patterns are similar with an overestimation of values in hist and hist-nat over the North and West of 
Iran, Afghanistan, and North  India43. Due to the lower resolution, the precipitation values over mountainous 

(a) hist (b) hist-nat

(c) 20CRv3 (d) Berkeley-Earth

(e)

Figure 7.  The mean temperature map for months with temperature anomaly greater than 3 K (1985–2014) 
from (a) hist, (b) hist-nat, (c) 20CRv3 and (d) same as in d but from the Berkeley observation data set. (e) 
shows the number of months detected with anomalies greater than 3 K for each data set. Ensemble mean of hist 
and hist-nat are shown by large circles and squares, respectively. The arrows connect the same models under 
different forcings. The maps were created using python3-matplotlib (version 3.1.2, https:// matpl otlib. org/).

https://matplotlib.org/
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regions are lower in 20CRv3. We will focus on the changes in the intensity presented in Eq. (1) and frequency 
in Eq. (2) of extreme precipitation events, where N in Eq. (2) indicates the number of events at each grid point 
of the domain which is greater or equal to PR99.9 for the selected time period. Figure 9 shows the percentage of 
changes in intensity and frequency of PR99.9 in hist, hist-nat and 20CRv3.

Overall, areas with an increased/decreased intensity coincide with areas of increased/decreased frequency. 
An intensifying and increased frequency of PR99.9 pattern is observed over the Tibetan Plateau, West China, 
Ahal in Central Turkmenistan, North and northwest Kazakhstan, Khatlon in South Tajikistan, Ferghana in South 
Kyrgyzstan, Southeast Afghanistan, and Northwest Iran. The intensity and frequency of extreme precipitation 
events are decreased over the Mangystau Region, Jambyl, Turkistan, Pavlodar and Akmola in Kazakhstan, Cen-
tral Iran, and East Turkmenistan. Such patterns can intensify at each level of projected  warming6. The ensemble 
mean of hist simulations could capture some of the increasing and decreasing patterns seen in observations and 
not represented by hist-nat. For example, the simulated decrease in intensity and frequency over the Mangystau 
Region in West Kazakhstan and the Central Caspian Sea agrees well with the 20CRv3 (Fig. 10g–l). The increase in 
the intensity and frequency over the Khatlon area in Southwest Tajikistan is captured only by the hist simulation, 
while hist-nat shows a decreasing signal (Fig. 10a–f). This area has a potential for rainfall-triggered landslide 
 events23. To explore the patterns of precipitation associated with the landslide events, we plot the composite 
map of precipitation from CHELSA during the selected landslide events. The resulting map will show the aver-
age precipitation when those landslide events occur in the domain. Figure 11 reveals a pattern similar to the 
one in PR99.9 in Fig. 8. The orange dots in Fig. 11 show the locations of the rainfall-triggered landslide events 
in CA in 2004–2014. As shown over the mountainous areas of Tajikistan and Kyrgyzstan, the landslide events 
fall within the areas with anthropogenic-enhanced PR99.9 values. This shows the associated pattern of extreme 
precipitation events and emphasizes the risk of increasing extreme precipitation events, which were captured 
only by the hist and 20CRv3 over the mountainous areas of Tajikistan and Kyrgyzstan (Fig. 10a–f). The hist-nat 

(1)
PR99.91995−2014 − PR99.91961−1980

PR99.91961−1980

× 100

(2)
N(PR1995−2014>PR99.9) − N(PR1961−1980>PR99.9)

N(PR1961−1980>PR99.9)
× 100

(a) PR99.9 of hist-nat (mm/day) (b) PR99.9 of hist (mm/day)

(c) PR99.9 of 20CRv3 (mm/day) (d) PR99.9 of CHELSA (mm/day)

Figure 8.  Extreme precipitation patterns [mm/day] calculate as 99.9th percentile of daily values for the 
overlapping period of 1979–2014 for (a) CHELSA, (b) models’ ensemble mean of the historical run. All the 
datasets are at 0.25◦ resolution. The maps were created using python3-matplotlib (version 3.1.2, https:// matpl 
otlib. org/).
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ensemble mean shows a reduction in intensity and frequency of RP9.9 over this area (Fig. 10c,f). The presented 
maps agree well with the previous  findings23 showing an increase in the total annual wet-day precipitation, daily 
intensity index, extreme wet days (RP95) and maximum 5-day precipitation amount from 15 CMIP5 GCMs 
during 1961-2005. The sensitivity of the hist precipitation to the anthropogenic forcing does not present a large 
scale pattern as seen in the temperature, and only regional signals have been detected (Figs. 9 and 10). Neither 
the patterns of precipitation’s intensity and frequency changes show the same similarity with the reanalysis as 
seen in the temperature signals (Fig. 7). Therefore the presented data set might produce a larger anthropogenic 
influence in the impact studies, which are influenced more by the temperature than by the precipitation. We 
propose to examine the influence of our climate input data using an impact model to shed light on the role of 
local precipitation intensity and frequency changes.

(a) 20CRv3 intensity changes (%) (b) 20CRv3 frequency changes (%)

(c) historical intensity changes (%) (d) historical frequency changes (%)

(e) hist-nat intensity changes (%) (f) hist-nat frequency changes (%)

Figure 9.  Percent of changes (1995–2014 vs 1961–1980) in the intensity and frequency of 99.9th total daily 
precipitation percentile for 20CRv3 (a,b); historical (c,d) and hist-nat (e,f), respectively. The 99.9th happens on 
average once in 1300 days in the 20CRv3 data. Black dots indicate the agreement in the signs with 20CRv3. The 
maps were created using python3-matplotlib (version 3.1.2, https:// matpl otlib. org/).
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Discussion
Regional impact studies require bias-adjusted and downscaled climate data. However, one has to evaluate such 
products over the region of interest and know their limitations and shortcomings. Impact studies focusing on the 
anthropogenic influence sometimes require a so-called “counterfactual”55 baseline climate data which accounts 
for the human-induced influences. In this study, we downscale two scenarios of the ISIMIP3b data set, with and 
without anthropogenic forcing, to analyze the impact of human-induced warming on the intensity and frequency 

(a) 20CRv3 intensity changes (%) (b) historical frequency changes (%) (c) hist-nat intensity changes (%)

(d) 20CRv3 frequency changes (%) (e) historical intensity changes (%) (f) hist-nat frequency changes (%)

(g) 20CRv3 intensity changes (%) (h) historical frequency changes (%) (i) hist-nat intensity changes (%)

(j) 20CRv3 frequency changes (%) (k) historical intensity changes (%) (l) hist-nat frequency changes (%)

Figure 10.  As in Fig. 9 but the zoom of all maps over Tajikistan is shown in (a)–(f) and over Mangystau Region 
in Southwest Kazakhstan (g)–(l). The maps were created using python3-matplotlib (version 3.1.2, https:// matpl 
otlib. org/).

https://matplotlib.org/
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of extreme temperature and precipitation events over CA. The regional temperature increase in CA is higher 
than the global warming  level56. We observed accelerated regional warming, which eventually leads to significant 
changes in precipitation patterns over time and space, confirming previous  studies57. It is known that an increase 
in the surface sensible heat over the Central and Eastern Tibetan Plateau intensifies the summer drought in arid 
areas of CA and weakens the “South Asia High”, and subtropical jet  stream58. It has been previously shown that 
increased greenhouse gases in the atmosphere move the subtropical westerly jet southward, causing a deficit in 
the hydrological cycle of the  area59. However, warmer and wetter climates are already replacing the cold climate 
in mountainous areas of  CA60. Moreover, extra water vapour from the western Pacific, North Atlantic and Arctic 
can converge in CA and contribute to the extreme precipitation  events58.

Our analysis shows an increased risk of extreme warm events under anthropogenic forcing, especially in 
Kazakhstan, with possibly devastating consequences for the area’s population. This agrees with the observations 
showing a temperature increase of at least 5K in some regions of Kazakhstan between 1990 and 2020, which are 
now classified as “Temperate-cold deserts”. Since the 1980s, a large part of CA characterized by desert climate 
has expanded about 100 kilometres northward in southern Kazakhstan, northern Kyrgyzstan, and  Uzbekistan60. 
It has been shown previously that a 3K warming level in CA will increase the risk of mud-flow by tenfold in 
 Kazakhstan61. We find a significant local enhancement of heavy precipitation over the mountainous area of CA, 
e.g., Kyrgyzstan and Tajikistan, known as the “water reservoirs” for the arid and semi-arid CA, susceptible to 
the effect of anthropogenic forcing. Severe precipitation and temperature patterns derived from the downscaled 
hist model simulations show similar patterns as in the reanalysis and observation data sets. A significant rise in 
the frequency and magnitude of extreme events (floods, droughts and heatwaves) in CA has been reported for 
recent decades, primarily based on precipitation and temperature  changes7,62. Here, we could attribute some of 
those changes to anthropogenic forcing and exhibit the associated extreme precipitation and temperature pat-
terns. Therefore, the downscaled data can potentially implement anthropogenic influences for future impact 
studies and can be used as climate input data in the impact models. We conclude that the community could use 
our presented framework/dataset for detecting and attributing extreme events in CA or elsewhere. The hist-nat 
simulation could efficiently remove climate change signal from hist. We found a correlation between extreme 
precipitation events and landslide events. In a simulation without anthropogenic forcing, extreme precipitation 
events’ frequency and intensity decreased significantly over the mountainous area of CA compared to the full-
forced simulations. Given that the anthropogenic forcing had reached higher levels after 2014 (unprecedented 
CO2 concentrations), such extremes can increase in magnitude and number in the future. Possible applications 

(a) composite of precipitation (mm/day)

Figure 11.  Composite of precipitation during the rainfall-triggered landslide events [mm/day] from CHELSA, 
(b) changes in models’ ensemble mean of the number of days with precipitations greater than 20 mm (eca_
r20mm) in the 1979–2014 period, i.e. hist minus hist-nat. Orange dots indicate the rainfall-triggered landslide 
locations from GFLD and GLC datasets. The maps were created using python3-matplotlib (version 3.1.2, https:// 
matpl otlib. org/).
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of our data set can be to study the anthropogenic impacts on the glacial and snow melt, river flow, agriculture, 
food security, human health, energy and migration.

Several caveats of our analysis might be as follows. Due to computational constraints, we could not down-
scale a more extensive set of simulations that could better sample the extreme value distributions like the PDF 
of precipitation events or decrease the sampling uncertainty. For hist and hist-nat experiments, using one run 
per model is inappropriate, and we might underestimate the uncertainty. Long-term change attribution or event 
attribution requires as many runs as possible when using CMIP6-like simulation, often more than three runs per 
 model15. If using a single member per model for event attribution, one needs to use a larger sample size (sample 
size = Nmodels × Nrealizations × Nyears)15. The sample size of ISIMIP might not meet those requirements. Usually, 
the CMIP6 or downscaled CMIP6 model used for both long-term change attribution and event attribution 
must choose multiple runs in multiple  models63. However, we provided and tested a methodology which other 
researchers could use to increase the sample size presented here in the future. We justify our selection of the 
6 ISIMIP models because the impact models are usually tuned against the observations and therefore require 
bias-adjusted and downscaled climate data. ISIMIP provides climate information using a limited number of 
CMIP6 GCMs, which span the range of global mean temperature change ( �GMT) and relative precipitation 
 changes64. On the other hand, in most bias-adjustment methods (including this study), there is no guarantee 
that the physical consistency remains preserved among the model variables. The ISIMIP-selected models build 
a counterfactual baseline climate state for impact studies. We have shown that the hist-nat ensemble mean could 
remove the observed warming trend. Therefore, we conclude that our methodology would be an alternative to 
simple detrending  studies55, which produce such baseline climate states. At the moment, due to the computa-
tional limitations, it is impossible to use our bias adjustment and statistical downscaling across many members 
of CMIP6 models. The CHELSA data set is based on the observational network, which is sparse for the daily 
precipitation values over CA, especially in the years after the dissolution of the Soviet Union. Landslides might 
be linked to heavy precipitation on previous days. Although we have chosen a three-day running window, in 
some cases, the precipitation period might be prolonged to weeks before the event. Even moderate rainfall after a 
long drought (“soil sealing”) might also lead to landslides which we did not consider in the analysis. The number 
of rainfall-triggered events is also limited since such data sets are not freely available in CA countries. Despite 
the efforts to collect extreme climate records like the https:// flood list. com/, https:// www. emdat. be and https:// 
global- flood- datab ase. cloud tostr eet. ai/ (last access on 7 July 2022), a comprehensive extreme event database is 
missing in CA. For example global flood database reports insufficient flood exposure data coverage in Turk-
menistan, Tajikistan and Kyrgyzstan.

Finally, it should be noted that the need and demand for climate information can differ greatly from the 
availability. As climate scientists, we always have to deal with compromises and considerations because we are 
at the very beginning of the chain of climate impact research. It is, therefore, an important task for us to distort 
the nature of the changes and to soften existing rules with care. Reducing model ensembles is an essential aspect, 
which becomes more important with the increasing refinement of the models since the resources are also limited 
in the digital world.

Data availability
The downscaling datasets generated during the current study are available freely at https:// zenodo. org/ record/ 
70638 76#. YxsOF 1xByhd. Other datasets used are introduced in the Data and Methods section. The ISIMIP3 
BASD code (version 3.0.1) is freely available at https:// zenodo. org/ record/ 67589 97. The ISIMIP3b data can be 
accessed via https:// data. isimip. org/. The GCMs were selected due to the availability of natural and anthropogenic 
plus natural forced experiments from the ISIMIP3b project. The selected models are IPSL-CM6A-LR-r1i1p1f165, 
CNRM-CM6-1-r1i1p1f266, GFDL-ESM4-r1i1p1f167, CANESM5-r1i1p1f168, MIROC6-r1i1p1f1 (https:// www. 
wdc- clima te. de/ WDCC/ CMIP5/ Compa ct. jsp? acron ym= MIM5r8; last access 6.07.2022) and MRI-ESM2-0-
r1i1p1f169. The aggregated CHELSA data sets are publicly available via https:// data. isimip. org/ 10. 48364/ ISIMIP. 
836809.2. The Global Landslide Catalog can be found at https:// data. nasa. gov/ Earth- Scien ce/ Global- Lands lide- 
Catal og- Not- updat ed-/ h9d8- neg4. The Global Fatal Landslide Database is freely available at https:// svs. gsfc. nasa. 
gov/ 4710. The open-access land-slide data are usually based on citizen science and media reports with a layer of 
expert review. Some of the most remarkable events in terms of the impact on the population are the Murghab 
landslide in Tajikistan, with 20 fatalities, triggered by heavy rain on the 21st of July 2007, the Abi Barik Village 
landslide in Badakhshan, Afghanistan, with 2100 deaths, triggered by continuous rainfall occurred on the 2nd 
of May 2014 and the Gorno-Badakshan area land-slide in Tajikistan with 20 deaths and triggered by rainfall 
which happened on the 21st of July 2007. The global annual mean CO2 data are downloaded via URL: gml.noaa.
gov/. The Berkeley-Earth data  set42 is available freely at http:// berke leyea rth. org/ data/. The NOAA-CIRES-DOE 
20th Century Reanalysis version 3 ensemble mean (20CRv3) daily precipitation data can be downloaded from 
https:// psl. noaa. gov/ data/ gridd ed/ data. 20thC_ ReanV3. html. For manipulation of the netcdf files, we used CDO 
(version 2.0.3; https:// mpimet. mpg. de/ cdo) and NCO (version 5.0.6 ). For data analysis and plotting, we used 
the jupyterhub at DKRZ and the following python3.9.9 packages: basemap, dask, matplotlib, numpy, rasterio, 
earthpy, IPython and joblib.
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